

Copyright c© 1999
CSLI Publications

Center for the Study of Language and Information
Leland Stanford Junior University

Printed in the United States
17 16 15 14 1 2 3 4 5

Library of Congress Cataloging-in-Publication Data

A grammar writer’s cookbook / Miriam Butt . . . [et al.]

p. cm. –
Includes bibliographical references and index.

ISBN: 1-57586-171-2
ISBN: 1-57586-170-4 (pbk.)

1. Grammar, Comparative and general—Data processing. 2. Computational
linguistics. I. Butt, Miriam, 1966- . II. Series

P98.G73 1999
415′–0285 99-13457

CIP

eISBN-13: 978-1-57586-842-4 (electronic)
eISBN-10: 1-57586-842-3 (electronic)

CSLI Publications gratefully acknowledges a generous gift from Jill and
Donald Knuth in support of scholarly publishing that has made the

production of this book possible.

∞ The acid-free paper used in this book meets the minimum requirements
of the American National Standard for Information Sciences—Permanence

of Paper for Printed Library Materials, ANSI Z39.48-1984.

CSLI was founded in 1983 by researchers from Stanford University, SRI

International, and Xerox PARC to further the research and development of

integrated theories of language, information, and computation. CSLI headquarters

and CSLI Publications are located on the campus of Stanford University.

CSLI Publications reports new developments in the study of language,
information, and computation. In addition to lecture notes, our publications
include monographs, working papers, revised dissertations, and conference

proceedings. Our aim is to make new results, ideas, and approaches available as
quickly as possible.

Please visit our web site at
http://cslipublications.stanford.edu/

for comments on this and other titles, as well as for changes
and corrections by the author and publisher.

Contents

Abbreviations xiii

1 Introduction 1

1.1 Parallel Grammars 1

1.2 Overview of LFG 3

1.3 Levels of Representation 6

1.4 Implementation and Environment 13

I The Grammars: General Analyses 17

2 The Clause 19

2.1 Root Clauses 19

2.1.1 Declaratives 19

2.1.2 Interrogatives 25

2.1.3 Imperatives 29

2.2 Embedded Clauses 31

2.2.1 Subcategorized Declaratives 32

2.2.2 Subcategorized Interrogatives 36

2.3 Clausal Adjuncts 38

2.3.1 Infinitival Adjuncts 38

2.3.2 Participial 39

2.3.3 Finite 40

2.4 What about X′ Theory? 42

v

vi / A Grammar Writer’s Cookbook

3 Verbal Elements 45

3.1 Subcategorization 45

3.2 Nonverbal Subcategorization 47

3.3 Types of Grammatical Functions 48

3.3.1 Subjects 48

3.3.2 Objects 50

3.3.3 Secondary Objects (OBJ2) 51

3.3.4 Obliques 52

3.3.5 XCOMP and COMP 53

3.3.6 Adjuncts 58

3.4 Altering Subcategorization Frames 61

3.5 Auxiliaries 63

3.5.1 Brief Introduction to the Auxiliary Systems 64

3.5.2 Previous Analyses 65

3.5.3 Flat F-structure Analysis 66

3.5.4 Morphosyntactic Structure 68

3.5.5 The Treatment of Tense/Aspect 69

3.6 Modals 69

3.7 Particle Verbs 71

3.8 Predicatives 73

3.8.1 Controlled Subject Analysis 74

3.8.2 Predlink Analysis 74

3.9 Bridge Verbs 75

3.10 Verbal Complexes 76

3.10.1 German Coherent Verbs 76

3.10.2 French Causatives 76

3.10.3 Noun-Verb Constructions 77

4 Nominal Elements 79

4.1 Pronouns 79

4.1.1 Personal and Demonstrative Pronouns 79

4.1.2 Interrogative and Relative Pronouns 80

4.1.3 Expletive Pronouns 81

4.1.4 Reflexives 82

4.1.5 Clitics 85

4.2 Full Noun Phrases 87

4.2.1 English 88

4.2.2 German 88

Contents / vii

4.2.3 French 90

4.2.4 F-structure 91

4.3 Compounds and N-N Sequences 94

4.4 Relative Clauses 97

4.4.1 Bound Relatives 98

4.4.2 Free Relatives 99

4.5 NPs without a Head Noun 102

4.5.1 Nominalized Adjectives 102

4.5.2 Headless NPs 103

4.6 The NP Squish 104

4.6.1 Gerunds 104

4.6.2 Sentential Subjects 105

5 Determiners and Adjectives 107

5.1 Determiners 107

5.1.1 Types of Specifiers 107

5.1.2 Morphosyntactic Considerations 109

5.2 Adjectives 111

5.2.1 Prenominal Adjectives 112

5.2.2 Postnominal Adjectives 116

5.2.3 Predicative Adjectives 119

5.2.4 Arguments of Adjectives 120

5.2.5 Degrees of Comparison 124

6 Prepositional Phrases 131

6.1 Semantic Prepositions 131

6.2 Nonsemantic Prepositions 133

6.3 Interrogatives and Relatives 135

6.4 Clause-Taking Prepositions 136

6.5 Multiple Prepositions 137

7 Adverbial Elements 139

7.1 Adverbs 139

7.2 PPs as Adverbials 141

7.3 NPs as Adverbials 141

7.4 Negation 141

7.4.1 Clausal Negation 142

7.4.2 Constituent Negation 143

7.4.3 Pleonastic Negation 143

viii / A Grammar Writer’s Cookbook

8 Coordination 145

8.1 Basic Approach 145

8.2 Same Category Coordination 148
8.2.1 General Schema 148

8.2.2 Special Rules for Clauses 148

8.3 NP Coordination 149
8.3.1 Basic Structure 150

8.3.2 Agreement 151

8.4 Problems 152

9 Special Constructions 155

9.1 Parentheticals 155

9.2 Headers 157

9.3 Tag Questions 158

II Grammar Engineering 161

10 Overview 163

11 Architecture and User Interface 165

11.1 The User Interface 166

11.2 The XLE Output 167

11.3 The Architecture 171
11.3.1 The Tokenizer 171

11.3.2 The Morphological Analyzer 171

11.4 Lexical Lookup 176
11.4.1 Types of Lexicons 176

11.4.2 Structure of a Lexical Entry 177

11.4.3 Interaction between Lexical Entries 178

11.5 The Chart Parser 180

11.6 Generation and Machine Translation 180

12 Finite-State Technology 183

12.1 Preprocessing 183

12.2 Multiword Expressions 184
12.2.1 Technical Terms 184

12.2.2 Idiomatic expressions 188

12.3 Time expressions 189

12.4 Guessers and Normalizers 189

12.5 Part of Speech Preprocessing 190

Contents / ix

13 Modularity, Maintainability and Transparency 193

13.1 One Grammar, Many Cooks 194

13.2 Encoding Generalizations 196

13.2.1 Templates 196

13.2.2 Complex Categories 200

13.2.3 Lexical Rules 201

14 Performance 203

14.1 Robustness 203

14.1.1 Extraction of Subcategorization Frames 205

14.1.2 Statistical Methods and Chunk Parsing 205

14.1.3 Optimality Theory 207

14.2 Testing 212

14.2.1 Types of Testsuites 212

14.2.2 Further Tools and Databases 215

14.3 Measuring Performance 217

14.3.1 Rule Interactions 217

14.3.2 Grammar Internal Performance 221

14.3.3 Cross-grammar Performance 224

A Appendix: Feature Standardization 227

A.1 General Guidelines 227

A.2 Sample Features 227

A.3 Grammatical Functions 229

References 231

Subject Index 241

Name Index 253

Acknowledgements

We would like to thank Mary Dalrymple for first suggesting that we
write this book. The following people have given us invaluable com-
ments and suggestions: Caroline Brun, Max Copperman, Mary Dal-
rymple, Stefanie Dipper, Ron Kaplan, Veronika Knüppel, Jonas Kuhn,
John Maxwell, Christian Rohrer, Hadar Shemtov, and Annie Zaenen.
Special thanks go to John Maxwell for all his help with xle and to
Anette Frank, who patiently answered many and varied questions about
the French Grammar. We are further indebted to Christine Kaschny,
who helped with the proofreading and indexing.

We would like to acknowledge the Xerox Palo Alto Research Center,
the Xerox Research Centre Europe in Grenoble, and the Institut für
Maschinelle Sprachverarbeitung at Universität Stuttgart for funding
both for the ParGram project and for the writing of this book. For
their technical and general support, many thanks to Emma Pease and
Jeanette Figueroa. Finally, it was as usual a pleasure to work with the
csli staff and we would like to thank Dikran Karagueuzian, Tony Gee
and Maureen Burke. In particular, we would like to thank Dikran for
the many interesting and entertaining moments and conversations.

xi

Abbreviations

Acc accusative ntag noun tag
Adj adjective P person
Akk accusative Part participle
Art article part particle
avm attribute value matrix Pass passive
Comp comparative degree PerfP perfect participle
ConjQue conjunction que Pl plural
Dat dative postneg postposed
Dem demonstrative negative marker
Det determiner Pres present tense
dpl double plural Pro pronoun
F feminine gender Prog progressive
FMN feminine, masculine Pron pronoun

or neuter gender PrPrt present participle
Fut future tense refl reflexive
Gen genitive Rel relative
gend gender S strong inflection
Imp imperative Sg singular
Inf infinitive SP singular/plural
Int interrogative St strong inflection
InvGen invariant gender Subj subjunctive
InvPL invariant plural vnbr verb number
M masculine gender W weak inflection
N neuter gender Wh wh-word
nbr number 1 first person
neg negative marker 2 second person
Nom nominative 3 third person
NomObl nominative/oblique and 3P third person
Non3Sg not third singular

xiii

1

Introduction

This book is meant to be a cookbook in several senses. One aim of the
book is to present analyses of core constructions in a crosslinguistically
valid manner which also takes into account the particular demands of
grammar development. In particular, the analyses we document are mo-
tivated by our experiences in the development of parallel grammars for
English, French and German. We thus provide the potential grammar
writer with a handbook in which sample analyses and their linguistic
motivations can be looked up and used in the development of further
grammars. To that end, we have tried to couch our solutions in terms
that are sufficiently independent from the particular framework of lfg
used in our grammar development effort. The presentation of the lin-
guistic analyses and their implementation constitutes the substance of
Part I. In Part II we report on the grammar engineering issues such
as modularity, performance, and testing. As these issues are central to
any grammar development effort, we have again tried to present the
discussion of our experiences and results so that they may be of use in
further grammar development efforts.

1.1 Parallel Grammars

The grammar development we report on in this book involves three lan-
guages: English, French and German. The overall aim of our project is
to produce collaboratively written large Lexical-Functional Grammar
(lfg) computational grammars for English, French, and German. Of
central concern is the issue of how to balance grammar maintainability
while at the same time still achieving large coverage. The project is
therefore characterized by an attention to parallelism and crosslinguis-
tic validity. The grammars are parallel in the sense that they are guided
by a common set of linguistic principles and a commonly agreed upon
set of grammatical analyses and features. This approach was taken in

1

2 / A Grammar Writer’s Cookbook

order to maximize compatibility between the different grammars with
regard to the phenomena being treated, and to ensure a maximal degree
of generality.

Within a given linguistic theory (e.g., lfg), there are often sev-
eral possible analyses for syntactic constructions such as prepositional
phrases or relative clauses. In many cases, despite agreement on the
general direction of the solution, no consensus has been reached by lin-
guists. In any given language, three or four differing solutions might
be possible for a particular construction, with one perhaps being the
most attractive. Parallel grammar development involves looking at a
syntactic construction in several different languages and, within the
chosen linguistic theory, finding the one analysis among the various
possibilities that is the most elegant and attractive for all of the lan-
guages under consideration, while simultaneously allowing for linguis-
tically motivated divergences. Thus, parallel grammars are grammars
with similar coverage in different languages which explore how simi-
larly one can treat various phenomena crosslinguistically. This issue of
the parallelism is a central concern in opening the door to a possible
(unproblematic) extension of the analyses to other grammars and lan-
guages. An unproblematic extension is especially desirable in light of
machine translation applications.

Another aspect of parallelism is embodied by the phenomena treated
in this project. In our case, the grammar development effort was ini-
tially oriented by a user manual for tractors, available in French, Ger-
man, and English. A plus of having used this corpus is that the texts are
aligned so that the translation equivalents in the three languages are
given sentence by sentence. An additional advantage is the immediate
applicability of the resulting grammar towards machine translation in
industrial contexts. One problem with using the tractor manual corpus
is that certain core constructions, such as questions, do not occur in the
text, while certain other constructions, such as imperatives, are statis-
tically overrepresented. In order to be able to parse standard sentences
of each of the languages within our project, we included an implemen-
tation of core grammar constructions that do not necessarily appear in
the base corpus. However, the technical text provided a good basis for
the initial phase of parallel grammar development.

As lfg presents a modular conception of linguistic information, we
have chosen to write grammars which concentrate on doing syntac-
tic analyses only, but in such a way that the representations arrived
at could serve as direct and useful input for further semantic inter-
pretation (Halvorsen 1987, Dalrymple et al. 1993, Dalrymple 1999) or
machine translation (Kaplan et al. 1989, Emele and Dorna 1998). Since

Introduction / 3

the functional structures which primarily serve to represent predicate
argument, head-modifier and control relations in lfg have shown to
be translatable into qlfs (Quasi Logical Formulas) quite straightfor-
wardly (van Genabith and Crouch 1996), we see the contribution of the
work presented in this book as complementing the efforts represented
by the Core Language Engine (cle) (Alshawi 1992).

The grammar development reported on here took place within the
ParGram (Parallel Grammars) project, which is a joint effort involv-
ing researchers from Xerox Palo Alto Research Center in California,
the Xerox Research Centre Europe in Grenoble, France, and the Insti-
tut für Maschinelle Sprachverarbeitung at the University of Stuttgart,
Germany.

In the remainder of this chapter, we provide a short overview of
lfg, the syntactic theory underlying ParGram, and finally provide an
introductory look at the architecture of the grammars.

1.2 Overview of LFG

lfg assumes two syntactic levels of representation: c(onstituent)-struc-
ture encodes phrasal dominance and precedence relations and is repre-
sented as a phrase structure tree; f(unctional)-structure encodes syn-
tactic predicate argument structure and is represented as an attribute-
value matrix (see section 1.3 for a more detailed discussion of the role
these levels of representation play in the ParGram project). The c-
structure is the product of a context free grammar; the f-structure
reflects the collection of constraints imposed on the context free skele-
ton. The f-structure thus contains attributes, such as pred, subj, and
obj, whose values can be other f-structures, as in (1b). Note that the
ordering of the attributes in the f-structure is irrelevant since it is an
unordered set. The (simplified) c-structure and f-structure for sentence
(1a) are given in (1b) and (1c) respectively.

The value of the attribute pred is considered to be a semantic value
in that items like ‘coffee’ or ‘drink’ are taken to be a pointer to a
more elaborated entry in which the precise lexical semantics of the item
are encoded (Kaplan and Bresnan 1982). In the case of argument taking
predicates it has been the convention to write the subcategorization
frame as part of the entry.1

1With the advent of linking theory in lfg (Bresnan and Kanerva 1989, Bresnan
and Moshi 1990), the explicit listing of grammatical functions in the subcategoriza-
tion frame of a predicate became inapplicable, as the explicit mapping from argu-
ment structure (lexical semantics) to grammatical functions takes place in terms of
linking principles. The f-structure in (1) does not reflect this, but would make it
appear that drink subcategorizes directly for a subj and an obj rather than, for ex-

4 / A Grammar Writer’s Cookbook

(1) a. Peter drinks coffee.

b. c-structure:
s

np vp

Peter v np
drinks

coffee

c. f-structure:
pred ′drink<subj,obj>′

subj
[
pred ′Peter′

]
obj

[
pred ′coffee′

]


The relationship between c-structure trees and the corresponding f-
structures is given by a functional projection function φ from c-structure
nodes to f-structure attribute-value matrices. For example, the follow-
ing annotated phrase-structure rules were used in the analysis of sen-
tence (1a).

(2) s −→ np vp
(↑subj)=↓ ↑=↓

vp −→ v np
↑=↓ (↑obj)=↓

In each rule or lexical entry constraint, the ↑ metavariable refers to the
φ-image of the mother c-structure node, and the ↓ metavariable refers
to the φ-image of the nonterminal labeled by the constraint (Kaplan
and Bresnan 1982:183). The annotations on the rules indicate that the
f-structure for the s has a subj attribute (↑ in the annotation on the
np node) whose value is the f-structure for the np daughter (↓ in the
annotation on the np node), and that the s node corresponds to an
f-structure which is the same as the f-structure for the vp daughter.
The functional projection of a c-structure node is the solution of con-

ample, an agent and a patient. As the f-structures are much easier to read with the
subcategorization frame spelled out in terms of grammatical functions, and since
we have not implemented a version of linking theory, we have retained the earlier
convention. Note that in the original version of lfg, semantic forms encoded the
relation between grammatical functions and thematic roles.

Introduction / 5

straints associated with the phrase-structure rules and lexical entries
(see below) used to derive the node.

When the phrase-structure rule for s is used in the analysis of a par-
ticular sentence, the metavariables ↑ and ↓ are instantiated to particu-
lar f-structures placed in correspondence with nodes of the c-structure.
We refer to actual f-structures by giving them indices such as 1, 2,
3, and 4. The instantiated phrase structure rule is given in (3), with
the φ correspondence between c-structure nodes and f-structures indi-
cated by arrows leading from phrase-structure nodes to attribute-value
matrices.

(3) s −→ np vp
(1 subj)=2 1 = 4

s 1, 4: [subj 2:[]]

np vp

Lexical entries also use the metavariable ↑ to encode information
about the f-structures of the preterminal nodes that immediately dom-
inate them. A partial lexical entry for the word ‘Peter’ is:

(4) Peter np (↑pred) = ′Peter′

(↑num)=sg
(↑pers)=3
(↑gend)=masc

The constraint (↑pred)=′Peter′ states that the preterminal node im-
mediately dominating the terminal symbol ‘Peter’ has an f-structure
whose value for the attribute pred is ′Peter′. The entry also contains
information as to person, number, and gender, which is relevant, for
example, for determining agreement with the verb drinks whose lexical
entry is shown in (5). If there is a conflict, the result is an illformed
f-structure.

(5) drinks v (↑pred)=′drink<subj,obj>′

(↑tense)=present
(↑subj pers)=3
(↑subj num)=sg

For a particular instance of use of the word Peter , the following c-
structure and f-structure configuration results:

(6) (2 pred) = ′Peter′

np 2: [pred ′Peter′]

Peter

6 / A Grammar Writer’s Cookbook

There are three wellformedness conditions on the f-structure: func-
tional uniqueness, completeness, and coherence (see Kaplan and Bres-
nan 1982 for the original definitions).

(7) Functional Uniqueness: In a given f-structure, a particular at-
tribute may have at most one value.

Functional uniqueness guarantees that an attribute does not have more
than one value. This, for example, rules out an f-structure in which the
tense attribute is specified as both past and present. This does not
mean that a particular attribute may not receive its value from more
than one source. As long as the values can unify, this is no problem.2

For example, if the pers attribute of the subject is specified as first
person both by the lexical entry of the subject noun and by the verb,
the f-structure still satisfies functional uniqueness.

(8) Completeness: An f-structure is locally complete if and only
if it contains all the governable grammatical functions that its
predicate governs. An f-structure is complete if and only if it and
all its subsidiary f-structures are locally complete.

Completeness states that all of the grammatical functions for which
the predicate subcategorizes must be assigned values. This rules out
clauses such as John likes in which the obj attribute of the predicate
is not assigned a value.

(9) Coherence: An f-structure is locally coherent if and only if all
the governable grammatical functions it contains are governed by
a local predicate. An f-structure is coherent if and only if it and
all its subsidiary f-structures are locally coherent.

Coherence requires every semantic form in the f-structure to be the
pred value of a grammatical function in that f-structure. That is, all
items with a pred must be assigned to a grammatical function. This
results in clauses like Kim appears the dog being illformed because the
dog is not associated with any argument of the verb nor can it be in-
terpreted as an adjunct and hence it receives no grammatical function.

1.3 Levels of Representation

One of the primary purposes of the modularity assumed in lfg is the
idea that one ought to be able to represent differing generalizations
about languages at the level of representation most appropriate for that

2There are two exceptions to this. The first is semantic forms, i.e., the value of
preds, which by definition cannot unify. The second are instantiated forms, which
are defined by the user as attributes whose values cannot unify.

Introduction / 7

generalization. Syntactic, phonological, or semantic analyses of a given
sentence within linguistic theory have most successfully been tackled
under an approach which used differing tools and concepts for each of
these areas (e.g., formal logic for semantics, notions of segments, sylla-
bles, and prosody for phonology). The modular organization of lfg al-
lows the statement of generalizations relevant for a particular aspect of
language at an independent level of representation. However, since the
differing levels of representation are related to one another through the
projection architecture, they are also mutually constraining , thus allow-
ing for the modeling of the interactions between phonology, semantics,
syntax and morphology that are observed in natural language. Most of
the work in lfg has been done primarily from a syntactic point of view,
so that the syntactic levels of representation are the best understood
to date.

The grammars developed in ParGram make use of c-structure and f-
structure (but see section 3.5.4 on morphosyntactic-structure) since our
primary purpose is to provide a syntactic analysis for given sentences.
This primary emphasis on syntax does not, however, preclude the possi-
bility of subsequent semantic analysis at a level of s(emantic)-structure
(see Halvorsen 1983 or Dalrymple et al. 1993 for some proposals on the
representation of semantics in lfg) or machine translation based on
f-structures (Kaplan, Netter, Wedekind and Zaenen 1989).

As discussed in section 1.2, there are two primary levels of syntactic
representation in lfg. Facts about linear precedence and constituency
are encoded in the c-structure. Information about predicate-argument,
head modifier or control relationships, along with morphosyntactic prop-
erties such as tense, aspect, case, number and gender, are represented
at f-structure. Besides this division of labor, another guiding idea for
distinguishing the two levels of representation is that one would like to
be able to factor out language universal properties from language par-
ticular properties. An examination of a wide variety of languages has
shown that surface properties, such as word order and constituency, can
vary quite drastically from language to language. However, a remark-
able number of phenomena across languages express the same gener-
alizations with respect to notions such as subject, object, complemen-
tation, control, anaphor binding, and head modifier relationships in
general. These more language universal properties are expressed at f-
structure, while the more language particular properties are encoded
at c-structure.

One aspect of parallel grammar development that we set ourselves to
explore within ParGram is how far one can develop parallel (ultimately
language universal) analyses in English, French and German for various

8 / A Grammar Writer’s Cookbook

phenomena such as auxiliaries, control, coordination, relative clauses,
comparatives and predicatives. In developing each of these analyses, we
pursued the strategy that the analysis in terms of f-structure for each
of the three languages should only differ where very good linguistic rea-
sons could be provided. The analysis in terms of c-structure, however,
was allowed to differ from language to language as this level of repre-
sentation encodes the language particular facts such as word order or
constituency.

The linguistic desirability of providing language universal analyses
which produce parallel representations for German, French and En-
glish at the level of f-structure also proves to be an attractive feature
in terms of machine translation. If machine translation can operate on
a fairly deep, i.e., language universal, level of representation, it can
operate more efficiently. Furthermore, a systematic and parallel repre-
sentation at f-structure also ensures the viability of subsequent seman-
tic interpretation. Rather than being faced with the task of developing
a specially designed semantic construction and interpretation system
for each language, the semanticist can formulate language universal
principles of semantic interpretation on the basis of parallel f-structure
representations. So, although f-structures are syntactic representations,
they represent an interface to the semantics, and as such can be used
as direct input for the purposes of translation.3

Within ParGram we therefore instituted strict guidelines for the
kinds of information in terms of features and values that could be
used in the development the f-structure analyses (see the Appendix for
examples). In addition, despite the relative language dependent vari-
ability of German, French, and English c-structures, we aimed to set
standards that would keep the structures readable. That is, the phrase
structures were not allowed to vary so idiosyncractically across lan-
guages as to become mysterious, uninterpretable objects to anyone not
thoroughly familiar with the language particular implementation. To
that end, while we do not adhere to a strict x′ system, we use generally
accepted categories like np, vp and cp.4 Where we needed to say some-

3This is currently being experimented with at the University of Stuttgart with
respect to Underspecified drss (Discourse Representation Structures) based on Dis-
course Representation Theory (Kamp and Reyle 1993) and at parc with respect to
linear logic (Dalrymple et al. 1993).

4The phrase structures generated by the analyses loosely adhere to common
x′ principles, so that nps dominate nouns or pronouns, vps dominate verbs, aps
dominate adjectives, etc. (see Bresnan 1982b for x′ Theory within lfg and Sells
1985 for a summary and comparison across theories). However, we avoided using
explicit x′ terminology such as n′ or v′ in order to avoid any potential confusions
as to what the phrase structure trees are expressing: they are not always binary

Introduction / 9

thing special about these categories, as in vpperf or cprel, we maintain
a standard that any such “extra” subscripts are represented with lower
case letters. Illustrative examples from German and English are shown
below.

branching, as is assumed in many current approaches to syntax (see Kayne 1984 as
one of the original proponents of this idea), and the expansion of an np, vp, or ap
node may result in more than just the two levels of x′ and x.

10 / A Grammar Writer’s Cookbook

(10) a. Wir haben eine Grammatik entwickelt.
we have a grammar developed
‘We have developed a grammar.’ (German)

b. c-structure:
s

np vp2

pron vaux vpv
wir haben

np vpv

npcore vc

detp nap v
entwickelt

d n
eine Grammatik

c. f-structure:

pred ′entwickeln<subj,obj>′

stmt-type declarative

tns-asp

[
tense perf

mood indicative

]

subj



pred ′pro′

pers 1

case nom

num pl

pron-type pers

pron-form wir



obj



pred ′grammatik′

pers 3

case acc

num sg

gend fem

ntype count

spec

[
spec-form ein

spec-type indef

]





Introduction / 11

(11) a. We have developed a grammar.

b. c-structure:
s

np vp

pron vpaux
we

aux vpv
have

v np
developed

d nppp
a

npzero

n
grammar

c. f-structure:

pred ′develop<subj,obj>′

stmt-type declarative

tns-asp

[
tense perf

mood indicative

]

subj



pred ′pro′

pers 1

anim +

case nom

num pl

pron-type pers

pron-form we



obj



pred ′grammar′

pers 3

case acc

num sg

anim −
ntype count

spec

[
spec-form a

spec-type indef

]





12 / A Grammar Writer’s Cookbook

A comparison of the f-structures in (10c) and (11c) shows that at
this level the analyses of the English and German sentences look very
similar. There is a minor difference in that the English grammar makes
use of an anim feature. In English, a syntactic differentiation between
animate and inanimate is necessary for the distinction between the uses
of who and which in relative clauses.

(12) The woman, who/*which is good, is laughing.
The book, which/*who is good, is on the shelf.

As there is no such syntactic distinction in German, it has not been
adopted in our grammar, although it could have been implemented vac-
uously in order to ensure complete parallelism. This, however, was not
done as it could not be linguistically motivated. The general guideline
towards establishing treatments of phenomena in the languages thus
primarily consists of finding a linguistically motivated analysis. Gratu-
itous parallelism was avoided. Thus, the two f-structures in (10c) and
(11c) only differ where necessary.

The two c-structures in (10b) and (11b), on the other hand, are fairly
different in appearance. For example, the English grammar provides an
analysis of the np that has a depth of at least four levels, thus allowing
for at least four differing possible attachment levels (see (11b)). This
structurally rigid analysis of nps is possible for English, but not for
German, since English mandates very fixed word order, but German
allows comparatively flexible word order patterning. The np analysis
in German, therefore, does not rely on structurally complex phrase
structure schemata for an analysis and instead makes use of other tools
(see section 4.2.2).

On the other hand, the German pattern of verb-second in main
clauses and verb-final in subordinate clauses in combination with the
rather free word order effects among the arguments gives rise to a struc-
turally complex treatment of the vp in German. An example is shown
in (13). Here the main clause contains the finite auxiliary haben ‘have’,
which is in clause-second position, while the subordinate clause places
the finite verb in clause-final position. Notice that the nonfinite main
verb of the main clause entwickelt ‘developed’ is also in clause-final
position: the generalization is that only the finite verbal element can
appear in clause-second position.

Introduction / 13

(13) Wir haben eine Grammatik entwickelt, weil wir gerne am
We have a grammar developed because we like at.the

Rechner sitzen.
computer sit
‘We have developed a grammar because we like to sit at the com-
puter.’ (German)

The grammar represents this pattern by making a distinction as to
whether a vp is verb-second (vp2) or verb final (vpv), and whether
the finite verb-second clause was headed by an auxiliary or by a main
verb. This difference in turn determines the possible realizations of
the verb complex (vc) in clause-final position: if the finite auxiliary
already appeared in clause-second position, then it should not be able
to appear in the clause-final position, and the phrase structure rules are
formulated accordingly. The English grammar, on the other hand, has
taken the rigid positioning of the auxiliaries and modals with respect
to the main verb, as in (14), into account and thus distinguishes vps on
the basis of whether or not they contain an auxiliary or a modal (see
section 3.5)

(14) a. The tractor will have been being started.

b.*The tractor will have being been started.

To reiterate, the level of c-structure serves to encode language partic-
ular properties such as linear order, position, and constituent structure,
and thus may differ widely from language to language. In contrast, the
level of f-structure encodes analyses in terms of predicate-argument
structure and head-modifier relationships, which are taken to hold at
a “deeper”, i.e., a language universal level.

1.4 Implementation and Environment

The grammar development environment used at the beginning of the
ParGram project was the Xerox lfg Grammar Writer’s Workbench
(Kaplan and Maxwell 1996). This environment is written in Medley
Lisp, a variant of Interlisp, and provides a cut-and-paste morphology
which the grammar writer specifies by hand. It was designed mainly
as a teaching tool for lfg theory and to be used by linguists to test
particular linguistic constructions. Although it is a complete implemen-
tation of the lfg formalism, the Grammar Writer’s Workbench turned
out to be difficult to use with real-size on-line dictionaries, as well as
producing unacceptable run-times for more complex sentences.5

5The Grammar Writer’s Workbench remains a useful system in that it provides a
complete implementation of the range of formal devices available in an lfg formal-

14 / A Grammar Writer’s Cookbook

As such, grammar development efforts within ParGram now use the
Xerox Linguistic Environment (xle) as a platform for grammar devel-
opment. xle is an efficient C language reimplementation of the lfg
Grammar Writer’s Workbench which preserves the original spirit while
operating within Unix and Tcl/Tk. Given ParGram’s goal of producing
parallel grammars that cover more than just a fragment of each partic-
ular language, xle on the whole is a more appropriate platform. For
example, within xle it is possible to load real-size on-line lexicons, and
parse complex forty word sentences in a reasonable amount of time.
Another advantage of xle is that it can be used for both parsing and
generation.

The general architecture of the implementation is shown in (15).

(15)

Tokenization

Lexical

Look-up

Analysis

Morph

Transducers

Other

with constraints

Chart decorated

Parser

Chart

Chart

Initial

fsmfsmchar

fsm

Unification

Graphical

Interface

User

Complete
Analysis

RulesLexicon
LFG

Other

TransducersAnalyzer

Morph
Tokenizer

String

Input

As shown in (15), xle parses and generates sentences on the basis of
grammar rules, one or more lfg lexicons (see section 11.4), a tokenizer
(see 11.3.1), and a finite state morphological analyzer (see 11.3.2), as
well as other finite state modules such as a guesser and a normalizer.

A more complete discussion of the various parts of the xle architec-
ture in (15) as pertaining to grammar development within ParGram can
be found in Part II. In addition, an xle “user manual” documenting

ism. As such, it is highly recommended for teaching purposes, and smaller (perhaps
experimental) grammars. It is available at
http://www.parc.xerox.com/istl/groups/nltt/medley/.

Introduction / 15

its various features is currently being compiled. Part II also addresses
some of the grammar engineering issues that were of particular rele-
vance in the ParGram grammar development efforts, such as grammar
modularity, maintainability, and transparency, blocking of ambiguity
and overgeneration, and the vexing question of how to measure gram-
mar performance in an objective and hardware independent way. But
first we turn to the general analyses developed for the three languages
within ParGram in Part I and hope that Parts I and II together will
provide an informative and useful basis for further grammar develop-
ment efforts.

Part I

The Grammars: General
Analyses

2

The Clause

A clause is taken to encompass a constituent which contains a verb and
all of its arguments, in addition to any adjuncts such as prepositional
phrases or adverbs. In some cases, one or more of the arguments of the
verb (usually the subject) may not be overt, e.g., in imperatives, or may
have been pulled out of the clause and “fronted” for topicalization or
other purposes. However, this is not generally seen as detracting from
the nature of a clause. In most languages, a number of basic root or
matrix clauses can be distinguished in terms of verb placement, verb
morphology, intonation, or the presence and position of interrogative
words. In our grammars we represent the distinctive syntax of various
types of root clauses by distinguishing between declaratives, interroga-
tives and imperatives. The grammars also distinguish between various
types of subordinate clauses such as conditionals, concessives, and sub-
categorized versus adjunct subordinate clauses.

2.1 Root Clauses

Root clauses appear independently. Subordinate clauses, such as that
or when clauses (section 2.2 and 2.3) cannot occur without a matrix
clause. Root clauses encompass several semantically and syntactially
distinct types. We present differing c-structure analyses for these types
and mark their distinctive semantic import in terms of a stmt-type
feature1 at f-structure. This feature may then be fed into a separate
semantic evaluation module.

2.1.1 Declaratives

The c-structure of declaratives is often considered the most basic clause
structure of the language (as opposed to interrogatives (section 2.1.2),

1This feature does not reflect the type of speech act. Instead, it represents a very
basic syntactic distinction among types of clauses according to their syntax.

19

20 / A Grammar Writer’s Cookbook

imperatives (section 2.1.3), or embedded clauses (section 2.2)). All
declaratives are assigned stmt-type declarative; this is treated as
a default, while special constructions like interrogatives and impera-
tives will provide their own stmt-type. One important characteristic
of root declaratives is that they are tensed. We ensure this by annotat-
ing the c-structure rules with a condition that demands the existence
of a tense feature, which is provided by a finite verb.2

Some languages allow practically any order of constituents in declara-
tive clauses; these orders are usually associated with varying discourse
functions and there may be specific constructional interpretations of
certain orders (É. Kiss 1995, Vallduv́ı 1992). However, many languages
have relatively strict c-structure requirements on root declaratives. For
example, English and French require the subject to precede the vp in
simple declaratives, as in (1), and have further requirements on the in-
ternal structure of the vp, e.g., the verb is followed by the object which
is followed by other arguments and adjuncts. In contrast, German al-
lows relatively free order among the verb’s arguments and adjuncts,
but requires the finite verb to be in second position (i.e., to follow the
first constituent), as in (2).

(1) a. The driver starts the tractor with the key.

b. Le conducteur fait demarrer le tracteur avec la clef.
the driver makes start the tractor with the key
‘The driver starts the tractor with the key.’ (French)

(2) a. [Der Fahrer] startet den Traktor mit dem
the.Nom driver starts the.Acc tractor with the.Dat

Schlüssel.
key
‘The driver starts the tractor with the key.’ (German)

b. [Den Traktor] startet der Fahrer mit dem Schlüssel.

c. [Mit dem Schlüssel] startet der Fahrer den Traktor.

d. [Mit dem Schlüssel] startet den Traktor der Fahrer.

In the three grammars, declaratives are taken to be the default type
of root clause and are analyzed as a simple s. In French and English,
the s expands into a structure which requires a subject preceding a vp

2In addition, root declaratives are generally punctuated with a period in German,
French, and English. When dealing with punctuated input, we parse the punctuation
as part of the input (punctuation differs widely crosslinguistically, but not in our
sample set — see Nunberg 1990 for a discussion of the linguistics of punctuation).
However, when dealing with text derived from natural speech recordings, in which
punctuation is not part of the original input, punctuation is not parsed.

The Clause / 21

in declaratives, and the vp expands into a verb with an optional object
following it. Further arguments such as secondary objects and obliques
may follow, and adjuncts are interspersed among the arguments (not
shown here).

(3) s −→ np vp
(↑subj)=↓ ↑=↓

vp −→ v (np) (np) (pp)
↑=↓ (↑obj)=↓ (↑obj2)=↓ (↑obl)=↓

The rules presented here are an abstraction over the actual imple-
mentation, which involves the treatment of such phenomena as that
clauses in subject position, the role of topics, and the addition of fur-
ther constraining annotations to prevent the grammar from overgener-
ating. The essential backbone of the logic and structure of the analysis,
however, is as described here. In all three languages, the f-structure
analyses are parallel and are essentially the same as the one given for
English in (4c).

(4) a. The driver starts the tractor.

b. root

s period
.

np vp

d nppp vpv
the

npzero v np
starts

n d nppp
driver the

npzero

n
tractor

22 / A Grammar Writer’s Cookbook

c.


pred ′start<subj,obj>′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]

subj



pred ′driver′

pers 3

anim +

case nom

num sg

ntype count

spec

[
spec-form the

spec-type def

]



obj



pred ′tractor′

pers 3

case acc

num sg

anim −
ntype count

spec

[
spec-form the

spec-type def

]




In German, the relatively free word order demonstrated by (2) is

handled via functional uncertainty (see Kaplan and Zaenen 1989, and
Kaplan and Maxwell 1996 for a discussion of the phenomena and the
introduction of functional uncertainty). Functional uncertainty allows
a characterization of long-distance dependencies without traces, gaps,
or chains. That is, the free word order effects of German, in which
arguments and adjuncts can appear in any order within a given clause
(the particular order in any given sentence is determined by factors
such as definiteness, phonological weight, and discourse “packaging”
considerations) and can be extracted out of the clause, can be modeled
without having to assume an invariant deep structure from which all
other orders are derived. Instead, arguments and adjuncts can be base
generated in all of the positions they might be found in and connected
to the clause they belong to via a functional uncertainty path.

In the German grammar, for example, root clauses are taken to be an
s which expands into a single constituent preverbal position and a vp

The Clause / 23

in which the finite v must precede all other arguments and adjuncts.
On the face of it, this does not appear to be so different from what
is done for the English and French grammars. The crucial difference,
however, lies not in the expansion of s, but in the functional annotations
associated with these expansions, as shown in (5) (leaving aside pps for
ease of exposition).

(5) s −→ np vp
(↑xcomp* gf)=↓ ↑=↓

vp −→ v np*
↑=↓ (↑xcomp* gf)=↓

The functional annotations make use of regular expressions to allow
for an infinite disjunction of possibilities. The Kleene star ‘*’ on the
xcomp indicates that the np in question may be embedded under any
number of verbal complements, while the gf is shorthand notation for
a disjunction of governed (subcategorized for) grammatical functions
such as subject, object, and oblique.3 Thus, (6a) will be instantiated as
in (7a) and (6b) as in (7b). For purposes of illustration, the c-structure
and f-structure of (6b) are shown in (8). Note that the f-structure of
the German (6b) and of the English equivalent are essentially identical,
despite the difference in word order. It is only the c-structures which
differ.

(6) a. Der Fahrer startet den Traktor.
the.Nom driver starts the.Acc tractor
‘The driver starts the tractor. (German)

b. Den Traktor startet der Fahrer.

3The implementation realized within xle is a nonconstructive one. Layers of
complementation (xcomps here) are only instantiated if there is evidence for them
elsewhere. That is, the expansion of the Kleene star is very constrained in practice.
For a detailed discussion on why the power introduced by functional uncertainty
does not render the formalism of lfg undecidable see Kaplan and Maxwell 1988a.

24 / A Grammar Writer’s Cookbook

(7) a. s −→ np vp
(↑subj)=↓ ↑=↓

vp −→ v np
↑=↓ (↑obj)=↓

b. s −→ np vp
(↑obj)=↓ ↑=↓

vp −→ v np
↑=↓ (↑subj)=↓

(8) a. Den Traktor startet den Fahrer.

b. root

s period
.

np vp2

detp npap v vpargs
startet

d n np
den Traktor

detp npap

d n
der Fahrer

The Clause / 25

c.


pred ′starten<subj,obj>′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]

subj



pred ′Fahrer′

pers 3

gend masc

case nom

num sg

ntype count

spec

[
spec-form der

spec-type def

]



obj



pred ′Traktor′

pers 3

gend masc

case acc

num sg

ntype count

spec

[
spec-form der

spec-type def

]




2.1.2 Interrogatives

Interrogatives often have substantially different c-structures from their
declarative counterparts. The syntactic encoding of questions also dif-
fers widely crosslinguistically. For example, some languages form yes-no
questions solely by a change in intonation, whereas others insert a spe-
cial morpheme indicative of the type of question. Some languages (such
as English) place interrogative words (wh-words) in a certain position
(clause initial in English), while other languages leave the interrogative
words in situ.

This wide variation in syntactic encoding is reflected by the three
ParGram languages. In French, for example, yes-no questions involve
the appearance of the special phrase est-ce que, as in (9b). In all three
languages, yes-no questions may also be formed by subject-auxiliary
inversion, as in (9c), (10b) and (11b).

26 / A Grammar Writer’s Cookbook

(9) a. Tu as conduit ce tracteur.
you have driven this tractor
‘You have driven this tractor.’ (French)

b. Est-ce que tu as conduit ce tracteur?
Is-it that you have driven this tractor
‘Have you driven this tractor?’ (French)

c. As-tu conduit ce tracteur?
have-you driven this tractor
‘Have you driven this tractor?’ (French)

(10) a. They have been flashing repeatedly.

b. Have they been flashing repeatedly?

(11) a. Die rote Kontrollampe ist aufgeleuchtet.
the.Nom red control light is lit up
‘The red control light has lit up.’ (German)

b. Ist die rote Kontrollampe aufgeleuchtet?
is the.Nom red control light lit up
‘Has the red control light lit up?’ (German)

For questions formed with so-called wh-words (who, what , etc.), these
differences include the appearance of interrogative phrases. These phrases
often appear in restricted c-structure positions. In English and German,
for example, one of the interrogative phrases must appear in initial po-
sition, as in (12). This may be accompanied by other effects, such as
the continued placement of the subject immediately before the finite
verb, and the “doubling” of the subject as a clitic in the French (13).

(12) What did he see?

(13) Quel tracteur Jean a-t-il conduit?
which tractor Jean has-t-he driven
‘Which tractor did Jean drive?’ (French)

Due to these substantial differences in c-structure, interrogatives are
treated with a separate set of c-structure rules, including one set for
yes-no questions and one for wh-questions. This allows a simple way
of introducing stmt-type interrogative, which all interrogatives
have, and the special punctuation which usually accompanies root in-
terrogatives. However, a number of problems arise with regard to the
appropriate distribution of interrogative phrases, especially in multi-
ple questions, and with ensuring the correct form of the auxiliaries in
subject-auxiliary inversion constructions.4

4German also has a “scope-marking” construction which involves the appear-
ance of multiple was ‘what’ markers. We have not handled this construction in the

The Clause / 27

In keeping with the aim of parallel grammar development and the un-
derlying tenets of lfg, the c-structure analysis of interrogatives differs
from language to language as it interacts with other syntactic properties
of the language (i.e., auxiliary inversion, English do-support, German
scrambling, the position of subjects, etc.). However, at the level of f-
structure, the analysis aims to encode a more universal representation
of the constructions. As such, the c-structures for the German interrog-
ative in (14) and its English counterpart in (15) differ, but the resulting
f-structure analyses are essentially identical.5

(14) a. Was hat er gesehen?
what has he seen
‘What did he see?’ (German)

b. root

sint int-mark
?

npint vp2

pronint vaux vpv
was hat

np vpv

pron vc
er

v
gesehen

grammar as yet and as such do not discuss it here.
5The value for tense differs in (14c) and (15c). The tense values are based on the

language particular morphosyntactic forms. As these differ in (14a) and (15a), this
difference is preserved. The fact that the German perfect tense is often interpreted
as a simple past tense must be handled in the semantics. The vsem encodes the
properties of unaccusativity vs. unergativity and is instrumental in the treatment
of auxiliary selection in French and German.

