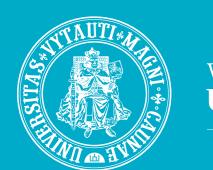
Identification of Multiword Expressions in Parallel Latvian and Lithuanian Corpus (WG3)

PURPOSE

Automatic identification of bi-gram multiword expressions (MWEs) in parallel Latvian and Lithuanian corpora. Our approach uses raw corpora and combination of lexical association measures (LAMs) and supervised machine learning (ML).

Justina Mandravickaitė

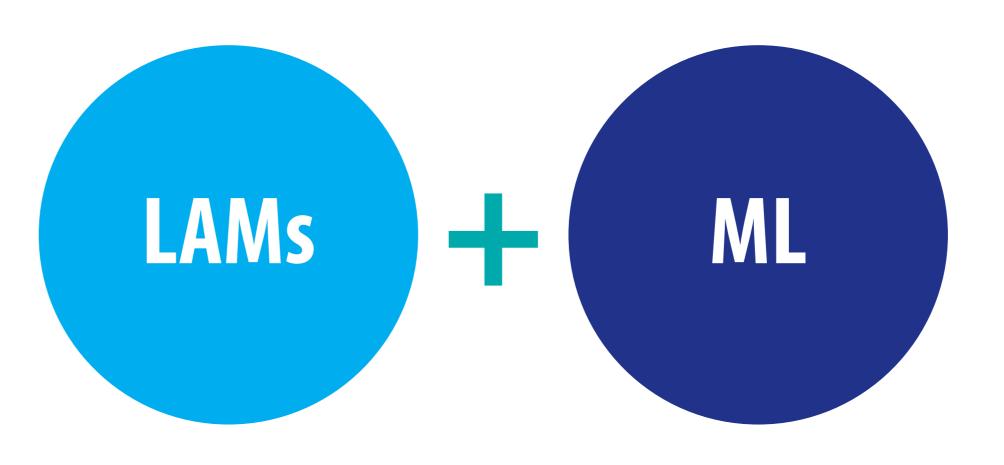
Baltic Institute of Advanced Technology Vilnius University justina@bpti.lt

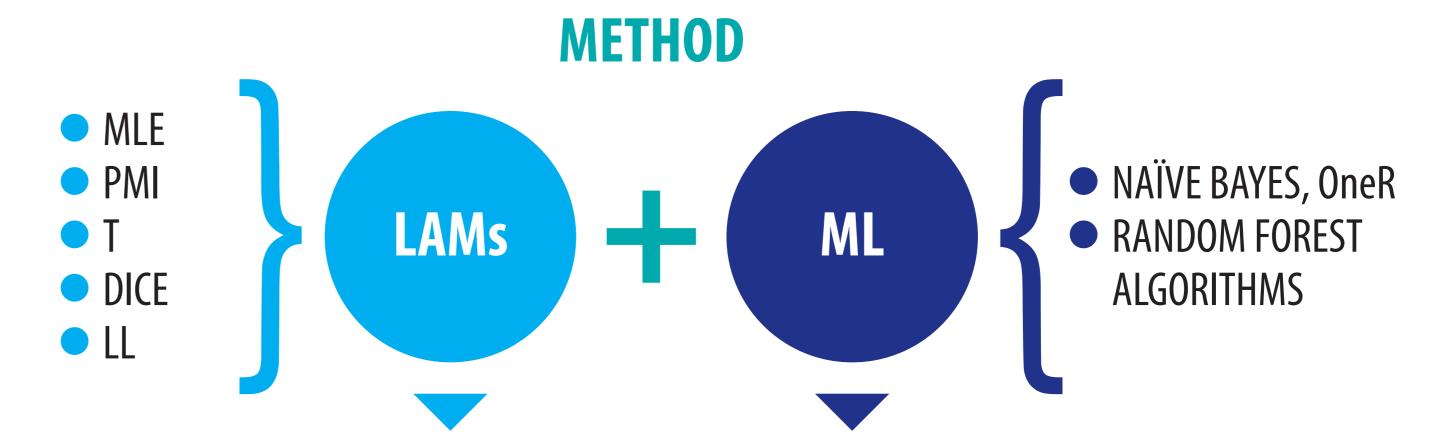

Tomas Krilavičius

Baltic Institute of Advanced Technology
Vytautas Magnus University
t.krilavicius@bpti.lt

Inguna Skadiņa

University of Latvia inguna.skadina@lumii.lv




CORPORA AND LEXICAL RESOURCES FOR EVALUATION

1/3 Latvian and Lithuanian parts of JRC-Acquis Multilinqual Parallel Corpus (~ 9 mln. words per language)

EuroVoc, a Multilingual Thesaurus of the European Union, used as reference source for evaluation

- Bi-gram terms
- Separate MWE lists for Latvian (3608 bi-grams) and Lithuanian (Lithuanian 3783)

Candidate list Lexical association measures

- MLE (Maximum Likelihood Estimation)
- PMI (Pointwise Mutual Information)
- T (Student's t score)
- DICE (Dice's coefficient)
- LL (Log-likelihood score)

Reference list Evaluation against the reference list

MWETOOLKIT

Supervised machine learning algorithms Filters

- SMOTE (Synthetic Minority Oversampling TEchnique)
- Resample

Evaluation

- Precision, Recall, F-measure
- 10-fold cross validation

WEKA

RESULTS

	SCENARIO	PRECISION	RECALL	F-MEAS.
	LAMs	0.1%	21.4%	0.3%
LV	LAMs+NayveBayes	0.6%	4.3%	1.1%
	LAMs+OneR+SMOTE	100%	13.3%	23.4%
	LAMs+Random Forest+Resample	92.4%	52.2 %	66.7%
	LAMs	0.2%	19.4%	0.2%
ΙT	LAMs+NayveBayes	0.6%	4.6%	1.1%
LI	LAMs+OneR+SMOTE	100%	12.6%	22.4%
	LAMs+Random Forest+Resample	95.1%	77.8 %	85.6%

LV = TP IN VARIOUS SCENARIOS

TP=Reference list				772
TP=LAMs+Naive Bayes	33			
TP=LAMs+OneR+SMOTE		205		
TP=LAMs+RandomFores+Resample			402	

LT = TP IN VARIOUS SCENARIOS

TP=Reference list			736
TP=LAMs+Naive Bayes	34		
TP=LAMs+OneR+SMOTE		186	
TP=LAMs+RandomFores+Resample			547

CONCLUSION AND FUTURE PLANS

Extraction of bigram MWEs for Latvian and Lithuanian languages by combining LAMs and supervised ML improved results.

Future plans:

- 1. Automatic extractions of LT and LV MWEs
- 2. Experiments with wider set of features and tools, e.g. GIZA++ probability scores