
(WG 1 and WG 2)

A unified metagrammar approach to the implementation of MWEs
in LTAG

Timm Lichte
CRC 991, University of Düsseldorf

lichte@phil.hhu.de

Simon Petitjean
CRC 991, University of Düsseldorf

simon.petitjean@hhu.de

Abstract In Lexicalized Tree-Adjoining Gram-
mar (LTAG), multi-word expressions (MWEs)
with an idiomatic semantics are usually imple-
mented in an anchor-driven fashion: the idiomatic
semantics is coupled with the lexical anchor and
both are then inserted into appropriate tree tem-
plates. However, with the advance of analyses
where richly structured semantic representations
are flexibly linked to syntactic structures, this im-
plementational approach appears to be too cum-
bersome. In this work (in progress) we instead
propose a unified metagrammar approach where
lexical anchors, their idiomatic semantics and the
tree templates are jointly treated within the meta-
grammar. In our case, the metagrammar frame-
work is eXtensible MetaGrammar (XMG).

MWEs in LTAG Lexicalized Tree-Adjoining
Grammar (LTAG, [3]) is renowned to provide ele-
gant accounts to a range of multi-word expressions
with idiomatic meaning (e. g. [1]). The reason is
that elementary trees of an LTAG can be made as
large as is necessary to span any multi-word ex-
pression, even discontinuous or clausal ones, as
elementary trees come with an extended domain
of locality (EDL). An example is shown in Fig-
ure 2 with a frame-based semantics following [4].
Due to the flexible linking of syntax and semantics
by means of interface variables (see boxed num-
bers), internal and external modification can be ad-
equately handled.

Implementation with XMG In order to turn
paper-and-pencil analyses such as in Figure 2
into an electronic resource, we make use of
eXtensible MetaGrammar (XMG, [2]). XMG
provides description languages and dedicated
compilers for generating linguistic resources.
The metagrammatical descriptions of XMG are
packed into CLASSES, which have the following
general shape:

Class := Name→ Content

Content := 〈Dimension〉{Description} | Name |
Content ∨ Content | Content ∧ Content

The first rule corresponds to the notion of abstrac-
tion: a class allows to associate some content to an
identifier. The second rule features the three other
central concepts of XMG, namely dimension, con-
junction and disjunction. Thus, the content of a
class can be (i) a description attributed to some
dimension, (ii) the content inherited from another
class, (iii) the conjunction of contents, or (iv) the
disjunction of contents.

DIMENSIONS are the crucial elements of a
class. They can be equipped with specific descrip-
tion languages and are compiled independently,
thereby enabling the grammar writer to treat the
levels of linguistic information separately. In the
following will be using the standard dimension
<syn> for the syntax, and the more recently in-
troduced <frame>-dimension for the frame-based
semantics [5]. A code example is provided in Fig-
ure 1 on the next page.

Implementation with external anchoring The
standard approach to the implementation of LTAG
analyses is to dissociate the LEXICAL ANCHORS

(e.g. kicked, the, bucket in Figure 2) from the
TREE TEMPLATE (i.e. the unlexicalized elemen-
tary tree). The tree template is then described by
the metagrammar, whereas the lexical anchors are
dealt with as part of a two-level lexicon. In the lat-
ter one, roughly speaking, full forms are mapped
onto lemmas, and lemmas are again mapped onto
tree templates or tree families (i.e. sets of tree tem-
plates). This general procedure, which is for ex-
ample applied in XTAG [6], is shown in Figure 3.
From our point of view, the problem of this ap-
proach is that it does not easily allow for attaching
the lexical semantics in such way that the intended
linking is established. For example, during lexi-

mailto:lichte@phil.hhu.de
mailto:simon.petitjean@hhu.de

cal insertion, the subject node of the tree template
would have to be explicitly addressed by the lexi-
cal anchor(s) in order to link it to the PATIENT of
dying. This might be doable, but it crucially de-
pends on the interface of lexical insertion.

Implementation with internal anchoring In-
stead we propose a unified approach in which
the anchoring happens inside the metagrammar.
Hence, the metagrammar describes complete el-
ementary trees and their semantics, such as in Fig-
ure 2, not just the underlying tree templates.