28 / A Grammar Writer’s Cookbook

c.


pred ′sehen<subj,obj>′

stmt-type interrogative

vsem unerg

tns-asp

[
tense perf

mood indicative

]

subj



pred ′pro′

pers 3

gend masc

case nom

num sg

pron-type pers

pron-form er



obj



pred ′pro′

pers 3

gend neut

case acc

num sg

int +

pron-type int

pron-form was




(15) a. What did he see?

b. root

cpint int-mark
?

npint auxdo s
did

pronint np vp
what

pron vpv
he

v
see

The Clause / 29

c.


pred ′see<subj,obj>′

stmt-type interrogative

tns-asp

[
tense past

mood indicative

]

subj



pred ′pro′

pers 3

gend masc

anim +

case nom

num sg

pron-type pers

pron-form he



obj



pred ′pro′

pers 3

int +

gend neut

case acc

num sg

pron-type int

pron-form what




2.1.3 Imperatives

Imperatives have a number of distinctive features which separate them
from declaratives and interrogatives. In many languages, they have dis-
tinct morphology on the verb and are not tensed, but instead show a
different mood. For example, English imperatives use the base form of
the verb, while in French and German imperatives can either be bare
infinitives or a special imperative form. Some sample imperatives are
shown in (16).

(16) a. Push the button.

b. Tourne-le doucement.
turn.Imp-it gently
‘Turn it gently.’ (French)

c. Den Hebel vorsichtig drehen.
the.Acc lever carefully turn
‘Turn the lever carefully.’ (German)

30 / A Grammar Writer’s Cookbook

d. Drehe den Hebel vorsichtig.
turn.2.Sg.Imp the.Acc lever carefully
‘Turn the lever carefully.’ (German)

A distinctive feature of imperatives crosslinguistically is that they
lack an overt subject. The subject is understood to be a second person
pro and must be provided either as part of the imperative rule or by
the imperative morphology. Finally, imperatives are often characterized
by a distinct c-structure, in part due to the lack of an overt subject.
For example, in the basic French and English imperative, the verb is
clause initial, in contrast to the order for declaratives (2.1.1). French
also has a distinct clitic position and order in imperatives. In German,
the verb is clause final if it is in the base form ((16c)), and clause initial
if it is finite and is marked by special imperative morphology ((16d)).

Since the imperatives in French, German and English are a different
type of construction from declaratives and interrogatives, they are han-
dled by specialized c-structure rules which dictate the different word
order, lack of subject, and special imperative morphology. Within these
specialized rules, the stmt-type imperative is assigned. As should
be clear by now, the c-structure representations of imperatives in the
various languages differ, but result in essentially identical f-structures.
As a representative analysis, the f-structure for the English (16a) is
shown below.
(17) a. Push the button.

b.


pred ′push<subj,obj>′

stmt-type imperative

tns-asp
[
mood imperative

]
subj

pred ′pro′

pers 2

pron-type null



obj



pred ′button′

pers 3

anim −
case acc

num sg

ntype count

spec

[
spec-form the

spec-type def

]





The Clause / 31

As mentioned above, French and German allow infinitive clauses to
function as imperatives, as in (18a). These infinitive imperatives are
common in instructional texts, such as the tractor manual used for the
ParGram project. Within the grammars, infinitive imperatives are ana-
lyzed like the morphological imperatives above, as seen in (18b), though
they are handled by different c-structure rules. One difference in the
f-structure analysis is the absence of mood marking in the infinitives,
which is a reflection of the difference in morphology.

It should be noted that our approach of identifying clauses in terms
of a cluster of syntactic properties and then writing clause particu-
lar phrase structure rules to account for these properties is very close
in spirit to the approach taken within Construction Grammar (Kay
and Fillmore 1994), where different types of phenomena are viewed
in terms of classes of constructions. Thus, our imperative, interrogative
and declarative clause types could be viewed as encoding three different
types of constructions.

(18) a. Pousser le tracteur.
push.Inf the tractor
‘Push the tractor.’ (French)

b.


pred ′pousser<subj,obj>′

stmt-type imperative

subj

pred ′pro′

pers 2

pron-type null



obj



pred ′tracteur′

spec

[
spec-type def

spec-form le

]
case acc

gend masc

pers 3

num sg




2.2 Embedded Clauses

Clauses which are subordinate to another (matrix) verb are referred
to as embedded clauses. In contrast with adjunct clauses, which are
treated separately in 2.3, embedded clauses function as the argument
of a verb and must be subcategorized for by that verb. An example is

32 / A Grammar Writer’s Cookbook

given in (19), where the verb think subcategorizes for two arguments:
a subject the driver and an embedded that-clause.

(19) The driver thinks [(that) she has started the tractor].

Following standard lfg analyses as formulated in Bresnan 1982a, we
encode the argument status of these embedded clauses by treating them
either as a comp(lement) or xcomp(lement) argument of the matrix
verb. Both these complements are in turn headed by verbs. In (19)
above the verb start heads the complement clause. The two types of
complements differ from one another in terms of how the embedded
subject (she in (19)) is bound. An xcomp can be thought of as an
“open” function in the sense that the embedded subject must be con-
trolled by an argument in the root (matrix) clause. This is the case
in sentences such as The driver wants to start the tractor , where the
driver and the starter of the tractor must be one and the same person.
Such occurences of control are referred to as functional control and
are contrasted with instances of anaphoric control , which are argued
to occur with the “closed” complement comp. A comp either displays
an overt subject of its own, as in (19), or it can have an anaphorically
controlled pro subject. In other words, the subject of the comp is not
identical with an argument of the matrix clause, but instead must be re-
constructed (anaphorically) from the larger context. For details on the
notion of control within lfg, and in particular the distinction between
functional and anaphoric control, see Bresnan 1982a.

Finally, xcomps are generally (but not always) associated with non-
finite complements and comps with finite complements. As with root
clauses, embedded clauses can be declarative or interrogative (but not
imperative). A given verb will require a given type and form of embed-
ded clause; these requirements are stated as part of the verb’s lexical
entry. For a more detailed exposition on these grammatical functions
and the encoding of verbal lexical entries, see Chapter 3. In the remain-
der of this section we go through various types of embedded clauses and
present the analyses implemented in ParGram.

2.2.1 Subcategorized Declaratives

The c-structure of embedded declaratives6 crosslinguistically usually
differs from that of root declaratives. In German, French and English,
embedded declaratives must generally be introduced by an overt com-
plementizer, as in (20). In German the position of the finite verb is
clause final, as opposed to in a matrix clause, where it appears in sec-

6Here the term declarative is used to encompass those embedded clauses which
are not interrogative.

The Clause / 33

ond position, as shown in (21).

(20) a. Elle sait [que le tracteur est rouge].
she knows that the tractor is red
‘She knows that the tractor is red.’ (French)

b. Le tracteur est rouge.
the tractor is red
‘The tractor is red.’ (French)

(21) a. Der Fahrer denkt, [daß er den Traktor
the.Nom driver thinks that he the.Acc tractor

gestartet hat].
started has
‘The driver thinks that he started the tractor.’ (German)

b. Er hat den Traktor gestartet.
he has the.Acc tractor started
‘He started the tractor.’ (German)

Due to such differences, separate c-structure rules instantiate embed-
ded declaratives, e.g., ones which include complementizers and changes
in verb position. These rules may, however, in turn call portions of the
root clause rules. For example, in English the c-structure rule for em-
bedded clauses consists of a complementizer position followed by the
usual root s rule.

Another difference between root and embedded declaratives is tense.7

Certain verbs have embedded complements that are infinitival and
hence untensed, unlike root declaratives which require tense in most
languages. Embedded infinitives occur without an overt subject, as in
(22a), and with or without a complementizer, as shown in (23).

(22) a. The driver wants [to start the tractor].

b. The driver thinks [(that) she has started the tractor].

7Embedded clauses also involve sequencing of tenses in many languages, includ-
ing English, French and German. For example, an embedded clause indicating a
past event will appear in the pluperfect if the root verb is also past tense.

He said that he had started the tractor.
(=He said, “I started the tractor.”)

There are also often constraints on the mood of the embedded clause, e.g., sub-
junctive or indicative. The rules governing this phenomenon are semantic and are
as yet not well understood (Kamp and Reyle 1993, Abush 1994). As such, the Par-
Gram grammars simply parse and record the morphosyntactic tense for potential
semantic processing, but do not try to establish semantically based wellformedness
constraints.

34 / A Grammar Writer’s Cookbook

(23) a. Il permet [à Jean de venir].
he allows to Jean of come
‘He allows Jean to come.’ (French)

b. Il veut [venir].
he wants come
‘He wants to come.’ (French)

A sample analysis of the embedded infinitive in (22a) is shown in
(24b). The English to, and its German counterpart zu are treated as
particles which mark an infinitive (see Pullum 1982 on an alternative
analysis in which the English to is treated as an auxiliary). Note that
the embedded subject is identified with the subject of the root clause
(driver) and that no tense/aspect specification is made in the infinitive
embedded clause.

The Clause / 35

(24) a. The driver wants to start the tractor.

b.


pred ′want<subj,xcomp>′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]

subj



pred ′driver′

pers 3

case nom

num sg

anim +

ntype count

spec

[
spec-form the

spec-type def

]



xcomp



pred ′start<subj,obj>′

subj
[]

obj



pred ′tractor′

pers 3

case acc

num sg

anim −
ntype count

spec

[
spec-form the

spec-type def

]






The German and French f-structure analyses are again essentially

parallel to (24b). Differences in word order such as the position of the
verb in German do not appear as part of the f-structure analysis, but
are encoded at c-structure.

The f-structure analysis of embedded finite clauses as in (22b) is
similar to that of embedded interrogatives in that the root verb sub-
categorizes for a comp. As such, we do not show an explicit example of
an embedded finite clause here, but refer the reader to the next section
on embedded interrogatives. The two types of embedded clauses differ,
of course, in the value of the stmt-type (interrogative vs. declarative)
and the fact that the interrogative contains wh-elements.

36 / A Grammar Writer’s Cookbook

2.2.2 Subcategorized Interrogatives

Embedded interrogatives again differ in terms of c-structures with re-
gard to their matrix counterparts. As illustrated in (26)–(27), subject-
auxiliary inversion in English occurs in matrix interrogatives, but not in
embedded interrogatives. In German the verb placement differs again,
and in French some form of subject (pronoun)-auxiliary inversion also
takes place, with the additional insertion of a question morpheme, as
illustrated by the va-t-il in (27). As such, embedded interrogatives also
require the formulation of special c-structure rules.

(25) a. Sie fragte, [ob der Traktor lief].
She asked whether the.Nom tractor ran.
‘She asked whether the tractor was running.’ (German)

b. Sie weiß, [wer den Traktor gestartet hat].
She knows who the.Acc Traktor started has
‘She knows who started the tractor.’ (German)

(26) a. They know [which tractor the driver will start].

b. Which tractor will the driver start?

(27) a. Ils savent [quel est le tracteur que le conducteur
they know which is the tractor which the driver

fera demarrer].
will.make start
‘They know which tractor the driver will start.’ (French)

b. Quel tracteur le conducteur va-t-il faire demarrer?
which tractor the driver go-t-he make start
‘Which tractor will the driver start?’ (French)

Interrogative elements which serve to embed a phrase, such as English
whether or German ob are treated like declarative complementizers such
as that . As a sample analysis, the f-structure for (25a) is shown below.

(28) a. Sie fragte, [ob der Traktor lief].
She asked whether the.Nom tractor ran.
‘She asked whether the tractor was running.’ (German)

b.

The Clause / 37

pred ′fragen<subj,comp>′

stmt-type declarative

tns-asp

[
tense past

mood indicative

]

subj



pred ′pro′

pers 3

case nom

num sg

gend fem

pron-type pers

pron-form sie



comp



pred ′laufen<subj>′

stmt-type interrogative

comp-form ob

tns-asp

[
tense past

mood indicative

]

subj



pred ′traktor′

pers 3

gend masc

case nom

num sg

ntype count

spec

[
spec-form der

spec-type def

]






The fact that an embedded clause is interrogative is usually sig-

nalled by the presence of particular lexical items or with a distinctive
c-structure. Some languages use distinctive interrogative pronouns and
particles for embedded clauses, e.g., English whether and French ce que
‘what’. As with root interrogatives, embedded interrogatives are as-
signed stmt-type interrogative in the f-structure; this feature can
be used to satisfy the subcategorization requirements of verbs which
take interrogative complements.
Note that while the matrix clause (headed by the verb fragte ‘asked’) is
declarative, the embedded comp clause is marked as interrogative. As
mentioned before, an embedded declarative clause would receive essen-
tially the same f-structure analysis, but the value for the stmt-type

38 / A Grammar Writer’s Cookbook

and the comp-form would differ. Also note that while the encoding of
the features comp-form and stmt-type are used to help in the for-
mulation of wellformedness conditions in minor ways in the grammar,
their primary reason for existence is a registration of information that
is presumably useful for subsequent semantic analysis.

2.3 Clausal Adjuncts

Clausal adjuncts are subordinate clauses which are not subcategorized
for by the verb, as in (29). These can occur with or without a subordina-
tor and can be tensed, infinitival, or participial. Not all languages have
all possible combinations, but the types illustrated here are represented
in German and French as well.

(29) a. [When the light is red,] push the button.

b. [To start the engine,] turn the key.

c. [After closing the door,] lock it carefully.

d. [Having turned off the lights,] stop the engine.

In English these clausal adjuncts occur clause initially and clause
finally. More than one clausal adjunct can occur in a given clause; they
can be sisters, i.e., all modifying the main clause, or nested, i.e., one
clausal adjunct modifying the other. Their distribution in German is
free in the sense that there is no fixed position that the adjuncts are
restricted to. At f-structure the clausal adjuncts are analyzed uniformly
as belonging to an adjunct set which modifies the main predicate of
the clause.

2.3.1 Infinitival Adjuncts

Infinitival clausal adjuncts can either have a subordinator, as in (30a),
or not, as in (30b). The subject of the infinitival is not overt in the
string. In the case of clausal adjuncts it is assumed to be an instance of
anaphoric control. That is, the subject of the adjunct must be provided
by the context: it can either be the same as the subject of the matrix
clause, or it can refer to another entity altogether. The subject of the
adjunct clause is specified to be pred pro and pron-type null, indi-
cating that there is no overt pronoun form. This information is provided
by the rule that introduces the clausal adjunct in the c-structure. An
f-structure with simplified representations for the object pronouns is
shown in (31).

(30) a. Toucher le bouton, [sans le pousser].
touch the button without it push
‘Touch the button without pushing it.’ (French)

b. [To start the engine,] turn the key.

The Clause / 39

(31) a. To start it, turn it.

b.


pred ′turn<subj,obj>′

tns-asp
[
mood imperative

]
stmt-type imperative

subj

pred ′pro′

pron-type null

pers 2


obj

[
pred ′pro′

pron-form it

]

adjunct





pred ′start<subj,obj>′

stmt-type purpose

adv-type sadv

subj

[
pred ′pro′

pron-type null

]

obj

[
pred ′pro′

pron-form it

]






Note that bare infinitivals are not introduced by a subordinator so they
have no comp-form. In these cases, the infinitival adjunct denotes an
imperative and is marked as such via the stmt-type.

2.3.2 Participial

Passive and present/progressive participles can be used as clausal ad-
verbials with and without subordinating conjunctions, as in (32)–(33).
Again, as with the infinitival adjuncts, the nonovert pro subject of the
participial clause is introduced by a rule in the c-structure. This then
accounts for the instances in which the subject of the participial is not
necessarily related to that of the matrix clause, as in (32).

(32) The driver caught sight of the dog, turning the corner.

(33) a. [Turning the wheel,] press the brake gently.

b. [En tournant,] le pousser.
while turning it push
‘While turning, push it.’ (French)

c. [Supported by the struts,] it will remain open.

d. Im Traktor sitzend, den Schlüssel drehen.
in.Dat tractor sitting the.Acc key turn
‘Sitting in the tractor, turn the key.’ (German)

40 / A Grammar Writer’s Cookbook

(34) a. Touch the button without pushing it.

b.


pred ′touch<subj,obj>′

stmt-type imperative

tns-asp
[
mood imperative

]
subj

pred ′pro′

pron-type null

pers 2



obj



pred ′button′

pers 3

case acc

anim −
ntype count

spec

[
spec-form the

spec-type def

]



adjunct





pred ′push<subj,obj>′

comp-form without

subj

[
pred ′pro′

pron-type null

]

obj



pred ′pro′

pers 3

case acc

num sg

gend neut

anim −
pron-type pers

pron-form it








These participial clausal adjuncts have the same distribution as the
other clausal adjuncts discussed here. When these participials are not
introduced by an overt complementizer or conjunction, they also do not
have a comp-form.

2.3.3 Finite

Finite clausal adjuncts are generally introduced by a subordinator,
dubbed a conjsub in the grammars. These subordinators contribute

The Clause / 41

a comp-form and a stmt-type to the f-structure analysis, but no
predicate. Thus, the main predicate of the clausal adjunct is the verb,
just as with embedded clauses introduced by that , for example. Many
subordinators allow infinitives and participials as well as finite clauses
in the clausal adjunct. As such, each subordinator must specify in its
lexical entry which type of clausal complement it can occur with.

(35) Si le moteur tourne, la lampe s’allumera.
if the motor runs the lamp light up-Fut
‘If the motor is running, the lamp will light up.’ (French)

There are some finite clausal adjuncts which do not have a subordi-
nator, e.g., certain English and German conditionals, as in (36).

(36) a. Were I to go, I would need to leave immediately.

b. Had I gone, I would have seen your cousin.

c. Läuft der Motor, (dann) leuchtet die Lampe.
runs the.Nom motor then glows the.Nom lamp
‘If the motor is running, then the lamp lights up.’ (German)

These are also assigned a stmt-type, but not a comp-form since
there is no subordinating conjunction. These constructions present an
interesting case as they must be introduced by special rules which re-
quire the verb to appear in initial position. Furthermore, conditionals
in the general form of if-then or when-then clauses can be identified as
a particular kind of construction at the root level due to their syntactic
properties. The presence of an if -clause, for example, always entails the
presence of a then-clause. Even if the if or the then are not overt, the
presence of a conditional can be deduced from the special word order
within the if clause. This is exemplified by (36) above, where the En-
glish examples express the conditional via auxiliary inversion, while the
German marks the conditional by instantiating a verb-initial clause.

A special c-structure rule encodes the particular structure of condi-
tionals in all three grammars, taking into account the language par-
ticular word order and verb placement. Despite the crosslinguistic and
language internal variation in the overt realization of conditionals, the
special c-structure rules for conditionals in each case nevertheless corre-
spond to basically identical f-structures. A sample f-structure for (36c)
is shown in (37).

42 / A Grammar Writer’s Cookbook

(37) a. Läuft der Motor, (dann) leuchtet die Lampe.
runs the.Nom motor then glows the.Nom lamp
‘If the motor is running, then the lamp lights up.’ (German)

b.

pred ′leuchten<subj>′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]

subj



pred ′Lampe′

pers 3

case nom

num sg

gend fem

ntype count

spec

[
spec-form die

spec-type def

]



adjunct





pred ′laufen<subj>′

stmt-type conditional

tns-asp

[
tense pres

mood indicative

]

subj



pred ′Motor′

pers 3

case acc

num sg

gend masc

ntype count

spec

[
spec-form der

spec-type def

]








2.4 What about X′ Theory?

In this chapter we have presented our approach to basic clause types in
French, German and English. In each case, the f-structures for each con-
struction were similar across the languages. However, the c-structures
differed based on language specific requirements. Note that while this is
completely consonant with basic principles of lfg, which aims to repre-
sent the language particular variation at the level of c-structure, while
capturing crosslinguistic generalizations at the level of f-structure, stu-

The Clause / 43

dents of syntax who have been introduced to x′-Theory may be a little
taken aback at the type and variety of c-structures introduced in this
chapter alone.

We see two basic alternatives to the parsing of c-structure. One pos-
sibility is to implement a very strict x′-type approach which posits
exactly two types of clauses, for example ip and cp, and then fits the
differing clause types such as imperatives, conditionals, and questions
within these two schemata, by allowing for large disjunctions of possibil-
ities within them. A second approach is to posit specialized c-structure
rules corresponding to the differing types of clauses, so that instead of
there being a single cp rule with various disjunctions inside it, there
are various c-structure rules corresponding to the subtypes of cp, such
as cprel (for relative clauses), cpint (for interrogatives), and so forth.8

While the first approach may seem somehow “cleaner” at first glance,
this is in fact not the case. An approach which posits a single cp must
necessarily cover exactly the same set of possible constructions that
the sub-typed cp approach does, as the same set of differing construc-
tions (imperatives, conditional, interrogatives, etc.) still remains to be
accounted for. Within the single cp approach all of these constructions
will not be labeled overtly as “imperative” or “interrogative”, but prop-
erties of the cp in question will uniquely and implicitly determine the
type of construction that has been analyzed, i.e., whether the comple-
mentizer position has been filled, whether the finite verb appears in
first or second position (perhaps under i), etc.

Within our lfg approach we could have written rules which would
have allowed for this superficially clean representation of the c-structure.
The disjunctions needed to make the necessary distinctions would then
have been expressed in the form of disjunctions over functional equa-
tions associated with c-structure rules. We did not choose to follow
this latter alternative within ParGram, as we believe that those dis-
tinctions which are indeed language particular and which correspond
to c-structure phenomena such as order and position should be mod-
eled as such at the appropriate level. Within ParGram we have therefore

8Another possible approach, in particular with regard to German word order phe-
nomena, is represented by an alternative feature unification-based theory, namely
hpsg. For example, Kathol (1995, 1996) proposes to invest the descriptive gener-
alizations made in terms of the German topological fields Vorfeld , Mittelfeld and
Nachfeld with theoretical status and to encode linear order explicitly by means of
features like vf, mf, nf, which are attached to lexical items and which ultimately
determine the placement of that lexical item within the clause. This approach thus
undertakes to encode linear precedence explicitly within a feature system, but must
also rely on the notions of constructions (Kay and Fillmore 1994), in that differing
construction types are recognized and organized within a type hierarchy.

44 / A Grammar Writer’s Cookbook

adopted the approach of overt labeling of c-structures and take up the
position that the particular distinctions we have made in terms of the
formulation of the c-structure rules correspond to clear descriptive and
typological distinctions found within and across languages. We have
aimed to factor out what is common to all the subtypes of a given
rule as much as possible, in order to preserve the relevant linguistic
generalizations. Making use of these typological distinctions allows the
development of a modular and logically well-organized grammar, with-
out giving up the linguistic generalizations that motivated the analyses
in the first place.

3

Verbal Elements

Verbal elements include predicates such as drive, which require one
or more arguments, usually nps, for a clause to be grammatical. These
verbs can therefore be said to provide the essential backbone of a clause.
As such the determination of a verb’s subcategorization frame and the
writing of verbal entries constitutes a central part of any grammar
development effort. In this chapter we first go through verbal prop-
erties and subcategorization frames at some length, then present our
treatment of further verbal elements such as the functional category
of auxiliaries and the closed class of modals, and conclude with some
particularly difficult constructions which we have not yet dealt with in
the grammars.

3.1 Subcategorization

Subcategorized arguments are those arguments which are required by a
verb or other predicate, i.e., if they do not appear the clause will either
be ungrammatical or have a different meaning. There are a number of
issues to be considered concerning the subcategorization of grammatical
functions.

First, what are the possible grammatical functions which a predicate
can subcategorize for? This in part depends on the linguistic theory.
All versions of lfg assume the following functions: subj, obj, comp,
xcomp, obl. Some versions subdivide obl into different types, depend-
ing on their thematic role, usually indicated as oblθ, e.g., oblloc for
locative obliques. Similarly, xcomp can be divided into types depend-
ing on the head of the xcomp, e.g., ones with verbal heads are vcomps,
while ones with adjectival heads are acomps (cf. Kaplan and Bresnan
1982). Most versions of the theory assume either obj2 (e.g., Kaplan and
Bresnan 1982) or objθ for double object constructions in languages like

45

46 / A Grammar Writer’s Cookbook

English.1 Other grammatical functions could be proposed if needed. For
example, a special function, here referred to as predlink (section 3.8),
has been posited for the second argument of copular (linking) verbs.
In addition, other functions for nonverbal subcategorization might ul-
timately be needed. Note that a verb can only have one instance of a
given grammatical function (section 1.2).

A second issue to consider is expletive vs. non expletive arguments.
Most arguments are not expletives; that is, they are referential and
must have a pred value. This is indicated by placing the subcategorized
feature within angled brackets in the entry for the predicate, as in (1).

(1) (↑pred)=′see<(↑subj)(↑obj)>′

However, some verbs have expletive arguments; that is, arguments
which function as so-called “dummy” expressions and which therefore
need not, or must not, have a pred value. In English the most common
expletives are it and there, as in There are cats in the garden or as with
weather verbs like It is raining . Expletive arguments are encoded by
placing the expletive argument after the angled brackets, as in (2).

(2) (↑pred)=′rain<>(↑subj)′

Note that most expletive arguments are direct arguments (either sub-
jects or objects). In English expletive arguments are confined to the
subject position, but this does not hold for German or French, as the
German in (3) illustrates. Here the es is a dummy argument that may
be analyzed as picking up the entire embedded clause. The expletive is
subcategorized for by the verb as shown in (4), namely, as an expletive
object.

(3) Er vermeidet [es], den Drucker fallen zu lassen.
he avoids it the.Acc printer fall to let
‘He avoids letting the printer fall.’

(4) (↑pred)=′vermeiden<(↑subj) (↑ xcomp)>(↑obj)′

Another important issue is how to determine the subcategorization
frame for a given verb. Intuitively, the subcategorized arguments of a
predicate are those arguments which must always appear, as opposed
to those which need not (see section 3.3.6 on adjuncts). However, it
is often not easy to determine the precise status of a given np or pp
(cf. Grimshaw’s (1990) notion of the argument-adjunct). While this re-
mains an unresolved problem in linguistics, evidence from large corpora
may serve to help resolve some of the problems (see section 14.1.1).

Once determined, subcategorization frames tend to vary over the

1See also Bresnan and Moshi 1990 on double objects in Bantu.

Verbal Elements / 47

type and number of arguments. Verbs which subcategorize for one ar-
gument are generally referred to as intransitives; ones with two argu-
ments are transitives; and ones with three arguments are ditransitives.
Additionally, many verbs have more than one subcategorization frame,
as in (5), each of which must be part of the lexical entry of the verb.

(5) a. Il laisse jouer les enfants.
he lets play the children
‘He lets the children play.’ (French)

b. Elle laisse ses clefs dans son sac.
she leaves her keys in her bag
‘She leaves her keys in her bag.’ (French)

c. Il laisse sa clef à la gardienne.
he entrusts his key to the door keeper
‘He entrusts his key to the door keeper.’ (French)

Furthermore, lexical rules such as passive may affect whole classes of
subcategorization frames (see section 3.4 for a general discussion and
section 13.2.3 for a more formal description of lexical rules), system-
atically creating new ones. These two factors can make determining
subcategorization frames less straightforward than it initially seems.
A more detailed discussion on the ParGram efforts at building large
lexicons is provided in Part II, section 14.1.1, which includes the semi-
automatic extraction of subcategorization frames from corpora and the
use of previously existing resources such as machine-readable dictionar-
ies.

3.2 Nonverbal Subcategorization

Predicates other than verbs can subcategorize for arguments. Adjec-
tives may subcategorize for obl arguments, as in (6a). In addition,
most prepositions subcategorize for an obj argument (Chapter 6), as
in (6b).

(6) a. Die Fahrerin ist stolz [auf ihren Traktor].
the.Nom driver.F is proud of her tractor
‘The driver is proud of her tractor.’ (German)
Adjective: (↑pred)=′stolz<(↑ obl)>′

b. The driver parked the tractor in [the garage].
Preposition: (↑pred)=′in<(↑obj)>′

Under some analyses, some subordinating conjunctions, e.g., when, af-
ter , subcategorize for either objects or sentential arguments, as in (7).

(7) The tractor started when [the red light flashed].
Subordinating Conjunction: (↑pred)=′when<(↑comp)>′

48 / A Grammar Writer’s Cookbook

Note that this is not the approach taken here. In our approach the
subordinating conjunctions are treated as functional elements which
serve to mark a subordinated clause (see section 2.2 in the previous
chapter).

There is much debate in the linguistic literature as to the extent
to which nominal elements subcategorize for arguments and, if they
do, what type of grammatical functions these represent (e.g., Chomsky
1970, Grimshaw 1990). The issue arises largely due to pairs like those
in (8) in which the modifiers of the noun correspond to arguments in
the verbal construction.

(8) a. np: the Romans’ destruction of the city

b. s: the Romans destroyed the city

In many cases, it is possible to simply treat these as adjuncts (section
3.3.6) in the case of the of the city and a specifier (spec, see section
5.1.1 for a discussion of specifiers) and leave the task of connecting the
semantic relatedness of adjuncts to the noun to a semantic module.
However, it is also possible to develop an analysis whereby nouns de-
rived from verbs, such as destruction in (8) above, would retain the
verb’s subcategorization frame. The syntactic rules for nps would then
have to ensure that modificatory nps such as of the city and The Ro-
mans’ fill the right grammatical function slots. Within our approach,
we have chosen to represent these modificatory nps as adjuncts to the
main noun because we believe that the proper level of analysis for the
dependency relations between the main noun and its modifiers in this
case is at the level of thematic argument structure, not at the level
of grammatical functions. That is, the generalization that unifies the
common dependencies between (8a) and (8b) is that in both cases the
Romans and the city function as agent and patient , respectively, of
the main predicate (cf. Grimshaw 1990). In the verbal manifestation
in (8b) these thematic arguments are realized in terms of the gram-
matical functions subj and obj, while in the nominal case in (8a) the
arguments are realized as adjuncts or specifiers. Sample analyses show-
ing how nps are analyzed within our approach can be found in Chapter
4.

3.3 Types of Grammatical Functions

3.3.1 Subjects

Many linguistic theories, including lfg, assume a Subject Condition
(Baker 1983, Alsina 1996:20), which requires that all verbs subcate-
gorize for a subject. However, this condition has been challenged by
researchers working on languages such as Hindi (Mohanan 1994) and

Verbal Elements / 49

Dutch (Zaenen 1989). German also provides a case in point as it dis-
plays constructions which do not appear to have subjects. Consider the
example in (9a), which ostensibly is a passivized version of the intran-
sitive verb tanzen ‘dance’. An active version is shown in (9b), in which
the np die Leute functions as the subj.

(9) a. Hier wird getanzt.
here be.Pass.Pres.3.Sg dance.PerfP
‘Dancing takes place here.’ (German)
Lit.: ‘Here is danced.’

b. Die Leute tanzen.
the.Nom people dance
‘The people are dancing.’ (German)

Given that there is no overt subject in (9a) and that German is
not a pro-drop language because it does not freely allow the omission
of arguments, the conclusion one is forced to draw is that there is
no subject in (9a). This is precisely the analysis we have adopted in
the German grammar, as illustrated by the f-structure in (10). Here
the verb tanzen ‘dance’ is represented as normally subcategorizing for
one argument. However, under passivization this one subj argument
has been suppressed to null via the application of a lexical rule (see
section 3.4).

(10) a. Hier wird getanzt.
here be.Pass.Pres.3.Sg dance.PerfP
‘Dancing takes place here.’ (German)

b.


pred ′tanzen<null>′

tns-asp

[
tense pres

mood indicative

]

adjunct


[
pred ′hier′

pron-type loc

]


In general, however, clauses do have subjects. The question then is

how to identify the subject in a given language. In German, French
and English verb agreement is a very good indication: if an np agrees
with the verb, then that np is the subject. In German, furthermore, case
morphology provides another very strong test: if an np is inflected with
nominative case marking, then it is the subject. In French and English
case morphology only helps with pronominal forms, e.g., il (subject)
vs. le (French), he (subject) vs. him. However, properties of subjects
vary from language to language and therefore a catalog of subject tests

50 / A Grammar Writer’s Cookbook

must be established independently for each language. Often further
good tests are properties such as which np is bound by a reflexive, as
in (11).

(11) John gave himself to Mary.

Here the himself must be bound by the subject John, and not by any
other arguments in the clause. For a catalog of sample subject tests see
Mohanan 1994 on Hindi.

3.3.2 Objects

Transitive verbs have a subj and a second argument. This second ar-
gument is usually an obj. An example of a transitive verb which sub-
categorizes for a subj and an obj is shown in (12).

(12) They saw the box. (↑pred)=′see<(↑subj)(↑obj)>′

Objects can again be identified by a cluster of properties which may
vary from language to language. In English, position is a good indica-
tion since the object must follow the verb and be adjacent to it (be a
sister to the verb). Example (13) can only be good under a special into-
nation pattern which extracts the object out of the clause, and (14b), in
which an adverb attempts to intervene between the verb and its object
is illformed.

(13) The box they saw.

(14) a. They saw the box yesterday.

b. *They saw yesterday the box.

In German, however, position is not such a good indicator since ar-
guments may be scrambled around in the sentence, as in (15). Instead,
case marking is a very good indicator of objecthood: noun phrases
marked with the accusative can be analyzed as objects.

(15) a. Der Fahrer startet den Traktor.
the.Nom driver starts the.Acc tractor
‘The driver is starting the tractor.’ (German)

b. Den Traktor startet der Fahrer.
the.Acc tractor starts the.Nom driver
‘The driver is starting the tractor.’ (German)

In both English and French case marking can only serve as a test on
pronouns such as he vs. him (object) and il vs. le (object) (French).

Crosslinguistically a very good test for objects is passivization. Un-
der passivization the np that is the object in the active sentence cor-
responds to the subject in the passive sentence. The active subject is

Verbal Elements / 51

realized as null in the passive sentence (this is often referred to as
argument suppression). An English example is given in (16).

(16) a. They saw the box. (↑pred)=′see<(↑subj)(↑obj)>′

b. The box was seen. (↑pred)=′see<null(↑subj)>′

3.3.3 Secondary Objects (OBJ2)

Ditransitive verbs subcategorize for three arguments. The typical di-
transitive verb, such as the German geben ‘give’ will subcategorize for
a subject, and object and a secondary, indirect object.

(17) Der Chef gab dem Fahrer den Schlüssel.
the.Nom boss gave the.Dat driver the.Acc key
‘The boss gave the driver the key.’ (German)

In German, the dative case on the np is an indicator of its status as
an indirect object. However, note that dative case can also be found in
so-called “psych-constructions” as in (18) and on the objects of certain
transitive verbs as in (19).

(18) Ihr wurde mulmig.
her.Dat became uneasy
‘She started feeling uneasy.’ (German)

(19) Der Fahrer hilft dem Chef.
the.Nom driver helps the.Dat boss
‘The driver is helping the boss.’ (German)

In German the secondary object (obj2) can thus be identified as a
dative np that co-occurs with another (primary) object in the clause.
The dative np in (17) is therefore an obj2, while the dative nps in (18)
and (19) are not (in (19) the dative np is an obj). Note also that one
can only passivize the direct object in German, as shown in (20).

(20) a. Der Chef gab dem Fahrer den Schlüssel.
the.Nom boss gave the.Dat driver the.Acc key
‘The boss gave the driver the key.’ (German)

b. Der Schlüssel wurde dem Fahrer gegeben.
the.Nom key was the.Dat driver given
‘The key was given to the driver.’ (German)

c. *Der Fahrer wurde den Schlüssel gegeben.
the.Nom driver was the.Acc key given
‘The driver was given the key.’ (German)

This is not the case in many dialects of English, where either one of
the objects may be subject to passivization, as is illustrated in (21).

52 / A Grammar Writer’s Cookbook

(21) a. She gave him the book.
(↑pred)=′give<(↑subj)(↑obj2)(↑obj)>′

b. He was given the book.
(↑pred)=′give<null(↑subj)(↑obj)>′

c. The book was given him.
(↑pred)=′give<null(↑obj2)(↑subj)>′

Also note that in English the indirect (secondary) object must be ad-
jacent to the verb, followed by the direct object. Position is thus the
major test for distinguishing direct from indirect objects.

Finally, in French all nps which may be replaced by a dative clitic are
treated as obj2, as illustrated in (22). Note that these are not simply
all nps marked by à, as illustrated in (23), in which the à marked np
cannot be replaced by a dative clitic.2

(22) a. Jean a donné un livre à Marie.
Jean has given a book to Marie
‘Jean has given a book to Marie.’ (French)

b. Jean lui a donné un livre.
Jean her/him has given a book
‘Jean has given her a book.’ (French)

(23) a. Jean pense à Marie.
Jean thinks to Marie
‘John is thinking of Marie.’ (French)

b. *Jean lui pense.

c. Jean pense à elle.

3.3.4 Obliques

In English the ditransitive subcategorization frame for verbs of giving
alternates (the dative alternation) with a ditransitive frame whose third
argument is an oblique, as in (24).

(24) a. She gave the book to him.
(↑pred)=′give<(↑subj)(↑obj)(↑obl)>′

b. The book was given to him.
(↑pred)=′give<null(↑subj)(↑obl)>′

The to him is analyzed as an obl in English rather than as a sec-
ondary object (obj2) because it cannot undergo passivization in En-
glish.

2These sentences were provided by Anette Frank who also implemented the
analysis of obj2s in the French grammar after one of our co-authors had already
left the project.

Verbal Elements / 53

Obliques are a difficult class of arguments to define. In general, they
are nonsubject arguments which are not of the appropriate morphosyn-
tactic form to be objects and which do not undergo syntactic processes
which affect objects, such as passivization in English. Obliques are gen-
erally pps. Some verbs subcategorize for a very specific oblique, i.e., one
with a given preposition or case, as in (25).

(25) Der Fahrer denkt [an] seinen Traktor.
the.Nom driver thinks at his.Acc tractor
‘The driver is thinking about his tractor.’ (German)

Other verbs subcategorize for a semantic class of obliques, e.g., put
requires a locative pp, but any preposition is allowable as long as the
meaning is appropriate, as in (26).

(26) She put the box on the shelf/in the truck/under the bed.

Obliques often resemble adjuncts in form and can be distinguished
from them only by whether they are required by the predicate. An ad-
ditional complicating factor is that arguments which look like obliques,
may in fact be objects. This occurs with certain English verbs where
the object is preceded by a preposition, as in (27); the fact that it is an
object and not an oblique is seen by its ability to passivize, a process
which only affects objects in English.

(27) a. Our employees frequently refer to this document.

b. This document is frequently referred to by our employees.

Certain adjectives also subcategorize for obliques. One type of these
involve idiosyncratic subcategorization for obl, similar to that of many
verbs. For example, clear in English can subcategorize for an obl in
the form clear of X . Lexical entries of such adjectives must specify that
they allow, or require, an obl and the particular preposition or case
required on it. Adjectives can systematically subcategorize for an obl
in their comparative form (5.2.5.1); in this case the obl corresponds to
the than phrase which serves as the overt basis of comparison for the
adjective.

3.3.5 XCOMP and COMP

Arguments of a verb are not confined to being either an np or pp.
Entire clauses may also serve as the complement of a verb, and in some
cases may alternate with np arguments, as shown in (28).

(28) a. I know [this story]. (np object)

b. I know [that this tractor is red]. (that-clause object)

54 / A Grammar Writer’s Cookbook

Within lfg two different types of clausal arguments are distinguished:
xcomp and comp. An xcomp is a complement whose subject is obliga-
torily functionally controlled from outside the clause, as in (29a), while
a comp is a closed complement with its own subject which is not func-
tionally controlled, as in (29b). For an in-depth discussion of control
and complementation see Bresnan 1982a.

(29) a. The woman wants to drive the tractor.
xcomp=to drive the tractor
(↑xcomp subj)=(↑subj)

b. The driver thinks that the tractor will start.
comp=that the tractor will start

c. Il empêche le moteur de chauffer.
it prevents the motor of heat
‘It prevents the motor from heating.’ (French)
xcomp=de chauffer (↑xcomp subj)=(↑subj)

In general, this means that comps will have overt subjects, while
xcomps will not. This may be more clearly illustrated by sample f-
structure analyses for (29a) and (29b), shown in (30) and (31), respec-
tively. The matrix subject controls the embedded subject in (30), as
indicated by the connecting line and the absence of a separate bundle
of information in the embedded subject.

(30) a. The woman wants to drive the tractor.

Verbal Elements / 55

b.


pred ′want<xcomp>subj′

stmt-type declarative

tns-asp

[
mood indicative

tense pres

]

subj



pred ′woman′

spec

[
spec-form the

spec-type def

]
ntype count

anim +

pers 3

gend fem

case nom

num sg



xcomp



pred ′drive<subj, obj>′

subj
[]

obj



pred ′tractor′

spec

[
spec-form the

spec-type def

]
ntype count

anim −
pers 3

case acc

num sg







56 / A Grammar Writer’s Cookbook

(31) a. The driver thinks that the tractor will start.

b.


pred ′think<subj,comp>′

stmt-type declarative

tns-asp

[
mood indicative

tense pres

]

subj



pred ′driver′

spec

[
spec-form the

spec-type def

]
ntype count

anim +

pers 3

case nom

num sg



comp



pred ′start<subj>′

tns-asp

[
mood indicative

tense fut

]

subj



pred ′tractor′

spec

[
spec-form the

spec-type def

]
ntype count

anim −
pers 3

case nom

num sg






In the example with the comp in (31), on the other hand, the matrix
subject does not control the embedded subject: each of the subjects is
independent of each other. Also note that the finite comp in (31) has
its own tns-asp specification.

In many languages the difference between open complements (xcomp)
and closed complements (comp) correlates with a difference between
finite and nonfinite clauses. However, this seeming correlation is mis-
leading. Although it is rare, finite clauses can appear with controlled
subjects and must thus be analyzed as xcomps. More frequently, non-
finite clauses may have a nonovert subject which is not functionally
controlled, as in (32). These clausal arguments are analyzed as closed
categories (in (32) as a subj) and are assumed to be anaphorically
controlled (see Bresnan 1982a): that is, the subject of the clausal com-
plement must be determined from the context of the utterance, as in

Verbal Elements / 57

(32), where it is not clear who pinched the elephants when the sentence
is uttered in isolation. Note that these discourse considerations cannot
be part of a syntactic analysis. As shown in (32b), all the f-structure
analysis encodes is the fact that the subject is a noncontrolled pro
whose referent is yet to be determined.

(32) a. Pinching those elephants was foolish.
b.


pred ′be<subj,predlink>′

stmt-type declarative

tns-asp

[
mood indicative

tense past

]

subj



pred ′pinch<subj, obj>′

tns-asp
[
prog +

]
ntype gerund

pers 3

case nom

num sg

subj

[
pred ′pro′

pron-type null

]

obj



pred ′elephant′

spec

spec-form those

spec-type demon

deixis distal


ntype count

pers 3

case acc

num pl




predlink

[
pred ′foolish′

atype predicative

]


The example in (32) also illustrates another fact that may not be

obvious: clausal complements are not restricted to the object role. In
(32) the gerundive clause functions as the subject of the sentence, as is
the case for the German that-clause in (33).

(33) Daß die Erde rund ist, hat ihn gewundert.
that the.Nom earth round is has him surprised
‘That the world is round surprised him.’ (German)

A good discussion of the properties of German comps and further
examples of usage in which the clausal complement stands in alterna-

58 / A Grammar Writer’s Cookbook

tion with with genitive nps and differing types of pps can be found in
Berman 1996.

3.3.6 Adjuncts

Adjuncts are grammatical functions which are not subcategorized for by
the verb. Adjuncts include a large number of disparate items, including
adverbs (Chapter 7), prepositional phrases (Chapter 6), and certain
embedded clauses (section 2.3). Examples of all three kinds are found
in (34a). Adjuncts are analyzed as belonging to a set, which can occur
with any pred, i.e., they are not subcategorized for. So, (34a) would
have the simplified f-structure in (34b).

