

Formalizing MultiWords as Catenae in a Treebank and in a Lexicon

Kiril Simov and Petya Osenova (IICT, Bulgarian Academy of Sciences) WG4: Annotating MWEs in Treebanks (related also to WG1)

1. Overview

Task:

- Definition of catena supporting representation of MWEs in syntactic parses in a treebank and in lexical entries in a lexicon
- Both representations have to be related
- Operations over catenae for realization in parse trees

Classification of MWEs:

[Sag et. al 2002] - Multiword Expressions: A Pain in the Neck for NLP:

- Lexicalized phrases
 - Fixed expressions
 - Semi-fixed expressions
 - Syntactically-flexible expressions
- Institutionalized phrases

2. MWE Types to Model

We define a formalization of MWE to cover the following three types:

- Noun phrases of type Adjective Noun снежен човек 'snow man' (snowman)
- Noun phrases of type Noun Prepositional Phrase
- среща на върха 'meeting-the at peak-the' (summit) • Verb phrases of type Verb – Complement
- затварям си очите 'close own eys-the' (run away from the facts)

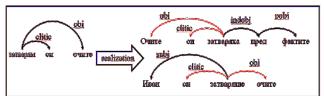
3. Tagged Dependency Tree

Tagged Dependency Tree:

- Let LA be a set of POS tags, LE be a set of lemmas, WF be a set of word forms and D be a set of dependency tags (ROOT \in D). Let x = w1, ..., wn be a sentence. A tagged dependency tree is a directed tree T = (V, A, π , λ , ω , δ) where:
- 1. $V = \{0, 1, ..., n\}$ is an ordered set of nodes
- 2. $A \subseteq V \times V$ is a set of arcs
- 3. $\pi: V \{0\} \rightarrow LA$ is a total labeling function from nodes to POS tags
- 4. $\lambda: V \{0\} \rightarrow \mathsf{LE}$ is a total labeling function from nodes to lemmas
- 5. $\omega: V \{0\} \rightarrow WF$ is a total labeling function from nodes to word forms
- 6. $\delta : A \rightarrow D$ is a total labeling function for arcs
- 7. 0 is the root of the tree

Catena :

- Any element (word) or any combination of elements that are continuous in the vertical dimension (y-axis)
- We model catena as a subtree of a tagged dependency tree


4. Catena Definition

A directed tree G = (VG, AG, π G, λ G, ω G, δ G) (CatR \in VG) is dependency catena of T = (V, A, π , λ , ω , δ) iff:

1.	$\psi: V_G \rightarrow V - \{0\}$	4.
2.	$A_G \subseteq A$	5.
3.	$\pi_G \subseteq \pi$	6.

- 4. $\lambda_G \subseteq \lambda$ 5. $\omega_G \subseteq \omega$
- 6. $\delta_G \subseteq \delta$

A directed tree G = (V_G , AG, π G, λ G, ω G, δ G) is a dependency catena if and only if there exists a dependency tree T such that G is a dependency catena of T

5. Treebank Representation

No	Wf	Le	POS	ExPOS	GramFeat	Head	Re1	Catena
1	Te	те	Р	Рр	number=pll	3	subj	_
					case=nom			
2	СИ	СИ	Р	Рр	form=possesive	3	clitic	<i>c</i> ₁
3	затварят	затварям	V	Vpi	number=pll	0	Root	<i>c</i> ₁
					person=3			
4	очите	OKO	Ν	Nc	number=pll	3	obj	<i>c</i> ₁
					definiteness=y			
5	пред	пред	R	R	_	3	indobj	-
6	истината	истина	Ν	Nc	number=sgl	5	prepobj	_
					definiteness=y			

6. Representation in Lexicon

[form: <затварям си очите >

catena:

No	Wf	Le	POS	ExPOS	GramFeat	Head	Rel
1	_	затварям	V	Vpi	_	0	CRoot
2	СИ	СИ	Р	Рр	form=possesive	1	clitic
3	очите	око	Ν	Nc	number=pll	1	obj
					definiteness=y		

semantics:

No1: { run-away-from_rel(e,x_0,x_1), fact(x_1), [1](x_1) } valence:

No1: < :indobj: x/Prep :prepobj: y/N[1] $\parallel x \in \{ \text{пред, 3a} \} >$

]

[form: < среща на върха >

catena:

No	Wf	Le	POS	ExPOS	GramFeat	Head	Rel
1	_	среща	N	Nc	-	0	CRoot
2	на	на	R	R	_	1	mod
3	върха	връх	N	Nc	number=sg definiteness=y	2	prepobj

semantics:

No1: { meeting_rel(e, x), member(y,x), head-of-a-country(y,z), country(z), [1](z)) } valency:

No3: < :mod: x/Adj[1] >