An example for implementing kicked the bucket
this way is shown in Figure 1, using XMG code,
and Figure 4. It consists of two classes: nx0Vnx1,

class nx0Vnx1

export ?S ?Subj ?VP ?V ?Obj

declare ?S ?Subj ?VP ?V ?Obj ?X0

{

<syn>{

node ?S [cat=s, e=?X0] {

node ?Subj [cat=np]

node ?VP [cat=vp, e=?X0] {

node ?V [cat=v, e=?X0]

node ?Obj [cat=np] }}}

}

class kicked_the_bucket

import nx0Vnx1[]

declare ?X0 ?X1

{

<syn>{

node ?Subj [i=?X1];

node ?V {

node [lex=kicked, e=?X0] };

node ?Obj {

node [cat=d] {

node [lex=the] }

node [cat=n, i=?X0] {

node [lex=bucket] }}

}

;

<frame>{

?X0[dying,

patient:?X1]

}

}

Figure 1: XMG code of the metagrammatical de-
scription of kicked the bucket

which contributes the generic syntactic structure
of a transitive verb, and kicked_the_bucket,
which reuses nx0Vnx1 and adds to it the lexical an-
chors and their idiomatic semantics.

The <syn>-dimensions contains tree
descriptions, using a bracket notation:
node ?S{ node ?NP node ?VP} means that a
node, associated to the variable ?S, immedi-
ately dominates the nodes ?NP and ?VP, which
are linearly ordered according to the order of
description. Nodes can also be decorated with
features structures. Here, for example, ?S comes
with a feature structure meaning that its syntactic
category is s, and the value of the feature e is the
unification variable ?X0. The <frame> dimension
holds typed feature structure descriptions wherein
the variables ?X0 and ?X1 reappear. This sharing
of variables across <frame> and <syn> is respon-
sible for the linking between syntactic positions
and positions in the semantics.

Perspectives There are many more details and
alternatives to be explored. For example, one
could consider weakly external anchoring where
the lexical insertion sites would be morphologi-
cally more underspecified compared to the pre-
sented internal anchoring solution. Moreover, we
think that XMG could be useful as a general tool
for describing MWEs, as it allows for factorized
and multi-dimensional descriptions in a very flex-
ible manner. For this reason, we are currently also
trying to improve XMG by simplifying, e.g., the
description language for syntactic trees.

References
[1] Abeillé, Anne & Yves Schabes. 1996. Non-com-

positional discontinuous constituents in tree adjoining
grammar. In H. Bunt & A. van Horck (eds.), Discontin-
uous constituency, 279–306. Berlin: Mouton de Gruyter.

[2] Crabbé, Benoit, Denys Duchier, Claire Gardent, Joseph
Le Roux & Yannick Parmentier. 2013. XMG: eXtensible
MetaGrammar. Computational Linguistics 39(3). 1–66.

[3] Joshi, Aravind K. & Yves Schabes. 1997. Tree-
Adjoining Grammars. In G. Rozenberg & A. Salomaa
(eds.), Handbook of formal languages, vol. 3, 69–124.
Berlin, New York: Springer.

[4] Kallmeyer, Laura & Rainer Osswald. 2013. Syntax-
driven semantic frame composition in Lexicalized Tree
Adjoining Grammar. Journal of Language Modelling 1.
267–330.

[5] Lichte, Timm & Simon Petitjean. 2015. Implementing
semantic frames as typed feature structures with XMG.
Journal of Language Modelling 3(1). 185–228.

[6] XTAG Research Group. 2001. A Lexicalized Tree Ad-
joining Grammar for English. Tech. rep. Institute for Re-
search in Cognitive Science, University of Pennsylvania
Philadelphia, PA.

a)

S[E = 0]

VP[E = 0]

NP

N[I = 0]

bucket

D

the

V

kicked

NP[I = 1]

0

[
dying
PATIENT 1

]
b)

S[E = 0]

VP[E = 0]

NP[I = 2]

N[I = 2]

beans

V

spilled

NP[I = 1]

0

divulging
ACTOR 1

THEME 2

[
information

]

Figure 2: Elementary tree and frame semantics of the idiomatic multi-word expression kick the bucket
and spill the beans

3

[
dying
PATIENT 4

]

kicked

the

bucket

S[E = 0]

VP[E = 0]

NP

N[I = 0]�D�

V�

NP[I = 1]

Figure 3: Implementation with external anchoring, which yields the elementary entry for kicked the
bucket in Figure 2. The the tree template is taken from [6], yet slightly modified. The leaves with
�-symbol mark the sites of lexical insertion.

class nx0Vnx1

class kicked_the_bucket

3

[
dying
PATIENT 4

]

V

kicked NP

N

bucket

D

the

S[E = 0]

VP[E = 0]

NPV

NP[I = 1]

Figure 4: Implementation with internal anchoring according to the XMG code in Figure 1. Boxes stand
for classes and double edges indicate identity constraints