(34) a. When the light flashes, quickly push the lever towards the
seat.

b.


pred ′push<subj,obj>′

subj
[
pred ′pro′

]
obj

[
pred ′lever′

]

adjunct



[
pred ′quickly′

]
pred ′towards<obj>′

obj
[
pred ′seat′

] 


pred ′flash<subj>′

comp-form when

subj
[
pred ′light′

]





As adjuncts are collected in a set, their relative scope to one another

is not encoded at f-structure. The determination of the scope of the
adjuncts is left to the s(emantic)-structure, since it is not simply a
matter of the linear order in which the adjuncts occur.

While treatment of adjuncts as a collection of items in a set can
thus be motivated linguistically, technical problems with this treatment
did arise within our project. In some cases, for example, a particular
adjunct within the set of adjuncts needs to be accessed in order to
check for wellformedness conditions. This occurs regularly when there
is a discontinuous constituent: extraposed relative clauses, as in (35a)
for example; or comparatives, as in (35b); or questions, as in (35c).

Verbal Elements / 59

(35) a. In der Kabine leuchtet die Lampe immer auf
in the.Dat cabin lights the.Nom lamp always on

[dem Schalter] auf, [der defekt ist].
the.Dat switch up that defective is
‘In the cabin the light always lights up on the switch that is
defective.’ (German)

b. A diesel engine runs [more efficiently] in the winter [than a
gas one (does)].

c. [Which hammer] did he hit the nail [with] after lining it up?

In these situations, a requirement is made on a member of the adjunct
set. For example, in the German (35a) the relative clause der defekt ist
needs to be attached to the appropriate constituent. Given the fact that
relative pronouns exhibit gender agreement with their head nouns, the
only correct attachment possibility for the masculine relative pronoun
is the masculine Schalter ‘switch’. However, as the relative clause could
in principle attach to any of the adjuncts, each member of the adjunct
set must be checked for the property of masculine gender (number
agreement must also be checked, see 4.4 for a discussion of relative
clauses). This is difficult to do under the standard lfg approach to
adjuncts, which holds that if you have collected individuals as members
of a set then a given property is taken to be true of all members of the
set, and is distributed over the set. This approach is useful in handling
coordination phenomena, which are described in more detail in Chapter
8, but does not yield the right results with regard to phenomena like
the German extraposed relative clause.

A more differentiated approach to sets was therefore introduced to
the formalism in the course of the project: the grammar can now nonde-
terministically choose an element from a set and check a given feature
specification against each member. This results in the f-structure anal-
ysis of (35a) shown in (36). Note that for reasons of space some of the
nonessential features such as ntype have been left out; in addition,
adjunct-rel has been abbreviated to adj-rel.3

3Other features of (36) such as the treatment of particle verbs and the analysis
of prepositions will be discussed in section 3.7 and Chapter 6, respectively.

60 / A Grammar Writer’s Cookbook

(36) a. In der Kabine leuchtet die Lampe immer auf
in the.Dat cabin lights the.Nom lamp always on

[dem Schalter] auf, [der defekt ist].
the.Dat switch up that defective is
‘In the cabin the light always lights up on the switch that is
defective.’ (German)

b.

pred ′x-leuchten<subj>′

prt-form auf

subj


pred ′lampe′

spec
[
spec-type def

]
case nom

gend fem

num sg



adjunct



[
pred ′immer′

]

pred ′in<obj>′

obj


pred ′kabine′

spec
[
spec-type def

]
case dat

gend fem

num sg






pred ′auf<obj>′

obj



pred ′schalter′

spec
[
spec-type def

]
case dat

gend masc

num sg

adj-rel





pred ′be<subj,predlink>′

pron-rel


pred ′pro′

case nom

gend masc

pron-form der

pron-type rel


topic-rel

[
pred

]
subj

[
pred

]
predlink

[
pred ′defekt′

atype predicative

]













Verbal Elements / 61

Another problem with the collection of adjuncts into one and the
same set is that adjuncts may differ systematically with regard to their
syntactic properties and that it would therefore be more convenient to
be able to identify the type of adjunct one is dealing with in a more
obvious manner than to go check each of the members of the set of all
adjuncts for a particular feature. For example, if we wanted to check
whether a given adjunct was a relative clause, the grammar could check
for the presence of the feature pron-rel.

Another way to go about this is to define different types of adjuncts
according to systematic syntactic criteria. In our grammars, for exam-
ple, relative clauses are encoded as adjunct-rel, as illustrated by (36),
parentheticals are adjunct-paren, and comparatives are adjunct-
comp.

3.4 Altering Subcategorization Frames

There are a number of relationships between the possible subcategoriza-
tion frames of a given verb that linguists have analyzed as alternations
between subcategorization frames. One such example is the passive, as
illustrated for English in (37).

(37) a. The tractor pushed the trailer. (active)

b. The trailer was pushed by the tractor. (passive)

Passivization systematically applies to all subcategorization frames of
a given type. In the case of English and French, all transitive verbs
which have an obj as the second argument may be passivized. Here
(and generally), passivization involves demotion of a subj to either an
unexpressed argument or an adjunct or obl.4 Within our grammars,
passivization is accomplished by means of a lexical rule, as in (38).

(38) pass(schemata) = schemata
(↑obj) −→(↑subj)
(↑subj) −→null
(↑passive)=c +

4In passive constructions, the demoted agent is often assumed to be an obl with
a restricted form, e.g., with the preposition by in English. This analysis has the
advantage that it captures the fact that the obl plays a special role with respect
to the verb, i.e., that it is the logical subject. However, this analysis also has the
disadvantage that the obl is not obligatory since the demoted subject need not be
overtly expressed. This means that every passive occuring with an argument of the
appropriate form will have two analyses, one in which the argument is the obl and
one in which it is an adjunct. In our grammars passives do not subcategorize for an
obl, meaning that the demoted agent is always an adjunct; the semantics can then
determine whether a member of the adjunct set is the agent of the verb.

62 / A Grammar Writer’s Cookbook

This lexical rule is called by verbs which can passivize, e.g., by tran-
sitive verbs. The lexical rule has the obj become the subj and the old
subj become null. In addition, it requires a passive form of the verb
to be used. schemata refers to the subcategorization frame of the verb
which is provided by verbs calling pass.

Different languages may require variations of the passive lexical rule.
For example, German allows passivization of certain intransitive verbs,
as in (39), and hence needs a variant of passivization which does not
require the obj to become the subj.

(39) Gestern wurde viel gelacht.
yesterday was much laughed
‘There was much laughter yesterday.’ (German)

The lexical rule for these cases looks as in (40) and is called by the
set of verbs which undergo this type of passivization.5

(40) nosubj-pass(schemata) = schemata
(↑subj) −→null
(↑passive)=c +

The ability to passivize and the type of passivization must thus be
specified in the lexical entry of each verb. The lexical rules not only
serve as a useful tool for encoding the same generalization over a subset
of the verbs in a given language, but also encode precisely the fact that
a linguistically relevant generalization can and must be made over the
lexicon of a given language.

A second example of a productive alternation is the formation of
medial passives in French. These are signalled by the reflexive pronoun
se and are illustrated in (41).

(41) a. Cette chemise se porte avec une cravate rouge.
this shirt refl wears with a tie red
‘This shirt is worn with a red tie.’ (French)

b. Ces livres se vendent bien.
these books refl sell well
‘These books sell well.’ (French)

The lexical rule for this construction is similar to that of the regular
passive with the additional restriction that refl have the value +. This
value is provided by the reflexive pronoun, which provides no other
information to the f-structure (see section 4.1.4 on reflexives).

5This lexical rule also applies to transitive verbs in German which have a dative
object, as in Ihm wurde geholfen ‘Him was helped.’ In these cases the object remains
a dative rather than becoming a nominative subject.

Verbal Elements / 63

It should be noted, however, that despite the apparent usefulness of
lexical rules, only five lexical rules were being used in the French (one
rule), English (two rules) and German (two rules) grammars at the
point that this book went to press.

One reason for this is that lexical rules have the effect of changing
one grammatical function into another. In more recent work within
lfg, the emphasis has shifted from lexical rules such as the passive
shown above to a more general theory of linking or mapping between
the predicate-argument structure and the grammatical functions (Bres-
nan and Kanerva 1989, Bresnan and Moshi 1990, Bresnan and Zaenen
1990, etc.; for an overview of the issues at stake and the relevant lit-
erature, see Alsina 1996). Within Mapping Theory subcategorization
frame alternations such as the passive or the English dative alterna-
tion discussed in the section on indirect objects and obliques (sections
3.3.3 and 3.3.4) are seen as different possibilities of mapping from the
predicate-argument structure to the grammatical functions of a predi-
cate (also see Butt, Dalrymple and Frank 1997 on this issue). The effect
of passivization under this view is that the agent argument of a verb is
suppressed and that the other argument, usually a theme, then mapped
to a subj. This differs markedly from first rendering an already existing
subj null and void, and then changing the already existing obj into a
subj.

Within the ParGram project we did not implement a separate encod-
ing of predicate-argument structures. However, we followed the general
spirit of Mapping Theory by assuming it and by then grouping re-
lated subcategorization possibilities together by means of templates
(discussed in more detail in Part II in section 13.2.1). A template basi-
cally serves as a shorthand in which to state generalizations that need
to apply to large sections of the lexicon. The template for the dative
alternation in (42), for example, specifies that a given predicate p (the
English verb give, for example) may have one of two subcategorization
frames that alternate freely.

(42) dative-alt(p)= { (↑pred)=’p<(↑ subj)(↑obj)(↑obl) >’
|(↑pred)=’p<(↑ subj)(↑obj2)(↑obj) >’ }

Templates can also be thought of as reusable blocks which express a
generalization about the language. As such, they are made wide use of
in each of the ParGram grammars.

3.5 Auxiliaries

Auxiliaries crosslinguistically are a closed class of verbal elements. They
generally have developed from main verbs such as be, stay , have or

64 / A Grammar Writer’s Cookbook

go. In terms of subcategorization frames, there are two main ways to
analyze auxiliaries. On the one hand, an auxiliary can be treated as
a special type of raising verb, which takes two arguments, a subj and
an xcomp (e.g., Pollard and Sag 1994, Bresnan 1982a). On the other
hand, auxiliaries can simply be considered as feature carrying elements,
which contribute tense/aspect or voice information to the clause, but
which do not have a pred or subcategorization frame (e.g., Bresnan
1998a, King 1995).

We have adopted the second approach, so that the auxiliary sys-
tems of the three languages are analyzed as having a hierarchical c-
structure and a “flat” f-structure, which combines tense and aspectual
information from all of the auxiliaries. This allows for the invariant
contribution of auxiliaries to (complex) tenses to be modelled crosslin-
guistically in the f-structure, while language particular, idiosyncratic
syntactic properties (e.g., vp-deletion, vp-fronting, the number of aux-
iliaries involved in the expression of a given complex tense) are handled
in the c-structure.

3.5.1 Brief Introduction to the Auxiliary Systems

English, French and German all make use of auxiliaries which can be
treated as morphological markers of tense, aspect, and voice. The ba-
sic features of the three auxiliary systems are as follows: all auxiliaries
require their following auxiliary or verb to have a particular form. For
example, in English, the basic order is: (perfective have) — (progressive
be) — (passive be) — main verb. Perfective have requires a following
past participle form; progressive be a present participle form; and pas-
sive be a passive participle form, as shown in (43).

(43) It might have been being driven.

German and French additionally exhibit auxiliary selection for the
perfective auxiliary: verbs select either être ‘be’ or avoir ‘have’ in
French, or sein ‘be’ or haben ‘have’ in German. If the main verb is
(di)transitive or an unergative intransitive as in (44b), the auxiliary
selected is ‘have’. If the main verb is an intransitive unaccusative as in
(44a), the auxiliary must be ‘be’.6 Note that the participle agrees with
elle ‘she’ in (44a) but not in (44b).

6The distinction between unergatives and unaccusatives goes back to work in
Relational Grammar by Perlmutter (1978). The way it is now commonly understood
is that unaccusative verbs have an underlying object or theme that then must surface
as a subject due to the fact that it is the only argument (examples are ‘fall’, ‘sit’).
Unergative verbs in contrast are assumed to have an underlying subject or agent
that is realized as a subject by default (examples are ‘sneeze’, ‘run’, ‘cough’).

Verbal Elements / 65

(44) a. Elle est arrivée.
she be.Pres arrived.F
‘She has arrived.’ unaccusative verb (French)

b. Elle a marché.
she have.Pres walked
‘She has walked.’ unergative verb (French)

In addition, subject to certain constraints, German allows scrambling
of the various auxiliaries with respect to one another, e.g., when the vp
is topicalized, as in (45b). Even in the vp topicalization example, each
auxiliary still determines the form of the next auxiliary or verb.

(45) a. Der Fahrer wird den Hebel gedreht haben.
the.Nom driver will the.Acc lever turned have
‘The driver will have turned the lever.’ (German)

b. [Den Hebel gedreht haben] wird der Fahrer.
the.Acc lever turned have will the.Nom driver
‘The driver will have turned the lever.’ (German)

3.5.2 Previous Analyses

As mentioned above, there is a family of analyses which have treated
auxiliaries as raising verbs. Under this view, auxiliaries are predicates
which take a subj and an xcomp complement. Their subject is identi-
fied with the subject of their xcomp. The f-structure correspondingly
reflects as many levels of embedding as there are auxiliaries in the c-
structure, as shown in (46). In particular, in the f-structure, the top
level predicate does not correspond to what is intuitively the main
predicate of the sentence.

(46) a. She has appeared.

66 / A Grammar Writer’s Cookbook

b.


pred ′have<xcomp>subj′

stmt-type declarative

passive −

tns-asp

tense pres

perf +

mood indicative



subj



pred ′pro′

pers 3

num sg

case nom

anim +

gend fem

pron-type pers

pron-form she


xcomp

pred ′appear<subj>′

subj
[] 


3.5.3 Flat F-structure Analysis

The analysis proposed here abstracts away from the particular real-
ization of tense and aspect in the c-structure, and provides a “flat”
f-structure, where the main verb is the main predicate. The auxiliaries
are simply feature carrying elements, which do not have their own ar-
gument structure, but which provide information about tense, aspect,
and voice.

(47) a. He will have driven the tractor.

Verbal Elements / 67

b. root

s period
.

np vp

pron vpaux
he

aux vpaux
will

aux vpv
have

v np
driven

the tractor

c.


pred ′drive<subj,obj>′

stmt-type declarative

tns-asp

tense fut

perf +

mood indicative



subj



pred ′pro′

pers 3

anim +

gend masc

pron-type pers

pron-form he

num sg

case nom



obj



pred ′tractor′

spec

[
spec-form the

spec-type def

]
pers 3

anim −
num sg

case acc




Under this analysis the parallelism between the examples in (48) can

be captured at a functional level as each of the sentences receives the
same f-structure analysis in each of the grammars.

68 / A Grammar Writer’s Cookbook

(48) a. He [will have] driven the tractor.

b. Il [aura] conduit le tracteur.
he have.Fut driven the tractor
‘He will have driven the tractor.’ (French)

c. Er [wird] den Traktor gefahren [haben].
he will the.Acc tractor driven have
‘He will have driven the tractor.’ (German)

At the level of c-structure the analyses mirror the difference in the level
of embedding: French expresses the future perfective morphologically
by means of the auxiliary aura, while German and English use two
auxiliaries. The parallel f-structure analyses reflect the fact that this
difference in surface realization does not have any consequences for the
interpretation of the auxiliaries and that the top level predicate in all
three sentences is ‘drive’.

3.5.4 Morphosyntactic Structure

For both generation and parsing purposes, we need to ensure that each
auxiliary can only be followed by an auxiliary or verb of the proper
form, e.g., in English a perfective have is always followed by a past
participle. In the xcomp hierarchical approach, these morphological
wellformedness conditions are easy to state, since each auxiliary states
in its lexical entry that its xcomp must be of a particular form. How-
ever, under the flat f-structure approach, there is no place in the f-
structure in which to state the hierarchically organized wellformedness
restrictions, since all of the information contributed by the auxiliaries
is mapped to the same level of f-structure, i.e., to the f-structure of the
main verb (see (47b) above).

In order to solve this problem, we implemented a m(orphosyntactic)-
structure. This functions as a projection from the c-structure and is
used to encodes only morphosyntactic wellformedness conditions, such
as the form that a particular auxiliary requires on the verb heading
its verbal complement. The m-structure is a hierarchical projection,
mirroring the c-structure. So, in addition to its c- and f-structures,
(47b) will also have the m-structure in (49).

(49)


fin +

dep

vform base

dep
[
vform perfp

]


The introduction of m-structure is described in more detail in Butt,
Niño and Segond 1996 and is originally due to a suggestion by Ron Ka-

Verbal Elements / 69

plan. Formally, the projection works similarly to the projection from
c-structure to f-structure that was described in the introductory chap-
ter. The projection is realized in terms of annotations on c-structure
rules, as illustrated in (50), and as information in lexical entries, as in
the entry for will in (51). The notation “m∗” refers to the m-structure
of the current node, this is similar to the functional notation of ↓ which
is an abbreviation for “f∗”. The notation “mM∗” refers to the mother
node, again in parallel to the functional notation ↑, which is an abbre-
viation for “fM∗”.

(50) vpaux −→ aux: ↑=↓
mM∗ = m∗
vpaux: ↑=↓
(mM∗ dep)=m∗

(51) will aux (↑tns-asp tense) = fut
(mM∗ dep vform) =c base
(mM∗ fin) = +

3.5.5 The Treatment of Tense/Aspect

As described in Butt, Niño and Segond 1996, the grammars origi-
nally combined the contribution of the auxiliaries in a given clause
into a complex tense value. For example, the value for the combination
will have driven would have been tense futperf. This treatment of
tense/aspect information was found to be inadequate as it was difficult
to devise a standardized system that properly reflected the interplay be-
tween tense and aspect in all three languages. It was therefore decided
to separate the dimensions of tense and aspect. The feature tense now
encodes the simple distinctions present (pres), past (past) and future
(fut). The aspectual dimension is now recorded by the features perf
and prog, whose values are either ‘+’ or ‘−’, whereby prog is only
used in the English grammar. In the f-structures shown in this book,
we have only displayed the feature when it has a positive value.

The f-structure thus now encodes exactly those distinctions which
are made overtly in each of the languages without attempting to second
guess a semantic analysis by providing complex tense features. The idea
is that the information recorded at f-structure should serve as input for
a further semantic analysis of tense/aspect.

3.6 Modals

Unlike auxiliaries which are analyzed as having a flat f-structure and
no pred, modals have a pred and subcategorize for xcomp comple-
ments. Some languages, such as English, are restricted to a single modal

70 / A Grammar Writer’s Cookbook

per clause; others, like German, allow modals to take other modals as
their complements and also allow scrambling that does not respect the
hierarchy of embedding. An example is shown in (52).
Again, we do not attempt to provide a semantic analysis. On the other
hand, the scrambling phenomena of German can be treated very simply
under the application of functional uncertainty whereby arguments and
adjuncts can be base generated in any of the positions they might be
found in and connected to the clause they belong in via a functional
uncertainty path such as (↑xcomp xcomp obj). For an introduction
and discussion of functional uncertainty, see Johnson 1986, Kaplan and
Zaenen 1989, Zaenen and Kaplan, and Kaplan and Maxwell 1996.

(52) a. Einen raschen Erfolg müßte er erzielen können.
a.Acc rapid success should.Subj he achieve can
‘He should be able to achieve a rapid success.’ (German)

Verbal Elements / 71

b.

pred ′müssen<xcomp>subj′

stmt-type declarative

tns-asp

[
tense pres

mood subjunctive

]

subj



pred ′pro′

pers 3

num sg

case nom

gend masc

pron-type pers

pron-form he



xcomp



pred ′können<xcomp> subj′

subj
[]

xcomp



pred ′erzielen< subj,obj>′

subj
[]

obj



pred ′Erfolg′

spec

[
spec-form ein

spec-type indef

]
pers 3

num sg

case acc

gend masc

adjunct




pred ′raschen′

case acc

gend masc

num sg

atype attributive











3.7 Particle Verbs

Some languages, such as English and German, have particles which
occur with a subset of verbs and have an effect on the meaning. As
illustrated in (53), most particles are homophonous with prepositions;
however, unlike prepositions, they need not be followed by an np com-
plement.

(53) a. The light came [on].

b. They locked themselves [out].

72 / A Grammar Writer’s Cookbook

c. Diese rote Kontrolleuchte leuchtet [auf].
this red warning light lights up
‘This red warning light lights up.’ (German)

German differs from English in that the German particles must be
analyzed as separable prefixes, as shown in (54).

(54) Weil diese rote Kontrolleuchte [auf]leuchtet, . . .
because this red warning light up lights
‘Because this red warning light lights up. . . ’ (German)

The German prefix becomes separated from the verb when the verb
is finite and hence must appear in clause second position, as in (53c).
When the finite verb is restricted to the clause final position, as is the
case in the embedded clause in (54), the particle serves as a verbal pre-
fix. Given these differences between the two languages, the treatments
of particle verbs within our grammars also differ slightly.

In both languages, verbs which can appear with particles are assigned
a special subcategorization frame. This frame not only reflects possible
differences between the number and type of arguments of the base verb
as opposed to the verb in combination with a prefix, but also makes
sure that the right particle is required.

For example, the entry for the verb in (53a) will state: (↑pred)=′come-
on<(↑subj)>′ and (↑ prt-form)=c on. The value of prt-form is
provided by the particle and thus satisfies the constraining equation.
The particle itself has a special c-structure category, part, to capture
its limited c-structure distribution. The complete f-structure analysis
for the sentence in (53a) is as shown in (55b).

Verbal Elements / 73

(55) a. The light came on.

b.


pred ′come-on<subj>′

stmt-type declarative

prt-form on

tns-asp

[
tense past

mood indicative

]

subj



pred ′light′

spec

[
spec-form the

spec-type def

]
pers 3

num sg

case nom

anim −
ntype count




An f-structure containing a German particle verb was already seen

in (36). Note that here the particle is not listed as part of the predicate.
The predicate appears as ′x-leuchten<subj>′. The constraint on the
particle is stated as in the English grammar: (↑prt-form)=c auf. The
difference reflects the fact that German uses separable prefixes and that
the use of this type of particle is much more wide spread in German
than in English. As such, it is more general and efficient to list one
subcategorization frame such as ′x-leuchten<subj>′ for the many
prefixes that appear with leuchten ‘light’ as an intransitive verb and
combine this entry with a disjunctive list of the prefixes that go with
the intransitive leuchten.

3.8 Predicatives

Predicative constructions involve a linking or copular verb which has
a subject and another argument, as in (56). The postverbal argument
can be of a number of categories, e.g., np, pp, ap.

(56) a. John is a professor.

b. Le gyrophare est sur le toit.
the beacon is on the roof
‘The beacon is on the roof.’ (French)

c. Der Traktor ist rot.
the.Nom tractor is red
‘The tractor is red.’ (German)

74 / A Grammar Writer’s Cookbook

Due to the semantic relationship between the subject and the phrase
after the linking verb, these verbs are given special subcategorization
frames. Traditionally, this has been done by having the postverbal
phrase be an xcomp whose subject is controlled by the linking verb’s
subject. However, a new analysis, termed the predlink analysis, is
used by the ParGram grammars.

Under both approaches, linking verbs may have their own c-structure
category and their own vp rule which allows the postverbal np, ap, and
pp to be assigned the appropriate grammatical function; note that most
verbs do not allow these c-structure categories to have such grammat-
ical functions.

3.8.1 Controlled Subject Analysis

Under the controlled subject analysis, the subcategorization frame of a
verb like linking be is as in (57).

(57) (↑pred)=′be<(↑xcomp)>(↑subj)′

(↑subj)=(↑xcomp subj)

The main drawback of this approach is that the postverbal con-
stituent must have a subj to be filled by the control equation of the
verb. However, as nps, aps, and especially pps do not generally have an
overt subject, we believe the representation of the relationship between
the noun and thing predicated of it should either be encoded at the
level of argument structure, or of semantic structure. Note that if one
does implement the controlled subject analysis, it becomes necessary
to provide two subcategorization frames for each of these categories:
one without a subj argument for simple nps such as the a cat in A cat
ate my food , and one for predicatively used nps such as a cat in Harry
is a cat .

3.8.2 Predlink Analysis

The predlink analysis avoids these difficulties by positing a grammati-
cal function predlink. Under this analysis the subcategorization frame
of a verb like the copula be is shown in (58). This representation for
predicative constructions models the fact that a particular property is
predicated of the subject in a syntactically reasonable way and provides
enough information for subsequent semantic analysis. As predlink is
a closed category, there is no control equation between the subj and
the predlink and hence no need for nps, aps, and pps to have subject
arguments.

(58) (↑pred)=′be<(↑subj)(↑predlink)>′

Verbal Elements / 75

The f-structure for (59a) using the predlink analysis is shown in
(59b). It is interpreted as there being a subject the tractor of which a
certain property, namely that of being red , is predicated, as indicated
by the grammatical function predlink.

(59) a. The tractor is red.

b.


pred ′be<subj,predlink>′

stmt-type declarative

tns-asp

[
mood indicative

tense pres

]

subj



pred ′tractor′

spec

[
spec-form the

spec-type def

]
anim −
case nom

ntype count

pers 3

num sg


predlink

[
pred ′red′

atype predicative

]


3.9 Bridge Verbs

Bridge verbs are verbs which allow extraction out of their sentential
complements. For example, extraction out of the embedded comple-
ment of think , a bridge verb, is acceptable, as shown in (60), but not out
of the embedded complement of whisper , a nonbridge verb, as shown
in (61).

(60) What does Mary think that John drives?

(61) *What did Mary whisper that John said?

In order to capture these facts for English and German, our gram-
mars have two different verbal templates for verbs which take sentential
complements. In the bridge verb template, the sentential complement
bears the grammatical function comp-ex, indicating that extraction is
permitted, while in the nonbridge verb template, the sentential com-
plement bears the grammatical function comp. Then in the functional
uncertainty equations in questions and other extraction constructions,
only comp-ex appears as a possible path, so that a question where
the wh-word corresponds to an argument of the embedded clause of a
nonbridge verb will fail.

76 / A Grammar Writer’s Cookbook

3.10 Verbal Complexes

In addition to the verbal elements listed above, each of the three lan-
guages also contains verbal complexes which are not only difficult to
implement, but whose particular linguistic analysis is still subject to
debate. For some of these constructions, we have achieved a rudimen-
tary implementation. However, as the current implementation does not
cover the data adequately and must be considered work in progress, we
do not present any analyses here and merely point out the problematic
areas in each language.

3.10.1 German Coherent Verbs

As discussed in the section on embedded complements (sections 2.2 and
3.3.5) verbs may embed another verb in an embedded complement, as
in (62). In German, however, there is a set of verbs, dubbed coherent by
Bech (1983) which do not appear to embed the other verb, but instead
appear to combine with it to form a verbal complex. An example of the
coherent verb lassen ‘let’ is shown in (63).

(62) a. Der Fahrer hat [den Traktor zu reparieren] versucht.
the.Nom driver has the.Acc tractor to repair tried
‘The driver tried to repair the tractor.’ (German)

b. Der Fahrer hat versucht, den Traktor zu reparieren. (nonco-
herent)

(63) a. Der Fahrer hat den Traktor [reparieren lassen].
the.Nom driver has the.Acc tractor repair let
‘The driver had the tractor repaired.’ (German)

b. *Der Fahrer hat lassen, den Traktor reparieren. (coherent)

Note that this coherent verbal complex differs from the notion of a
complex predicate, discussed in section 3.10.2 below in that the two
verbs do not actually form a single domain of predication. Instead, the
coherent verbs differ from the noncoherent verbs with regard to syn-
tactic factors such as the placement of negation, scambling possibilites
(the verbal complex in coherent constructions cannot be separated, as
shown in (63b) above) and long-distance extraction of arguments (co-
herent verbs allow it). For an overview of the phenomenon see Bech
1983 and von Stechow and Sternefeld 1988:406–410. For a comparison
of coherent verbs to complex predicates see Rambow 1996.

3.10.2 French Causatives

Like most of the Romance languages, French has complex predicates.
The French causative complex predicate in (64) is characterized by

Verbal Elements / 77

the fact that the two verbs ‘make’ and ‘repair’ appear to act as a
single predicate with respect to phenomena such as clitic climbing. As
illustrated in (64), the clitic lui may appear in the domain of the verb
fait ‘make’ even though it is actually an argument of the verb réparer
‘repair’.

(64) Marie lui a fait réparer la voiture.
Marie him has made repair the.F car
‘Marie made him repair the car.’ (French)

Such clitic climbing is not possible in the usual verb-complement con-
structions and as such a different analysis, involving neither comp
or xcomp, must be posited. Recent argumentation about two differ-
ent approaches within lfg may be found in Frank 1996 and Alsina
1996. Pointers to previous work and to differing analyses within vari-
ous frameworks may be found in the references therein.

3.10.3 Noun-Verb Constructions

Finally, there are a number of noun-verb constructions which also ap-
pear to act as a single predicate in German. These constructions, illus-
trated here by (65), are referred to as Funktionsverbgefüge (see Helbig
1984 for a description).

(65) Der Fahrer traf eine Entscheidung.
the driver hit a.Acc decision
‘The driver made a decision.’ (German)

In these constructions the main predicational force comes from the
noun, while the verb serves to encode aspectual, Aktionsart, or other
semantic information that has only been vaguely defined in the litera-
ture. As can be seen from the translation in (65), English has a similar
construction, as in make a decision, make a claim, take a shower , etc.

These constructions, along with the French complex predicates and
the German coherent constructions, currently receive treatments in our
grammars; however, the current state of the implementation represents
work in progress.

4

Nominal Elements

Nominal elements include nps, free relative clauses, pronouns and cli-
tics, and other elements which can sometimes act as nominals, such as
gerunds. Relative clauses are also discussed here due to their similarities
with free relatives.

A full np may include a determiner, modifiers, such as adjectives,
prepositional phrases, relative clauses, and pre- and post-nominal ver-
bal modifiers (see section 4.2). All nps have case, but the manner in
which case is assigned varies in the three grammars. In English, for
example, nps are not case marked morphologically. Case is assigned by
the c-structure rules, according to the position in which the np appears.
This is in contrast to German, where the verbs specify the case of the
arguments they subcategorize for (i.e., they assign case), and any overt
morphological case marking on a noun or a determiner plus noun (see
Chapter 5) must be compatible with the case assigned by the verb.

4.1 Pronouns

There are a number of different types of pronouns. Some of these
share c-structure categories, such as English expletives and personal
pronouns, and have differing f-structures, while others have specific
c-structure categories as well, such as the interrogative and relative
pronouns. The French clitic pronouns are dicussed in section 4.1.5.

4.1.1 Personal and Demonstrative Pronouns

Personal pronouns supply information about person, number, gender,
and case. In English, they also supply information about animacy. Pro-
nouns, like proper nouns, generally cannot appear with determiners or
prenominal modification.1 They are thus instantiated directly under
np. However, pronouns do allow relative clauses, as in (1). In English,

1Exceptions are fixed expressions like lucky me, poor you, or a certain someone.

79

80 / A Grammar Writer’s Cookbook

these pronouns form a restricted set and are treated as full nouns within
the c-structure. At f-structure they are given an analysis which is in
accord with other pronouns. In German, the ability to take relative
clauses is part and parcel of being a pronoun, so no special rules are
needed.

(1) a. someone that I know

b. Ihn, den ich kenne
him whom I know
‘him, who I know’ (German)

As can be seen in (2), pronouns are analyzed as having a pred
value of pro, indicating that these are anaphors awaiting resolution
within the semantic component. In order to provide such a component
with as much information as possible, the surface form of the pronoun
is encoded in the pron-form feature. Also encoded are the gender,
number, person and animacy features which are needed for a semantic
evaluation of the pronoun.

(2) a. np

pron
he

b.


pred ′pro′

pers 3

num sg

gend masc

case nom

pron-type pers

pron-form he

anim +


Finally, the feature pron-type is used to distinguish between var-

ious types of pronouns. Demonstrative pronouns such as this or those
are assigned pron-type demon, and have an attribute deixis, whose
value may be distal or proximal (this latter feature is identical to
that which appears with demonstratives in their determiner use, e.g.,
this book). Otherwise, demonstratives function just like personal pro-
nouns.

4.1.2 Interrogative and Relative Pronouns

Personal pronouns are taken as the default type of pronoun which can
appear anywhere an np can. Interrogative and relative pronouns are

Nominal Elements / 81

distinguished at c-structure from the default pron by being assigned
the c-structure categories pronint and pronrel, respectively. This al-
lows a simple formulation of constraints on their distribution in terms
of the c-structure, as pronint and pronrel are only called in the npint
and nprel rules.

(3) nprel

pronrel
which

They are assigned a pron-type of int or rel, respectively. In addi-
tion, they also contribute a pron-form attribute, whose value registers
the actual form of the pronoun.

(4)


pred ′pro′

pron-type rel

pron-form which

anim −


4.1.3 Expletive Pronouns

Expletive pronouns are distinct in that they do not refer to an actual
entity. That is, they are not anaphoric and as such need not undergo
semantic resolution. These form a restrictive class, and in many lan-
guages only appear in subject position. English and French are exam-
ples of such languages. In German, however, the expletive es ‘it’ may
also appear in object position.2 Expletives are encoded by not being
assigned a pred value: they are predicationally empty (Kaplan and
Bresnan 1982). They are encoded with a pron-type expletive, and
their surface form is registered in pron-form.

(5) a. There is a light in the tractor.

b. Il est possible de démonter le tracteur.
it is possible of disassemble the tractor
‘It is possible to disassemble the tractor.’ (French)

c. Es regnet.
it rains
‘It is raining.’ (German)

d. Er hat es nicht gewußt, daß die Lampe kaputt ist.
he has it not known that the.Nom lamp broken is
‘He didn’t know that the lamp is broken.’ (German)

2English may also have object expletive pronouns in constructions like I prefer
it when it is cold.

82 / A Grammar Writer’s Cookbook

Within lfg, such nonpredicational, or nonthematic, arguments of a
verb are encoded by writing the appropriate argument outside the angle
brackets of the subcategorization frame.. To avoid overgeneration, the
lexical entry of the verb may specify that a pron-type expletive is
required, as shown in (6). To cover cases as in English, where there
may be more than one expletive (it and there), the overt form of the
pronoun is encoded in pron-form. As an example, the f-structure for
(5c) is shown in (7).

(6) (↑pred)=′regnet<>(↑subj)′

(↑subj pron-type)=c expletive

(7)


pred ′regnen< >subj′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]

subj



pers 3

case nom

num sg

gend neut

pron-type expletive

pron-form es




4.1.4 Reflexives

Many languages have two types of reflexives: one with a pred value
and one without. The type with a pred value is predicational, as in
(8) (for a comprehensive discussion on anaphoric relations, including
reflexives, see Dalrymple 1993). The second type is found with inherent
reflexive verbs, such as the French and German verbs in (9). Here, the
reflexive has been incorporated into the lexical meaning of the verb so
that the reflexive itself does not perform a predicational function any-
more; instead, it merely functions as a morphosyntactic requirement of
the verb. This second type also occurs as the result of certain argu-
ment changing processes, such as the medio-passive in (10a) and the
intransitivization of certain causatives, as in (10b).

(8) a. She saw herself.

b. *She saw myself.

Nominal Elements / 83

(9) a. Marie s’ est évanouie.
Marie refl is fainted
‘Marie fainted.’ (French)

b. Maria befindet sich in Kalifornien.
Maria located at refl in California
‘Maria is in California.’ (German)

(10) a. La branche s’ est cassée.
the branch refl is broken
‘The branch broke.’ (French)

b. Der Hebel bewegt sich.
the.Nom lever move refl
‘The lever is moving/moves.’ (German)

Reflexives agree with their antecedents in person, number, and gen-
der. Ideally, this requirement should be stated via inside-out functional
uncertainty (cf. Dalrymple 1993) which allows the lexical entry of the
reflexive to require that its antecedent be of a particular gender, num-
ber, and person. Unfortunately, inside-out functional uncertainty is not
implemented in either Medley or xle; so, the treatment of such reflex-
ives has taken the following provisional form within ParGram.

Reflexives with pred values, such as those found in English,3 are
treated as arguments and have a c-structure distribution similar to
that of personal pronouns. The f-structure of himself is shown in (11);
it differs from that of personal pronouns only in that the pron-type
is encoded as refl.

(11)


pred ′pro′

anim +

case acc

pron-form he

gend masc

pron-type refl

pers 3

num sg


The reflexives which do not have pred values are treated as morpho-

logical marking in French, and as predicationally empty in German.
In both languages, the reflexives contribute features that match re-

3There are a few inherently reflexive verbs in English such as behave oneself and
perjure oneself; whether the reflexive in these verbs is an argument remains an open
question.

84 / A Grammar Writer’s Cookbook

quirements stipulated by a given verb (pron-type refl). The person,
number, and gender features are checked against those of the subject
in order to ensure wellformedness. In addition, there is an f-structure
feature refl whose value indicates whether the verb is semantically re-
flexive or not. For example, an inherently reflexive verb like the French
s’évanouir ‘faint’ ((9a)) is not semantically reflexive, while a derived re-
flexive verb like the French se voir ‘see oneself’ is semantically reflexive,
even though neither type of verb has a reflexive obj in French.

Some verb classes, such as inherently reflexive verbs, are designated
as reflexive verbs in their lexical entries, while others are derived from
nonreflexive verbs via lexical rules (section 3.4). For example, the for-
mation of French reflexive middles (e.g.,(10a)) changes the obj to the
subj, and the subj to null, in addition to requiring the presence of
features provided by the reflexive pronoun.

With inherently reflexive verbs, the reflexive is not a semantic argu-
ment of the verb.

(12) a. Il se trouve dans un tracteur.
it refl finds in a tractor
‘It is located in a tractor.’ (French)

b. Er beruhigt sich.
he calm refl
‘He calms down.’ (German)

There are two basic approaches to inherently reflexive verbs. The first
is to have the reflexive function as an expletive argument of the verb.
So, a verb like beruhigen ‘calm’ in (12b) would have a subcategorization
frame as in (13) with a requirement that (↑obj pron-type)=c refl.

(13) (↑pred)=′beruhigen<(↑subj)>(↑obj)′

The obj argument is satisfied by a reflexive pronoun which has no
pred value. The gender, person, and number of the reflexive obj are
constrained to match that of the subject. This can be done in the re-
flexive verb template or in the c-structure for languages such as French
which have fixed positions for reflexives (see section 13.2.1 on tem-
plates).

The second approach is to have the reflexive not be an argument
of the verb. Instead, it just contributes a feature to the f-structure to
indicate the presence of the reflexive. In this case, a verb like beruhigen
‘calm’ in (12b) would have a subcategorization frame as in (14) with a
requirement that there be a reflexive attribute in the f-structure. This
reflexive attribute can only be provided by the reflexive pronoun.

(14) (↑pred)=′beruhigen<(↑subj)>′

Nominal Elements / 85

As with the expletive argument approach, this requires there to be
two entries for reflexive pronouns: one with a pred and one without.
In the latter case the pronoun simply supplies the (↑refl)=+ feature
and constraining equations on the gender, number, and person of the
subject. This second approach is linguistically justified in that verbs like
trouver ‘find’ and beruhigen ‘calm’ behave as if they were intransitives,
not as transitives.

4.1.5 Clitics

In French there are a special class of pronouns referred to as clitics.
These pronouns are interesting because their phrase structure position
is distinct from that of their nonpronominal counterparts:4

(15) a. Il a vu la bôıte.
he has saw.Part.M the box.F
‘He saw the box.’ (French)

b. Il l’ a vue.
he it.Clitic has saw.Part.F
‘He saw it.’ (French)

In (15a) the nonpronominal object occurs after the verb; note that
it does not trigger agreement of the past participle. However, if the
object is pronominalized, as in (15b), then it occurs before the verb
and triggers agreement on the participle.

In addition to their special verb adjacent positioning, clitics also have
a set order amongst themselves. That is, if there is more than one clitic,
they must appear in a particular order:

(16) a. Il nous les y donne.
he us.Clitic them.Clitic there.Clitic gives
‘He gives them to us there.’ (French)

b. *Il les y nous donne.

Given the restricted behavior of the clitic pronouns, special c-structure
categories and rules are introduced for them. These are called in the
relevant position (preverbal in declaratives, postverbal in imperatives,
etc.). The c-structure rules require the order and placement of the cl-
itics seen in (17). As with nonclitic pronominals, each clitic pronoun
provides a pred pro as well as information as to person, number,
gender, etc. Note that the pronoun y provides f-structure information
similar to that of a pp, reflecting the fact that it corresponds not to an
np argument, but to an adverbial pp meaning. That is, the pronoun y

4Clitics have special prosodic properties which are not discussed here.

86 / A Grammar Writer’s Cookbook

itself is embedded under an assumed preposition à ‘to’. The grammati-
cal function is provided, as with nonclitic pronominals, by annotations
on the c-structure.

In sum, clitic pronouns are similar to nonclitic pronouns in the f-
structure. However, their restricted c-structure positioning, both in
their fixed order relative to one another and their strict verb adjacent
position, is captured by specific c-structure categories and rules. That
is, unlike in English and German, clitic pronouns in French are not a
subtype of n. We particularly recommend Grimshaw 1982, Andrews
1990 and Berman and Frank 1995 for further detailed reading on lfg
analyses of Romance clitics.

(17) a. Il nous les y donne.
he us.Clitic them.Clitic there.Clitic gives
‘He gives them to us there.’ (French)

b. root

sadj period
.

s

npsubj vp

proncl vpverb
il

cl v
donne

cl1 cl2 cly
y

cldat clacc
nous les

Nominal Elements / 87

(18)


pred ′donner<subj,obj,obj2>′

stmt-type declarative

tns-asp

[
mood indicative

tense pres

]

subj



pred ′pro′

pron-form il

gend masc

case nom

pron-type pers

pers 3

num sg



obj



pred ′pro′

pron-form le

case acc

pron-type pers

pers 3

num pl



obj2



pred ′pro′

pron-form nous

case dat

pron-type pers

pers 1

num pl



adjunct





pred ′à<obj>′

psem loc

obj


pred ′pro′

pron-form y

pcase à

pron-type pers








4.2 Full Noun Phrases

In German and French, simple nouns encode gender and number fea-
tures. In English they encode number, but not gender, since English has
no grammatical gender with the possible exception of its pronominal
system.

All nouns are encoded with a particular ntype in the f-structure.
Most common nouns such as dog or tractor are encoded as ntype

88 / A Grammar Writer’s Cookbook

count. This distinguishes them from mass nouns such as water, which
are given ntype mass. This distinction is syntactically necessary as
mass nouns can appear without a determiner and may occur in con-
structions such as a liter of water.

Proper names also display a syntactic behavior which differs from
that of count and mass nouns. They are therefore distinguished by
an ntype proper. Proper names normally cannot be modified with
determiners, adjectives, prepositional phrases, etc. A further distinction
made through the ntype feature is to set titles like Professor, Ms., or
Herr off from other nouns.

The c-structure treatment of nps differs considerably in the three
grammars as the internal structure of nps in German, English and
French is characterized by different syntactic properties.

4.2.1 English

The relative order of determiners, adjectives, pps and relative clauses
is fixed in English; so, the English grammar provides a heavily struc-
tured analysis. As can be seen in (19), an explicit level of attachment
is provided for pps and aps, compounding (nmod), determiners, and
postnominal modifiers (i.e., the relative clause). This strict hierarchical
structure in terms of np constituents like npap is motivated by coor-
dination, as each of these levels of attachments may be coordinated as
constituents (see Chapter 8).

