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Motivation:

Multi-word Entities in the Biomedical Domain
•Multi-word entities (MWEs) are very common for most frequent biomedical entity types

• Processing multi-word entities is normally only treated as a by-product in biomedical textmining

•Multi-word entities have different characteristics across different entity types

⇒ An awareness of differences between entity types is helpful

Overview

Approaches
• Experiments with a large database of biomedical terminology
• Experiments with Multi-word word embeddings (Word2Vec Phrases)

Included Entity Types
Genes/Proteins, Organisms/Species, Diseases, Psychiatry, Chemicals/Drugs

Experiments with a large Database of Biomedical Entities

Figure 1: A large database of biomedical terminology compiled from different resources [2]

Distribution of Multi-word Entities

Tokens Types

Entity Type Number Entries
(Tokens)

Number MWEs
(Tokens)

Percent
MWEs

Number Entries
(Types)

Number MWEs
(Types)

Percent
MWEs

Gene/Protein 14,199,460 18,639 0.13 % 11,272,054 16,289 0.14 %
Organism/Species 1,407,664 1,371,300 97.4 % 1,359,712 1,342,423 98.7 %
Diseases 47,617 41,904 88.0 % 37,774 32,829 86.9 %
Psychiatry 1,149 1,019 88.7 % 1,134 1,008 88.9 %
Chemicals/Drugs 1,074,680 653,205 60.8 % 834,886 501,373 60.1 %
All Entity Types 16,730,570 2,086,067 12.5 % 12,285,560 1,894,022 15.5 %

Table 1: Overview of Token, Type and Multi-word counts for each Entity Type (Numbers as of June 2016)

Figure 2: Overview of token/type length in number of words across entity types (Numbers as of June 2016)

Annotation Experiments: Results
Annotation Experiments using 10,000 random PubMed abstracts with a dictionary look-up.

Figure 3: Overview of mwe length in number of annotated words (types) across entity types (Numbers as of June 2016)

Experiments with Word Embeddings

•Word2Vec Phrases[5] model trained over the whole of PubMed (as of January 2016)

•Word2Vec Phrases includes collocation detection: score(wi, wj) =
count(wiwj)−δ

count(wi)×count(wj)
[5]

• Bi-, tri- and quad-gram models trained (word2vec skip-gram)

• Concept and relation-matching against the Unified Medical Language System (UMLS) [1]

Method flowchart

Figure 4: Flowchart of the method applied

Results

Figure 5: Percentages of semantically related one-word terms as compared to multi-word terms per entity type

Relation Types
Entity Type Synonyms SIB CHD PAR broader narrower similar related other not found no relation
Gene/Protein 24 9 2 4 2 1 0 0 19 11 + 179 49
Organism/Species 62 53 5 27 20 1 0 6 30 5 + 223 275
Chemical 72 58 33 23 21 38 0 11 29 4 + 369 118
Disease 39 72 23 16 13 19 4 30 48 0 + 208 42
Psychiatry and Psychology 13 48 8 22 19 7 1 26 25 0 + 120 66

Table 2: Overview of relations (from the UMLS) that were detected between semantically related words from word embeddings
Note: it is possible that there more than two relation types between two concepts.

Relation Types
Entity Type Synonyms SIB CHD PAR broader narrower similar related other not found no relation
Gene/Protein 20 8 0 0 0 1 0 0 9 11 + 82 21
Organism/Species 55 46 1 3 2 1 0 2 22 5 + 138 222
Chemical 44 21 11 4 5 13 0 2 11 4 + 178 43
Disease 26 43 15 5 2 11 3 16 18 0 + 145 26
Psychiatry and Psychology 10 24 3 8 6 4 0 13 15 0 + 86 42

Table 3: Overview of relations (from the UMLS) that were detected between semantically related words from word embeddings -
Relations between MWEs only

Future Work
• Experiments with different methods of collocation detection

• Include additional entity types

• Systematic discussion/interpretation of results
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