(19)
np

d npap cprel
the

numberp apattr npzero pp

nmod n which
tractors are red

three heavy on the
highway

forestry

4.2.2 German

The internal structure of the German np is as complex as that of its En-
glish counterpart; however, in keeping with the general flexible word or-
der of German, the prenominal elements within the np are not amenable
to the rigid analysis presented for English. The basic structure of the
np is similar to that of English: a determiner followed by modifiers,

Nominal Elements / 89

followed by the head noun, which may in turn be followed by a number
of modifiers. As an illustration of the similarities and differences, the
counterpart to the English (19) is provided in (20).

(20) a. die drei schweren Forsttraktoren auf der
the.Nom three heavy forestry.tractors on the.Dat

Autobahn, die rot sind.
highway which red are
‘the three heavy forestry tractors on the highway which are
red’ relative clause (German)

b.

np

npcore

detp npap

d numberp apattr n pp cprel
die Forst-

traktoren
drei schweren auf der die rot

Autobahn sind

The major difference between English and German lies in the nature
and distribution of pre- and postnominal modifiers. German may have
prenominal modifiers, like those in (21), which can only be expressed
as (reduced) relative clauses in English.

(21) Der auf der Mauer sitzende Hund bellt.
the.Nom on the.Dat wall sitting dog barks
‘The dog sitting on the wall barks.’ (German)

Prenominal modifiers in German include numbers, participials with
their arguments and modifiers, and simple adjectives with modifying
adverbs. These may appear in any order, although the arguments and
modifiers of a participial must precede it, and an adverb must precede
the adjective.

Postnominal modifiers include comparatives (a cat bigger than a dog),
participials with their arguments and modifiers, finite daß ‘that’ or in-
finitival clauses as in (22a) and (22b), adjectives as in (22c), appositions
as in (22d), genitives as in (22e), pps, and relative clauses, as in (19).

(22) a. die Tatsache, daß er lacht
the.Nom fact that he laughs
‘the fact that he laughs’ finite clause (German)

90 / A Grammar Writer’s Cookbook

b. der Versuch zu gewinnen
the.Nom attempt to win
‘the attempt to win’ infinitival clause (German)

c. ein Mann nicht besonders klug
a.Nom man not very intelligent
‘a not very intelligent man’ adjective (German)

d. Montag, zehnter August
Monday tenth August
‘Monday, the tenth of August’ apposition (German)

e. die Katze der Frau
the.Nom cat the.Gen woman
‘the cat of the woman’ genitive (German)

The order of these postnominal modifiers is fairly fixed. Genitives
must appear immediately after the noun. pps and comparatives come
next, interchangeably, followed by participials, appositions, finite and
nonfinite clauses, and finally, relative clauses. Given this distribution of
modifiers, the German grammar employs a general grouping of prenom-
inal and postnominal modifiers under different macros (but not con-
stituents) in which the linear order described above is imposed (section
13.2). Since there is no evidence for a particular constituency within
these modifiers, a hierarchy of constituents is not implemented in the
c-structure.

4.2.3 French

The basic French np is similar in spirit to that of English in that the
order of constituents is relatively fixed and the internal structure of
the np is hierarchical. The most obvious difference is that pronouns in
French are not called by the np rule since they pattern differently (see
section 4.1.5 on clitic pronouns).

As seen in (23), French allows adjectives to appear both before and
after the head noun. This is lexically determined, i.e., some adjectives
can appear in only one of these positions and some can appear in ei-
ther position but with a difference in meaning. This distribution is
constrained by a feature apos. In addition, adjectives agree in gender
and number with their head noun. This is constrained by annotations
on the phrase structure rules which introduce aps.

Nominal Elements / 91

(23) a. le grand filtre rouge dans le tracteur que je vois
the big filter red in the tractor which I see
‘the big red filter in the tractor which I see’ (French)

b. np

npdet cprel

detp nppp

d npap pp que je vois
le

ap n ap
filtre

a a dans le
grand rouge tracteur

4.2.4 F-structure

Despite the differences in the analyses of nps at c-structure, the analy-
ses in terms of f-structures are very similar across the languages. This is
because the c-structures shown in the previous sections just represent
different ways of putting together essentially the same information, as
demonstrated by the f-structures in (24) and (25). These correspond to
the nps in (18) and (19) above. Not all the pieces of nps can be treated
in parallel. Structures which have no analog in another language, such
as certain types of appositions or participial prenominal modifiers in
German, are given an f-structure analysis which does not have a parallel
counterpart in English or French.

Note that despite the fact that the German Forsttraktoren ‘forestry
tractor’ appears as a single lexical item at c-structure, it is decomposed
into its components at f-structure and thus corresponds almost exactly
to its English counterpart (see section 4.3 on compounds). This decom-
position is done as part of the morphological analysis. Not all lexical
vs. syntactic compounds will have exact correspondences. In the struc-
tures below, for example, the English highway is not a compound, while
its German counterpart Auto-bahn ‘car track’ is.

92 / A Grammar Writer’s Cookbook

(24) a. the three heavy forestry tractors on the highway which are
red

b. 

pred ′tractor′

pers 3

num pl

anim −
ntype count

spec

[
spec-form the

spec-type def

]

compound


pred ′forestry′

pers 3

num sg

anim −
ntype mass

spec
[
spec-type def

]



adjunct





pred ′on<obj>′

psem locative

ptype sem

obj



pred ′highway′

pcase on

pers 3

case acc

num sg

anim −
ntype count

spec

[
spec-form the

spec-type def

]




[

pred ′heavy′

atype npmod

]
[

pred ′three′

atype cardinal

num pl

]



adjunct-rel





pred ′be<subj predlink>′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]

subj


pred ′pro′

pers 3

num pl

case nom

anim −
pron-type rel

pron-form which


topic-rel

[]
predlink

[
pred ′red′

atype predicative

]







Nominal Elements / 93

(25) a. die drei schweren Forsttraktoren auf der Autobahn, die rot
sind.
‘the three heavy forestry tractors on the highway which are
red’

b.


pred ′Traktor′

pers 3

gend masc

num pl

ntype count

spec

[
spec-form die

spec-type def

]
compound

[
pred ′Forst′

]

adjunct





pred ′auf<obj>′

psem locative

ptype sem

obj



pred ′bahn′

pcase auf

pers 3

gend fem

case dat

num sg

anim −
ntype count

spec

[
spec-form die

spec-type def

]
compound

[
pred ′Auto′

]




pred ′schwer′

atype attributive

num pl

gend masc


[

pred ′drei′

atype cardinal

num pl

]



adjunct-rel





pred ′sein<subj predlink>′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]

subj


pred ′pro′

pers 3

num pl

case nom

gend masc

pron-type rel

pron-form die


topic-rel

[]
predlink

[
pred ′red′

atype predicative

adegree positive

]







94 / A Grammar Writer’s Cookbook

4.3 Compounds and N-N Sequences

Titles like Professor John Smith and names like the linguistics depart-
ment are treated as n-n sequences and are parsed by a specialized
subset of c-structure rules within the np rule system. While German
is wellknown for its lexical noun compounding, English employs a non-
lexical compounding strategy and French uses pps, as illustrated by
(26).

(26) a. Hydraulikölfilter (German)

b. hydraulic oil filter

c. le filtre à huile hydraulique (French)

In English and French, these nonlexical compounds are dealt with by
means of a special c-structure rule which analyses n-n sequences that
are not titles or names as compounds in the f-structure.

(27) a. English: np

npap

npzero

nmod n
filter

apattr n
oil

a
hydraulic

Nominal Elements / 95

b.


pred ′filter′

ntype count

anim −
pers 3

num sg

compound



pred ′oil′

ntype mass

spec
[
spec-type def

]
anim −
pers 3

num sg

adjunct

{[
pred ′hydraulic′

atype attributive

]}




(28) a. French: np

npdet

detp nppp

d npap pp
le

n p np
filtre à

npdet

nppp

npap

n ap
huile

a
hydraulique

b.

96 / A Grammar Writer’s Cookbook

pred ′filtre′

ntype count

gender masc

pers 3

num sg

spec

[
spec-form le

spec-type def

]

adjunct





pred ′á<obj>′

obj



pred ′huile′

ntype count

gender fem

pers 3

pcase à

num sg

adjunct




pred ′hydraulique′

atype attributive

gend fem

num sg












Nominal Elements / 97

In German, the lexical compounding is dealt with at the level of the
morphological analyzer, a finite state machine which encodes German
rules of compounding (section 11.3.2).

(29) a. German: np

npcore

npap

n
Hydraulikölfilter

b.


pred ′filter′

compound

pred ′Hydraulik′

compound
[
pred ′öl′

]
ntype count

case acc

gend masc

pers 3

num sg


While the rules necessary to treat most n-n sequences found in the

languages are in place, a problem remains. Almost any noun can be
turned into a “title”, as in grammar writer John, or a name, as in
the German Tankstelle Greifenberg ‘gas station Greifenberg’.5 Hand
coding each nominal lexical entry for precise information is unfeasible,
and loosening the c-structure rules to allow for new creations of n-n
sequences can lead to overgeneration. Thus, while the grammars can
parse most n-n sequences, the issue has not as yet been completely
resolved.

4.4 Relative Clauses

Relative clauses modify nps. In accordance with differences in syntactic
distribution, a c-structure difference is made between free and bound
relative clauses. Both types are treated as full clauses in the sense that
a stmt-type and tense/aspect information are provided, and that the
subcategorization requirements of the embedded verb must be satisfied.
The relative pronoun is treated as an argument of the embedded verb.

5These are not to be confused with appositions which are extremely productive
and whose analysis is also not finalized at this point.

98 / A Grammar Writer’s Cookbook

Additionally, motivated by the English preposing of the relative pro-
noun, the relative pronoun is encoded as the topic-rel of the relative
clause. This treatment satisfies traditional filler-gap analyses without
resorting to an overt movement analysis.

4.4.1 Bound Relatives

Relative clauses are analyzed as being of category cprel. The notation
is meant to indicate that it is a clause which is akin to standard notions
of a cp: a node dominating a tensed clause that allows an extra position
for items like complementizers, or, in this case, relative pronouns. The
category of the fronted constituent varies, but it is always labeled as a
relative, e.g., nprel (30a) or pprel (30b).

(30) a. the light [which flashes on the console]

b. the console [on which the light flashes]

Various functional equations on the c-structure rules within nprel
and pprel guarantee that there will be agreement in number (English)
and number and gender (French and German) between the head noun
and the relative clause.
(31) a. the light which flashes

b. the lights which flash

(32) a. das Licht, das neben dem
the.N.Sg.Nom light that.N.Sg.Nom next the.M.Sg.Dat

Fahrersitz aufleuchtet
driver’s seat uplights
‘the light which lights up next to the driver’s seat’ (German)

b. die Katze, die miaut
the.F.Sg.Nom cat that.F.Sg.Nom meows
‘the cat that meows’ (German)

(33) la lampe qui est allumée
the.F light.F which is lit.F
‘the light which is lit’ (French)

The f-structure of (30b) is shown in (34b).

Nominal Elements / 99

(34) a. the console on which the light flashes

b.

pred ′console′

ntype count

anim −
pers 3

num sg

spec

[
spec-type def

spec-form the

]

adjunct-rel





pred ′flash<subj>′

tns-asp

[
mood indicative

tense pres

]
stmt-type declarative

topic-rel
[]

pron-rel
[]

subj



pred ′light′

ntype mass

spec

[
spec-type def

spec-form the

]
anim −
case nom

num sg

pers 3



adjunct





pred ′on<obj>′

ptype sem

psem locative

obj



pred ′pro′

pron-type rel

pron-form which

anim −
case acc

pcase on

num sg

pers 3












4.4.2 Free Relatives

English free relatives, as in (35) are treated as nps because they have
the distribution of an np. Pronouns heading free relatives in English
are instantiated by special lexical items like whoever or whatever.

The analog of free relatives in German, also shown in (35), cannot be
treated as nps since they distribute more like finite clauses, i.e., they
may appear clause initially or clause finally, but not clause internally.
Free relative clauses are thus treated in German not as nps, but rather
as cps in analogy to relative clauses, and are distinguished by a spe-
cial category name (cpfreerel). Finally, the free relative pronouns are

100 / A Grammar Writer’s Cookbook

supplied by the set of interrogative pronouns in German: free relative
pronouns are thus not lexically distinguished from their interrogative
counterparts.

(35) a. She will drive whatever is available.

b. Wer den Traktor fährt, lacht.
who the.M.Sg.Acc tractor drives laughs
‘Whoever drives the tractor laughs.’ (German)

Despite these c-structure differences, the f-structure analysis is again
held parallel across languages. As a representative analysis, the f-structure
for the English free relative in (35a) is shown below.

Nominal Elements / 101

(36) a. Whoever drives the tractor laughs.

b.


pred ′pro′

pers 3

num sg

anim +

case nom

pron-type free

pron-form whoever

adj-rel





pred ′drive<subj,obj>′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]

subj


pred ′pro′

pers 3

num sg

case nom

pron-type rel


topic-rel

[]
pron-rel

[]

obj



pred ′tractor′

pers 3

num sg

case acc

anim −

spec

[
spec-form the

spec-type def

]








The free relative pronoun is taken to fulfill a double function both

as the head of the free relative and as an argument of the root verb
(laugh in (35a)). From either the construction (German) or the lexi-
cal information provided by the free pronoun (English), the existence
of an empty argument of the root verb is deduced and registered at
f-structure, along with appropriate features gleaned from the lexical
entry of the free pronoun.

Just as with bound relatives, the relative vp is represented in an
adjunct-rel,6 with the topic-rel feature registering the fronted con-

6In (37b) adjunct-rel has been abbreviated to adj-rel.

102 / A Grammar Writer’s Cookbook

stituent as a topic.

4.5 NPs without a Head Noun

4.5.1 Nominalized Adjectives

Some languages, such as French and German, allow adjectives to be
heads of nps, as in (37). That these are nps can be seen by their
syntactic distribution, including the fact that they can be preceded by
a determiner.

(37) a. Il y a deux leviers dont un petit.
there are two levers of them a little
‘There are two levers one of which is little.’ (French)

b. Die Kleinen lachen.
the.M.Pl.Nom little.M.Pl.Nom laugh
‘The little ones are laughing.’ (German)

Contrast these constructions with their English counterparts in which
there is a nominal head, as in (38).

(38) the little one(s)

In both French and German, this construction is very productive. In
German the nominalized adjectives are identified by the fact that they
are capitalized. They are thus identified as nominalized adjectives by
the morphological analyzer and pose no further problem for analysis.
In French, however, these adjectives are not offset from noun modifying
adjectives in any way; so, it is impractical to have separate n lexical
entries for every adjective. Instead, a separate option in the c-structure
of the np is provided whereby an adjective can be the head, instead
of a noun, as in (39). In addition, nps with adjectival heads may have
different syntactic properties, e.g., French nps of this type do not re-
quire determiners, which can be accounted for by different annotations
on the adjectival c-structure rule.

(39) np

npdet

detp nppp

d npap
un

ap

a
petit

Nominal Elements / 103

4.5.2 Headless NPs

In contrast with the nominalized adjectives above, German also has
true headless constructions, as shown in (40a) for adjectives and (40b)
for pps.

(40) a. Der Fahrer kauft neue Reifen, die [alten]
the.M.Sg.Nom driver buys new tires the.F.Pl.Acc old

wirft er weg.
throws he away
‘The driver is buying new tires, he will throw away the old
ones.’ (German)

b. Der [aus Berlin] lacht.
the.M.Sg.Nom from Berlin laughs
‘The one from Berlin laughs.’ (German)

In order to deal with these constructions, a version of the np rules
(npheadless) supplies an empty head only when either a determiner
or an adjective is present. Though this implementation can easily lead
to overgeneration unless suitably constrained, we do not see another
viable alternative at present.

English has a similar construction for certain possessives, as in (41).

(41) I am going to the dentist’s.

The English construction is more constrained due to its more limited
distribution, but the basic approach is identical to that of the German.
The English rule is shown in (42). The annotations provide the head
of the f-structure, while the possessive is parsed by npposs and hence
analyzed as a specifier (section 5.1.1); this is shown in (43).

(42) npheadless −→ npposs
(↑num)=sg
(↑pers)=3
(↑pred)=′pro′

(↑pron-type)=null

104 / A Grammar Writer’s Cookbook

(43) a. the dentist’s

b.


pred ′pro′

pron-type null

pers 3

num sg

spec



pred ′dentist′

ntype count

anim +

case gen

spec-type poss

pers 3

num sg

spec

[
spec-type def

spec-form the

]




4.6 The NP Squish

4.6.1 Gerunds

Gerunds are ubiquitous in English, but do not occur in German or
French. In keeping with general practice (Milsark 1988), they are an-
alyzed externally as nps in that they receive case, are assigned person
and number for verb agreement, and may appear in np positions in the
c-structure. Internally, however, they are clausal. They either occur
with a null pronominal subject (44a) or a genitive pronoun or posses-
sive subject np (44b).7

(44) a. [Driving the tractor] is good.

b. [His/John’s driving] the tractor amazes me.

The c-structure in (45) corresponds to (44a).

7Constructions of the type ‘the driving of the tractor’ are treated as standard nps,
not as gerunds. That is, these are deverbal nouns, which are provided as nouns by
the morphology and as such receive no special treatment either morphologically or
syntactically. Whether their semantics warrants special treatment is not examined
here.

Nominal Elements / 105

(45) a. Driving the tractor is good.

b. s

npgerund vpcop

vp vcop ap
is

v np
driving

good

the tractor

4.6.2 Sentential Subjects

In all three languages, a class of verbs and predicate adjectives can
occur with sentential subjects, as in (46). Note that these must be
constrained appropriately since not all verbs allow sentential subjects.

(46) a. That the tractor started immediately astounded me.

b. Que tu viennes ne changera rien à la situation
that you come.Subj not change.Fut nothing to the situation
‘That you come will change nothing about the situation.’
(French)

c. Daß der Traktor startet, hat mich gewundert.
that the.M.Sg.Nom tractor starts has me surprised
‘That the tractor started surprised me.’ (German)

While sentential complements are usually analyzed in f-structure as
comp, this is not the case for sentential subjects (see Bresnan 1982b).
Instead, they are assigned the role subj. One argument for this rather
different approach to sentential subjects vs. sentential objects is that
they appear in the c-structure position reserved for subjects in lan-
guages like English. A fresh look at German and some of the English
data has recently led to some discussion (Berman 1996) questioning
the validity of the original analysis. A valid alternative analysis may
involve a structural topic position for sentential subjects. However, as
the development of such an alternative analysis presupposes a large
amount of linguistic research outside the scope of ParGram collabora-
tion, we have chosen to implement the traditional analysis of sentential
subjects presented in Bresnan (1982b). For sample f-structure analyses
see section 3.3.5.

5

Determiners and Adjectives

5.1 Determiners

5.1.1 Types of Specifiers

Articles (determiners), quantifiers and prenominal genitives pattern
similarly in English in that they appear in the first position in an np:
they precede any modifiers, as in (1), and cannot be preceded by an-
other article or quantifier which modifies the noun, as in (2).

(1) The/a/every/Kim’s small dog barks.

(2) *The a/every/Kim’s dog barks.

The intuition that has guided most of the modern syntactic ap-
proaches to these constructions is that they serve to “specify” the head
noun rather than simply “modify” it.1

Although most specifiers are introduced through a category d or
detp (determiner phrase), the analysis of specifiers differs slightly at
the level of c-structure.2 Articles, quantifiers and prenominal genitives
are treated uniformly in all three grammars in that they are represented
under a spec feature in the f-structure, as in (3).

1The special properties of these specifiers have prompted a reanalysis of the
traditional notion of nps (the one implemented here) in which the n is considered
to be the head of the np. The alternative dp-hypothesis (Abney 1987) maintains
that the specifiers are the heads of the constituents we used to think of as nps,
and that in keeping with the requirements of x′ theory, a dp should be posited.
We have not implemented the dp hypothesis within ParGram, though we do use a
determiner phrase (detp).

2For example, the English grammar introduces genitive names such as John’s
through a specialized rule within the np, while the German grammar treats genitives
on a par with other determiners and generates them within a detp.

107

108 / A Grammar Writer’s Cookbook

(3) a. the dog

b.


pred ′dog′

pers 3

num sg

case nom

ntype count

anim +

spec

[
spec-type def

spec-form the

]


The precise semantics of specifiers are difficult to capture and con-

tinue to be the subject of much linguistic investigation (see Kamp and
Reyle 1993 for a good overview). Our implementation reflects the syn-
tactic characteristics of specifiers, though the grammars also provide
a rough classification of specifier types in addition to recording their
surface form in a spec-form feature. Some spec-types are given here
as examples, for the full range of types used, see the Appendix.

(4) spec-type Example
def the dog
indef a dog
quant every dog
neg no dog
poss my/John’s dog

It should be noted that most of the German equivalents of English
quantifiers (spec-type quant) such as every, some, and many are
not treated as specifiers in the German grammar. Rather, with the
exception of alle ‘all’, they are analyzed as quantifying adjectives. The
reason for this is that they may appear with a determiner before them,
as in (5), and that they show the same kind of morphological inflection
as adjectives (see section 5.2.1.2).3

(5) Ein jeder Traktor ist rot.
a.M.Sg.Nom.W every.M.Sg.Nom.S tractor is red
‘Every tractor is red.’

3Note that (5) is the first German example which contains a complete close
gloss for determiners and adjectives. For the sake of greater perspicuity, we left
out information as to the strong/weak (s/w) declension in previous chapters, and
only gradually introduced information about case, number and gender, as it became
relevant in each chapter.

Determiners and Adjectives / 109

Although prenominal genitives pattern like articles and quantifiers
as far as the syntax is concerned, they do differ in terms of complexity.
Genitives give rise to more complex specifiers, as illustrated in (6).

(6) a. the driver’s dog

b.


pred ′dog′

pers 3

num sg

case nom

anim +

ntype count

spec



pred ′driver′

pers 3

anim +

case gen

spec

[
spec-type def

spec-form the

]
spec-type poss




The genitive np the driver’s is embedded under the spec feature of

dog, indicating that the entire np serves as a specifier of dog. Since the
driver’s is itself an np with a specifier (the article the), a spec feature
is embedded under the higher one. Note that any further material in
the genitive np would also be embedded under the spec feature of dog.
For example, with the nice driver’s dog, the adjective nice would be
analyzed as an adjunct modifying driver and be placed inside the spec
feature modifying dog.

5.1.2 Morphosyntactic Considerations

The German determiner system encodes grammatical case, number and
gender, thus presenting the grammar writer with a complicated inflec-
tional paradigm.4 An example for der ‘the’ and ein ‘a’ with the feminine
Katze ‘cat’ and the masculine Hund ‘dog’ is given below.

4French determiners show number and gender agreement, but not case agree-
ment. With the prepositions de and à, the plural and masculine singular definite
determiners have special forms (des, du, aux, au).

110 / A Grammar Writer’s Cookbook

(7) case fem masc
Nominative die Katze der Hund
Genitive der Katze des Hundes
Dative der Katze dem Hund
Accusative die Katze den Hund

The gender, number and case agreement requirements can be dealt
with straightforwardly under lfg’s unification-based approach: the mor-
phosyntactic specifications of the determiners are simply required to
unify with those of the head noun.

However, there is a further complication which characterizes the Ger-
man determiner system. Determiners are classified as inflecting accord-
ing to either a weak or a strong paradigm. So, for example, the definite
article der ‘the’ inflects according to the strong paradigm, but the indef-
inite ein ‘a’ follows the weak paradigm. This interacts with adjectival
inflections, as shown in (8).

(8) a. der [kleine] Hund
the.M.Sg.Nom.S small.M.Sg.Nom.W dog
‘the small dog’ (German)

b. ein [kleiner] Hund
a.M.Sg.Nom.W small.M.Sg.Nom.S dog
‘a small dog’ (German)

Adjectives in German are also inflected for gender, number, case and
the weak/strong distinction (section 5.2.1.2). The generalization which
emerges is that strong determiners require weak adjectives and weak
determiners require strong adjectives. In the German grammar, this
requirement has also been implemented via unification by inverting
the traditional descriptive value that is assigned to the determiners:
weak determiners are thus given a strong value for the feature adj-
agr (adjective agreement), while strong determiners are given a weak
value. Given that this division into strong vs. weak inflection does not
seem to reflect any functional or semantic information, the feature adj-
agr is projected into the m-projection (see the discussion in section 3.5
for the motivation of this projection), where it can fulfill its purpose of
checking for wellformedness without cluttering up the f-structure.

The effect is that a weak determiner will only be compatible with
a strong adjective (which also carries the feature adj-agr strong),
and vice versa. Note that not all determiners pattern exactly according
to this generalization: etliche ‘several’ and einige ‘some’, for example,
inflect differently (most probably due to their special -ig/-ich forms (A.
Schiller, p.c.)). These determiners are therefore treated as exceptions

Determiners and Adjectives / 111

to the general rule and are captured by specialized lexical entries.

5.2 Adjectives

Adjectives are characterized by the fact that they modify nouns and,
in some languages including French and German, inflect for agreement.
English adjectives do not inflect to show gender or number agreement
with the head noun. However, it is possible to form comparative and
superlative forms of English adjectives, as in (9); so, in a sense adjectives
inflect even in the morphologically impoverished English.

(9) green/greener/greenest

Furthermore adjectives may be modified by a small set of adverbs
such as very. Some adjectives subcategorize for arguments (section
5.2.4), but the majority do not.

At c-structure, adjectives form aps (adjective phrases) which contain
the adjective and any adverbial modifiers, e.g., very red, trés rouge
(French), sehr rot (German). The ap also contains any np or clausal
arguments, and pp modifiers or arguments. In German, all of these
constituents may appear in a prenominal ap, as in (10). Note that
(10b) is an example of a deverbal adjective.

(10) a. Die ihrer Firma treue
the.F.Sg.Nom.S her.F.Sg.Dat.S company loyal.F.Sg.Nom.W

Frau lacht.
woman laughs
‘The woman loyal to her company laughs.’ (German)

b. Die im Garten den
the.F.Sg.Nom.S in.the.M.Sg.Dat.W garden the.M.Sg.Acc.S

Tee schnell trinkende Frau lacht.
tea quickly drinking.F.Sg.Nom.W woman laughs
‘The woman drinking tea quickly in the garden laughs.’ (Ger-
man)

These German constructions must be analyzed as instances of aps,
and not, for example, the equivalent of English reduced relative clauses
because the adjectives treue ‘loyal’ and trinkende ‘drinking’ inflect to
agree with the head noun and otherwise pattern like adjectives.

At f-structure, adjectives are analyzed as adjuncts when encoun-
tered prenominally (section 5.2.1), and as predlinks when used pred-
icatively (section 5.2.3). All adjectives are marked with an atype at
f-structure in order to distinguish the various uses and types of adjec-
tives.

112 / A Grammar Writer’s Cookbook

5.2.1 Prenominal Adjectives

Prenominal adjectives come in several different varieties: simple adjec-
tives, comparatives/superlatives, deverbal adjectives, and cardinals/or-
dinals. Degree adjectives (comparatives/superlatives) are described in
section 5.2.5. The other types of adjectives are simply analyzed as ad-
juncts at f-structure, as illustrated in (11).

(11) a. the small dog

b.


pred ′dog′

pers 3

num sg

case nom

ntype count

spec

[
spec-form the

spec-type def

]

adjunct


[
pred ′small′

atype attributive

]


5.2.1.1 Deverbal Adjectives

Deverbal adjectives as in (12) appear prenominally in English and Ger-
man and inflect just like the attributive adjectives discussed below.

(12) the barking dog

These adjectives are therefore analyzed as being atype attributive
and obey the inflectional constraints introduced in the section above.

5.2.1.2 Attributive Adjectives

The prototypical adjective for French, German and English is a prenom-
inal attributive adjective. This type of adjective is encoded has having
the atype attributive, as was illustrated in (12). There may be
several attributive adjectives separated by commas or coordinated. In
German and French, but not in English, due to its sparse morphology,
adjectives agree with the head noun they modify in gender and num-
ber. German additionally requires agreement in terms of case and the
weak/strong features, which depend on the type of determiner and its
particular gender, number and case features (section 5.1.2).

Determiners and Adjectives / 113

(13) a. der graue Hund
the.M.Sg.Nom.S grey.M.Sg.Nom.W dog
‘the grey dog’ (German)

b. den grauen Hund
the.M.Sg.Acc.S grey.M.Sg.Acc.W dog
‘the grey dog’ (German)

The full paradigm for grau ‘grey’ is given in (14) in conjunction with the
definite article der, the masculine noun Hund ‘dog’, and the feminine
noun Katze ‘cat’.

(14) num case fem masc

Sg Nom die graue Katze der graue Hund
Gen der grauen Katze des grauen Hundes
Dat der grauen Katze dem grauen Hund
Acc die graue Katze den grauen Hund

Pl Nom die grauen Katzen die grauen Hunde
Gen der grauen Katzen der grauen Hunde
Dat den grauen Katzen den grauen Hunden
Acc die grauen Katzen die grauen Hunde

These agreement requirements are enforced via functional equations
on the c-structure rules wherever an attributive ap is called. A sim-
plified rule is given in (15). Where German requires agreement in four
dimensions: gender, case, number and weak/strong (adj-agr), French
only requires that gender and number agreement be enforced. Note
that the strong/weak requirement is checked at m-structure via the
adj-agr feature.

(15) np −→ ap n
↓∈ (↑adjunct) ↑=↓
(↑gend)=(↓gend)
(↑num)=(↓num)
(↑case)=(↓case)
(mM∗ adj-agr)=(m∗ adj-agr)

The rule in (15) essentially looks inside (↓/m∗) the ap and requires
that the value of the specified feature (gend, num, case, adj-agr)
be the same as the value of the feature in the mother node (↑/mM∗).
A clash in one of these features will lead to an illformed structure. A
representative (wellformed) f-structure is given in (16).

114 / A Grammar Writer’s Cookbook

(16) a. die graue Katze
the.F.Sg.Nom.S grey.F.Sg.Nom.W cat
‘the grey cat’ (German)

b.


pred ′Katze′

pers 3

num sg

case nom

gend fem

ntype count

spec

[
spec-form die

spec-type def

]

adjunct




pred ′grau′

atype attributive

num sg

case nom

gend fem






5.2.1.3 Cardinals and Ordinals

Ordinals as in (17) also behave just like simple attributive adjectives
with regard to inflection.

(17) a. the third tractor

b. . der dritte Traktor
the.Sg.M.Nom.S third.Sg.M.Nom.W tractor
‘the third tractor’ (German)

c. le troisième tracteur
the.M.Sg third.M.Sg tractor
‘the third tractor’ (French)

However, in English these have a different c-structure distribution and
so are assigned the syntactic category numberp. They are also distin-
guished at f-structure in terms of the atype that is assigned: ordinal.
An example is given in (18).

Determiners and Adjectives / 115

(18) a. the third tractor

b.


pred ′tractor′

pers 3

num sg

case nom

anim −
ntype count

spec

[
spec-form the

spec-type def

]

adjunct


pred ′three′

atype ordinal

num sg





Cardinals, on the other hand, do not inflect, but do require the noun

to be plural (unless the cardinal is one), and exhibit a slightly different
syntactic pattern at c-structure, as shown by the contrast given in (19).

(19) a. The three brown dogs bark.

b. The *brown three dogs bark.

Cardinals are thus also introduced by a special rule at c-structure
(numberp), and are distinguished at f-structure by being assigned
atype cardinal, as in (20).

(20) a. the three dogs

b.


pred ′dog′

pers 3

num pl

case nom

anim +

ntype count

spec

[
spec-form the

spec-type def

]

adjunct


pred ′three′

atype cardinal

num pl






116 / A Grammar Writer’s Cookbook

5.2.2 Postnominal Adjectives

In German and French, but not in English, adjectives may appear post-
nominally. The German and French postnominal adjectives fulfill dif-
ferent functions in the languages and therefore cannot be given parallel
analyses. In the following subsections, each of these language particular
constructions is described.

5.2.2.1 German

Postnominal adjectives in German allow for at least three different
general constructions, illustrated in (21). They may either be sepa-
rated from the head noun by a comma, as in (21a-b), or not, as in
(21c). Arguments or modifiers of adjectives may appear either before
the adjective, as in (21b), or follow it, as in (21a,c). The adjectival form
(participial, comparative, or simple) behaves like a predicative adjective
in that it never inflects to show number, person or gender agreement
with the head noun.

(21) a. Der Hund, müde vom Bellen, schläft.
the.M.Sg.Nom.S dog tired from barking sleeps
‘Tired from barking, the dog sleeps.’ (German)

b. Die Frau, langsam den Tee
the.F.Sg.Nom.W woman slowly the.M.Sg.Acc.W tea

trinkend, lacht.
drinking laughs
‘The woman laughs while slowly drinking the tea.’ (German)

c. eine Katze schneller als der
a.F.Sg.Nom.W cat faster than the.M.Sg.Nom.S

Hund
dog
‘a cat faster than the dog’ (German)

Each of these constructions, the simple adjective in (21a), the de-
verbal adjectival participle in (21b) and the comparative in (21c), are
analyzed as appositions (app) in keeping with traditional descriptive
grammars. At c-structure, these constructions are treated via special-
ized ap rules, whereby the rules for the deverbal adjectives borrow very
heavily from the vp rules in order to account for the argument positions
of the deverbal adjective.

A sample f-structure is shown below for (21b) (for a treatment of
comparatives see section 5.2.5).5

5Note that the adverb langsam also receives an atype. Most adjectives in pred-
icative (uninflected) form can serve as adverbs in German. See Chapter 7 for dis-

Determiners and Adjectives / 117

(22) a. Die Frau, langsam den Tee
the.F.Sg.Nom.W woman slowly the.M.Sg.Acc.W tea

trinkend, lacht.
drinking laughs
‘The woman laughs while slowly drinking the tea.’ (German)

b.

pred ′lachen<subj>′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]

subj



pred ′Frau′

pers 3

num sg

case nom

gend fem

ntype count

spec

[
spec-form die

spec-type def

]

app



pred ′trinken<obj>′

atype predicative

obj



pred ′Tee′

pers 3

num sg

case acc

gend masc

ntype count

spec

[
spec-form die

spec-type def

]


adjunct


pred ′langsam′

atype adverbial

adegree positive









5.2.2.2 French

French postnominal adjectives are basically equivalent to their prenom-
inal counterparts, though some adjectives must be interpreted slightly
differently in accordance with the position they appear in (see Nolke

cussion.

118 / A Grammar Writer’s Cookbook

and Korzen 1996 and references therein on the order of adjectives in
French). This is illustrated in (23).

(23) a. un ancien élève
a former pupil
‘a former/ex pupil’ (French)

b. un élève ancien
a pupil old
‘an old/elderly pupil’ (French)

However, not all adjectives may appear freely in either position.
Those adjectives which are restricted to one position or another are
assigned an m-structure attribute apos with a value of pre or post
in the lexicon. The pre- and postnominal calls to ap then check for the
appropriate value of apos. As long as there is no clash, the structure is
licit. This can be seen in (25) which shows the c-structure, f-structure,
and m-structure of (24).

(24) le grand témoin rouge
the big warning light red
‘the big red warning light’ (French)

(25) a. np

npdet

detp nppp

d npap
le

ap n ap
témoin

a a
grand rouge

Determiners and Adjectives / 119

b.


pred ′témoin′

gend masc

pers 3

num sg

spec

[
spec-type def

spec-form le

]

adjunct




pred ′grand′

atype attributive

gend masc

num sg




pred ′rouge′

atype attributive

gend masc

num sg






c.
non-dep


[
apos pre

]
[
apos post

]



As with prenominal adjectives in French, postnominal adjectives must
agree in gender and number with the noun that they modify. This is
accomplished just as for prenominal adjectives by requiring that gender
and number be identical when the ap is called in the np rule.

5.2.3 Predicative Adjectives

All adjectives in predicative position are marked with the feature atype
predicative to indicate the contrast to attributive adjectives. Both
German and English adjectives show no inflection in predicative posi-
tion. For German, this constitutes a contrast to prenominal attribu-
tive adjectives, which do inflect for gender, number, case, and the
weak/strong distinction.

(26) a. The cat is grey.

b. Die Katze ist grau.
the.F.Sg.Nom.S cat is grey
‘The cat is grey.’ (German)

In French, on the other hand, both predicative and attributive adjec-
tives inflect. Agreement via inflections is obligatory in French, as seen
in (27).

120 / A Grammar Writer’s Cookbook

(27) a. La bôıte est grise.
the box.F.Sg.Nom is grey.F.Sg
‘The box is grey.’ (French)

b. *La bôıte est gris.
the box.F.Sg.Nom is grey.M.Sg
‘The box is grey.’ (French)

c. *La bôıte est grises.
the box.F.Sg.Nom is grey.F.Pl
‘The box is grey.’ (French)

The agreement facts are taken care of by equating the subject’s per-
son and gender values with the values of the predicate adjective in the
ap rule that introduces predicatives.

5.2.4 Arguments of Adjectives

5.2.4.1 The General Approach

In the above examples, adjectives do not themselves subcategorize for
an argument. However, adjectives function as semantic predicates in
the sense that they predicate a certain property to hold for some ar-
guments. The semantic contribution of adjectives is difficult to char-
acterize (Siegel 1976), giving rise to debates as to the right semantic
interpretation of nps like false money or as to the right crosslinguistic
analysis for resultatives like paint the fence red.

In keeping with our general grammar writing strategy, we have only
modeled those cases where adjectives impose syntactic wellformedness
requirements. Section 5.2.1.2 illustrated such requirements in terms of
inflectional restrictions. The examples in (28) illustrate that some ad-
jectives further require the syntactic realization of an argument.

(28) a. The driver is proud of the tractor. (pp argument)

b. The tractor is hard to push. (vp argument)

c. It is important that the dog does not bark. (cp argument)

A comparison with (29) shows that in these cases the adjectives are
responsible for the introduction of the pp, vp or cp argument.

(29) a. *The driver is red of the tractor. (pp argument)

b. *The tractor is red to push. (vp argument)

c. *It is red that the dog does not bark. (cp argument)

Those adjectives which subcategorize for arguments are given special
lexical entries which indicate their subcategorization frame,6 thus al-

6For the German grammar, adjective entries were produced semi-automatically

Determiners and Adjectives / 121

lowing for the fact that an adjective can require an obj, obl, xcomp
or comp at the level of f-structure, as in (30).7

(30) a. The driver is proud of the tractor. (obl argument)

b.

pred ′be<subj,predlink>′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]

subj



pred ′driver′

pers 3

num sg

case nom

anim +

ntype count

spec

[
spec-form the

spec-type def

]



predlink



pred ′proud<obl>′

atype predicative

obl



pred ′of< obj>′

ptype sem

obj



pred ′tractor′

pers 3

num sg

case acc

pcase of

anim −
ntype count

spec

[
spec-form the

spec-type def

]








based on data extraction from very large corpora. Similarly, the subcategorization
frames of deverbal adjectives are derived from the subcategorization frames of the
verbs, which were also produced semi-automatically from data extraction over large
corpora and various other resources (see section 14.1.1 for some more discussion).

7The grammatical function predlink in (31) indicates that the construction
is predicational and that the material in the predlink is being predicated of the
subject of the sentence (section 3.8). Other lfg analyses of adjectives (e.g., Bresnan
1982b) assume that adjectives also subcategorize for a subject (i.e., tractor in red
tractor).

122 / A Grammar Writer’s Cookbook

The c-structure adjective rules are augmented to allow for the possi-
bility of an np (German only), pp, vp or cp either following or preceding
(German only) an adjective as its argument.

5.2.4.2 Extraction

As mentioned previously, one of the possible arguments of an adjective
is a comp. As also discussed previously in section 3.3.5, a comp can
be either a nonfinite vp as in (31), or a that-clause as in (32). As an
example, the f-structure for (31b) is shown in (33).

(31) a. It is important to laugh.

b. It is important that the dogs bark.

(32) a. It is important that the dogs bark.
b.


pred ′be<predlink>subj′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]

subj


pron-type expletive

pron-form it

pers 3

num sg

case nom

gend neut

anim −



predlink



pred ′important<comp>′

atype predicative

comp



pred ′bark<subj>′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]
comp-form that

subj



pred ′dog′

pers 3

num pl

case nom

anim +

ntype count

spec

[
spec-form the

spec-type def

]








In all three languages, these comps can be preposed and thus ex-

tracted from the local subcategorization domain of the adjective, as
shown for English in (33).

(33) a. To laugh is important.

b. That the dogs bark is important.

Determiners and Adjectives / 123

The adjectives which subcategorize for comps and allow the extrac-
tion in (34) are specially marked in the lexicon. In the nonextraction
cases, the expletive it (es in German, il in French) is treated as a sub-
ject subj of the copula be (see section 3.8 for a more detailed discussion
of copula constructions).

(34) a. That the dog barks is important.

b.


pred ′be<subj,predlink>′

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]

subj



pred ′bark<subj>′

pers 3

num sg

case nom

stmt-type declarative

tns-asp

[
tense pres

mood indicative

]
comp-form that

subj



pred ′dog′

pers 3

num sg

case nom

anim +

ntype count

spec

[
spec-form the

spec-type def

]





predlink


pred ′important<comp>′

atype predicative

comp
[]




In the extraposed cases, as in (34), where there is no expletive which

can function as the subject, the clause fulfills a double role: it serves
both as the comp argument of the adjective, and as the subj argu-
ment of the copula. In English, in fact, the that-clause is in canonical
subject position, so that such an analysis is explicitly motivated. As
German does not encode subjects by position, this motivation does not
carry over to German. Neither is it contradicted by any other language
internal facts, however; so, the German grammar adopts the English

124 / A Grammar Writer’s Cookbook

analysis as well. Note that pers and num features of the extraposed
clause must be written since that-clauses are not inherently marked for
person and number; if these features were not provided, improper verb
forms such as in *That the dog barks are important could not be ruled
out.

5.2.5 Degrees of Comparison

Adjectives in all three of these languages have morphological markers
which allow the formation of comparatives or superlatives from a base
form.
(35) a. a heavier truck (comparative)

b. the heaviest truck (superlative)

In addition, the base form of the adjective can occur in equatives and
with periphrastic comparative constructions.

(36) a. That dog is as heavy as a truck. (equative)

b. more pleasant (periphrastic comparative)

c. le plus rouge (periphrastic superlative)
the more red
‘reddest’ (French)

Although these differ in terms of how they are realized at c-structure,
the f-structures corresponding to both the periphrastic and the mor-
phological comparatives receive the same analysis (see section 5.2.5.1
for sample f-structures).

The degree of comparison and the positive or negative force (e.g., the
difference between more pleasant and less pleasant) are represented at
f-structure in terms of the features adegree and adeg-type, respec-
tively.

In terms of grammatical functions at f-structure, we analyze com-
paratives as consisting of two main parts: the degree (comparative,
equative, or superlative) of the adjective (e.g., heavier) and the further
(often optional) comparative phrase it can license (e.g., than a truck).
The degree adjective is treated as an adjunct, like all other adjectives.
However, it is treated as a special kind of adjunct which has special
syntactic properties, and is therefore encoded as an adjunct-comp at
f-structure. This indicates that it is an adjunct, but that it specifies a
degree of comparison. The comparative phrase (e.g., than a truck) is
analyzed as an oblique argument of the adjective. Again, in order to
indicate that a degree of comparison is indicated, a special grammatical
function obj-comp is posited for comparative phrases. The intuition
behind this is that the than-phrases appear to function somewhat like

Determiners and Adjectives / 125

pps which are subcategorized for by a predicate, and which have tra-
ditionally been analyzed as obliques (obl) at f-structure (cf. Bresnan
1982a). The lexical item than (que in French, als in German) is treated
as a special type of conjunction since it may head complete clauses, as
in (38).

In addition to prenominal constructions as in (35), comparatives can
also appear postnominally, as in (37), and predicatively, as in (38).
Postnominal comparatives are analyzed at f-structure strictly in paral-
lel to prenominal comparatives, i.e., an adjunct-comp is introduced
as a modifier of the head noun. Predicatives, on the other hand, receive
a differing analysis, discussed in section 5.2.5.2.

(37) A dog heavier than a tractor barked.

(38) She is taller than I am.

Note that at c-structure the comparative adjectives occupy exactly
the same position as simple adjectives. The than-phrase, however, is
introduced through a special c-structure node conjpcomp in all three
grammars. Additionally, in some degree constructions, as in (39), the
adjective phrase forms a constituent with the than-phrase. This con-
stituent is introduced at c-structure via a specialized rule called apcomp.

(39) a. It is [more comfortable than a tractor].

b. apcomp

ap conjpcomp

advcomp a conjcomp np
more comfortable than

a tractor

Note that regardless of their syntactic position, than-clauses always
correspond to the obl-comp argument of a comparative. As such, a
sentence like (40) is syntactically three-ways ambiguous in English be-
cause the than-clause could in principle be associated with any of the
comparatives (more tractors, redder lights, more quickly).

(40) More tractors flash redder lights more quickly than would be ex-
pected.

The interpretation of the than-clause is related to the semantics of
ellipsis. Whether a clause can be felicitously interpreted with a given
comparative is part of the semantics and pragmatics, not the syntax.

126 / A Grammar Writer’s Cookbook

As such, we have not implemented a treatment for the resolution of
than-clauses within our grammars. Some relevant examples are given
below.
(41) The light flashes more quickly than the beacon.

=The light flashes more quickly than the beacon flashes.

(42) a. John drove the tractor faster than Bill.
=John drove the tractor faster than Bill drove the tractor.

b. John drove the tractor faster than the car.
=John drove the tractor faster than he drove the car.

5.2.5.1 Comparatives

A representative f-structure for the German np in (43a) is given in
(43b). There is no than-phrase and the comparative adjective is encoded
under the adjunct-comp within the subj.

(43) a. eine schnellere Katze
a.F.Sg.Nom.S quick.Comp.F.Sg.Nom.W cat
‘a quicker cat’ (German)

b.


pred ′katze′

pers 3

num sg

case nom

gend fem

ntype count

spec

[
spec-form ein

spec-type indef

]

adjunct-comp



pred ′schnell′

adegree comparative

adeg-type positive

num sg

case nom

gend fem




The f-structure in (44b) illustrates a comparative adjective in con-

junction with a than-clause. Again, the comparative adjective is en-
coded under the adjunct-comp. The than-phrase is represented as
the obl-comp argument of the comparative adjective. The als ‘than’
is encoded in terms of the feature conj-form-comp, indicating that
while the als ‘than’ functions like a conjunction, it is a special kind of

Determiners and Adjectives / 127

comparative conjunction.8

(44) a. Eine schnellere Katze als
a.F.Sg.Nom.S quick.Comp.F.Sg.Nom.W cat than

der Hund erscheint.
the.M.Sg.Nom.S dog appear.3.Sg.Pres
‘A quicker cat than the dog appears.’ (German)

b.

pred ′erscheinen<subj>′

tns-asp

[
tense pres

mood indicative

]
stmt-type declarative

vsem unacc

subj



pred ′katze′

pers 3

num sg

case nom

gend fem

ntype count

spec

[
spec-form ein

spec-type indef

]

adj-comp



pred ′schnell<obl-comp>′

adegree comparative

adeg-type positive

num sg

case nom

gend fem

obl-comp



pred ′hund′

conj-form-comp als

pers 3

num sg

case nom

gend masc

ntype count

spec

[
spec-form der

spec-type def

]








5.2.5.2 Predicatives

In predicative constructions as in (45) the degree adjective is not treated
as an adjective which modifies a head noun. Rather, it is seen as an
argument of the copula be, a predlink (section 3.8). Other than this
difference, the analysis of degree adjectives parallels that of the prenom-
inal cases above: the degree adjective may introduce an argument (obl-
comp), which corresponds to the than-clause. An example, which also
incidentally illustrates a periphrastic comparative, is given below.

8In the interest of space, adjunct-comp has been abbreviated to adj-comp in
(44b).

128 / A Grammar Writer’s Cookbook

(45) a. It is more comfortable than a tractor.
b.


pred ′be<subj,predlink>′

subj



pred ′pro′

pron-type pers

pron-form it

pers 3

num sg

case nom

gend neut

anim −



predlink



pred ′comfortable<obl-comp>′

adegree comparative

adeg-type positive

obl-comp



pred ′tractor′

conj-form-comp than

pers 3

num sg

anim −
ntype count

spec

[
spec-form a

spec-type indef

]






5.2.5.3 Equatives

Equatives compare two entities and indicate that they are equivalent
in terms of one of their properties. Unlike comparatives, equatives do
not appear without a comparative phrase (e.g., as big as a tractor).9

This requirement is ensured by a constraint in the lexical entry of the
equative that requires the existence of a comparative phrase. Equative
adjectival constructions also do not appear prenominally, but surface
either postnominally as in (46), or predicatively as in (47).

(46) A dog as heavy as a truck barked.

Other than a difference in the adegree and the adeg-type (which is
not specified for equatives), the f-structures for comparatives and equa-
tives do not differ in these constructions. An example of a predicative
construction is illustrated below.

9In both French and German one may find colloquial examples such as Moi,
je ne suis pas aussi libre ‘Me, I’m not as free’, which have an equative but no
comparative (thanks to Anette Frank for pointing these out). However, in these
cases, the equative may also be analyzed as an adverb without comparative function.

Determiners and Adjectives / 129

(47) a. That dog is as heavy as a truck.
b.


pred ′be<subj,predlink>′

tns-asp

[
tense pres

mood indicative

]
stmt-type declarative

subj



pred ′dog′

pers 3

num sg

case nom

ntype count

spec

[
spec-form that

spec-type def

deixis distal

]



predlink



pred ′heavy<obl-comp>′

adegree equative

obl-comp


pred ′truck′

conj-form-comp as

pers 3

num sg

ntype count

spec

[
spec-form a

spec-type indef

]






5.2.5.4 Superlatives

Superlatives indicate that a given entity is the extreme and unique
instantiation of that kind. In these constructions it is thus not the case
that two entities are being compared, but rather that one entity is being
singled out as special. As such, superlatives cannot occur with than-
clauses. This generalization is ensured by a combination of constraints
in the c-structure rules, and in the lexical entries of the superlatives.

(48) a. The best driver owns the heaviest tractor.

b. a better/*best driver than the owner

In the f-structure, superlatives are treated just as comparatives and
equatives, with the exception that they never subcategorize for an obl-
comp (i.e., a than- or as-phrase), and that the values for adegree
differ. The f-structure for (48a) is given in (49b).

130 / A Grammar Writer’s Cookbook

(49) a. The best driver owns the heaviest tractor.

b.


pred ′own<subj,obj>′

tns-asp

[
tense pres

mood indicative

]
stmt-type declarative

subj



pred ′driver′

pers 3

num sg

case nom

anim +

ntype count

spec

[
spec-form the

spec-type def

]

adjunct-comp

pred ′good′

adegree superlative

atype attributive





obj



pred ′tractor′

pers 3

num sg

case acc

anim −
ntype count

spec

[
spec-form the

spec-type def

]

adjunct-comp

pred ′heavy′

adegree superlative

atype attributive







6

Prepositional Phrases

This chapter discusses prepositions which appear with both nominal
and clausal complements. Prepositions in German may appear both
before and after an np. In English and French, the prepositions more
truly live up to their name in that they must appear before their com-
plement (as opposed to postpositions, which appear after the comple-
ment). Additionally, English allows preposition stranding in contexts
such as question-formation, relativization and passivization.

Prepositions are usually subdivided into two major classes: semantic
and nonsemantic. Semantic prepositions usually (but not always) give
rise to adjunct pps, as in the book on the table. Nonsemantic preposi-
tions, on the other hand, mark argument pps such as I referred to the
book. In some cases, a particular preposition is also required by the verb
in one of its particular meanings, as in wait on somebody in a restau-
rant. Our treatment of these and other phenomena is presented in the
following sections.

6.1 Semantic Prepositions

The most common type of pp involves a preposition which has a clear
semantic content of its own, such as the locatives on, in, under, etc., the
instrumental with, and the directionals into, onto, etc. In our grammars,
these prepositions are endowed with a pred value and a subcategoriza-
tion frame which indicates that the preposition requires an object. This
object is usually an np, as in (1). In addition, semantic prepositions are
marked with ptype sem in order to distinguish them from nonsemantic
prepositions.

131

132 / A Grammar Writer’s Cookbook

(1) a. on the panel

b. dans le tracteur
in the tractor
‘in the tractor’ (French)

A sample f-structure is shown in (2). Note that the feature pcase
encodes the form of the preposition. This feature is located in the f-
structure of the object of the preposition and reflects the intuition that
prepositions have a somewhat verbal character in that they both license
an object and assign case to it (e.g., Baker 1988 on preposition incorpo-
ration and Kaplan and Bresnan 1982 on the treatment of prepositions
within lfg).

(2) a. on the panel

b.


pred ′on<obj>′

psem locative

ptype sem

obj

[
pred ′panel′

pcase on

]


In German, prepositions impose morphological case requirements
on their objects. Objects of prepositions may appear with dative, ac-
cusative, or genitive case. Sometimes the particular case required is a
purely idiosyncratic property of the preposition. Many of the German
prepositions, however, display a systematic alternation with regard to
the morphological case required on the object. If the pp has a direc-
tional force, as in (3a), then the object must be accusative. On the other
hand, if the pp describes a location, then the object must be dative, as
in (3b).

(3) a. Sie geht in den Garten.
she goes in the.M.Sg.Acc.S garden
‘She is going in(to) the garden.’ (German)

b. Sie hat im Garten Tee getrunken.
she has in.the.M.Sg.Dat.W garden tea drunk
‘She drank tea in the garden.’ (German)

We therefore posit a feature psem, which encodes the semantic class
of each preposition. Thus, the psem in the English locative example in
(2) is locative. In the German example in (3a) the psem is direc-
tional, as shown in the sample f-structure analysis in (4).

Prepositional Phrases / 133

(4) a. Sie geht in den Garten.
she goes in the.M.Sg.Acc.S garden
‘She is going in(to) the garden.’ (German)

b.


pred ′gehen<subj>′

stmt-type declarative

tns-asp

[
mood indicative

tense pres

]

subj



pred ′pro′

anim +

pron-form sie

gend fem

case nom

pron-type pers

pers 3

num sg



adjunct





pred ′in<obj>′

psem directional

ptype sem

obj



pred ′Garten′

ntype count

spec

[
spec-type def

spec-form der

]
pers 3

num sg

gend masc

case acc

pcase in








The psem value is additionally used for tasks such as determining which
phrases can occur in English locative inversion constructions, what type
of adjunct a pp is, and whether the subcategorization requirements of
verbs like put have been met.

6.2 Nonsemantic Prepositions

In certain constructions, a particular preposition is required by the
verb in one of its particular meanings. In these cases, the preposition
makes no or very little semantic contribution of its own (see section
3.7 on particles, which are distinct from nonsemantic prepositions). As

134 / A Grammar Writer’s Cookbook

such, these pps are treated as arguments of the verb and are encoded
with a ptype nosem to mark the difference from the semantic adjunct
pps discussed in the previous section. An alternation from German,
which illustrates the contrast between the semantic and nonsemantic
prepositional use of one and the same preposition, is shown in (5).

(5) a. Der Fahrer wartet auf das Buch.
the.M.Sg.Nom.S driver waits on the.N.Sg.Acc.W book
‘The driver is waiting for the book.’ (German)

b. Der Fahrer wartet auf dem Traktor.
the.M.Sg.Nom.S driver waits on the.M.Sg.Dat.S tractor
‘The driver is waiting on (top of) the tractor.’ (German)

Note that again a difference in object casemarking accompanies the
difference in meaning. In (5b) the preposition has a clear semantic force
and indicates a locative adjunct to the verb. In (5a), on the other hand,
this particular usage of warten requires a nonsemantic (i.e., nonloca-
tional and nondirectional) usage of on. In this case, the pp auf das Buch
is analyzed as an argument of the verb.

One reason for positing this analysis is that the np can be passivized
out of the pp, as is illustrated for English in (6) and (7), and for German
in (8).

(6) a. The driver must comply with these regulations.

b. These regulations must be complied with.

(7) a. He relies on this book.

b. This book is (often) relied on.

(8) Auf das Buch wird gewartet.
on the.N.Sg.Acc.W book is waited
‘This book is being waited for.’ (German)

Prepositions which occur in these constructions are analyzed as not
having a pred (thus encoding their lack of semantic force). They there-
fore do not subcategorize for an object, which means that the pp argu-
ments such as on this book are treated as objects of the verb. A sample
f-structure for this construction is shown for (7a) in (9b).

Prepositional Phrases / 135

(9) a. He relies on this book.

b.


pred ′rely<subj,obj>′

stmt-type declarative

tns-asp

[
mood indicative

tense pres

]

subj



pred ′pro′

anim +

pron-form he

gend masc

case nom

pron-type pers

pers 3

num sg



obj



pred ′book′

case acc

pcase on

ntype count

spec

spec-type def

deixis proximal

spec-form this


anim −
pers 3

num sg




The preposition now merely serves to assign pcase to an argument

of the verb. Note that the presence of this pcase feature is important,
as it must be matched with a requirement by the verb. For example,
in German (as in English) warten ‘wait’ is normally intransitive. When
it subcategorizes for a for-phrase, however, it is transitive. Thus, the
transitive subcategorization frame can only be chosen in the presence
of the feature pcase auf (German) or pcase on (English).

6.3 Interrogatives and Relatives

In all three languages, prepositional phrases may also appear in inter-
rogative and relative clause constructions, as in (10).

(10) a. [From where] did the driver appear? (interrogative)

b. The tractor, [on which] you will find a beacon . . . (relative)

Both semantic and nonsemantic pps may appear in these construc-

136 / A Grammar Writer’s Cookbook

tions. As such, the treatment of these constructions does not differ from
the pps described above, except that the prepositions take an interrog-
ative or relative prounoun as a complement, rather than a full np.

6.4 Clause-Taking Prepositions

In addition to nominal elements, prepositions may also take clausal
elements as a complement in the three languages. Examples for English
are given in (11).

(11) a. [Irrespective of whether it is switched on], the lamp lights up.

b. Turn the lever [with the engine running].

Again, the analysis does not differ markedly from the semantic and
nonsemantic prepositions discussed above, other than the fact that the
object of the preposition is a clause. A sample analysis is given below.
Note that irrespective of is treated as a multiword (see section 12.2)
whose semantic type (psem) is unspecified. The value unspecified is
assigned to those prepositions which do not appear to form a useful
semantic class as far as the grammars are concerned. The whether is
analyzed as an interrogative complementizer.

(12) a. irrespective of whether it is switched on

b.


pred ′irrespective-of<obj>′

psem unspecified

ptype sem

obj



pred ′switch-on<null, subj>′

stmt-type interrogative

tns-asp

[
mood indicative

tense pres

]
comp-form whether

prt-form on

pcase irrespective-of

subj



pred ′pro′

anim −
pers 3

pron-form it

pron-type pers

gend neut

case nom

num sg







Prepositional Phrases / 137

6.5 Multiple Prepositions

In addition to appearing singly, prepositions may also be nested, as in
the English example in (13a), or circumscribe the complement, as in
the German examples in (13b–c). Multiply occuring prepositions are
semantic in nature, and as such receive the same general treatment as
simple semantic prepositions.

(13) a. next to the tractor

b. vom Fahrersitz aus
from.the.M.Sg.Dat.S driver’s seat out
‘from the driver’s seat’ (German)

c. um den Traktor herum
around the.M.Sg.Acc.S tractor around
‘around the tractor (making a complete round)’ (German)

In English, multiply occuring prepositions are analyzed as corre-
sponding to a series of nested embeddings: next is analyzed as a pp
which takes another pp in the c-structure and in the f-structure.

However, this approach does not work well for the German examples
since it does not capture the intuition that the prepositions are forming
a semantic complex in these cases. It also does not reflect the fact that
the German prepositions circumscribe their common complement. In
the German grammar, an alternative approach is therefore adopted.
Under this approach, the c-structure rule that generates pps allows for
two p daughters, as shown in (14).

(14) pp

p np p
vom aus

n
Fahrersitz

The second p daughter is restricted to co-occur with the first p daugh-
ter, reflecting that German does not allow postpositions, but does allow
circumpositions. The first p daughter is always a semantic preposition
and is analyzed in the same way as the semantic prepositions discussed
above. The second preposition may only occur when appropriately li-
censed. The herum in (13c), for example, may only co-occur with um
in German. This restriction is enforced by checking for um via the
pcase feature. The second preposition (i.e., herum) is not encoded in
terms of a pcase, but its form and type are encoded in the f-structure
within separate features, leaving the precise semantic analysis of these
circumpositions to a further semantic module.

7

Adverbial Elements

Adverbial elements comprise a large, disparate class of constituents
which serve as nonsubcategorized modifiers (adjuncts). Adverbs vary so
considerably with regard to syntactic distribution and semantic content
that the grammatical category of adverb is often used as a kind of
catch-all category for lexical items that one is at a loss to define.

However, adverbs do have some properties which characterize the
class as a whole. Unlike adjectives and verbs, adverbs never inflect
(though they may bear casemarking). Adverbs serve to modify either
the clause or a constituent: they never stand alone. From a semantic
perspective, adverbs may encode the manner of motion, the location
in time of a given event (temporal adverbs), intentionality (purposely
vs. accidentally), they may serve to intensify a modifier (e.g., very)
or negate a clause or constituent (negation). There is as yet no good
syntactic or semantic overview of the properties and types of adverbs;
readers are instead referred to the grammars of a particular language
(e.g., Quirk et al. 1985 for English) for an overview.

7.1 Adverbs

Adverbs can be loosely divided into three types: adverbs which modify
adjectives and other adverbs, as in (1a), adverbs which modify vps, as
in (1b), adverbs which modify clauses, as in (1c).

(1) a. der [sehr] graue Hund
the.M.Sg.Nom.S very grey.M.Sg.Nom.W dog
‘the very grey dog’ (German)

b. Elle l’ a fait [doucement].
she it has done gently
‘She did it gently.’ (French)

c. She [usually] drives home.

139

140 / A Grammar Writer’s Cookbook

These types can be further subdivided as needed, depending on the
language. In English, the type of adverb correlates strongly with a
restriction on which syntactic position it may appear in. For example,
any adverb which appears in the ap rules must be of the type that
can modify adjectives and other adverbs, e.g., its adv-type must be
adjadvmod. Similar distinctions can be made within the vp and s so
that only adverbs of a certain type (e.g., smod, vpmod) can appear in
a particular position. However, adverb placement is notoriously difficult
to determine, in part because the semantics of a given adverb may shift
in certain contexts, thus allowing it to appear in a different position
than usual. Because of the general free word nature of German, the
placement of adverbs is particularly hard to describe and constrain
in this language. Ideally, a grammar might parse a given adverb in
virtually any adverb position, but only generate it in a very restricted
set of positions.

German provides an interesting morphological situation since there
is no difference in form between the uninflected form of the adjective
and its adverbial counterpart, e.g., schnell can either mean ‘fast’ or
‘quickly’. One approach to this property of the language is to encode it
via a systematic ambiguity in the lexicon, and have both an a and adv
entry for each of these items. Another approach, which is the one taken
in the German grammar, is to postulate only one c-structure category
as the base, namely a. This category may then be called by c-structure
rules which produce adverbial phrases (advp), as shown in (2).

(2) advp

apbase

a
schnell

The rule for advp requires that the adjectival form be uninflected,
and that it be assigned an adv-type feature so that it can be identified
as an adverb at the level of the f-structure analysis.

Note that as in English and French there is a closed class of items
such as sehr ‘very’ which do not lead such a double life. They are
simply treated as being of the c-structure type adv, as shown in (3),
and receive the appropriate adv-type feature in the lexicon.

(3) advp

adv
sehr

Adverbial Elements / 141

German furthermore sports a subset of adverbs which are generally
referred to as discourse particles, such as ja ‘yes’, doch, ‘really’. An
example is given in (4).

(4) Ich geh ja schon.
I go yes already
‘I’m already going (don’t worry).’ (German)

The ja in (4) does not mean ‘yes’ but instead serves to intensify the
other adverb schon ‘already’. The precise semantics and syntactic dis-
tribution of these German discourse particles is not well understood,
but see König 1991a,b for some discussion and analyses.

7.2 PPs as Adverbials

As was already discussed in Chapter 6 on prepositions, many pps act
as adjuncts. A subset of those pps, namely those which overlap in dis-
tribution and semantics with simple adverbs may also be analyzed as
adverbials. Example (5) shows a manner of motion pp adverbial coor-
dinated with a simple adverb, which indicates that the two should be
given parallel analyses as manner of motion adverbials.

(5) They left noisily and with unusual haste.

7.3 NPs as Adverbials

A limited number of nps act as adverbials, as in (6); these are often
time and frequency adverbs, including dates.

(6) a. [Tuesday mornings] he goes to the store.

b. Clean the tape head [every time you use it].

c. Fast forward the tape [every ten plays].

d. [Le matin], je lave les mains.
the morning I wash the hands
‘In the morning, I wash my hands.’ (French)

The difficulty with these constructions is to make sure that only
certain nps, namely the ones with the correct semantics, will distribute
as adverbials. One possibility is to have nouns which frequently occur
in these constructions, such as dates and times of day, provide a feature
which the np adverbial construction requires. However, constructions
like that in (6c) make this difficult to do completely.

7.4 Negation

Negation particles such as the English not, German nicht, or French ne
. . . pas are usually analyzed as a subtype of adverb because negation

142 / A Grammar Writer’s Cookbook

serves to modify a clause or a constituent, as the other adverbials do.
However, the distribution and semantics of negative elements is often
very different from that of other adverbials. As such, in our grammars
negative particles are given a different c-structure category, neg, which
serves to constrain its appearance and distinguish it from the other
adverbs.

7.4.1 Clausal Negation

First consider simple clausal negation. In English and French, there is
only one position in the sentence where negation can appear and have
sentential scope. For example, in finite clauses negation appears before
the finite verb in French and immediately after the finite auxiliary in
English. This restriction in syntactic distribution is encoded in the c-
structure rules.

(7) a. They should not have been eating.
They should have not been eating. (* on sentential reading)
They should have been not eating. (* on sentential reading)

b. They have not been eating.

c. They are not eating.

In German, the negative marker nicht distributes with the sentential
adverbs, as in (8), and as such may appear almost anywhere. The c-
structure rules are therefore not coded as restrictively as for English
and French.

(8) Ich bin gestern nicht mit meinem Bruder in die Stadt
I am yesterday neg with my brother in the city

gegangen.
went
‘I did not go to the city with my brother yesterday.’ (German)

In keeping with general ParGram policy, we do not encode much of
the semantics of negation. As negation does not have a fixed position in
German, the scope of negation is difficult to determine from c-structure
information alone. We therefore do not attempt to represent the scope
of negation at f-structure and instead simply register the presence of
clausal negation with a neg + feature at the same level as the clausal
pred in the f-structure (in (7) this would be the pred ‘eat’).

Note that some languages divide negation into two parts. An example
is French, as illustrated in (9).

Adverbial Elements / 143

(9) a. Elle n’ a pas mangé de soupe.
she neg have postneg eaten of soup
‘She did not eat any soup.’ (French)

b. Elle ne mange jamais de soupe.
she neg eat postneg.never of soup
‘She never eats soup.’ (French)

In these cases, one of the markers is analyzed as being of the c-structure
category neg. This marker provides the neg + feature at f-structure.
Furthermore, this category may only appear if another negative particle
is found in the clause. This constraint is achieved via a feature neg-
form, which must be contributed by the other negative particle. The
feature neg-form also serves to differentiate different possible post-
posed negative particles from one another, e.g., pas ‘not’ from jamais
‘never’ (French).

7.4.2 Constituent Negation

Constituent negation is used to negate constituents other than the en-
tire clause. An example is given in (10). In many cases the negated
constituent is contrasted with another one within the same clause.
(10) a. They found the ball not in its box, but on the floor.

b. Ils ont trouvé la balle non pas dans la bôıte, mais
they have found the ball neg in the box but

sur le plancher.
on the floor
‘They found the ball not in the box, but on the floor.’ (French)

c. Er hat mir nicht das Buch gegeben, sondern die Zeitschrift.
he has me neg the book given but the magazine
‘He did not give me the book, but the magazine.’ (German)

As with clausal negation, the negative marker provides a feature neg
+ to the f-structure. Note that the one difficulty with the approach
to negation that we have chosen is that in the f-structure constituent
negation of a verb looks identical to clausal negation of the entire vp,
as in both cases the feature neg + will be at the same f-structure level.
In fact, this is a problem for all heads, e.g., constituent negation of a
preposition is f-structure identical to negation of a pp.

7.4.3 Pleonastic Negation

Some languages have pleonastic negation in certain contexts. Pleonas-
tic negation occurs when there is a negative marker, but no negative
meaning.

144 / A Grammar Writer’s Cookbook

(11) Je crains qu’ il ne vienne.
I fear that he neg come
‘I am afraid that he will come.’ (French)

In our analyses, pleonastic negation crucially does not provide a neg +
feature to the f-structure, thus indicating that a real semantic negation
is not at hand. However, the type of the negation is encoded by means of
a feature neg-type pleonastic, and this feature may then be used to
constrain pleonastic negation to occur in more restricted environments
than true clausal negation, e.g., to constrain it to appear only in the
complements of specific verbs.

8

Coordination

8.1 Basic Approach

The basic approach to constituent coordination in lfg (Bresnan, Ka-
plan and Peterson 1985, Kaplan and Maxwell 1988b; see also Andrews
1983) is as follows.1 A c-structure rule such as that in (1) allows any
category, e.g., s, vp, pp, to be coordinated. The conjuncts form a set
via the ↓∈ ↑ annotation. The conjunction contributes a conj-form,
which appears as an attribute of the coordination as a whole, as shown
in (2).

(1) sccoord(cat) = cat conj cat
↓∈ ↑ ↑=↓ ↓∈ ↑

There are two different mechanisms in lfg which regulate the flow of
information between the coordination set and its element f-structures:
generalization and distribution.2 These are described below. Distribu-
tion yields the more linguistically intuitive results, and is therefore the
mechanism we have adopted for the ParGram grammars.

Generalization asserts information about a set as a whole when all
of its elements have in common a feature and its value. For instance, if
the members of a set of nps all have case nom, then the set has case
nom. If some of the nps have case nom and some have case acc,
then the set does not have a case attribute.

Distribution differs from generalization with respect to the behavior
of nondefining or existential constraints, such as (↑case), which states
that case must exist, or (↑case)=c nom, which constrains case to be

1We do not discuss the problem of nonconstituent coordination here. For a recent
proposal on how to deal with nonconstituent coordination within lfg, see Maxwell
and Manning 1996. For a more general discussion see Sag, Gazdar, Wasow and
Weisler 1985.

2See Kehler, Dalrymple, Lamping and Saraswat 1995 on the topic of information
flow.

145

146 / A Grammar Writer’s Cookbook

nominative, and (↑case)6=nom which disallows nominative case. Unlike
generalization, distribution distributes nondefining constraints across
the set elements, much like defining constraints such as (↑case)=nom
are distributed across the set elements by plain set distribution.

(2) a. [[in the tractor]pp [and]conj [on the trailer]pp]pp
b.






pred ′in<(↑obj)>′

obj



pred ′tractor′

spec

[
spec-type def

spec-form the

]
ntype count

pers 3

num sg

anim −
case acc

pcase in


psem locative

ptype sem




pred ′on<(↑obj)>′

obj



pred ′trailer′

spec

[
spec-type def

spec-form the

]
ntype count

pers 3

num sg

anim −
case acc

pcase on


psem locative

ptype sem




conj-form and


There are two situations in which the difference between generaliza-

tion and distribution is crucial. One such situation is when the con-
juncts differ with regard to a certain feature, but may still be coor-
dinated. For example, if the first conjunct has the feature case nom,
but the second conjunct has case acc, then the treatment of coordi-
nation will differ as follows. Imagine that an existential constraint such
as (↑case) is asserted of the coordinated structure in order to make

Coordination / 147

sure that the conjunct as a whole will be marked for case. But as each
of the elements of the conjunct have different values for case, the gen-
eralization of the case attribute is empty: the case attribute could not
be generalized over the whole conjunct since each of the elements has
a different value for it. However, if (↑case) is distributed across the
set elements, then it succeeds for each element. As languages do allow
the coordination of elements whose feature values differ, the result of
distribution is linguistically preferred to that of generalization.

Another situation which illustrates the difference is when a negative
constraint such as (↑passive)6=+ is asserted of a set where some ele-
ments have passive + and others do not. Since some elements satisfy
the condition that there be no passive +, generalization over the nega-
tive constraint succeeds and the coordination is judged to be successful.
However, under distribution, the requirement that (↑passive)6=+ will
be distributed over each element of the set. In this case, the coordi-
nation is illformed, since it fails for any element that has passive +.
Once again, the result of distribution is linguistically preferred to that
of generalization.

However, while the distribution mechanism captures many of the co-
ordination facts, it cannot account for all of them. In some cases, the
conjunct as a whole will be characterized by a certain feature like num
pl, while each of its elements is actually singular. Following Dalrymple
and Kaplan 1997, attributes may therefore be specified as nondistribu-
tive. A nondistributive attribute can be asserted of a coordination set
as a whole, without having it distribute across the individual conjuncts.
This is particularly useful for np coordination, where the number and
person attributes of each conjunct usually differ from those of the set as
a whole (see 8.3 below). Another example is with the conj-form pro-
vided by the conjunction. There is a potential conflict in conj-form
in cases of same category coordination where different conjunctions are
involved, as in (3).

(3) The light flashes and the beacon either turns to the right or flashes
repeatedly.

The conjuncts and the conjunctions in (3) jointly head the whole
coordination. Since each conjunction provides a conj-form, there is a
clash between the values provided by or and and, and the coordination
fails. This problem is solved by defining conj-form as a nondistribu-
tive attribute, thus avoiding the clash.

148 / A Grammar Writer’s Cookbook

8.2 Same Category Coordination

We first consider the coordination of categories other than nominals.
Due to the way in which the number, person, and gender of nominal
conjuncts interact with that of the coordination as a whole, coordinated
nominals are considered separately (see section 8.3).

8.2.1 General Schema

The general coordination schema was described above in 8.1. However,
this schema must be expanded in two ways. First, it must allow for
more than two conjuncts, as in (4).

(4) They closed the door, locked it, and walked to the car.

The coordination rule must be formulated differently, according to whe-
ther the nonfinal conjuncts are separated from one another only by
commas, or whether a conjunction is also required. The rule in (5)
allows for commas separating the conjuncts.3

(5) sccoord(cat) =

cat ([comma cat]+ (comma)) conj cat
↓∈ ↑ ↓∈ ↑ ↑= ↓ ↓∈ ↑

Second, the rule must allow for two-part conjunctions, such as ei-
ther . . . or, ni . . . ni ‘neither . . . nor’ (French). In these construc-
tions, the first half of the conjunction is of category preconj, which
is constrained to occur with a particular conj-form, provided by its
paired conjunction. For conjunctions which require a particular pre-
conj, such as French ni. . . ni, the preconj encodes a preconj-form
at f-structure which the conjunction is constrained to occur with. This
is unnecessary for conjunctions like English or, since they can occur
alone or with a preconj. The basic coordination rule for two part
constructions is in (6).

(6) sccoord(cat) = preconj cat conj cat
↑= ↓ ↓∈ ↑ ↑= ↓ ↓∈ ↑

8.2.2 Special Rules for Clauses

Two issues arise with respect to the coordination of clauses, as opposed
to other types of same category coordination. The first issue involves
the placement of commas (see also Nunberg 1990). Many languages do

3Note that these commas do not provide any information to the f-structure,
unlike periods, exclamation marks, or question marks which are also parsed within
the ParGram grammars and are used to check for the stmt-type attribute at f-
structure (declarative vs. interrogative).

Coordination / 149

not allow a comma before the conjunction unless there are more than
two conjuncts, as in (7).

(7) a. in the tractor, on the trailer, and next to the barn

b. *in the tractor, and on the trailer

However, commas are often placed between full clauses even when there
are only two conjuncts, as in (8).

(8) The tractor started immediately, and the farmer drove off.

A simple way to deal with this situation is to have clauses call a variant
of the usual same category coordination rule, which allows for a comma
with only two conjuncts.

The second issue concerning coordination of clauses has to do with
cases where only punctuation, usually a semicolon, separates two com-
plete sentences, as in (9).

(9) a. The tractor started immediately; the engine was running
smoothly.

b. Lorsque l’on tourne le commutateur, les voyants
when one turns the switch the warning lights

s’allument; ils s’éteignent lorsque le moteur démarre.
light up they turn off when the motor starts
‘When the switch is turned, the signals light up; they turn off
when the motor starts.’ (French)

There are a couple of approaches to this problem. One is to have a
special coordination rule for the highest category under root, which
allows certain types of punctuation in place of a conjunction. Another
is to consider each of the two sentences as a separate root clause, one
of which ends in nonstandard punctuation.

8.3 NP Coordination

np coordination often involves number, person, and gender mismatches
between the individual conjuncts and the entire coordinated np. In
(10a), each conjunct is singular, but the result is a plural np, as is
evident from the plural verb agreement. In (10b), one conjunct is fem-
inine and the other masculine, but the coordinated np is masculine, as
is clear from the masculine morphology on the adjective.

(10) a. The tractor and the trailer are parked outside.

b. Jean et Marie sont gentils.
Jean.M.Sg and Marie.F.Sg are.Pl nice.M.Pl
‘Jean and Marie are nice.’ (French)

150 / A Grammar Writer’s Cookbook

Two requirements must be met by an analysis of np coordination.
First, it must be possible to assert constraints about and assign values
to attributes in both the individual conjuncts and in the f-structure
of the coordination as a whole. Second, there must be an algorithm
to construct the number, person, and gender values of the coordinated
np from the values of the individual conjuncts. These two sides of the
analysis are described in 8.3.1 and 8.3.2, respectively.

8.3.1 Basic Structure

The c- and f-structures for np coordination remain basically identical
to those of same category coordination. The simplified rule for np co-
ordination is shown in (11). As with basic same category coordination,
additions must be made for paired conjuncts and for more than two
conjuncts (see section 8.2.1).

(11) npcoord(cat) = cat conjnp cat
↓∈↑ ↑=↓ ↓∈↑

The schema in (11) differs from that of same category coordination
in that it calls a different lexical entry for the conjunction, conjnp
instead of conj. The conjnp and conj entries for each conjunction
provide a conj-form attribute at f-structure, as shown in (12).

Coordination / 151

(12) a. [[the tractor]np [and]conjnp [the trailer]np]np

b.






pred ′tractor′

spec

[
spec-type def

spec-form the

]
ntype count

pers 3

num sg

anim −
case nom




pred ′trailer′

spec

[
spec-type def

spec-form the

]
ntype count

pers 3

num sg

anim −
case nom




pers 3

num pl

conj-form and


The conjnp entry additionally supplies the number specification for

the coordination as a whole. Furthermore, in order to accommodate
the number, person, and gender mismatches between the conjuncts and
the whole coordination, we have defined the attributes num, pers, and
gend as nondistributive.

This allows statements about the set and about the individual con-
juncts without having the one necessarily be dependent on the other.
Note that in (12), the elements of the conjunction are both singular,
but the coordinated phrase is plural. The num pl is supplied by and,
and does not distribute across the conjuncts.

8.3.2 Agreement

Consider the minimal pair in (13). The only difference between the
two sentences is the conjunction, yet (13a) with and requires plural
verb agreement, while (13b) with or requires singular verb agreement.
Thus, the type of conjunction involved in the coordinated phrases plays
a role in determining agreement.

152 / A Grammar Writer’s Cookbook

(13) a. The tractor and the trailer are in the garage.

b. The tractor or the trailer is in the garage.

Modulo this differing contribution of each conjunction, the general
rule in English, French and German for determining the number, gen-
der, and person of a coordinated np is as follows:

(14) If any conjunct is plural, the entire np is plural;

If any conjunct is masculine, the entire np is masculine;

If any conjunct is first person, the entire np is first person; if
there is no first person conjunct and any conjunct is second
person, the entire np is second person; otherwise the np is
third person.

How can this pattern be captured? As seen above, the c-structure of
np coordination is identical to that of basic same category coordination.
However, in np coordination, each of the conjuncts bears annotations
as in (15), which illustrates this idea with respect to number agreement:

(15) cat
↓∈ ↑

{ (↓num)=c pl
(↑num)=pl

| (↓num)=c sg }
The annotation in (15) states that if the conjunct has num pl, then
num pl will be assigned to the f-structure of the coordinated np as a
whole. If the conjunct has num sg, then no num value is assigned to
the f-structure of the np as a whole. This annotation applies to each
conjunct, thus capturing the fact that if any conjunct is plural the entire
np is plural. If all the conjuncts are singular, no number is assigned
by these annotations to the coordinated np. Instead, the conjunction
provides the appropriate num value, allowing for the difference in (13):
and always requires num pl, while or has a default of num sg which
only applies when num pl has not been assigned by (15). Similar rules
capture the facts of gender and person agreement in English, French
and German.

8.4 Problems

Although this approach works well, there are some remaining problems.
Sometimes the conjunction and does not produce a plural coordination,
as in (16).

(16) This writer and artist has produced many important works.

Coordination / 153

In (16), writer and artist refer to the same person, so that the con-
junct remains singular, as shown by the verb agreement. At present we
do not deal with this type of np coordination.

Since conjuncts map into a set, the linear order in which they appear
is lost in the f-structure. Order information can be important for verb
agreement and for the temporal sequencing of events. For example, in
English, the lights or the beacon can be either singular or plural since
the second conjunct is singular; however, the beacon or the lights can
only be plural. The ordering information is preserved in the c-structure,
from where it could be recovered. An alternative solution, and the one
adopted in later versions of the grammar, is to map conjuncts into an
ordered list instead of a set.

9

Special Constructions

There are a number of special constructions in the grammars which war-
rant discussion but which do not fall under any specific category. These
include: tag questions, parentheticals, and headers. They are discussed
here to provide the grammar writer with an idea as to how special-
ized constructions can be handled in the grammar with a minimum of
change to the overall structure of the core grammar.

9.1 Parentheticals

Typical parentheticals are illustrated in (1). They are set off from the
main part of the clause by parentheses or other types of punctuation.

(1) a. This button (2) is for the oil filter.

b. Contrôler la tension (voir page 2).
check the tension see page 2
‘Check the tension (see page 2).’ (French)

c. Kühler auf Blockierungen überprüfen (siehe Seite 42).
radiator core for blockage check see page 42
‘Check the radiator core for blockage (see page 42).’ (German)

d. A warning light (red) will come on after six seconds.

e. A warning light—red or green—will come on.

Parentheticals are introduced by a special c-structure rule which in-
cludes the required punctuation and allows a limited number of con-
stituents within it, e.g., nps, imperatives, aps. The parenp constituent
appears in selected c-structure positions depending on the language.
Ideally, almost any constituent can be followed by a parenthetical; how-
ever, in practice this allows for extensive ambiguity, and so the paren-
theticals appear only in select positions, as dictated by the corpus at
hand.

The parenp constituent corresponds to an adjunct-paren feature

155

156 / A Grammar Writer’s Cookbook

in the f-structure, thus rendering it distinct from a plain adjunct (see
section 3.3.6 on the division of adjuncts). adjunct-paren is defined
not to be a set which restricts parentheticals to one per constituent.
However, some corpora may allow more than one parenthetical per
constituent, which would then require adjunct-paren to be defined
as a set. Note that constituents which normally do not appear with
adjuncts, such as proper names and pronouns, can freely occur with
adjunct-parens.

The c- and f-structures for the subject np in (1d) are shown in (2).

(2) a. np

d npap
a

npzero

nmod n parenp
light

n left-paren ap right-paren
warning ()

a
red

b.


pred ′light′

ntype count

spec

[
spec-type indef

spec-form a

]
anim −
pers 3

num sg

compound



pred ′warning′

ntype mass

spec
[
spec-type def

]
anim −
pers 3

num sg


adjunct-paren

[
pred ′red′

atype predicative

]



Special Constructions / 157

9.2 Headers

Headers are the nominal and clausal elements that appear as section
headers in documents, newspapers, chapter titles, etc. Some examples
from our tractor manual corpus are given in (3).

(3) a. Hydraulic quadrant control lever

b. Voyant de filtre à air sec
warning.light of filter for air dry
‘Dry air filter warning light’ (French)

c. Kontrolleuchte Ladekontrolle
warning.light charge.control
‘Warning light for charge control’ (German)

Headers appear as a special c-structure category, header, directly
under root. As a root category, they are assigned a stmt-type header.
In general, headers are types of nps, although in certain genres, e.g.,
newspaper headlines, this would need to be expanded. Unlike regular
nps, headers do not need to have determiners, as seen in (3); as such,
the header rule supplies spec features to the f-structure in order to
satisfy the requirements of nps which would normally appear with de-
terminers. The c- and f-structures for (3a) are shown in (4).

(4) a. root

header

np

npap

apattr npzero

a nmod n
hydraulic lever

nmod n
control

n
quadrant

158 / A Grammar Writer’s Cookbook

b.


pred ′lever′

stmt-type header

ntype count

spec
[
spec-type def

]
anim −
pers 3

num sg

adjunct

{[
pred ′hydraulic′

atype attributive

]}

compound



pred ′control′

ntype count

spec
[
spec-type def

]
anim −
pers 3

num sg

compound



pred ′quadrant′

ntype count

spec
[
spec-type def

]
anim −
pers 3

num sg






9.3 Tag Questions

The English grammar contains a special set of c-structure rules for tag
questions, such as those in (5).

(5) a. She is flashing the light, isn’t she?

b. They ate all the cake, didn’t they?

c. The lights will not come on, will they?

The basic c-structure of these questions is a declarative clause fol-
lowed by a comma followed by the appropriate tag. The form of the
tag is determined by the features of the subject, the tense and form of
the verb, and the polarity (affirmative or negative) of the declarative.
The c-structure of (5a) is shown in (6).

The f-structure of tag questions is mostly identical to that of the
corresponding yes-no question (see section 2.1.2 on interrogatives). One
difference is that the f-structure analysis also includes an attribute tag

Special Constructions / 159

whose value in turn is an f-structure which contains information about
the form of the tag: its auxiliary, polarity, and pronoun. Constraints on
the rules ensure that the correct matching occurs. A slightly abbrevi-
ated f-structure analysis (the features of the object have been left out)
for the tag-question in (6) is shown in (7).

Note that the tag portion of the question requires a special form
of the auxiliary which has both a special c-structure category, e.g.,
tagaux, and a special f-structure. This was done largely because the
tag itself does not contain the information necessary to satisfy the mor-
phosyntactic requirements of the auxiliary. The necessary information
is therefore introduced as part of the rules. On the whole, however,
specialized constructions were kept to a minimum in the analysis of
tag questions.

(6) a. She is flashing the light, isn’t she?

b. cpint

sadj comma tagpaux
,

s tagaux neg pron
is not she

np vp

vpaux

she aux vpv
is

v np
flashing

the light

160 / A Grammar Writer’s Cookbook

(7) a. She is flashing the light, isn’t she?

b.


pred ′flash<subj,obj>′

stmt-type interrogative

tns-asp

tense pres

prog +

mood indicative



subj



pred ′pro′

anim +

gend fem

case nom

pron-type pers

num sg

pers 3

pron-form she


obj

[
pred ′light′

]

tag



tag-morph

[
prog +

tense pres

]

tag-pron



pred ′pro′

anim +

gend fem

case nom

pron-type pers

num sg

pers 3

pron-form she


neg +

tag-vform be

neg-form contracted





Part II

Grammar Engineering

10

Overview

This part of the book discusses issues that arise with respect to the
engineering aspects of grammar development. In the first part, we pre-
sented analyses of constructions in English, French, and German. In
this part, we focus on issues such as the maintainability of grammars,
how to achieve robustness in parsing while at the same time avoiding
overgeneration, and how a grammar’s performance may be measured
and improved. These issues are at the heart of much discussion in com-
putational linguistics today and are far from resolved. The material
in the following chapters is meant to make a contribution to the dis-
cussion by reporting on some of the ideas, solutions, and experiments
conducted within our project.

Chapter 11 first recapitulates the architecture of the parser and de-
scribes the individual components. Chapter 12 then describes some of
the finite state tools we used in more detail. Note that we do not dis-
cuss implementation issues with regard to the Xerox Linguistic Envi-
ronment (xle). As grammar writers, we saw xle as a black box whose
design and implementation we could not influence directly. We did,
however, influence its development indirectly by reporting on various
needs such as better debugging tools, a better method for integrating
lexical entries with one another, and rule notation that would allow
easier maintenance and modularization of the grammar. This interac-
tion has resulted in a platform that caters to many of our needs, and
which continues to grow and improve even as this book goes to press.
We describe some of the relevant features and functions in the chapter
on modularity and maintainability (Chapter 13), and in the chapter on
robustness and measuring performance (Chapter 14).

163

11

Architecture and User Interface

This chapter discusses the architecture and user interface of the Xe-
rox Linguistic Environment (xle). The architecture of the parser is as
shown in (1) (repeated from Chapter 1).

(1)

Tokenization

Lexical

Look-up

Analysis

Morph

Transducers

Other

with constraints

Chart decorated

Parser

Chart

Chart

Initial

fsmfsmchar

fsm

Unification

Graphical

Interface

User

Complete
Analysis

RulesLexicon
LFG

Other

TransducersAnalyzer

Morph
Tokenizer

String

Input

We discuss each of the components in turn, beginning with the tok-
enizer, and ending with a brief description of a generation component
and a fledgling machine translation component. The generation com-
ponent basically reverses the parsing process shown in (1) and the ma-
chine translation component calls up two such grammars: it works on
the output from one grammar and sends its result to another grammar
for generation.

165

166 / A Grammar Writer’s Cookbook

Before going on to that, however, we briefly describe and illustrate
the user interface to xle in the next section.

11.1 The User Interface

At this point in time, the xle platform runs within a Unix environment
and makes use of such freely accessible software as emacs and tcl in
order to provide a comfortable and familiar user interface.

Rules and lexical entries are coded as ascii files. Calls to xle are
instantiated within a Unix shell. In addition, the user can interface with
xle by means of an emacs lfg-mode designed by Mary Dalrymple. This
lfg-mode gives the user an easy mechanism of invoking xle, provides
automatic formatting of rules and lexical entries, and allows for a quick
retrieval mechanism of rules, templates and lexical entries.

An example of what it would look like to load xle at the ims in
Stuttgart is shown below. The call to load xle was accomplished via
a command “Start a new xle process” under the xle menu bar in the
emacs window.

Once xle is called, it loads the platform and then waits for the user
to do something. In this case, the user has typed “create-parser en-
glish.lfg”. This command enables the loading of the English grammar
defined in the file “english.lfg”. xle reports how many rules, states,
arcs and disjuncts the grammar has and then proceeds to load a cas-
cade of finite-state modules (see Chapter 12). In this case there are
three such modules, which accomplish the tokenization and the mor-

Architecture and User Interface / 167

phological analysis of the input string. Finally, the rules are loaded,
xle reports success and is ready to parse a sentence or constituent.

11.2 The XLE Output

Once a given sentence or constituent has been parsed, xle returns
the result by means of a number of tcl windows. These windows are
illustrated and explained in this section.

For example, to parse the np the new tractor lights, the following
would be typed in the xle window shown above.

% parse "NP: the new tractor lights"

xle reports that it is now parsing and then returns the parse time
and the number of correct analyses produced, as in (2).

(2) 2+4 solutions, 0.52 CPU seconds, 56 subtrees

The “2+4” indicates that there were two optimal solutions plus 4
unoptimal solutions. The unoptimal solutions are filtered out via the
o(ptimality)-projection discussed below in section 14.1.3. However, it
is useful to let the grammar writer know exactly how many parses were
filtered out, as unreasonable analyses or funny rule interactions can
often be identified this way.

The “0.52 CPU seconds” indicates how many cpu seconds it took
to arrive at the parse. In previous incarnations of xle this number
was computed in terms of “real-time” seconds and would thus vary
according to the particular load at that particular time.

The “56 subtrees” indicates the number of subtrees that were ex-
plored. This number gives the grammar writer an indication of the
complexity of the rule system. In some cases, very simple sentences or
constituents may suddenly appear with a very high subtree number.
This is usually an indication that something has gone wrong with the
rule-writing.

Once xle has parsed the sentence or constituent, four windows are
displayed: the first two contain the c- and f-structures, and the other
two show two different packed representations of the valid solutions.

The c-structure and f-structure windows are shown below. In both
windows, the “previous” and “next” buttons enable the user to navigate
through the different structures for both valid and invalid analyses. The
structures can be saved as postscript files or in terms of Prolog code.
In the c-structure window, details of the morphology or the parse chart
can be viewed by clicking on the “Commands” menu and selecting
“morph” or “chart” respectively. The node numbers in the c-structure
have corresponding numbers in the f-structure, indicating which part of

168 / A Grammar Writer’s Cookbook

the f-structure a given c-structure node maps to. The “Options” button
allows the user to toggle the display of the numbers since a tree without
number annotations is sometimes easier to read.

The f-structure window additionally contains the buttons “m::*” and
“o::*”. Clicking on these opens two more tcl windows. One of them
displays the m-structure (see section 3.5.4), and the other registers the
number and kind of optimality marks that were encountered during
the parse (see section 14.1.3). Again, the display of the node numbers
may be toggled under the “Commands” button. The “Options” menu
also provides options which only display preds or which shows features
introduced via constraint equations. These options are very useful de-
bugging tools. Finally, the f-structure can also be used directly as input
for the generator (see section 11.6). Choosing the “Generate from this
fs” option under the “Commands” menu causes xle to start another

Architecture and User Interface / 169

shell which calls the generator and produces an output string.
The c-structure window has a few more features. One is the ability to

display sublexical information. As shown below, it is possible to toggle
terminal (lexical) nodes to display the sublexical constituents. In our
grammars, these sublexical constituents are determined by the output
of the finite-state morphological analyzers described in section 11.3.2.

A further feature is that invalid c-structures display boxed nodes,
corresponding to where the f-structure notations on the c-structure
backbone fail to unify, as shown below. For example, the English gram-
mar allows for the possibility of an np which has a gerundive head
as in his driving. So, the parser tries out this possibility with the new
tractor lights, but this possibility is illformed because the functional in-
formation associated with lights does not allow a complete and coherent
analysis.

170 / A Grammar Writer’s Cookbook

As mentioned at the beginning of this section, xle displays four
windows as the result of a parse. The third and fourth windows show the
parsed result in terms of packed representations. One of the windows
is illustrated below.

These representations are useful for visualizing parsing ambiguities. A
long sentence may have hundreds of valid syntactic analyses; instead of
listing them independently, which makes debugging difficult, the xle
chart-parser uses the technique of “disjunctive lazy unification” (see
Maxwell and Kaplan 1991 on the notion of disjunctive constraint sat-
isfaction) for sharing pieces of substructure common to several parses.
The window above thus displays a packed f-structure, annotated with
choices to show where the alternative analyses are. Clicking on a given
choice displays the corresponding c- and f-structures in the respective
windows.

This concludes the discussion and illustration of the xle output. In
the next section, we move on to describing each individual module of
the parser.

Architecture and User Interface / 171

11.3 The Architecture

11.3.1 The Tokenizer

One of the first steps in any corpus processing system is applying a
tokenizer to the input text. A tokenizer is a device that segments an
input stream into an ordered sequence of tokens. These tokens can be
paragraphs, sentences, words, etc. Since our application involves pars-
ing individual sentences, the relevant tokens correspond to an inflected
word form, a number, a punctuation mark, or any other kind of unit to
be passed on for subsequent processing. Though most sequences of unin-
terrupted alphabetic characters constitute a token in most languages,
the use of separators inside words varies from language to language.
For example, the sequence l’amour ‘love’ might split into two tokens in
French while aujourd’hui ‘today’ should be considered as a single unit.
On the other hand, a sequence of words (e.g., ein bißchen ‘a bit’, a
priori , parce que ‘because’, in order to) may be considered as a single
token for further linguistic treatment (see section 12.2 on multiword
expressions).

Our approach to tokenization is to provide a cascade of language
dependent finite-state transducing tokenizers (Schiller 1996). These to-
kenizers segment text by introducing a token boundary (usually a new-
line) into the output stream. The cascade is composed of a basic to-
kenizer which segments any sequence of input characters into simple
tokens (i.e., no multiword units) and one or several multiword staplers
which identify multiwords and group them together as single units. The
development and implementation of a finite-state longest match opera-
tor (Karttunen 1996) has made this process both practical and possible.
See Chapter 12 on finite-state technology for further discussion.

11.3.2 The Morphological Analyzer

11.3.2.1 The Xerox Finite-State Morphologies

The Xerox finite-state morphological analyzers are used in the Ger-
man, French, and English grammars (Kaplan and Kay 1994, Kosken-
niemi 1983, Karttunen et al. 1992, and Kaplan and Newman 1997).1

In this finite-state technology, transducers directly encode morpholog-
ical alternations. All inflected forms of the same word are mapped to
the same canonical dictionary form (lemma). Morphological categories
are represented as part of the lexical form. That is, two-level represen-

1At the moment there are complete Xerox morphological analyzers using finite-
state techniques for several languages: Arabic, Czech, Danish, Dutch, English,
Finnish, French, German, Hungarian, Italian, Norwegian, Portuguese, Spanish, and
Swedish.

172 / A Grammar Writer’s Cookbook

tations are used: one level containing the surface form of a word and
the other containing the base form (canonical dictionary form) with
an attached list of morphological features. The list of morphological
features depends on the language. Examples are shown below in (3a,
b) for English, (3c, d) for French, and (3e) for German.

(3) a. warning
1. warn+Verb+Prog
2. warning+Adj
3. warning+Noun+Sg

b. which
1. which+Pron+Rel+NomObl+3P+SP
2. which+Pron+Wh+NomObl+3P+SP
3. which+Det+Wh+SP

c. clignotant
1. clignoter+PrPrt+Verb
2. clignotant+Masc+Sg+Noun
3. clignotant+Masc+Sg+Adj

d. que
1. qui+Acc+InvGen+InvPL+Rel+Int+Pro
2. que+ConjQue

e. den
1. der+Det+Art+Sg+Masc+Akk+St
2. der+Det+Art+Pl+FMN+Dat+St
3. der+Pron+Dem+Sg+Masc+Akk
4. der+Pron+Rel+Sg+Masc+Akk

As seen in the above examples, the Xerox two-level morphologies
provide more information (e.g., that the pronoun is a demonstrative
one) than what linguists usually expect from a morphological compo-
nent. However, most of the information provided by the morphological
analyzers is extremely useful for the grammar and has been integrated
within the ParGram development effort.

11.3.2.2 Interfacing Morphology with Syntax

The finite-state morphological analyzers are interfaced with xle by
means of sublexical rules (see Kaplan and Newman 1997), which parse
the output of the morphology. For instance clignotant+Masc+Sg+Noun
is considered to be a phrase which consists of the stem and each of the
morphological tags.

(4) the base form: clignotant
the finite-state symbols: +Masc, +Sg , +Noun

Architecture and User Interface / 173

Each item is listed and identified in the lexicon, just like any other
lexical item, i.e., it has the item, its category, the xle tag, and then
any relevant equations or template calls. Sample entries for the tags in
(4) are shown in (5): +Masc is parsed as a gender tag which is inter-
preted as contributing the functional information gend masc to the
f-structure of the stem it appears on, +Sg is a number tag and assigns
num sg to either the f-structure itself or the subject’s f-structure, and
+Noun is a word class tag which is interpreted as assigning pers 3.
The reasoning for the latter assignment is that any full noun could not
be first or second person, but would necessarily be analyzed as third
person. Finally, clignotant is parsed as a terminal (lexical) entry of the
type noun (n). The template @(noun clignotant) assigns clignotant
as the value of a pred feature (among other things).

(5) +Masc gend tag (↑gend)= masc.
+Sg nbr tag (↑num)=sg;

vnbr xle (↑subj num)=sg.
+Noun ntag tag (↑pers)=3.
clignotant n xle @(noun clignotant).

Then, by using sublexical rules which function in the same way as
the usual phrase structure rules in lfg, the grammar is able to parse
the output of the morphological analyzer. A rule which parses this
particular order, which is characteristic of nouns in French, is shown in
(6).2

(6) n −→ n base gend base nbr base ntag base.

The fragmentary f-structure that results from this parse is shown in
(7).

(7)


pred ′clignotant′

gend masc

num sg

pers 3


As should be evident from (7) and the discussion, the integration of
the finite-state morphological analyzers with an lfg parser turned out
to be quite easy and natural.

Furthermore, if the morphological analysis should produce a tag that
is irrelevant (or even wrong due to a mistake in the morphological
analyzer), this can be counteracted via an appropriate formulation of

2Note that base is added to each sublexical item by xle so that morphological
and syntactic categories can be distinguished. Otherwise, the rule would be n −→n
gend nbr ntag, implying a unintended recursion.

174 / A Grammar Writer’s Cookbook

the sublexical rule: the offending tag will be parsed by the rule, but will
not provide any functional information to be passed to the f-structure.

On the other hand, there are cases where the information encoded
by the finite-state morphology needs to be enriched. That is, since
the finite-state morphological analyzers are meant to be as general as
possible, they sometimes lack the information necessary for a specific
purpose, e.g., lfg grammar writing in our case. This extra information
is provided directly by the grammar writers via annotations and tem-
plate calls in the lexical entry. This additional information then works
together with the information provided by the tags.

The word slow in English can be used as an illustration. The English
finite-state morphology analyzes slow as an adjective and a verb, as
seen in (8).

(8) slow
1. slow+Adj
2. slow+Verb+Pres+Non3Sg

However, in the tractor manual we were working on slow is also used
as a noun in, for example, To operate the speedshift, press either button
to move from fast to slow. As such, the ParGram lexical entry for slow is
as in (9). The adjectival and verbal entries include the annotation xle.
This encodes the fact that these stems are relying on a morphological
analysis from the finite-state morphological analyzers which have been
integrated into xle. The nominal entry, however, is annotated with
an * to encode the fact that here no help from the morphology can
be expected and that all of the information must come from this one
entry.

(9) slow a xle @(adj slow);
v xle @(trans slow);
n * @(noun slow).

As can be gleaned from this discussion, the interaction between lex-
ical items is quite complex within xle because stems may be coming
out of the morphological analyzer, be user-defined, and additionally
may span several different word classes, as in the case of slow. A more
in-depth discussion of the lexicon and the structure of lexical entries
follows below in 11.4. However, before we proceed to that discussion, we
first introduce another method of introducing stems into the grammar.

11.3.2.3 Extending Capabilities via Unknowns

The morphological analyzers can be further exploited in order to parse
words which have not explicitly been entered in the lexicon. Words un-
known to the lexicon, i.e., words which lack an explicit lexical entry,

Architecture and User Interface / 175

are referred to as unknowns. From the point of view of xle, two types
of unknowns are distinguished: unknowns which the morphological an-
alyzer knows about but which have not been encoded in the lexicon
files; unknowns which the morphology does not recognize and which
have not been encoded in the lexicon files either. An example of this
latter type are proper names, often foreign ones, which no reasonable
morphological analyzer can be expected to recognize.

By way of the morphological analyzer, the grammar can deal with
both types of unknowns by means of a series of educated guesses. This
allows the grammar to process many more words than are encoded in
the lexicons, whether they be hand entered, or automatically generated
(section 14.1.1).

Items which are unknown to the grammar (i.e., to the lexicons), but
which are encoded in the morphology may be dealt with by matching
the information from the morphological analyzer with a type of generic
entry in the lexicon. An example of this kind of generic entry is shown in
(10) which is an entry for an -Lunknown item (unknown to the lexicon).

(10) -Lunknown
a xle @(adj %stem);
adv xle @(adverb %stem)

@notadjadvmod;
n xle @(noun %stem)

(↑ntype)=common;
number xle (↑pred)=’%stem’.

What this entry basically says is the following: try to match the out-
put of the morphological analyzer to one of the following: an adjective,
an adverb, a noun, or a number.3 Closed class items such as auxiliaries
or prepositions are not matched via this method. It is assumed that
the grammar writer is responsible for taking care of closed class items,
but not for encoding every member of an open class.

For example, consider the situation where there is no entry for red
in the lexicon. The morphology, however, knows that red can have the
two parses in (11).

(11) red +Adj
red +Noun +Sg

The grammar can guess at a parse for red based on the generic un-
known entry, which contains blueprints for both an adjective and a

3There is a separate entry for capitalized forms, -LUnknown. In English this has
the same possibilities (a, adv, n, number) as the lowercase -Lunknown, except that
it allows for proper nouns via name and titles via title; that is, proper nouns and
titles can only be upper cased and so there is no entry for them under -Lunknown.

176 / A Grammar Writer’s Cookbook

noun. Both of these blueprints make requirements on what kind of
functional information an adjective or noun may possess, and both can
only be parsed by a particular sublexical rule. Since the output of the
morphological analyzer satisfies both the requirements of the adjective
and the noun, red can be parsed by the grammar after all. Note that
the notation “%stem” is a variable which the base form returned by
the morphology replaces. In our example, the value of %stem is red.

Items which are unknown to both the lexicon and the morpholog-
ical analyzer can be guessed at via another type of generic entry: -
Munknown. As these unknowns tend to be proper names, foreign words,
and acronyms, the grammar writer assumes that any such unknown
word is probably a noun and encodes this assumption in terms of an
appropriately generic entry for -Munknown. Thus, a large open class of
lexical items may be dealt with via a simple, yet useful mechanism.

11.4 Lexical Lookup

11.4.1 Types of Lexicons

As indicated in the above discussion, the grammar uses lexical entries
which come from a variety of different sources. All of these lexical entries
could in principle be stored in one and the same file. However, separate
files tend to be easier to maintain and understand. Within ParGram we
have therefore modularized the lexicon by distinguishing the following
types of lexicon files:

1. A lexicon file containing core entries that belong to a closed class
and lexical exceptions that need to be dealt with via specialized
lexical entries.

2. A lexicon file which deals with technical terms or specialized uses
of words.

3. Lexicon files of semi-automatically generated verb, adjective, and
noun stems.

4. A lexicon dealing with the sublexical tags used by the morpho-
logical analyzer.

The core lexicon is (necessarily) hand-coded by the grammar writers.
This lexicon includes closed class items such as auxiliaries, determin-
ers, and prepositions. It also includes entries for verbs or nouns which
behave exceptionally (e.g., German “coherent” verbs).

Another lexicon file includes the vocabulary specific to a given text.
In our case, the tractor manual we used contained a number of technical
terms and usages that cannot be considered standard, as seen above
with the nominal use of slow. These were encoded in a separate lexicon.

Architecture and User Interface / 177

The advantage of such modularization is that when the grammar is
used for a different text or application, the exclusion of this specialized
vocabulary simply requires not loading that particular file.

Open class items such as verbs, nouns and adjectives can be coded
by hand, but as new nouns (and acronyms) and verbs are constantly
entering the language, the grammar writer’s job would never be done.
As such, it is more satisfying to semi-automatically produce large lex-
icons for open class items on the basis of corpora extraction methods.
This was also done within ParGram (see section 14.1.1).

Finally, the ParGram grammars all define lexical entries which deal
with the sublexical tags produced by the morphological analyzers. These
entries are all kept in a separate file. Due to this modularization, it is
again a simple matter to adapt the lexicon if the morphological analyzer
should change for some reason.

11.4.2 Structure of a Lexical Entry

Despite the fact that many different lexicon files are loaded into a given
grammar, the structure of any individual lexical entry is the same in all
the files. We here briefly discuss what is contained in a typical lexical
entry, as exemplified by (12) (see Kaplan and Newman 1997 for details).

(12) foo n xle @(noun foo);
v xle @(verb foo);
p xle @(prep foo).

This lexical entry for foo specifies the following information.

. The base form of the word (‘foo’ in (12)).. The category or part of speech associated with each particular word.
A given item may belong to several different syntactic categories. In
our example, foo acts as a noun n, a verb v, and a preposition p.. The morphcode is a marker which specifies where the morphological
information of the word comes from. The morphcode xle indicates
that the finite-state morphological analyzer is expected to supply
the morphological information. The morphcode *, on the other hand,
indicates that the item must be parsed as is. No further morphological
information can be expected. In this case, all the surface forms of a
word together with all the morphological features must be specified
in the lexicon. Note that we have not implemented any ParGram
specific morphology, but that the generalizable information comes
out of independently implemented morphological analyzers.. Finally, the lexical entry contains a list of possible attributes and
values. In our example, the attributes and values are called via tem-
plates. If they were stated directly, they would look as in (13), which

178 / A Grammar Writer’s Cookbook

is the expansion of the noun template used above in (12).

(13) (↑pred)=′foo′

(↑pers)=3.

11.4.3 Interaction between Lexical Entries

The possibility of multiple lexicons brings up the issue of what happens
if a given word appears in more than one lexicon (e.g., “water, n”
in the noun lexicon, and “water, v” in the verb lexicon). The xle
environment provides detailed notation for manipulating lexical entries.
In this section we describe how the lexicons as a whole, and lexical items
individually, may interact within xle.

In the configuration file of the grammar, the lexicons are listed in
order; each lexicon overrides information in the previous lexicon(s).
Consider what can happen if the first lexicon has the entry in (14) for
the word ‘foo’, and a subsequent lexicon has the entry in (15).

(14) foo n xle @(noun foo);
v xle @(verb foo);
p xle @(prep foo).

(15) foo a xle @(adj foo).

If nothing else is stated, the entry for the headword ‘foo’ in (15) will
replace that of the earlier entry in (14). Thus, (15) will be the effective
entry for ‘foo’.

However, this may not be the effect we want. In fact, it most often is
not: additional information in further lexicons is more often intended
to augment, rather than replace, the information that has already been
encoded. Upon much feedback of this kind by the grammar writers,
the implementation of xle provides more flexibility with respect to
the interaction of lexical entries.

The etc and only features, for example, control the interaction of
entire lexical entries. So, in order to achieve the effect that the adjective
entry of ‘foo’ in (15) should be added to the previous entry in (14), the
etc feature is added to (15). This is shown in (16).

(16) foo a xle @(adj foo);
etc.

The effective entry for ‘foo’ will now be as in (17).

(17) foo n xle @(noun foo);
v xle @(verb foo);
p xle @(prep foo);

a xle @(adj foo).

Architecture and User Interface / 179

On the other hand, if a particular entry is the only possible entry for
a given item, then the only feature is added to the lexical entry.

In addition to the etc and only notation, which apply to whole
entries, there are four operators that allow the grammar writer to ma-
nipulate subentries. These are ‘+’, ‘−’ , ‘!’, and ‘=’. The operators
are placed in front of a subentry, as shown in (18). The ‘+’ adds a
new subentry. The ‘!’ replaces an existing subentry. The ‘=’ retains an
earlier subentry, while the ‘−’ deletes it.

(18) a. foo !n xle @(noun foo);
−p
+a xle @(adj foo);
etc.

b. foo =p;
+a xle @(adj foo);
only.

Note that, as shown in (18), both etc and only can be combined
with each of the four subentry operators to achieve different effects. For
example, placing etc as the final subentry in a later lexicon results in
retaining all previous subentries, unless they are explicitly removed
with the ‘−’ operator. Placing only as the final subentry in a later
lexicon will remove all earlier subentries unless they are explicitly re-
tained with the ‘=’ operator. For example, consider (18a, b) as possible
entries for ‘foo’ in a later lexicon (the earlier lexicon entry continues to
be (12)). Note that if one subentry has an operator, all of them must
be preceded by an operator.

With (18a) in the later lexicon, the effective entry for ‘foo’ will be
(19a). With (18b) in the later lexicon, it will be (19b). In (19a), the
n entry has been replaced by the one in the later lexicon, the p entry
has been deleted, and a new entry has been added. In (18b), only the p
entry from the earlier lexicon has been retained, while the a entry has
been added:

(19) a. foo n xle @(noun foo);
v xle @(verb foo);
a xle @(adj foo).

b. foo p xle @(prep foo);
a xle @(adj foo).

These tools for manipulating lexical entries are extremely useful when
several lexicons are being maintained for different purposes. For exam-
ple, they allow modification of the effective entries of a core lexicon

180 / A Grammar Writer’s Cookbook

without having to modify that lexicon directly. Thus, modifications
specific to a particular application may be made without having to
modify the core entries.

11.5 The Chart Parser

Having discussed the structure and interaction of the lexicons, we now
turn to the rules. At the heart of xle is an efficient unification-based
parser based on “contexted unification” (Maxwell and Kaplan 1991).
This parser is implemented in c and uses c-structure rules written
by grammar writers as a context-free backbone over which the con-
straints on f-structure (and the other projections implemented within
ParGram) are solved on the basis of unification. That is, in order for
something to unify, constraints that were stated over certain features
must be satisfied, and functional equations must be solved.

This part of the engineering behind the grammar development effort
was never modified by the grammar writers: it belongs squarely in the
domain of the developers of the xle platform. As such, we do not
discuss this issue here any further, but refer the reader to Maxwell and
Kaplan 1991, Maxwell and Kaplan 1993, and the references therein.4

The notation and use of the various c-structure rules does not dif-
fer notably from the format standardly used in lfg. Some convenient
notation for the encoding of generalizations and better grammar main-
tenance was provided by the implementers. Examples of such notation
are discussed in Chapter 13. For a detailed description of the notation
used within xle, see the Grammar Writer’s Workbench (Kaplan and
Maxwell 1996).

11.6 Generation and Machine Translation

As mentioned in the introduction to this chapter, xle also provides a
generation facility (Kay 1996, Shemtov 1997) which takes Prolog repre-
sentations of the f-structures as inputs and generates sentence strings.
This generation can be done using the same grammar and lexicons that
are used for parsing, although some changes usually turn out to be de-
sirable. For example, adverbial clauses can be parsed in a number of
positions in the clause, some of which are not suitable for generation:
in the English grammar when clauses and other clausal adverbs can be
parsed when they appear between the subject and the verb, as in This
light, when blinking rapidly, indicates a fault. The English generator,
however, does not allow this placement. Similar problems arise with

4Both of these articles, as well as a number of other papers touching upon this
issue, can also be found in Dalrymple, Kaplan, Maxwell and Zaenen 1995.

Architecture and User Interface / 181

the tokenizers and morphological analyzers when generation is con-
sidered. For instance, tokenizers often take arbitrary white space and
turn it into a single space for purposes of canonicalization. Run in the
generation direction, this can produce an unbounded amount of ambi-
guity about how much white space is in the strings produced by the
generator. To deal with this, xle allows parser and generator specific
tokenizers and morphological analyzers. Also, the generation grammar
should generally be more constrained than the parsing grammar, since
it is often necessary in interest of robustness (see section 14.1) to parse
things that one would not want to generate. xle supports this by hav-
ing a separate optimality ranking (see section 14.1.3) in the grammar
for generation. Thus, one can add “parse-only” optimality marks to the
grammar that are used for parsing but ignored during generation.

An interesting use of the generator is as a testing tool for the pars-
ing grammar. When designing testsuites (section 14.2), it is difficult to
think of all the possible ungrammatical sentences which the grammar
should not parse. As such, the grammar will often allow certain un-
grammatical constructions which the grammar writer is unaware of and
never intended. These surface when using the generator since xle has
no preconceptions concerning what to test for. For example, extensive
testing of the form and order of auxiliaries in English was conducted
without the generator and the system appeared to be parsing all and
only corrert sequences. However, upon using the generator it was dis-
covered that several ungrammatical combinations were allowed by the
grammar. Once identified, these analyses could then be blocked. Thus,
the generator can be used as an additional tool for writing constrained
grammars.

Since xle has both a parser and a generator, it is possible to use
the system for translation. The translation process fundamentally in-
volves parsing a sentence in one language (the source language), trans-
ferring the resulting f-structure to an f-structure in another language
(the target language), and then generating from the new f-structure.
The process follows the following sequence, in more detail. First the
source sentence must be parsed by the relevant grammar. The packed
f-structure is then stored as a Prolog file. A set of ordered transfer rules
operate on this file, making the required changes to the structure.5 The
transfer rules are hand encoded for a particular language pair so that
there is a specific task of writing transfer rules, as there is of writing
the grammars. As with grammar writing, the system provides a num-

5For a shake-and-bake type approach to transfer based on these same packed
f-structure representations see Emele and Dorna 1998

182 / A Grammar Writer’s Cookbook

ber of features to aid in this process, such as the use of macros and
templates. The result of applying the transfer rules to the f-structure
is a new f-structure. This new f-structure is then used as input to the
generator of the target language, producing the desired translations.

12

Finite-State Technology

Finite-state technology has theoretical and practical advantages. The
theoretical advantage is that finite-state machines are well understood
mathematical entities, with wellknown properties. Finite-state trans-
ducers can be composed, intersected or unioned with one another.
For example, a transducer which encodes spelling alternations (such
as using unaccented characters) can be composed with a transducer
which encodes a lexicon. The resulting transducer then allows a dif-
ferent kind of access to a single lexical source. The practical advan-
tage is that the finite-state rules can be efficiently compiled into a
passive data-structure, namely a transducer, which possesses the prop-
erties of the original rule system. A transducer is a finite-state ma-
chine which consumes input while producing output: traversing the
data structure transforms the input. These transducers incorporate
the context in which the transformations take place, eliminating the
need for specifying programming decisions in some type of program-
ming language, and making the natural language processing relatively
platform-independent.

12.1 Preprocessing

Certain processing difficulties can be resolved at an early stage, before
attempting a parse with a full grammar. Preprocessing can greatly
simplify the task of the parser with respect to multiword expressions,
or other parts of the grammar which are assembled according to a
certain pattern, such as time expressions (e.g., Monday morning) or
titles (e.g., Frau Professor Doktor Schmidt).

In the ParGram project, multiword expressions are dealt with via
finite-state preprocessing, as are time expressions (this was limited
to the French team). The preprocessing is accomplished in two main
stages: tokenization and morphological analysis. Both stages are per-

183

184 / A Grammar Writer’s Cookbook

formed by finite-state lexical transducers. In the next two sections,
we first describe our approach with respect to multiword expressions
(Breidt, Segond and Valetto 1996, Segond and Tapanainen 1995) and
then move on to time expressions.

12.2 Multiword Expressions

Recognizing multiword expressions and passing them on to the parser
as single tokens generally reduces parsing ambiguity, allows for more
perspicuity in the structure of analyses, and reduces parsing time. One
difficulty in judging the effectiveness of preproccessing is the question of
what exactly constitutes a multiword. There are some strings of words
which may appear to be multiwords, but which the parser needs to
access individually in order to provide the right syntactic analysis.

As a general rule, we identified multiwords as those groups of separate
morphological words which form a unit at the functional level. Some
examples are given in (1), together with the syntactic category they
are identified as.1

(1) a. fast forward (v), cut off (n), far away (a)

b. afin que ‘so that’ (conjsubj), tr/min ‘turns/minute’ (n), au
fur et à mesure ‘gradually as X proceeds’ (conj) (French)

c. als auch ‘as well as’ (conj), wie folgt ‘as in the following’
(adv) (German)

Although the finite-state morphological analyzer registers the multi-
word expression in terms of its individual elements, the multiwords are
represented as single items at the level of f-structure and c-structure.

An additional advantage of this treatment is that the multiword is
usually composed of parts which would not yield the desired surface
c-structure category according to the independently motivated rules
of the language. Take the English multiword fast forward in (1a) as
an example. On its own, fast can be either an adverb or an adjective,
while forward is a preposition. These two categories do not productively
combine to form verbs in English. That is, there is no rule in the English
grammar of the form v −→adj p or v −→adv p since neither of these is
a productive way of forming verbs. Nevertheless, fast forward functions
as a verb and is thus best treated as a multiword expression.

12.2.1 Technical Terms

Technical terms such as warning light or hydraulic oil filter are further
candidates for multiword treatment. These are not necessarily unpro-

1conjsubj stands for subordinating conjunction, while conj indicates a conjunc-
tion which introduces an adjunct.

Finite-State Technology / 185

ductive expressions, as was the case with the multiwords above. Nev-
ertheless, there is good reason for treating them as single tokens since
they tend to be used as fixed expressions or names in technical texts.

Precisely because they are used like fixed expressions, technical terms
can be easily and successfully extracted from a technical text by par-
tially or fully automated methods (see Brun 1998 with respect to the
French experiment). This first stage of extracting terminology from a
corpus (in our case the tractor manual) results in a list of items which
can then be turned into a lexicon of multiword items.

The extraction within ParGram with respect to the tractor manual
was done as follows. Because we had parallel aligned English-French-
German texts at our disposal, we used the English translation to decide
when a potential candidate was a technical term. The terminology we
were dealing with consisted mainly of nouns. To perform the extraction
task, we used a tagger to disambiguate the French text (Chanod and
Tapanainen 1995), and then extracted the syntactic patterns, n p n, n
n, n a, a n, which are good candidates to be technical terms. These
candidates were considered as terms when the corresponding English
translation formed a unit, or when their translation differed from a
word to word translation. Some candidates which passed these tests
and were therefore extracted are shown in (2).

(2) vitesses rampantes (gears creeping) ‘creepers’
bôıte de vitesse (box of gear) ‘gearbox’
arbre de transmission (tree of transmission) ‘drive shaft’
tableau de bord (table of edge) ‘instrument panel’

Once the terminology was extracted, a tokenizer was built which
split the input string into tokens using the list of extracted multiwords
(Grefenstette and Tapanainen 1994, Ait-Mokhtar 1997). A tokenizer
can be set up to provide only the multiword expression analysis of a
string (deterministic tokenization), or it can provide both the multi-
word expression analysis and the canonical one in which each element
of the multiword is returned as a separate token (nondeterministic to-
kenization).

Experience has shown that the first approach is often best in situa-
tions in which there is a constrained corpus, such as a technical text, or
for words which have no possible canonical (nonmultiword) parse. The
second approach is better in the general case where both parses are
likely to be encountered. For example, the French conjunction bien que
can be considered a multiword expression; however, the string bien que
is also found in situations where bien is an independent noun while que
is a complementizer. In (3a) bien que as one two-word unit is clearly

186 / A Grammar Writer’s Cookbook

wrong; instead bien is a noun and que is a relative pronoun (the mul-
tiword expression use is shown in (3b)).

(3) a. Jean me dit tout le bien que Pierre pense de Paul.
Jean me tells all the good that Pierre thinks of Paul
‘Jean tells me all the good that Pierre thinks about Paul.’
(French)

b. Jean écoute silencieusement bien qu’ il ne soit pas
Jean listens quietly although he not is neg

d’accord avec Paul.
agreement with Paul
‘Jean listens quietly although he completely disagrees with
Paul.’ (French)

Due to the occurrence of such ambiguities in our corpus, we built a
nondeterministic tokenizer within ParGram. The tokenization is per-
formed by applying finite-state transducers on the input string. The
Xerox two-level finite-state morphological analyzers were already dis-
cussed in section 11.3.2. In order to provide the reader with a better
idea of how they function, we here go through some examples in detail.

For example, take the sentence in (4). Applying the finite-state trans-
ducer to this input results in the following tokenization, where the token
boundary is signaled by the @ sign.

(4) Le tracteur est à l’arrêt.
the tractor is at the stop
‘The tractor is stationary.’ (French)
Le@tracteur@est@à@l’@arrêt@.@

In this particular case, each word is a token. But several words can
be a unit, as is the case for technical terms. Examples (5) and (6) show
instances of tokenization in which technical terms are treated as units.

(5) La bôıte de vitesse est en deux sections.
the box of speed is in two sections
‘The gearbox is in two sections.’ (French)
La@bôıte de vitesse@est@en@deux@sections@.@

(6) Ce levier engage l’arbre de transmission.
this lever engages the tree of transmission
‘This lever engages the drive shaft.’ (French)
Ce@levier@engage@l’@arbre de transmission@.@

Tokenization takes place in two logical steps. First, the basic trans-
ducer splits the sentence into a sequence of single words. Then a second
transducer containing a list of multiword expressions is applied. It rec-

Finite-State Technology / 187

ognizes these expressions and marks them as units. When more than
one expression in the list matches the input, the longest matching ex-
pression is marked. We included all the extracted technical terms and
their morphological variations in this last transducer, so that the mul-
tiwords could be analyzed as single tokens later in the process.

The next step is to associate these multiword units with a morpho-
logical analysis in the cases where one is needed. One type of multiword
which interacts with morphological analysis is represented by French
compounds. These compounds have to be integrated into the morpho-
logical analyzer because they may be inflected according to number, as
shown in (7). In the tractor corpus, we identified two kinds of morpho-
logical variations: either the first part of the compound may inflected,
or both parts of the compounds may be inflected.

(7) .The first part varies in number:
gyrophare de toit, gyrophares de toit ‘roof flashing beacon(s)’
régime moteur, régimes moteur ‘engine speed(s)’.Both parts vary in number:
roue motrice, roues motrices ‘wheel drive’

This is of course not general for French compounds; there are other
patterns of morphological inflection. However, this pattern is reliable for
the technical manual we were dealing with. Other inflectional schemes
and exceptions can be easily added to the regular grammar as needed
(see Quint 1997 and Karttunen, Kaplan and Zaenen 1992 for further
discussion).

A cascade of regular rules is applied to the different parts of the com-
pound in order to build the morphological analysis of the whole com-
pound. For example, roue motrice is marked with the diacritic +dpl
(double plural). A first rule is then applied which copies the morpho-
logical tags from the end to the middle if the diacritic is present in the
right context:

roue+Fem+PL -motrice 0 +Fem+PL

roue 0 0 -motrice+DPL+Fem+PL

FIGURE 1 Rule 1

A second rule is applied to the output of the preceding one and
“realizes” the tags on the surface.

188 / A Grammar Writer’s Cookbook

roue +Fem+PL-motrice +Fem +PL

roue 0 s -motrice 0 s

FIGURE 2 Rule 2

The composition of these two layers gives us the direct mapping
between surface inflected forms and morphological analysis. The same
types of rules are used when only the first part of the compound varies,
but in this case the second rule deletes the tags of the second word.

The two morphological analyzers for the two variations in agreement
marking are unioned into the basic morphological analyzer for French.
The result is a transducer that completes the input preprocessing after
tokenization has been accomplished. An example of compound analysis
is given in (8).

(8) a. > roues motrices
roue motrice+Fem+PL+Noun

b. > régimes moteur
régime moteur+Masc+PL+Noun

This resulting morphological analysis allows multiword terms to be
treated as regular nouns by the parser. Parsing constraints on agree-
ment remain valid, for example for relative or adjectival attachment,
and nothing special needs to be done within the parser.

12.2.2 Idiomatic expressions

In addition to the simple multiword expressions and to the technical
terms which form a word level category, multiword expressions may
also include phrasal idioms, as in (9) (see Gross 1975, Nunberg et al.
1994, and Cacciari and Tabossi 1993 on idioms).

(9) a. kick the bucket ‘die’

b. let the cat out of the bag ‘tell a secret’

c. sucrer les fraises ‘to be doddery’ (French)

d. ins Gras beißen ‘to die’ (German)

Phrasal idioms differ from simple multiword expressions in that their
syntactic structure is formed according to canonical syntactic princi-
ples in the language. The meaning of phrasal idioms, however, is not
compositional. For example, the French phrasal idiom sucrer les fraises

Finite-State Technology / 189

in (9c) is a wellformed vp with a verb sucrer followed by an object
noun phrase les fraises; however, its meaning is “to be doddery,” and
not the literal translation “to sweeten strawberries.” A preprocessor
which identifies phrasal idioms as a whole and associates them with
their idiosyncratic meanings would therefore be desirable.

However, a difficult problem arises with respect to nonadjacent phrasal
idioms. Canonical multiwords have all their subparts adjacent; this al-
lows multiword expressions to be easily recognized. Some phrasal id-
ioms, however, can undergo syntactic operations such as passivization
or scrambling (a case in point is the German (9d)). Within ParGram,
the problem of phrasal idioms remains to be resolved.

12.3 Time expressions

The application of the finite-state technology with regard to multiwords
can be expanded further to expressions which are part of the general
syntax, but which at the same time display idiosyncratic syntactic be-
havior. This is the case of time expressions such as Monday morning,
once every two weeks, etc. These expressions are peculiar in that they
undergo only certain kinds of variation and often behave like adverbs
despite their nominal syntax.

Low level methods such as finite-state rules return relatively good
results for these (almost fixed) types of expressions. Finite-state local
grammars for date-time expressions have been built and experimented
with by the French team for use in a preprocessing stage. These analyze
Monday morning as one unit in the tokenizer, but also simultaneously
allow access to the decomposed parts via the morphological analyzer, in
a method similar to the one sketched for the French compounds above.

Our conclusion from the various experiments and actual integrations
into the grammar is that using different tokenizers and morphological
analyzers at a preprocessing stage considerably simplifies the grammars
and, as a result, makes them more maintainable.

12.4 Guessers and Normalizers

A normalizer and a guesser have also been integrated into xle. A nor-
malizer is a component that deals with case conversion, accentuation,
and punctuation, among other things helping to identify and correct
spelling mistakes or typing errors. For instance, if a French word ap-
pears in a title phrase in capital letters and without accents, the nor-
malizer puts the accents back in so that the morphology and hence the
lfg lexicon can recognize the word. The header in (10a), for example,
cannot be recognized as relating to the base forms in (10b), since there

190 / A Grammar Writer’s Cookbook

are unexpected capital letters, and missing accents over two of the “e”s
which have been removed as part of the capitalization process.

(10) a. EQUIPEMENT SUPPLEMENTAIRE
equipment additional
‘additional equipment’ (French)

b. équipement supplémentaire

Without a normalizer to turn form (10a) into form (10b), the gram-
mar cannot recognize the words or parse the header.

A guesser deals with unknown words after the normalizer has done
its work. As discussed in section 11.3.2.3, there is a way of incorporat-
ing into the grammar words which are not in the lfg lexicon. If the
words are known by the morphology, they can be incorporated into the
grammar in a constrained manner. However, if they are not known to
the morphology, the unknown words will not be provided with morpho-
logical tags, making it difficult to incorporate them into the grammar
in a productive fashion. A guesser uses morphological tools to guess
the part of speech of a word and provides the appropriate tags. For
example, an unknown English word ending in -tion is likely to be a
noun, while one ending in -ate is likely to be a verb.

12.5 Part of Speech Preprocessing

Part of speech (pos) ambiguity often leads to analyses that are correct,
but which are bizarre in a given context. As such, the parses are still
desired, but one will be preferred in a given context. An example is
furnished by the following two analyses for the sentence in (11).

(11) a. [The oil filters]np [light.]vp
b. [The oil]np [filters light.]vp

Now, if the parser is to be applied to a text (technical or otherwise) in
which the potential ambiguity never occurs, it would be ideal to never
have to consider the ambiguity at all with respect to this text.

One way to do this is to use a pos tagger at a preprocessing stage,
which for example would tag the sentence by assigning a pos to each
lexical item (Kupiec 1992) and using the disambiguated result as input
to the grammar. The drawback of this method is that, while large
parsers perform nicely at the word level (97% success) they perform
poorly at a sentence level (70% success).

The ambiguity can also be filtered out at the level of the lexicon,
(Segond and Copperman 1999), rather than at the level of the parser.
The aim is to produce a filtered lexicon out of the larger, standard one.
The general idea is as follows. The tagged corpus is sorted into <word,

Finite-State Technology / 191

pos> pairs which are run through the morphological analyzer, yielding
<base form, pos> pairs. Once duplicates are eliminated, pairs with
the same base form are combined to give <base form, pos-list> pairs.
Then each entry in the lexicon is compared with the list derived from
the corpus and parts of speech which do not occur in the corpus are
eliminated.

13

Modularity, Maintainability and

Transparency

Our previous discussion of the xle architecture (Chapter 11) and the
interaction of the lfg lexicons with finite-state morphological analyzers
and phrase structure rules should have made it clear that modularity
is at the heart of our grammar development effort. Given that the
projection architecture of lfg as described in the introduction is also
founded on the principle of modularity, this is not surprising.

On the other hand, too much modularity can also work against trans-
parency: rules may be more difficult to formulate (and understand) be-
cause they access different modules of the grammar, and errors may
become more difficult to track down, as they could spring from various
different sources. Alternatively, therefore, one could decide to follow an
approach similar to that of hpsg, which is to encode the different types
of linguistic information within one level of representation and extend
this design decision to the grammar implementation so that everything
is dealt with within one and the same module.

However, it is clear from general programming experience that a
modular approach to software design is generally preferable (see Knuth
1992 on the concept of structured programming), as it furthers the main-
tainability and transparency of the product. Moreover, with respect
to grammar design in particular, packing the phrase structure analy-
sis and the unification-based analysis into the same module increases
the complexity of the parsing problem. Most implementations of hpsg
grammars therefore realize a separate context-free backbone for the
phrase structure analysis (as is done in lfg), thus modularizing the
grammar (Carpenter 1992, Penn 1993).

Without taking this discussion any further, it seems fair to conclude
that some degree of modularity is desirable in the design of a grammar.

193

194 / A Grammar Writer’s Cookbook

The question of exactly how much modularity is beneficial, and in what
form, remains to be determined.1 This chapter is therefore intended as
a contribution to the general discussion on modularity, maintainability
and transparency. It reports some of the experiences gathered within
our grammar development effort. In particular, we discuss two differing
perspectives on modularity: one involves the “physical” components of
a grammar, such as lexicon and rule files; the other involves the formal
means of capturing linguistic generalizations.

13.1 One Grammar, Many Cooks

The three ParGram sites parc (English), xrce (French) and ims (Ger-
man) all employed differing strategies with respect to how the grammar
writers accessed the grammar. At the English site, the grammar writ-
ers arranged their schedules in complementary distribution so that the
grammar was never worked on by more than one person. At the French
site, there was only one main grammar writer: the other people as-
sociated with the grammar development process would input ideas or
work on lexicon development as a separate module (see section 14.1.1).
It was only at the German site that more than one person would be
working on the grammar at any given time. This led to multiple copies
of the grammar, none of which necessarily remained at the same level
of development. This in turn led to major integration problems.

From the early days of painful manual integration and checking, the
German team has now progressed to a version control method by us-
ing the Unix cvs facility, which is now also used by the French and
English groups. Under this approach, only one official version of the
grammar exists. Individual grammar writers may check-out copies of
the grammar and then check-in changes or additions. The checked-in
modules are automatically vetted for compatibility. This method of ver-
sion control prompted a greater modularization of the rules: the rules
for nps, aps, vps, etc. are stored in separate files and are coded slightly
differently so as to support the greater modularization.

The lexicon, however, is distributed across several files in all of the
grammars (as already discussed in Chapter 11). The structure of the
distribution follows the same logic at each of the sites:

1As just one example of the ongoing discussion, note that the topic of modularity
was a recurring theme of the 1996 Grammar Engineering Workshop organized by
Gregor Erbach, Melanie Siegel, and Hans Uszkoreit in Prague.

Modularity, Maintainability and Transparency / 195

1. A small file contains the closed class items and exceptional entries.

2. One file contains the technical terminology or special entries needed
for the text at hand. If the text is a specific application like the
tractor manual, then this lexicon contains items extracted specif-
ically from that text. If the text to be parsed is of a more general
nature, such as a newspaper text, no specialized file is included.

3. One or more large files with semi-automatically generated lexical
entries are always included.

This modular division developed naturally within the grammars, as
it reflects the different resources and applications that went into the
creation of the lexicons. The small file of closed class items contains
the core entries that cannot be done without. These entries are hand-
coded. The technical terminology, on the other hand, is application-
specific and can be extracted semi-automatically from the technical
text.

The larger files reflect open class items such as nouns, verbs, and ad-
jectives, which are needed for the parsing of large corpora of a general
type (e.g., newspaper texts). These were created through the semi-
automatic extraction of subcategorization frames, as is detailed in sec-
tion 14.1.1.

Another effort at modularization of file systems and storage did not
grow naturally out of the development, but came about because of a
design decision that was aimed at ensuring transparency across the
three parallel grammars. In an effort to encode the fact that some rules
and generalizations were in fact valid in all of the ParGram grammars,
the grammar writers agreed on a naming convention by which these
identical rules and generalizations could be identified in each of the
three grammars. That is, generalizations as to how the passive works,
or how transitive verbs differ from intransitive verbs, were captured
by giving the same name to the relevant lexical rule (section 13.2.3)
or template (section 13.2.1) in each of the grammars, and by ensuring
that the same material was contained by these rules and templates in
each of the grammars.

In effect, however, these rules and templates could easily be experi-
mented with and changed by each individual grammar writer without
any consequences for the other grammars. This brought up the prob-
lem of continued maintenance and transparency of the three ParGram
grammars with respect to one another. It was therefore decided to ex-
periment with locating crosslinguistically valid rules and templates in a
single file that would be shared across grammars. That is, the same file
containing crosslinguistic generalizations is included as input to every

196 / A Grammar Writer’s Cookbook

grammar. If a grammar writer now wanted to change an item in this file
(for example, if they thought they had come up with a better analysis
of the passive), they would first have to check on the consequences for
the other grammars, thus ensuring some transparency in the encoding,
and not just the output (the analyses presented in Part I) across the
three parallel grammars.

13.2 Encoding Generalizations

Another aspect of modularity involves the formal means of capturing
linguistic generalizations within a given grammar. That is, if all tran-
sitive verbs of a language always share a certain set of properties, then
it would be ideal to encode this in a way which allows the grammar
writer to generalize over that class of items. This is important with
respect to two considerations. For one, it ensures greater transparency
as the grammar writer can easily identify the class of items that have
something in common. For another, it ensures better maintainability:
if the analysis for that class of items changes (for example, a hitherto
unnoticed property of transitive verbs is discovered and needs to be
added, or the name of a feature changes and needs to be changed in
the entries of all transitive verbs) then the grammar writer need only
make the change in one place, rather than track down each item of that
class and make the change for each item individually.

Examples of this type of modularization are detailed in the next
section with respect to the use of templates, complex categories, and
lexical rules.

13.2.1 Templates

Templates are defined in a special section of the grammar file and are
called mainly from the lexicon. However, rules can also call templates.
The benefits of calling templates in the rules are the same as calling
them in the lexicon: they allow generalizations to be captured and
changes to be made only once, to the template itself.

Formally, templates are macros in that they provide the grammar
writer with a short-hand definition of a set of information. However,
beyond being just a name for a collection of information, templates are
also defined as functions within xle. This means that they can take
arguments and substitute the arguments for variables in the definition
of the template.

13.2.1.1 The Lexicon

Templates are meant to express linguistic generalizations. Consider
the simple templates in (1). The material before the equal sign, i.e.,

Modularity, Maintainability and Transparency / 197

tense(p) defines the name of the template and the number of argu-
ments (if any). The @ sign precedes the call of a template, as illustrated
in (1b) for the template assign-case. This template is defined in (1c)
and takes two arguments (see Maxwell and Kaplan 1996 for details on
the notation and the formal power of templates).

(1) a. tense(p) = (↑tns-asp tense) = p
(↑fin) = +.

b. fin(t) = @(tense t)
@(assign-case subj nom).

c. assign-case(gf c) = (↑ gf case) = c.

The template in (1a) expresses the generalization that when a clause
includes a specification for tense, then it is also finite. This is a true
generalization for languages like German, English, and French, but is
not necessarily true for other languages (e.g., Japanese). This template
takes one argument: a specification of the type of tense involved. So
regardless of whether a verb marks present, past, or future tense, this
same template can be used.

The template in (1b) expresses another linguistic generalization. Once
again, it has to do with tense and finiteness, but looks at things the
other way around. In this case, a template fin is defined, which again
takes a tense specification as an argument, but which also specifies
that the subject must be marked as nominative. Again, this template
captures a generalization that in a finite clause the subject must be
nominative. This is true for English, French and German (for German
a provision must be added for subjectless clauses), but it does not hold
for other languages such as Urdu/Hindi or Icelandic, which may have
dative or other kinds of subjects.

Templates are especially useful for describing verb subcategorization
and generalizations over verb classes. The lexicons are organized so
that each verb subcategorization schema corresponds to a template.
These have varying degrees of complexity, depending on issues such as
case marking (German), extraction (English), clitic climbing (French),
etc. We here illustrate two simple templates for basic intransitive and
transitive verbs.

(2) a. intrans(p) = (↑pred) = ′ p<(↑ subj)>′

@nopass.

b. trans(p) = @(pass (↑pred) = ‘ p<(↑ subj)(↑obj)>′).

The templates in (2) specify subcategorization frames. The intrans
template calls another template that ensures that no passivization will

198 / A Grammar Writer’s Cookbook

take place, while the subcategorization frame of the trans template
is fed through a lexical rule that allows for passivization (see section
13.2.3 on lexical rules).

The examples above also demonstrate that templates can call other
templates. They can thus be seen as encoding a type of inheritance
hierarchy. The concept of an inheritance-hierarchy is used explicitly in
hpsg (Pollard and Sag 1987), for example. In our approach, the con-
cept is used more implicitly via a hierarchy of templates. Besides this,
there is one other major difference in the approaches: hpsg inheritance-
hierarchies tend to be complex and deeply nested; by comparison our
template hierarchies are quite flat because information about morpho-
logical relatedness is primarily taken care of by the finite-state mor-
phological analyzer and the sublexical rules.

13.2.1.2 Phrase Structure Rules

As with templates called from the lexicon, templates called from rules
can also have arguments, allowing for flexibility in the writing of phrase
structure rules. For example, there are many places in the English gram-
mar where a null pronoun must be supplied to ensure that the analysis
will be wellformed. One such situation is anaphoric control in nonfinite
complements (see section 3.3.5 and Bresnan 1982a for some discussion).
Here the complement is closed, but does not have an overt subject pro-
noun. In order to satisfy the subject condition that applies in English,
a null subject pronoun must be supplied.

This is done as sketched in (3). A phrase structure rule calls the rule
for an infinitive (nonfinite) vp and annotates it with the functional
equations bundled together in the macro null-pron. This macro spec-
ifies that the predicate of the pronoun be pro and that the pron-type
be null. The macro also takes an argument, namely the grammatical
function path that fits the particular situation at hand. Because this
path may vary from rule to rule, a more compact coding of the rules is
enabled by allowing the path to be a variable.

(3) a. . . .
vpinf: (↑comp)=↓

@(null-pron (↓subj))
. . .

b. null-pron(path) = (path pred)=′pro′

(path pron-type)=null.

Furthermore, as the features and analysis of null pronominals may
change during grammar development, the use of macros guarantees
that the relevant changes only need to be made in the macro.

Modularity, Maintainability and Transparency / 199

Another example of the use of macros comes from the German gram-
mar. In this case, a number of disjunctions on the right-hand side of a
phrase structure rule are bundled together, rather than just the func-
tional annotations, as was the case in (3). As German has relatively free
word order, the rules which introduce core arguments and adjuncts of
predicates (both verbs and adjectives) are called in numerous places.
This wide distribution of essentially the same set of rules over different
parts of the grammar poses a maintenance problem: it is easy to realize
that an argument must be defined differently or that another condition
must be added in one part of the grammar, without realizing that this
change must also be made in another part of the grammar. Even if the
grammar writer realizes that the same change must be made in other
parts of the grammar, it is easy to miss one of the instances, especially
as the grammar grows.

Thus, despite all good intentions, the grammar tends to become in-
ternally inconsistent quite quickly. The use of macros is one way of
ensuring that this problem does not arise. Consider the macro in (4). It
disjunctively introduces object arguments, prepositional phrases, and
predicative adjectival arguments such as red in The tractor is red.

(4) adj-args = { np: (↑{ obj|obj2})=↓
|pp: { (↑obl)=↓

|↓∈(↑adjunct) }
|ap: (↑predlink)=↓

(↓atype) =c predicative}.
Whenever this macro is called, it is as if the rules on the right-hand side
of the macro were substituted in at the place of the call in the phrase
structure rule. The macro thus encodes the linguistic generalization
that this particular set of arguments and adjuncts distributes similarly
in German.

A slightly different example of this is coordination (Chapter 8) in
which the same basic schema is used for coordinating several differ-
ent c-structure categories. The coordination macro in (5) expresses
the general linguistic fact that constituent coordination is composed
of constituents of the same category (cat) separated by a comma or a
conjunction.

(5) sccoord(cat) = cat: ↓∈ ↑;
([comma
cat: ↓∈ ↑]+
(comma))
conj: ↑=↓
cat: ↓∈ ↑.

200 / A Grammar Writer’s Cookbook

This macro is called from a rule as in (6) and expands into (7).

(6) sadj −→ { s
|@(sccoord sadj)}.

(7) sadj −→ { s
| sadj: ↓∈ ↑;
([comma
sadj: ↓∈ ↑]+
(comma))
conj: ↑=↓
sadj: ↓∈ ↑}.

13.2.2 Complex Categories

Another method of expressing generalizations is the use of complex
categories. These are phrase structure categories which take arguments,
just as templates do. The argument instantiates a variable in the right
hand side of the rule.

A simplified example from the German grammar is given in (8). This
is a rule which parametrizes across different types of nps: standard,
interrogative and relative nps. The effect that is being illustrated here
is that in German some standard nps like proper names (Jonas) or
mass nouns (e.g., Wasser ‘water’) may appear without a determiner.
Interrogative and relative nps, on the other hand, may never appear
without a determiner. The rule for the np in (8) allows the type of the
np to be set via the variable type. When the value of the variable is
instantiated as std, the rule expands to the option in (9a) to allow a
standard type of np with an optional determiner. On the other hand,
when the variable is instantiated as int, the np is marked as being of
the type interrogative and the determiner is obligatory, as shown in
(9b). An instantation with rel works exactly the same way as in (9b)
for the purposes of our example. However, with respect to the larger
grammar, the identification of an np as interrogative vs. relative will
have consequences in other parts of the grammar.

(8) np[type] −→ { (d[type]: type = std)
| d[type]: { type = int | type = rel } }

npap.

(9) a. np[std] −→ (d[std]) npap.

b. np[int] −→ d[int] npap.

The advantage of such parametrization over rules via the use of com-
plex categories is that again large parts of rules can be shared across

Modularity, Maintainability and Transparency / 201

types of constructions that differ systematically in one respect, but
which work in essentially the same way in other respects. In our sim-
plified example, the only shared part is the expansion into an npap (an
np which contains adjectives). However, if this shared rule should re-
quire a large swath of functional annotations, or if the shared part were
actually a number of different types of rules, then the gain is already
considerable.

In addition, the variables can be specified to hold of a whole family of
rules. For example, before the introduction of complex categories into
the German grammar, a family of rules existed for interrogative nps.
These rules shared very many characteristics with the family of rules
that existed to deal with relative nps, but as the specifications for each
type of np needed to differ just slightly at crucial points, no systematic
sharing of rules across these families was possible. The introduction of
complex categories, on the other hand, allowed the collapse of these dis-
tinct families of rules into just one set of rules that is parametrized over
by the setting of the type variable to int or rel. Thus, the use of complex
categories provides another means of expressing generalizations across
structures. The modularization of the rules furthermore supports the
maintainability of the grammar.

13.2.3 Lexical Rules

Lexical rules have been part of the statement of generalizations within
lfg from the beginning (Bresnan 1982a). These rules encode general-
izations across grammatical function alternations such as passivization
and the dative shift. The lexical rule for passivization as it appears
within our grammars is shown in (10).2 As can be seen from the nota-
tion, within xle lexical rules are treated as a kind of template.

(10) pass(schemata) = { schemata
@nopass
|schemata
@passive
(↑obj)−→(↑subj)
(↑subj)−→null}.

The special aspect of this template is that it takes an entire subcat-
egorization frame as an argument (schemata). With transitive verbs,
for example, it takes the predicate, the subject and the object as an

2The German grammar employs a more complex rule, due to the more complex
set of possibilities with regard to impersonal passives such as Hier wird getanzt. ‘here
is danced’, which are considered to be subjectless. However, the basic specifications
are the same.

202 / A Grammar Writer’s Cookbook

argument. The template called by transitive verbs is repeated in (11).

(11) trans(p) = @(pass (↑pred) = ′ p<(↑ subj)(↑obj)>′)

The pass template allows for a disjunction: either there is a passive,
or there is not. If there is a passive, then it turns the object into the
subject and suppresses the former subject.

Thus, templates, complex categories, and lexical rules are all used
to capture linguistic generalizations, ensuring modularity and trans-
parency in the grammars and thereby also assisting with the problem
of grammar maintenance.

14

Performance

Several factors determine performance. One aspect is coverage: does the
grammar parse all the sentences in question, assigning them the correct
parse? A second aspect is speed: how quickly does the grammar parse
what it needs to? Unfortunately there is often a trade off on these
issues. If a grammar is constrained to parse a given set of sentences
quickly, it is often not broad enough to parse another set of sentences,
either because its lexicon is too small or because certain constructions
have not been implemented. Conversely, if a grammar can parse a wide
variety of sentences, it is often too complex to provide rapid parse times.

In this chapter we discuss how we grappled with these issues in our
grammar development effort. We first describe the compilation of large
lexicons in order to achieve as much coverage as possible, and go on
to the use of optimality marks to achieve robustness in parsing with-
out giving up on linguistic principles and weakening the generator. We
then move on to issues of ambiguity and undesirable rule interactions,
which tend to slow down the grammar. Finally, we describe our use of
treebanks, annotated testfiles and controlled comparisons over different
versions of a grammar in order to measure and improve performance.

14.1 Robustness

The notion of robustness in grammar engineering differs slightly from
the notion a linguist might entertain. A linguist might consider a gram-
mar robust if it provides an analysis for every grammatical sentence or
clause and refuses to provide a parse when the sentence or clause is un-
grammatical. From the point of view of grammar engineering, on the
other hand, a failure to provide some kind of output is unacceptable as
this means that any application depending on output from the gram-
mar will be left floundering. A robust grammar from this perspective
is therefore a grammar that never fails to return some output. If the

203

204 / A Grammar Writer’s Cookbook

grammar encounters a construction or a lexical item that it has not
been equipped to deal with (i.e., the construction has not been imple-
mented, or the lexical item has not been coded in one of the lexicons),
then it should be able to provide a “best guess” at what the construc-
tion might be. In our grammars we have attempted to compile as large
a lexicon as possible via semi-automatic extraction techniques so that
the grammar will only very seldom have to stumble over a word. This is
described in the next section (section 14.1.1). As described in sections
12.4 and 11.3.2.3, these large lexicons are supported by a guesser in the
finite-state morphologies, which takes a best guess at unknown words.

The grammar can be similarly supported to deal with unknown con-
structions via statistical guessing methods or via a parser that produces
coarser-grained output. This type of support has not been integrated
within our grammar development effort, but some possibilities that
could be envisioned within our project are discussed in section 14.1.2.

In addition to the issue of unknown lexical items or constructions, the
grammar is also faced with the issue of what to do about constructions
or words that have clearly been marked as ungrammatical (via a no-
good constraint, for example — see section 14.1.3.2). Linguists would
be happy with a result that stated: “Sorry, that was ungrammatical.”
because that would indicate that the grammar does not overgenerate
and in fact makes the right predictions. However, if the grammar is
to be used in applications, then not providing an output is often the
wrong strategy. One area in which the issue can be illustrated quite
clealy is machine translation. For example, take the scenario of the
machine translation project Verbmobil.1 This project aims to translate
spoken language in business appointment dialogs. Leaving the thorny
problem of speech recognition aside, consider some of the properties of
spoken speech: there are many stops, starts and corrections, and some
of the utterances may be considered ungrammatical. However, it would
be extremely uncooperative for the machine translation system to “cor-
rect” the users at every turn by informing them that their output had
been judged ungrammatical. Instead, the system should attempt to do
as well as it can with the input, and only in extreme cases go back to
the users and ask them to repeat their utterance. That is, in order to
be robust, the system should return some kind of output in every case,
even if it marks that output as suboptimal. In our grammars, we have
implemented this strategy via the use of optimality marks, as discussed
in section 14.1.3.

1Relevant publications and more information on the project can be found at
http://www.dfki.uni-sb.de/verbmobil/

Performance / 205

14.1.1 Extraction of Subcategorization Frames

The greater the coverage of a given grammar, the more likely it is to be
robust in a good way, i.e., the likelihood increases that the parse is the
result of careful linguistic analysis rather than being based on a best
guess method. Part of ensuring large coverage (of newspaper texts, for
example) is the compilation of a large lexicon. Compiling such a lexicon
by hand is unrealistic.

Fortunately, manual compilation is also unnecessary as several tools
have been developed that allow the semi-automatic generation of large
lexicons. The German and French grammars both have large lexicons
which have been incorporated into the lfg grammar. The English
grammar is currently compiling a large verb lexicon based on the French
and German methods.

The German verb and noun stem lexicons were produced semi-automa-
tically (Eckle and Heid 1996, Eckle 1998) from a combination of data
extraction from corpora such as machine readable and tagged newspa-
per texts and existing resources specifying German verb subcategoriza-
tion frames such as sadaw (Baur, Oberhauser, and Netter 1994) and
celex (Baayen, Piepenbrock, and Gulikers 1995). To give an indication
of the size of the lexicons, the German verb lexicon to date consists of
more than 14,000 entries.

The corresponding French lexicons are based on information ex-
tracted from the gsi-erli AlethDic French dictionary. AlethDic is writ-
ten in sgml and contains approximately 72,000 base form entries, 5,730
of which are verbs. It encodes morphosyntactic information, subcatego-
rization frames , and some information about basic semantics. As doc-
umented in Brazil 1997, subcategorization information was extracted
from this dictionary by applying a cascade of finite-state transducers
which reduced ambiguity in the dictionary by filtering out information
as to mood, etc. The transducers then further subdivided the subcat-
egorization classes specified in AlethDic into subclasses to meet the
needs of the lfg grammar. Finally, in those cases where the distinc-
tions made by AlethDic were irrelevant for the purposes of the lfg
grammar, the transducers merged subcategorization specifications.

14.1.2 Statistical Methods and Chunk Parsing

Another way to tackle the robustness issue, as mentioned above, is to
ensure that the grammar always produces some useful output, even
if the construction being parsed is not covered by the grammar, or is
ungrammatical. As Light (1996) puts it, the goal is that “Among other
things, a robust system would have broad coverage and its output would
degrade gracefully as inputs strayed from the area of coverage.” Light’s

206 / A Grammar Writer’s Cookbook

own proposal combines partial parsing strategies with underspecified
semantic representations. The partial parsing strategies make use of
part-of-speech taggers which operate on the basis of stochastic methods.
That is, they go through a text and return their best part-of-speech
guess for a given lexical item. The best taggers available to date are
around 96-97% accurate.2

These part-of-speech taggers can then be combined with so-called
shallow or partial parsing techniques, which often rely on finite-state
transducers. A good example is again Light’s proposal, which is based
on the idea of chunk parsing (Abney 1991, 1996).3 Here a cascade of
finite-state transducers is given the job of locally identifying “chunks”
which could correspond to an np, pp, or even a clause. As noted in
section 12.5, the general problem with such approaches when used in
isolation is that the accuracy of the “best guess” for chunks greater
than a word degrades to an unacceptable percentage as the accuracy
of shallow parsers itself is around the 70% mark, leading to a combined
degradation in performance that is unacceptable. However, when used
in combination with a deep parser such as xle and the lfg grammars
presented in this book, the shallow or partial parses could be used
to back up the deep parser in cases where the deep parse fails either
because the construction is ungrammatical, or it is missing from the
grammar.

Note that the parsers described were not designed with lfg in mind,
though they could be interfaced with an lfg grammar. However, a
statistically driven approach to parsing which is based directly on lfg
has recently been presented (Bod and Kaplan 1998). This lfg based
data-oriented parsing (lfg-dop) technique calculates probabilities of
wellformedness via a competition set, and is able to make guesses about
larger, unknown structures based on information about systematic frag-
ments of c- and f-structure analyses. In particular, it is also able to
provide analyses for ungrammatical constructions such as People eats,
where the rule for subject-verb agreement in English is violated. The
analysis is based on information extracted from the separate analysis
fragments for eats and people: the model arrives at a best guess of what
the sentence might be intended to be, based on its experience with
other sentences. Thus, this model for statistical, data-oriented parsing
allows the graceful degradation advocated by Light (1996).

2Two examples of taggers are the likely system employed by Light (1996) for
German (Feldweg 1993) and the Xerox tagger for English (Cutting, Kupiec, Peder-
sen and Sibun 1992).

3Another shallow parser which was experimented with for French within Par-
Gram is the finite-state parser discussed in Chanod and Tapanainen (1996, 1997).

Performance / 207

14.1.3 Optimality Theory

An integration of the dop-lfg parsing strategy into our grammars re-
mains a possibility for the future. This section discusses the strategy we
have already implemented within our grammars, namely the incorpora-
tion of ideas from the theoretical literature on Optimality Theory (ot)
(see Prince and Smolensky 1993 on ot in general; Bresnan 1996, 1998b,
1999 on interfacing ot and syntax). This strategy does not involve sta-
tistical methods; rather, it makes use of optimality marks which allow
the grammar writer to mark certain constructions or lexical items to
be either less desirable, undesirable, or completely unacceptable. This
is done by positing another projection, the o(ptimality)-projection ,
on top of the constraint system of the existing lfg grammars. The
o-projection determines a preference ranking on the set of analyses
for a given input sentence: a relative ranking is specified for the con-
straints that appear in the o-projection, and this ranking serves to
determine the winner among the competing candidates. The optimal-
ity constraints are overlaid on the existing grammar and hence do not
fundamentally alter the basic tenets of lfg theory.

This ot mechanism can be very effective in filtering syntactic am-
biguity. A further advantage of the addition of optimality marks to
the lfg architecture is that the robustness of a grammar can be in-
creased by adding low-ranked fallback rules. Such rules can allow for
the parsing of common grammatical mistakes (e.g., subject-verb agree-
ment mistakes) and marginal constructions (e.g., misplaced adverbials).
Finally, using the same grammar in parsing and generation can be facil-
itated by applying the ot-style preference mechanism: while a grammar
must accept a wide variety of alternative syntactic structures in parsing,
generation should be restricted to a subset of ‘preferred’ construction
alternatives.

The discussion and examples that follow are drawn primarily from
Frank, King, Kuhn and Maxwell 1998 and the reader is referred to this
paper for more details.

14.1.3.1 Notation and Analyses

Optimality marks are explicitly introduced within the grammar as
shown in (1), where a vp may take a pp as either an obl argument or
an adjunct.

208 / A Grammar Writer’s Cookbook

(1) vp → v

(
np

(↑ obj) =↓

) pp∗
(↑ obl) =↓
mark1 ∈ o∗

↓ ∈ (↑ adjuncts)
mark2 ∈ o∗


The optimality marks may be called by whatever mnemonic name

the grammar writer wishes. For the purposes of this example, we have
simply numbered the optimality marks according to their rank. This
rank is determined by an ordering as shown in (2). The optimality
ranking divides the constraints into those whose satisfaction will result
in a positive mark (those ranked to the left of the neutral mark) and
those whose satisfaction will result in a negative mark (ranked to the
right of the neutral mark). In (2), mark1 is the most positive and
mark4 the most negative.

(2) optimalityranking mark1 mark2 neutral mark3 mark4.

Applying the ordinary parsing and feature resolution algorithm to an
input string produces a set of candidates which enter the competition
under the given constraint ranking. The winning structure(s) will be
the one(s) containing the fewest instances of the most negative mark.
If this does not produce a unique candidate, the second most negative
mark is counted, and so on. If all the negative marks fail to single
out a candidate, for the remaining structures the positive marks are
considered successively, starting from the most positive mark. In this
case, the candidates with the greatest number of instances win.

As a concrete but simple example, take the rule in (1). For a sentence
like John waited for Mary, this rule will produce an ambiguity: the pp
may be analyzed either as an adjunct or as an obl argument. However,
in the rule, the grammar writer has marked the obl analysis as being
preferable, thus the obl analysis is the one the grammar returns as
being most optimal.

14.1.3.2 Types of Markings

In fact, the xle implementation allows an even more differentiated
treatment of optimality marks than that illustrated in the simple exam-
ple above. The more differentiated treatment represents an extension of
the standard ot method of comparing marks. xle provides three types
of special marks: neutral, ungrammatical, and nogood. They are
ranked as shown in (3). The marks defined by the grammar writer, are
interspersed between the special marks.

Performance / 209

(3) mark1 neutral mark2 ungrammatical mark3 nogood
mark4

To facilitate the modification of the ranking without having to edit
the grammar and lexicon files, it is also possible to collect marks into
an equivalence class by enclosing them in brackets. A declaration as in
(4) is interpreted in such a way that mark1 and mark1a count as pref-
erence marks of identical strength and mark2 is treated as equivalent
to neutral, i.e., it is effectively ignored.

(4) optimalityranking (mark1 mark1a) (mark2 neutral)
mark3 ungrammatical mark4 nogood mark5

The four types of marks (preference, dispreference, ungrammatical,
and nogood) are discussed below, each one with an brief example of
how it might be used in a grammar.

Preference Marks Preference marks are used when one out of two,
or more, readings is preferred. For example, preference marks can be
used to state a preference for the multiword analysis of technical terms:
in general, when the multiword expression reading is possible, it is
the preferred one. An example in which both multiword and analytic
analyses are possible is shown in (5).

(5) a. The [print quality] of this printer is good.

b. I want to [print] [quality] documents.

By marking the lexical entries of multiword expressions with a prefer-
ence optimality mark, the analysis involving the multiword expression
is preferred for (5a).

Dispreference Marks Dispreference marks (those below neutral
and above ungrammatical) are generally used on rare constructions
that are grammatical and as such are parsed by the grammar, but are
less likely to occur. The dispreference mark ensures that the construc-
tion surfaces only when no other, more optimal, analysis is possible.
Consider the case of German headless nps, as in (6).

(6) Meistens kauft die größere Firma die kleinere.
Mostly buys the larger company the smaller
‘Usually, the larger company buys the smaller (one).’ (German)

Sentences like this are dealt within the German grammar via a ver-
sion of the np rule which allows an np to consist of an adjective with an
optional determiner. However, this rule also permits the grammar to
build such nps in many places where they are implausible. An example
of such a situation is seen in (7).

210 / A Grammar Writer’s Cookbook

(7) Nachts fallen helle Farben auf.
at night stand bright colors out (German)

a. [np(nom) helle Farben]

reading = ‘At night, bright colors stand out.’

b. [np(nom) helle] [np(dat) Farben]

reading = ‘At night, the colors notice bright ones/bright ones
strike colors.’

The reading in (7a) in which helle Farben forms an np is the desired
one. However, the reading in (7b) in which helle forms an np headed by
an adjective and Farben a canonical np is also possible (the verb auf-
fallen ‘be noticeable’ can either be intransitive or take a dative object).
To constrain this extra, infelicitous reading, a dispreference mark can
be introduced in the part of the np rule which derives the nps headed
by an adjective, as shown in the rule fragment (8).

(8) a. optimality ranking . . . neutral aheadnp ungrammat-
ical nogood.

b. np −→ { . . .
(det) a

(↑spec)=↓ ↑=↓
aheadnp ∈ o∗

. . . }

Ungrammatical Marks It is also possible mark items as ungram-
matical. This strategy is used to mark rules which parse ungrammatical
constructions, thus building robustness into the parser.

A simple example of where this might be useful is subject-verb agree-
ment: ungrammatical marks as part of the grammar effectively allow a
relaxation of the subject-verb agreement constraint. Consider the entry
for the English third singular verbal ending -s in (9). In cases where
subject-verb agreement is observed, the first disjunct delivers an anal-
ysis where no optimality mark is used. However, when subject-verb
agreement is violated, only the second disjunct can be chosen, which
introduces an ungrammatical mark nosvagr (the notation oM* refers
to the o-projection of the mother node; see section 3.5.4 for more de-
tailed discussion of this notation). This structure will only surface if
there is no grammatical analysis. Similar constraints could be added
for other person and number combinations. If the only solutions are
ungrammatical, then xle marks this by adding an asterisk before the
number of solutions whenever the number of solutions is reported.

Performance / 211

(9) a. optimalityranking neutral ungrammatical NoSVAgr
nogood.

b. -s { (↑subj num)=sg
(↑subj pers)=3
| NoSVAgr ∈ oM∗ }

The difference between dispreference marks and ungrammatical marks
is that analyses that are marked as ungrammatical are ignored unless
there are no grammatical analyses, either preferred or dispreferred.

Another use of ungrammatical marks which is applicable to more
technical contexts is to mark rules which are used only in parsing and
not in generation. ungrammatical marks are a clear instance of this
since even though it may be desirable to have the grammar parse un-
grammatical sentences to improve robustness, it is unlikely that one
would wish to have such ungrammatical structures produced. Another
use is for punctuation control: in general, it is good to be able to parse
punctuation in a large number of positions, but to generate it in a
much more restricted domain. For example, although commas appear
with reckless abandon in many texts, they can be generated in a more
controlled fashion. Finally, certain constructions may be technically
grammatical but not be ones that one wishes to generate. For example,
it is possible to place a when clause after the subject and before the
verb in English, as in (10a). However, the grammar could be restricted
to only generate when clauses in sentence-initial and sentence-final po-
sitions, as in (10b).

(10) a. The rear burner, when left on for too long, will tend to over-
heat.

b. s −→ np conjpsub vp
(↑subj)=↓ (↑adjunct)=↓ ↑=↓

ParseOnly ∈ o∗

NOGOOD Marks The nogood marks indicate that the analysis
is always bad, even if there is no other analysis. The purpose of this is
to allow fine-grained filtering of the grammar. For instance, a grammar
might be annotated with certain marks that indicate constructions only
used in special domains, such as a particular technical text. If these
marks are listed after nogood, then these constructions are treated as
being inconsistent and are not processed any further by the grammar.

For example, a special rule to parse section headers might be written
for a corpus which contains many such headers, but this rule might be
undesirable for other uses of the grammar. Rather than painstakingly
removing (or commenting out) the relevant header rules from within

212 / A Grammar Writer’s Cookbook

the grammar, the use of optimality marks provides a simple yet effective
way of rendering parts of the grammar ineffective by moving a mark
into the nogood category.

Thus, the introduction of ot marks into the grammars opened up
several possibilities for grammar modularization, flexible filtering of
syntactic ambiguity, and increased robustness in parsing. Furthermore,
an additional application of constraint ranking is the parametrization
of a single grammar for use in parsing vs. generation by specifying two
different rankings for these two processes.

14.2 Testing

Testing the grammar is an indispensable part of ensuring robustness
and increasing the performance of a grammar. Although individual con-
structions can be tested with a few sample sentences as they are de-
veloped, more systematic testing is required to maintain the quality of
the grammar over time and to catch unexpected results of the addition
of new rules and lexical items. Much of the methodology of grammar
testing is dictated by common sense. However, issues do arise with re-
spect to what kinds of testsuites to use, what other kinds of methods
apart from testsuites one might use to test the grammar for continued
consistency, and how to get a stable measure of the grammar’s perfor-
mance as it grows and changes. In the following sections we address
these issues as they arose within our grammar development effort.

14.2.1 Types of Testsuites

14.2.1.1 Testsuites Internal to ParGram

One of the hazards of developing large grammars is that although a
construction may be tested relatively thoroughly while it is first being
implemented, subsequent changes may alter the grammar in such a way
as to affect the behavior of the construction. That is, the addition of
rules may inadvertantly block already implemented constructions or
allow them to occur in contexts where they should not. The best way
to ensure that this does not go unnoticed is by developing and utilizing
testsuites, in addition to extensive commenting and documentation of
the grammar.

A testsuite is a series of sentences (or nps, pps, etc.) which can be fed
to the grammar. For example, in the xle environment, the command
parse-testfile <name-of-file> results in the grammar parsing all
of the sentences in the specified file and recording the number of parses,
the time it took to parse the sentence, and the number of subtrees for
the sentence (a measure of complexity). That is, this system allows the

Performance / 213

grammar tester to see some information from the results of the analysis,
but not the analysis itself. An example from a testfile of the English
auxiliary system is shown in (11). The numbers in parentheses provide
information on performance: the first number indicates the number of
parses, the second the number of seconds the parse took, and the third
the number of subtrees that the parser considered.

(11) root: It has appeared. (1 1.3 283)
root: It has been actuated. (1 2.15 294)
root: It has been appearing. (1 1.23 294)
root: It has been being actuated. (1 2.45 308)

Within xle these results are automatically stored in a separate file,
thus providing a benchmark for future users of the grammar.

In order to thoroughly test a grammar, a variety of testsuites is
necessary. It is best to have testsuites for each of the major types of
constructions which the grammar handles. For example, there might be
testsuites for the auxiliary system, for coordination, for questions, for
relative clauses, for different types of verb subcategorization frames, etc.
Each testsuite should contain simple examples of all possible versions of
the construction in question. In addition, ungrammatical variants of the
construction should be included in order to ensure that the grammar is
not overgenerating. For example, a testsuite for the English auxiliary
system should contain ungrammatical sentences like those in (12) in
addition to grammatical sentences like those in (11).

(12) root: It has appearing. (0 1.38 283)
root: It have is actuated. (0 2.3 294)
root: It is having actuates. (0 2.36 312)
root: It has been appears. (0 1.15 294)

The sentences constructed for the basic testing of a construction type
should be very simple, to ensure that the fundamentals of the con-
struction are correct. However, in order to test the grammar properly,
naturally occuring complex examples as in (13) should also be tested
at regular intervals.

(13) np: the two-speed blower which provides increased air circulation
for the heating system (8 2.525 605)
np: a deflector that may be opened to permit greater directional
control of the airflow (1 4.611 581)

This allows for the testing of constructions the grammar writers may
not have thought of themselves, and also tests interactions between
parts of the grammar, such as relative clauses in combination with
embedded clauses. This issue of complex rule interactions is further

214 / A Grammar Writer’s Cookbook

addressed in section 14.3.1.

14.2.1.2 Testsuites External to ParGram

Besides testsuites established by the grammar writers within a gram-
mar development effort, a good method of measuring the grammar’s
performance and coverage is to test it by means of an unseen corpus. In
order to subject our grammars to such tests, we availed ourselves of test-
suites available the public domain. We additionally created testsuites
by extracting sample sentences from standard grammar descriptions.

Some of the public domain testsuites we used to test our grammars
are a result of the efforts of the tsnlp (Testsuites for Natural Language
Processing) consortium, which provides a database of testsuites for En-
glish, French and German.4 The existence of such testsuites is due to a
broader effort at finding standardized evaluation measures for natural
language applications. Some projects concerned with these issues are
eagles (Expert Advisory Group on Language Engineering Standards)
and diet (Diagnostic and Evaluation Tools for Natural Language Ap-
plications).5 As in previous chapters, the discussion in this section and
the following section on measuring performance should be seen as a
contribution towards the ongoing effort and discussion about finding
good tools and a good methodology for evaluating grammars.

One of the testing methods used in ParGram was to compile statistics
on the unseen corpora. An example, compiled by Norbert Bröker in
December 1998 for the German grammar, is shown below in (14) and
(15). The corpus consisted of sentences extracted from Buscha and
Helbig 1989.

(14)
number percentage

items 1561 100
items parsed 1130 72.39
items parsed grammatical 1130 72.39
items parsed ungrammatical 0 0
items unparsed 431 27.61
items unparsed grammatical 431 27.61
items unparsed ungrammatical 0 0
massive ambiguity (>25 optimals) 1 0.06
long parse time (>30 seconds) 0 0
timeout exceeded during parsing 0 0

4Further information about the tsnlp project can be found at
http://cl-www.dfki.uni-sb.de/tsnlp/index.html.

5More information on these projects can be found at
http://www.ilc.pi.cnr.it/EAGLES/home.html and http://www.dfki.uni-sb.de/.

Performance / 215

(15)
average median

optimal solutions 1.742 1
suboptimal solutions 3.778 1
runtime 0.718 0.540
words per test item 0 0
ratio runtime/subtree 0.004 0.004

These two tables break up the data in a number of ways. The first
table shows that of a total number of 1,561 sentences, about 72% were
parsed. All of the sentences that were parsed were indeed grammatical
sentences of the language (i.e., the features of the grammar that are
designed to ensure robustness did not kick in to parse ungrammatical
sentences). The grammar could not deal with about 28% of the cor-
pus. Furthermore, there was only one sentence that displayed massive
ambiguity, there was no sentence which required a parse time of over
30 seconds, and no sentence timed out during parsing. The second ta-
ble calculates averages for the results shown in table (14). The average
number of optimal solutions was 1.7 with an average runtime of 0.7
seconds.

14.2.2 Further Tools and Databases

While the type of statistics illustrated in the previous section go a long
way towards measuring the performance of a grammar (see also section
14.3) and providing the grammar writer with information as to where
the grammar needs to be cleaned up or developed further, there are
a number of things such statistics cannot be used for. For example,
while we know that the German grammar was able to parse 72% of
the sentences, we do not actually know whether it parsed the sentences
correctly, or whether the grammar simply came up with an analysis
that would be considered wrong by most linguists. In cases of massive
ambiguity, as with the one sentence that had more than 25 optimal
solutions in table (14), it is furthermore very difficult for the grammar
writer to determine whether the desired analysis is even among the
many analyses the grammar has produced.

14.2.2.1 Treebanks

One way of storing information about the desired analysis or anal-
yses for a given construction is the use of a treebanking system. In
our project, the use of treebanks was inspired by the Penn Treebank.
However, given that in lfg much of the useful information about the
analysis is represented in the form of avms, our treebank contained
both trees (the c-structure) and the avms (the f-structure).

216 / A Grammar Writer’s Cookbook

In order to establish a treebank, testsuites were run through the
grammar and the resulting analyses were manually checked for the
correct analysis or analyses. If the desired analyses were among the
parses produced by the grammar, they were stored in Prolog form. If
not, the grammar was either fixed or extended to include the desired
analysis and the treebanking went through another cycle, resulting in
a number of stored analyses that the grammar writers could use as a
means to ensure that future instantiations of the grammar not only
continued to cover constructions that had already been tested, but also
continued to cover them correctly.

14.2.2.2 Selectional Tools

The use of treebanks provides the grammar writer with complete anal-
yses that have been stored and can be compared to current parses.
Another tool, dubbed taste (Kuhn 1998), was developed in order to
provide grammar writers with the possibility of specifying partial infor-
mation about the desired parse. Take the sentence It was said that he
smokes. Now, consider a scenario in which the grammar returns many
optimal solutions for this sentence, none of which seemed to contain an
analysis in which the matrix clause it was said is correctly analyzed as
having been passivized and the embedded clause as active.

In order to find the correct analysis, or to find out what might have
gone wrong, the grammar writers could now painstakingly flip through
the many possibilities presented by the grammar. Or, they could simply
annotate the sentence to be parsed with the desired information, as in
(16) (taken from Kuhn 1998).

(16) T: It was said that he smokes = Pass(Plus) Comp(Pass(Minus))

This annotation builds on the fact that xle stores the output of the
parse in Prolog. Thus, the desired information is encoded in list form,
as in (16), and also allows levels of embedding to be specified, as in the
case of the embedded clause: the comp is specified to be passive −.

From the point of view of xle, the annotations in (16) simply func-
tion as constraining equations, which restrict the space of possible anal-
yses to only contain those that satisfy the annotations, i.e., a matrix
clause that is passive and an embedded clause that is not. The gram-
mar thus concentrates on satisfying these constraints, and the grammar
writer can focus on a subset of all possible analyses in order to debug
the grammar, or develop a treebank.

The taste tool allows the grammar writer to manipulate f-structure
information. However, often it is also useful to be able to preselect c-
structure information. xle provides for this possibility as well by means

Performance / 217

of a bracketing tool in which the grammar writer can specify which
constituent groupings are expected as part of the desired analysis.

14.3 Measuring Performance

As discussed in section 14.2, the establishment of testsuites and an eval-
uation of the parsing results provide one indication for the measurement
of grammar coverage and performance. Further methods include anal-
yses of the interactions between different rule systems in the grammar.
For example, is the grammar written in a way that allows for undesir-
able interactions of rules? Can one part of the grammar be identified
as the cause of a blow-up in parsing times? Can commonalities in rule
interactions be identified across grammars? And how can grammars be
compared to one another in terms of performance?

This section reports on some of the experiences gathered within Par-
Gram and the experiments that were conducted in order to establish a
window on the complex system of interactions that constitutes a gram-
mar of natural language.

14.3.1 Rule Interactions

The greatest effort in writing a grammar often lies not in describing
the constructions but rather in restricting the interactions between
them. The computational system is relentlessly thorough: it identifies
unforeseen interactions and requires that they be handled in full detail,
whether they are of theoretical interest or not.

14.3.1.1 Undesirable Interactions

In this section, we describe some examples of undesirable interactions
which were ultimately eliminated from the grammars. A first and rather
simple example comes from an interaction of verbal templates with
the phrase structure rules of English. Initially, the verbal templates
in the English grammar only contained basic information as to the
subcategorization frame, as in (17).

(17) trans(p) = (↑ pred)=′p<subj,obj>′

As additional verb types were introduced, sentential subjects (That
the tractor would not start upset the driver.) and particles (He threw
out the manual./He threw the manual out.) were added. However, the
information provided by the sentential subjects and by the particles
in no way conflicted with the information of the template for simple
transitive verbs. As such, a simple transitive verb like see could appear
in the desired structure, as in (18a), but also in undesired structures,
as in (18b) and (18c).

218 / A Grammar Writer’s Cookbook

(18) a. I saw it.

b. *That it is red saw it. (sentential subject)

c. *I saw it on. (particle)

That is, the phrase structure rules allowed for all the structures in (18)
since these structures are needed for other verbs. In addition, a tem-
plate of the type in (17), which was sufficient when the phrase structure
rules were simpler, has no constraints against the type of information
provided by the sentential subjects or particles. This problem can be
easily fixed by providing the trans template with constraints against
sentential subjects (e.g., against subjects with tense and/or complemen-
tizers) and against particles (e.g., against having a prt-form value).
However, it was only through testing that such interactions were found.
Next consider examples of how lexical entries can interact with the
phrase structure rules to give undesirable analyses. Originally, the only
complementizer in the English grammar was that, which was followed
by a finite clause, as in (19).

(19) She knows that it is flashing too quickly.

As the grammar was expanded to include embedded questions and for-
to complements, two new complementizers were added (whether and
for) as well as new c-structure rules to allow for infinitival complements,
as in (20).

(20) a. I want to know whether to leave now.
b. They arranged for Mary to drive the tractor.

Although obvious in hindsight, the distribution of that can no longer
be simply constrained by its complementizer c-structure category since
this could incorrectly result in its appearing with infinitival comple-
ments. Instead, the different complementizers (and verbs) need to be
constrained to appear only with certain types of complements.

Another example of lexical entries interacting with rules comes from
the use of unknowns to increase the available number of lexical items
(sections 11.3.2.3, 14.1.1). The English grammar uses unknowns for
nouns and for numbers, both of which can be called by the np rule.
Unfortunately, at the time of publication the English morphology is
such that every number has two sets of tags, one which resembles that
of ordinary nouns like cat and one which is unique for numbers. As such,
every time a number is parsed in an np position, it has two possible
analyses, roughly as in (21).

(21) a. [[three]n]np
b. [[three]number]np

Performance / 219

Ideally, numbers should always have a tag indicating that they are num-
bers, even if they also have a noun tag. As such, it would be possible to
block the surfacing of numbers as nouns and instead have them always
be numbers and picked up by the np rule that way, i.e., only analysis
(21b) would surface. (The number option is needed independently for
places in which only numbers, and not common nouns, are allowed,
e.g., in dates.) Unlike the other interactions discussed in this section,
there is no way to block this undesirable overgeneration without either
giving up the power of using the unknowns or requesting a significant
modification to the morphology provided. Instead, optimality marks
(see section 14.1.3) were used to constrain this ambiguity.

Finally consider an example of two rules interacting in an undesir-
able manner. This occurred in both the English and French grammars
with the introduction of headers (section 9.2) into the grammars in
conjunction with the rule allowing noun-noun compounds. Headers are
designed to allow certain nps to be root level categories, as in (22a),
while noun-noun compounds occur in nps like (22b).

(22) a. root: Gearshifts

b. np: the oil filter

When both of these exist, roots such as (23) have two analyses, one
which forms a sentence s (the dominant reading in both the French
and English case) and one which forms a header (the less common
reading).6

(23) a. root: the beacon flashes
s = [the beacon]np [flashes]vp
header = [the [beacon]n flashes]np

b. root Le tracteur part
the tractor leaves/portion

s = [le tracteur]np [part]vp (‘the tractor left’)
header = [le tracteur [part]n]np (#‘the portion tractor’)

However, there is a difference between sentences and headers which
can be exploited to block this double parse. Namely, sentences end with
punctuation marks, at least in written text such as the tractor manual,
while headers do not. As such, if punctuation is made obligatory at

6Some sentences have the header reading dominant, as with the French example
in (i) which is structurally equivalent to (23b).

(i) Le code barre
the code obstruct/bar
s = [le code]np [barre]vp (‘The code obstructs (it).’)
header = [le code [barre]n]np (‘the bar code’)

220 / A Grammar Writer’s Cookbook

the end of sentences, then (23) will only have one parse: s if there is a
punctuation mark and header if there is not.

In sum, as the grammar is expanded to include a wider variety of
constructions, these can interact in unpredictable ways, resulting in
ungrammatical parses of grammatical constructions and parses of un-
grammatical constructions. As these can be detected by rigorous test-
ing, they should be eliminated whenever possible before the grammar
increases further in complexity.

14.3.1.2 Legitimate Interactions

Consider next the case of interactions which are unforeseen and result
in a proliferation of analyses, but which are legitimate. Although it is
usually not desirable to block such interactions, it is important to know
that they exist, since they can result in unexpectedly large numbers of
analyses.

An example of a legitimate, but unanticipated, interaction between
rules arises from the introduction of present participles as adverbial
modifiers in conjunction with the np rule which allows present par-
ticiples to act as adjectival modifiers of nouns. Both rules are needed
independently for constructions like those in (24).

(24) a. s = [Turning the wheel to the left]advp the driver should
gently press the brake.

b. np= the [turning]ap wheels

In certain circumstances, sentences can have two parses, one in which an
initial present participle is interpreted as heading a sentence adverbial
and one in which it is interpreted as the adjectival modifier of the
subject np. Such an example is seen in (25).

(25) Flashing lights can be seen for miles around.
[Flashing]s.adv [[lights]np can be seen for miles around.]s
[[Flashing]a lights]np can be seen for miles around.

Since both types of constructions legitimately occur, there is no means,
or reason, to block one parse or the other. In fact, (25) could have either
parse, depending on the context in which it appears. However, knowing
that such interactions occur can help to explain sudden increases in
parses when running testsuites.

A similar type of example comes from the German grammar in which
the inclusion of adverbs, which morphologically resemble their adjec-
tival counterparts, allows for additional interpretations of certain sen-
tences. So, (26) has two readings, one in which früh ‘early’ is an ad-
jective modifying Montag ‘Monday’ (in both sentences this is a noun
phrase acting as an adverb) and one in which it is an adverb modifying

Performance / 221

the vp.

(26) Wir fangen Montag früh an.
we start Monday early part
Wir fangen [Montag [früh]ap]advp an.
(=‘Early Monday we start.’)
Wir fangen [Montag]advp [früh]advp an.
(=‘Monday we start early.’)

Once again, since both constructions occur legitimately, one parse can-
not be blocked in favor of the other.

Thus, as a grammar becomes more complicated, covering a wider va-
riety of constructions with a greater number of lexical items, predicting
how the rules and lexical entries interact becomes increasingly difficult.
Some of these interactions are desirable because sentences often com-
bine more than one construction, e.g., a question with a particle verb.
Others are undesirable and need to be removed from the grammar by
adding in appropriate constraints, modifying the rules, etc. Regardless,
it is necessary to determine what interactions occur and how they af-
fect the performance of the grammar. One way of gauging the problem
is to test a wide variety of sentences and perform statistical analyses
of the results, as was already seen in section 14.2.1.2. Another way is
to perform controlled experiments with different versions of a gram-
mar, or the judicious use of optimality marks (section 14.1.3). Such
controlled experiments have been carried out primarily with respect to
the German grammar and are briefly described in the next sections.

14.3.2 Grammar Internal Performance

The use of headless nps in German is a known source of rule interactions
that result in marked degradation of performance. It was clear early
on, even without controlled experimental methods, that the inclusion
of headless nps (as already discussed in section 14.1.3.2) resulted in a
marked loss in efficiency. The experiment reported in Kuhn and Rohrer
1997 used optimality marks not only as a diagnostic method, but also as
a method of exploring the use of optimality marks to constrain possible
analyses and thereby arrive at a more efficient grammar.

In particular, Kuhn and Rohrer 1997 used nogood marks to create
different grammar versions in which differing subsets of rule systems
were switched off. They then compared the behavior of the manipulated
grammar versions. The results are shown in table 14.3.2.7

7The English equivalents of the German sentences in the table are as follows: (i)
He is looking for the middlesized (ones); (ii) She likes those (ones); (iii) Cozy pubs

222 / A Grammar Writer’s Cookbook

G
ra

m
m

a
r

V
er

si
o
n

A
B

C
D

n
o

ra
n
k
in

g
ra

n
k
in

g
*
em

p
ty

N
*
d
em

.
p
ro

n
o
u
n

*
em

p
ty

N

(i
)

E
r

su
ch

t
d
ie

m
it

te
lg

ro
ß
en

.
1

0
.4

4
2

1
0
.5

4
8

0
0
.2

9
9

0
0
.2

7
5

(i
i)

D
ie

g
ef

a
ll
en

ih
r.

1
0
.3

0
5

1
0
.3

0
5

1
0
.4

6
3

0
0
.1

9
4

(i
ii
)

In
d
er

S
ta

d
t

fe
h
le

n
g
em

ü
tl

ic
h
e

K
n
ei

p
en

.
2

0
.4

8
3

1
0
.4

7
3

1
0
.4

5
0

1
0
.3

8
4

(i
v
)

In
d
er

S
ta

d
t

fe
h
le

n
d
ie

sc
h
ö
n
en

k
le

in
en

a
n
g
en

eh
m

en
g
em

ü
tl

ic
h
en

K
n
ei

p
en

.

6
5
.4

0
4

1
5
.4

7
1

1
1
.2

4
8

1
0
.9

3
8

(v
)

E
r

si
eh

t
d
a
s

K
in

d
.

1
0
.3

1
2

1
0
.3

0
1

1
0
.3

3
4

1
0
.2

7
8

(v
i)

E
r

si
eh

t
d
a
s

K
in

d
m

it
d
er

M
ü
tz

e.
2

0
.6

7
3

2
0
.6

7
3

2
0
.6

9
6

2
0
.3

9
5

(v
ii
)

E
r

si
eh

t
d
a
s

K
in

d
m

it
d
er

M
ü
tz

e
in

d
er

H
a
n
d
.

5
1
.5

0
5

5
1
.5

1
6

5
1
.6

0
3

5
0
.5

9
4

(v
ii
i)

D
ie

E
rf

a
h
ru

n
g
en

so
ll
en

sp
ä
te

r
in

d
ie

k
ü
n
ft

ig
en

P
la

n
u
n
g
en

fü
r

d
ie

g
es

a
m

te
S
ta

d
t

ei
n
fl
ie

ß
en

.

2
1
2
.6

2
5

2
1
4
.9

4
4

2
4
.5

4
2

2
1
.1

8
6

(i
x
)

H
in

te
r

d
em

B
et

ru
g

w
er

d
en

d
ie

g
le

-
ic

h
en

T
ä
te

r
v
er

m
u
te

t,
d
ie

w
ä
h
re

n
d

d
er

v
er

g
a
n
g
en

en
T

a
g
e

in
G

ri
ec

h
en

-
la

n
d

g
ef

ä
ls

ch
te

B
a
n
k
n
o
te

n
in

U
m

-
la

u
f

b
ra

ch
te

n
.

9
2

2
1
7
.4

1
8

2
0

2
2
2
.7

7
6

2
0

3
5
.5

8
0

2
0

4
.6

3
2

T
A
B
L
E

1
R

es
u
lt

s
o
f

a
co

n
tr

o
ll
ed

co
m

p
a
ri

so
n

b
a
se

d
o
n

m
a
rk

ed
co

n
st

ra
in

ts

Performance / 223

The grammar was annotated with optimality marks. In Version A of
the grammar, these optimality marks were simply treated as neutral.
That is, they had no effect. With this base-line grammar version, all
the items in the testsuite could be parsed, and most of them within a
reasonable time frame. Sentence (ix), however, exploded both in terms
of parse time and in the number of analyses the grammar produced.

In Version B of the grammar, the optimality marks were allowed to
play a role in that analyses with an empty nominal head were dispre-
ferred. This version of the grammar was still able to cover the sam-
ple testsuite in table 14.3.2 while at the same time producing only 20
analyses for sentence (ix). However, there was no marked increase in
efficiency.

Version C of the grammar looked at what would happen if one gave
up trying to parse empty nominal heads. This was accomplished by
moving the optimality mark for emtpy nominal heads from the dispre-
ferred ranking to a nogood ranking. In this case, sentence (i), whose
only good parse contained an empty head, is not covered by the gram-
mar anymore. On the other hand, parse times decrease markedly for
sentence (ix), without any loss in coverage. Furthermore, in grammar
Version D, in which not only empty nouns were excluded, but der, die,
das ‘the/that’ were restricted to the determiner reading only (suppress-
ing the demonstrative reading), performance increased even further,
without a loss of coverage as compared to grammar Version C.

Thus, the source of the performance increase can be pinpointed fairly
exactly via the use of optimality marks. An efficient method of dealing
with the problem can then be undertaken as a second step.

Another experiment was conducted in order to gauge the impact
of the introduction of complex categories (see section 13.2.2) on a
grammar. Would the introduction of this type of modularization in-
deed speed up a given grammar? In the following experiment, reported
in Kuhn 1999 and summarized in tabular form in table 14.3.2, three
versions of the grammar were compared. Version A assumed a very
general type of clause structure based on the notion of a cp, which
subsumes interrogative, indicative and relative types of clauses. Ver-
sion B parametrized the clause types by means of complex categories.
In Version C, the parametrization was taken even further to include

are missing in the city; (iv) The nice, small, comfortable, cozy pubs are missing in
the city; (v) He sees the child; (vi) He sees the child with the cap; (vii) He sees
the child with the cap in its hand; (viii) The experiences are supposed to enter into
the future plans of the entire city; (ix) The same suspects that brought counterfeit
money into circulation in Greece in the last few days are thought to be behind the
fraud.

224 / A Grammar Writer’s Cookbook

a parametrization over different declension classes of determiners and
adjectives.

Grammar Version A B C
general cp clause types additional

analysis parameter- np-internal
ized parametri-

zation

Results based on entire testsuite (25 sentences)
parsing time
average [sec] > 300 > 75 1.19
standard deviation [sec] > 370 > 220 1.13
median [sec] > 130 > 3 0.94
quartile distance [sec] > 730 > 14 1.01
maximal time [sec] > 900 > 900 5.6
sentences beyond 6 1 —
timeout

Results based on the 19 “easiest” sentences
parsing time
average [sec] 121.19 4.83 0.92
standard deviation [sec] 163.38 6.82 0.65
median [sec] 69.89 2.15 0.88
quartile distance [sec] 161.62 4.70 0.69
maximal time [sec] 720.76 29.2 5.6
sentences beyond — — —
timeout

The three versions of the grammar were run on a testsuite that in-
cluded phenomena known to pose difficulties for computational gram-
mars, such as relative clauses, coordination, and headless construc-
tions.8 The result of the experiment clearly indicates that the intro-
duction of complex categories in order to achieve greater modularity
in the grammar via a parametrization over linguistically relevant cate-
gories is very desirable.

14.3.3 Cross-grammar Performance

Comparing grammars to one another is a more difficult problem than
determining grammar internal performance over time because the in-
ternal structure of the different grammars may not be accessible to the
tester to create different versions for comparison. On the other hand,

8The entire testsuite is provided in an Appendix in Kuhn 1999.

Performance / 225

the methodology developed by Kuhn should be extendable to cross-
grammar performance, as the comparison of different versions of one
grammar is not so far removed from a comparison of grammars based
on similar premises written for different languages. This latter scenario
is precisely that of the ParGram grammar development effort, in which
the French, German and English grammar writers together worked out
parallel analyses and set common guidelines and standards to be met
by the grammars.

While we have not as yet conducted the types of experiments de-
scribed in the previous section on the three ParGram grammars, some
cross-grammar evaluation has been done in cases where a performance
or coverage problem appeared to be shared by all grammars. One such
example is coordination. As discussed in Chapter 8, coordination is
treated in the ParGram grammars. However, with regard to perfor-
mance issues, the treatment of coordination currently implemented re-
mains less than satisfactory. A recent evalution of the English, German,
and French grammars shows that coordination is indeed a problem for
each of the three grammars: the grammars perform faster and have
to deal with much less complexity (measured in terms of how many
subtrees were dealt with) when a testsuite containing no examples of
coordination is processed.

(27)
Average #

words subtrees runtime

with coordination
German 9.29 254 5.89
English 9.10 304 3.62
French 10.36 526 8.17
without
coordination
German 6.33 172 2.12
English 6.69 163 0.88
French 7.31 264 1.31

In this comparison, the French grammar has the most difficulties
with coordination. This could perhaps be due to coordination being
more difficult to treat in French than in English or German. Or the dif-
ference in parsing times might stem from an unforeseen rule interaction
that takes place in French, but not in German or English. Whatever
the cause ultimately turns out to be, cross-grammar comparison clearly
yields results that can point the grammar writer towards both weak-
nesses and strengths in the grammar.

226 / A Grammar Writer’s Cookbook

Cross-grammar comparison with grammars that are not based on
similar linguistic theories, frameworks, or even basic premises provides
a greater challenge than the type of cross-grammar comparison con-
ducted within ParGram. As already mentioned previously in section
14.2.1.2, the need to establish standardized methods and tools for cross-
grammar evaluation is recognized within the computational community
and is currently being addressed by projects such as tsnlp or ea-
gles. We hope that the methodology currently being experimented
with within ParGram, including the use of optimality marks to cre-
ate different versions of a grammar, and especially the focus on the
parallelism across languages and grammars, will complement and ex-
tend the methodologies and tools developed in the ongoing discussion
of grammar engineering and grammar development.

A

Appendix: Feature Standardization

This appendix provides the basic guidelines we used for positing fea-
tures and their values in the ParGram project, as well as sample fea-
tures.

A.1 General Guidelines

type We allow all categories to be classified for type; this is useful for
constraining the applicability of rules. Sample types seen in Part
I include: atype, ptype, vtype, ntype, spec-type, stmt-
type, adv-type, and adeg-type.1

form We allow all categories to be classified for form. form features
are generally used to preserve surface information which may be
needed for transfer. For example, all wh-phrases have pred pro
and it is the pron-form which indicates the value of the wh-
phrase (who, what, how, why, etc.). Sample forms seen in Part
I include: vform, comp-form, conj-form, prt-form, pron-
form, and spec-form.

A.2 Sample Features

This section lists some of the features and their possible values as used
in the ParGram project. Note that this list is meant to be represen-
tative, not exhaustive, in order to provide the grammar writer with
an idea of what types of features might be needed in designing and
implementing a large scale grammar of a language.

Verbal Features

Semantic

aspect: prog, stative, perf

1 The Hyphenation Convention: for greater readability, hyphens are inserted
in names with a prefix of two or more letters. For example, pron-form but vform.

227

228 / A Grammar Writer’s Cookbook

mood: imperative, indicative, subjunctive

passive: ±
stmt-type: declarative, header, imperative, interrogative

tns-asp: aspect, mood, tense

tense: fut, past, pres

vsem: unacc, unerg

Morphological

fin: ±
inf: ±
vform: base, inf, perfp, presp

vtype: aux, main, modal

Nominal Features

anim: ±
case: acc, dat, gen, nom

gend: fem, masc, neut

ntype: count, mass, proper

num: pl, sg

pers: 1, 2, 3

refl: ±

Adjectival Features

adegree: comparative, equative, superlative

adeg-type: equative, negative, positive

atype: attributive, predicative

Prepositional Features

pcase: in, on, under, etc.

psem: directional, locative, temporal, unspecified

ptype: nosem, sem

Others

adv-type: adjadvmod, sadv, vpadv

neg: ±
postneg: ±
topic-int: the fronted portion of an interrogative clause

topic-rel: the fronted portion of a relative clause

Appendix: Feature Standardization / 229

A.3 Grammatical Functions

There are a few attributes whose status between features and grammat-
ical functions was unclear, e.g. compound, adjunct, and spec. Below
are listed only the grammatical functions which can be subcategorized
for, i.e., governable grammatical relations.

comp: Subordinate clauses which provide their own subjects; usually
finite.

obj: Direct objects and objects of certain prepositions.

obj2: Indirect objects that are not pps.

obl: There is only one kind of obl in the ParGram grammars. What
kind of obl it is can be retrieved from the pcase; this avoids re-
dundant representation of information and makes rule-writing more
compact.

predlink: The nonsubject argument of linking verbs.

subj: Subjects.

xcomp: Subordinate clauses whose subject is provided from elsewhere
in the sentence; usually nonfinite.

References

Abney, Steven. 1987. The English Noun Phrase in its Sentential Aspects.
Ph.D. thesis, MIT.

Abney, Steven. 1991. Parsing by chunks. In R. Berwick, S. Abney, and
C. Tenny, eds., Principle-Based Parsing . Dordrecht: Kluwer Academic
Publishers.

Abney, Steven. 1996. Partial parsing via finite-state cascades.
In Proceedings of the ESSLLI ’96 Robust Parsing Workshop.
http://www.sfs.nphil.uni-tuebingen.de/~abney/.

Abush, Dorit. 1994. Sequence of tense. In H. Kamp, ed., Ellipsis, Tense and
Questions. IMS, Stuttgart. DYANA deliverable R 2.2.3.

Ait-Mokthar, Salah. 1997. Du texte ASCII au texte lemmatisé : la présyntaxe
en une seule étape. In Proceedings TALN97 . Grenoble, France.

Alshawi, Hiyan, ed. 1992. The Core Language Engine. Cambridge, Mas-
sachussetts: The MIT Press.

Alsina, Alex. 1996. The Role of Argument Structure in Grammar: Evidence
from Romance. Stanford, California: CSLI Publications.

Andrews, Avery. 1983. Constituent coordination in LFG. Unpublished
manuscript, Australian National University.

Andrews, Avery. 1990. Unification and morphological blocking. Natural
Language and Linguistic Theory 8(4):508–558.

Baayen, R.H., R. Piepenbrock, and L. Gulikers. 1995. The CELEX Lexical
Database (CD-ROM). Linguistic Data Consortium, University of Penn-
sylvania.

Baker, Mark. 1983. Objects, themes, and lexical rules in Italian. In L. Levin,
M. Rappaport, and A. Zaenen, eds., Papers in Lexical-Functional Gram-
mar . Bloomington, Indiana: Indiana University Linguistics Club.

231

232 / A Grammar Writer’s Cookbook

Baker, Mark. 1988. Incorporation: A Theory of Grammatical Function
Changing . Chicago, Illinois: The University of Chicago Press.

Baur, Judith, Fred Oberhauser, and Klaus Netter. 1994. SADAW Ab-
schlußbericht. Tech. rep., Universität des Saarlandes and SIEMENS AG.

Bech, G. 1983. Studien über das deutsche Verbum infinitum. Tübingen: Max
Niemeyer Verlag. First published in 1955.

Berman, Judith. 1996. Topicalization vs. left dislocation of sen-
tential arguments in German. In M. Butt and T. H. King,
eds., Proceedings of the LFG96 Conference. Grenoble, France.
http://www-csli.stanford.edu/publications/LFG/lfg1.html.

Berman, Judith and Anette Frank. 1995. Deutsche und französische Syntax
im Formalismus der LFG. Tübingen: Max Niemeyer Verlag.

Bod, Rens and Ronald Kaplan. 1998. A probabilistic corpus-driven model for
lexical-functional analysis. In Proceedings of 17th International Conference
on Computational Linguistics ACL/COLING-98 . Montreal, Canada.

Brazil, Keith. 1997. Building subcategorisation lexica for an LFG grammar
of French. Tech. rep., Xerox Research Centre Europe, Grenoble. Summer
Internship Report.

Breidt, Lisa, Frédérique Segond, and Giuseppe Valetto. 1996. Formal de-
scription of multi-word lexemes with the finite state formalism: Idarex. In
Proceedings of the 16th International Conference on Computational Lin-
guistics (COLING-96), vol. 2, pages 1036–1040. Copenhagen, Denmark.

Bresnan, Joan. 1982a. Control and complementation. In J. Bresnan, ed., The
Mental Representation of Grammatical Relations, pages 173–281. Cam-
bridge, Massachussetts: The MIT Press.

Bresnan, Joan, ed. 1982b. The Mental Representation of Grammatical Rela-
tions. Cambridge, Massachussetts: The MIT Press.

Bresnan, Joan. 1996. LFG in an OT setting: Modelling compe-
tition and economy. In M. Butt and T. H. King, eds., Pro-
ceedings of the LFG96 Conference. Grenoble, France. http://www-
csli.stanford.edu/publications/LFG/lfg1.html.

Bresnan, Joan. 1998a. Lexical-Functional Syntax . Oxford: Blackwell. Forth-
coming.

Bresnan, Joan. 1998b. Morphology competes with syntax: Explaining ty-
pological variation in weak crossover effects. In P. Barbosa, D. Fox,
P. Hagstrom, M. McGinnis, and D. Pesetsky, eds., Is the Best Good
Enough? Proceedings for the Workshop on Optimality in Syntax , pages
59–92. Cambridge, Massachusetts: The MIT Press.

References / 233

Bresnan, Joan. 1999. Explaining morphosyntactic competition. In M. Baltin
and C. Collins, eds., Handbook of Contemporary Syntactic Theory . Oxford:
Blackwell. To appear.

Bresnan, Joan and Jonni Kanerva. 1989. Locative Inversion in Chicheŵa: A
case study of factorization in grammar. Linguistic Inquiry 20(1):1–50.

Bresnan, Joan, Ronald Kaplan, and Peter Peterson. 1985. Coordination and
the flow of information through phrase structure. Unpublished manuscript,
Xerox PARC.

Bresnan, Joan and Lioba Moshi. 1990. Object asymmetries in comparative
Bantu syntax. Linguistic Inquiry 21:147–186.

Bresnan, Joan and Annie Zaenen. 1990. Deep unaccusativity in LFG. In
K. Dziwirek, P. Farrell, and E. Mej́ıas-Bikandi, eds., Grammatical Rela-
tions: A Cross-Theoretical Perspective, pages 45–57. Stanford, California:
CSLI Publications.

Brun, Caroline. 1998. Terminology finite-state preprocessing for computa-
tional LFG. Unpublished manuscript, Xerox Research Centre Europe,
Grenoble.

Buscha, Joachim and Gerhard Helbig. 1989. Linguistische und didaktische
Grammatik . Leipzig: Verlag Enzyklopädie.

Butt, Miriam, Mary Dalrymple, and Anette Frank. 1997.
An architecture for linking theory in LFG. In Pro-
ceedings of the LFG97 Conference. San Diego, California.
http://www-csli.stanford.edu/publications/LFG2/lfg97.html.

Butt, Miriam, Maŕıa-Eugenia Niño, and Frédérique Segond. 1996. Multilin-
gual processing of auxiliaries in LFG. In D. Gibbon, ed., Natural Language
Processing and Speech Technology: Results of the 3rd KONVENS Confer-
ence, pages 111–122. Bielefeld.

Cacciari, C. and P. Tabossi, eds. 1993. Idioms: processing structure and
interpretation. New Jersey: Lawrence Erlbaum Associates.

Carpenter, Bob. 1992. ALE user’s guide. Tech. Rep. CM-LCL-92-1, Carnegie
Mellon University, Laboratory for Computational Linguistics.

Chanod, Jean-Pierre and Pasi Tapanainen. 1995. Tagging French–comparing
a statistical and a constraint-based method. In Proceedings of the 7th
Conference of the EACL, pages 149–156. Dublin, Ireland.

Chanod, Jean-Pierre and Pasi Tapanainen. 1996. A non-deterministic to-
keniser for finite-state parsing. In Proceedings of ECAI 96, Workshop on
Extended Finite State Models of Language. Budapest, Hungary.

234 / A Grammar Writer’s Cookbook

Chanod, Jean-Pierre and Pasi Tapanainen. 1997. Finite-state based reduc-
tionist parsing for French. In A. Kornai, ed., Extended Finite State Models
of Language. Cambridge: Cambridge University Press.

Chomsky, Noam. 1970. Remarks on nominalization. In R. Jacobs and
P. Rosenbaum, eds., Readings in English Transformational Grammar . The
Hague: Mouton de Gruyter.

Cutting, Doug, Julian Kupiec, Jan Pedersen, and Penelope Sibun. 1992. A
practical part-of-speech tagger. In 3rd Conference on Applied Natural Lan-
guage Processing , pages 133–140. Trento, Italy.

Dalrymple, Mary. 1993. The Syntax of Anaphoric Binding . Stanford, Cali-
fornia: CSLI Publications. CSLI Lecture Notes, number 36.

Dalrymple, Mary, ed. 1998. Semantics and Syntax in Lexical Functional
Grammar . Cambridge, Massachussetts: The MIT Press.

Dalrymple, Mary and Ron Kaplan. 1997. A set-based approach to feature
resolution. In Proceedings of the LFG97 Conference. San Diego, California.
http://www-csli.stanford.edu/publications/LFG2/lfg97.html.

Dalrymple, Mary, Ronald Kaplan, John T. Maxwell III, and Annie Zaenen,
eds. 1995. Formal Issues in Lexical-Functional Grammar . Stanford, Cali-
fornia: CSLI Publications.

Dalrymple, Mary, John Lamping, and Vijay Saraswat. 1993. LFG semantics
via constraints. In Proceedings of the 6th Meeting of the EACL, pages
97–105.

Eckle, Judith and Ulrich Heid. 1996. Extracting raw material for a Ger-
man subcategorization lexicon from newspaper text. In Proceedings of the
4th International Conference on Computational Lexicography (COMPLEX
’96). Budapest, Hungary.

Eckle-Kohler, Judith. 1998. Methods for quality assurance in semi-automatic
lexicon acquisition from corpora. In Proceedings of EURALEX ’98 . Liège,
Belgium.

Emele, Martin and Michael Dorna. 1998. Ambiguity preserving machine
translation using packed representations. In Proceedings of 17th Interna-
tional Conference on Computational Linguistics ACL/COLING-98 . Mon-
treal, Canada.

Feldweg, Helmut. 1993. Stochastische Wortartendisambiguierung für das
Deutsche: Untersuchungen mit dem robusten System LIKELY. Tech. rep.,
Seminar für Sprachwissenschaft, Tübingen.

References / 235

Frank, Anette. 1996. A note on complex predicate formation: Evidence from
auxiliary selection, reflexivization, and past participle agreement in French
and Italian. In Proceedings of the LFG96 Conference. Grenoble, France.
http://www-csli.stanford.edu/publications/LFG/lfg1.html.

Frank, Anette, Tracy Holloway King, Jonas Kuhn, and John T.
Maxwell III. 1998. Optimality theory style constraint ranking
in large-scale LFG grammars. In M. Butt and T. H. King,
eds., Proceedings of the LFG98 Conference. Brisbane, Australia.
http://www-csli.stanford.edu/publications/LFG3/lfg98.html.

Grefenstette, Gregory and Pasi Tapanainen. 1994. What is a word, what is a
sentence? Problems of tokenisation. In Proceedings of the 3rd International
Conference on Computational Lexicography (COMPLEX ’94), pages 79–
87. Research Institute for Linguistics, Hungarian Academy of Sciences,
Budapest, Hungary.

Grimshaw, Jane. 1982. On the lexical representation of Romance reflexive
clitics. In J. Bresnan, ed., The Mental Representation of Grammatical
Relations, pages 87–148. Cambridge, Massachussetts: The MIT Press.

Grimshaw, Jane. 1990. Argument Structure. Cambridge, Massachussetts:
The MIT Press.

Gross, Maurice. 1975. Méthode en syntaxe. Paris: Hermann.

GSI-ERLI. 1994. Le dictionnaire AlethDic, version 1.5.3. Tech. rep., GSI-
ERLI.

Halvorsen, Per-Kristian. 1983. Semantics for Lexical-Functional Grammar.
Lingusitics Inquiry 14:567–615.

Halvorsen, Per-Kristian. 1987. Situation semantics and semantic interpre-
tation in constraint-based grammars. Tech. Rep. 101, CSLI, Stanford,
California.

Helbig, Gerhard. 1984. Probleme der Beschreibung von Funktionsver-
bgefügen im Deutschen. In G. Helbig, ed., Studien zur deutschen Syntax .
Leipzig: Verlag Enzyklopädie. Volume II.

Johnson, Mark. 1986. The LFG treatment of discontinuity and the double
infinitive construction in Dutch. In M. Dalrymple, J. Goldber, K. Hanson,
C. P. Michael Inma and, and S. Wechsler, eds., Proceedings of the Fifth
West Coast Conference on Formal Linguistics, pages 102–118. Stanford,
California: Stanford Linguistics Association.

Kamp, Hans and Uwe Reyle. 1993. From Discourse to Logic. Dordrecht:
Kluwer Academic Publishers.

236 / A Grammar Writer’s Cookbook

Kaplan, Ron and Joan Bresnan. 1982. Lexical-Functional Grammar: A for-
mal system for grammatical representation. In J. Bresnan, ed., The Men-
tal Representation of Grammatical Relations, pages 173–281. Cambridge,
Massachussetts: The MIT Press.

Kaplan, Ronald and John T. Maxwell III. 1988a. An algorithm for Func-
tional Uncertainty. In Proceedings of the 12th International Conference
on Computational Linguistics (COLING-88), vol. 1, pages 297–302. Bu-
dapest, Hungary. Reprinted in Dalrymple et al. 1995, pp. 177–198.

Kaplan, Ronald and John T. Maxwell III. 1988b. Constituent coordina-
tion in Lexical-Functional Grammar. In Proceedings of the 12th Inter-
national Conference on Computational Linguistics (COLING-88), vol. 1,
pages 303–305. Reprinted in Dalrymple et al. 1995, pp. 199–210.

Kaplan, Ronald and John T. Maxwell III. 1996. LFG
grammar writer’s workbench. Tech. rep., Xerox PARC.
http://www.parc.xerox.com/istl/groups/nltt/medley/.

Kaplan, Ronald, Klaus Netter, Jürgen Wedekind, and Annie Zaenen. 1989.
Translation by structural correspondences. In EACL 4 , pages 272–281.
University of Manchester.

Kaplan, Ronald and Paula Newman. 1997. Lexical resource reconciliation in
the Xerox Linguistic Environment. In Proceedings of the ACL Workshop
on Computational Environments for Grammar Development and Engineer-
ing .

Kaplan, Ronald and Annie Zaenen. 1989. Long-distance dependencies, con-
stituent structure, and Functional Uncertainty. In M. Baltin and A. Kroch,
eds., Alternative Conceptions of Phrase Structure, pages 17–42. Chicago,
Illinois: University of Chicago Press. Reprinted in Dalrymple et al. 1995,
pp. 137–165.

Kaplan, Ronald M and Martin Kay. 1994. Regular models of phonological
rule systems. Computational Linguistics 20(3):331–378.

Karttunen, Lauri. 1996. Directed replacement. In Proceedings of the ACL,
pages 108–115. Santa Cruz, California.

Karttunen, Lauri, Ronald Kaplan, and Annie Zaenen. 1992. Two-level mor-
phology with composition. In Proceedings of the 14th International Con-
ference on Computational Linguistics (COLING-92), pages 141–148.

Kathol, Andreas. 1995. Linearization-Based German Syntax . Ph.D. thesis,
Ohio State University.

Kathol, Andreas. 1996. Concrete minimalism of German. Unpublished
manuscript, UC Berkeley.

References / 237

Kay, Martin. 1996. Chart generation. In Proceedings of the 34th Annual
Meeting of the ACL. Santa Cruz, California.

Kay, Paul and Charles Fillmore. 1994. Grammatical constructions and lin-
guistic generalizations: The what’s X doing Y? Unpublished manuscript,
UC Berkeley.

Kayne, Richard. 1984. Connectedness and Binary Branching . Dordrecht:
Foris.

Kehler, Andrew, Mary Dalrymple, John Lamping, and Vijay Saraswat. 1995.
The semantics of resource-sharing in Lexical-Functional Grammar. In
EACL95 . University College Dublin.

King, Tracy Holloway. 1995. Configuring Topic and Focus in Russian. Stan-
ford, California: CSLI Publications.

Kiss, Katalin É. 1995. Discourse Configurational Languages. Oxford: Oxford
University Press.

Knuth, Donald E. 1992. Literate Programming . Stanford, California: CSLI
Publications.

König, Ekkehard. 1991a. Gradpartikeln. In A. von Stechow and D. Wun-
derlich, eds., Semantik: Ein internationales Handbuch der zeitgenössischen
Forschung , pages 786–804. Berlin: de Gruyter.

König, Ekkehard. 1991b. The Meaning of Focus Particles: A comparative
Perspective. London: Routledge.

Koskenniemi, K. 1983. Two-level morphology: A general computational model
for word-form recognition and production, vol. 11. Department of General
Linguistics, University of Helsinki.

Kuhn, Jonas. 1998. Towards data-intensive testing of a broad-coverage LFG
grammar. In B. Schröder, W. Lenders, W. Hess, and T. Portele, eds., Com-
puters, Linguistics, and Phonetics between Language and Speech, Proceed-
ings of the 4th Conference on Natural Language Processing – KONVENS-
98 , pages 43–56. Bonn: Peter Lang.

Kuhn, Jonas. 1999. Meta-descriptions of rules for generalization in
constraint-based grammar design. Unpublished manuscript, IMS, Uni-
versität Stuttgart.

Kuhn, Jonas and Christian Rohrer. 1997. Approaching ambiguity in real-
life sentences – the application of an optimality theory-inspired constraint
ranking in a large-scale LFG grammar. In Proceedings of the DGfS-CL.
Heidelberg, Germany.

238 / A Grammar Writer’s Cookbook

Kupiec, Julian. 1992. Robust part-of-speech tagging using a hidden Markov
model. Computer Speech and Language 6:225–242.

Light, Marc. 1996. CHUMP: Partial parsing and underspecified representa-
tions. In W. Wahlster, ed., 12th European Conference on Artificial Intel-
ligence, pages 28–30.

Maxwell III, John T. and Ronald Kaplan. 1991. A Method for Disjunc-
tive Constraint Satisfaction, pages 173–190. Dordrecht: Kluwer Academic
Publishers. Reprinted in Dalrymple et al. 1995, pp. 381–402.

Maxwell III, John T. and Ronald Kaplan. 1993. The interface between
phrasal and functional constraints. Computational Linguistics 19(4):571–
590. Reprinted in Dalrymple et al. 1995, pp. 403–429.

Maxwell III, John T. and Ronald Kaplan. 1996. An efficient parser
for LFG. In Proceedings of the LFG96 Conference. Grenoble, France.
http://www-csli.stanford.edu/publications/LFG/lfg1.html/.

Maxwell III, John T. and Christopher D. Manning. 1996. A
theory of non-constituent coordination based on finite-state
rules. In Proceedings of the LFG96 Conference. Grenoble.
http://www-csli.stanford.edu/publications/LFG/lfg1.html/.

Milsark, G. 1988. Singl-ing. Linguistic Inquiry 19:611–634.

Mohanan, Tara. 1994. Argument Structure in Hindi . Stanford, California:
CSLI Publications.

Nolke, Henning and Hanne Korzen. 1996. L’ordre des mots. Langue Française
111. Larousse.

Nunberg, Geoffrey. 1990. The Linguistics of Punctuation. Stanford, Califor-
nia: CSLI Publications.

Nunberg, Geoff, Thomas Wasow, and Ivan Sag. 1994. Idioms. Language
70(3):491–538.

Penn, Gerald. 1993. A comprehensive HPSG grammar in ALE. Tech. rep.,
Carnegie Mellon University, Laboratory for Computational Linguistics.

Perlmutter, David. 1978. Impersonal passives and the unaccusative hypoth-
esis. In Proceedings of the 4th Annual Meeting of the Berkeley Linguistics
Society . University of California, Berkeley.

Pollard, Carl and Ivan Sag. 1987. Information-Based Syntax and Semantics,
Volume 1: Fundamentals. Stanford, California: CSLI Publications.

Pollard, Carl and Ivan Sag. 1994. Head-Driven Phrase Structure Grammar .
Chicago, Illinois: The University of Chicago Press.

References / 239

Prince, Alan and Paul Smolensky. 1993. Optimality theory: constraint in-
teraction in generative grammar. Tech. Rep. 2, Rutgers University Center
for Cognitive Science, Piscateway, New Jersey.

Pullum, Geoffrey. 1982. Syncategorematicity and English infinitival to.
Glossa 16:181–215. Preliminary version published as ‘The category status
of infinitival to’. University of Washington Working Papers in Linguistics
6.55-72, 1981.

Quint, Julien. 1997. Morphologie à deux niveaux des noms du français. MA
Thesis, Xerox Research Centre Europe, Grenoble.

Quirk, Randolph, Sidney Greenbaum, Geoffrey Leech, and Jan Svartvik.
1985. A Comprehensive Grammar of the English Language. New York:
Longman.

Rambow, Owen. 1996. Word order, clause union, and the for-
mal machinery of syntax. In M. Butt and T. H. King,
eds., Proceedings of the LFG96 Conference. Grenoble, France.
http://www-csli.stanford.edu/publications/LFG/lfg1.html.

Sag, Ivan, Gerald Gazdar, Thomas Wasow, and Steven Weisler. 1985. Coordi-
nation and how to distinguish categories. Natural Language and Linguistic
Theory 3:117–171.

Schiller, Anne. 1996. Multilingual finite-state noun phrase extraction.
ECAI’96 Workshop on Extended Finite State Models of Language, Au-
gust 11-12, Budapest.

Segond, Frédérique and Max Copperman. 1999. Lexicon filtering. In
R. Mitkov and N. Nicolov, eds., Recent Advances in Natural Language
Processing: Selected Papers from RANLP ’97 . John Benjamins. Special
issue.

Segond, Frédérique and Pasi Tapanainen. 1995. Using a finite-state based for-
malism to identify and generate multiword expressions. MLTT-19, Xerox
Research Centre Europe, Grenoble.

Sells, Peter. 1985. Lectures on Contemporary Syntactic Theories. Stanford,
California: CSLI Publications.

Shemtov, Hadar. 1997. Ambiguity Management in Natural Language Gener-
ation. Ph.D. thesis, Stanford University.

Siegel, Muffy E. A. 1976. Capturing the Adjective. Ph.D. thesis, University
of Massachusetts at Amherst.

Vallduv́ı, Enric. 1992. The Informational Component . New York: Garland
Press.

240 / A Grammar Writer’s Cookbook

van Genabith, Josef and Dick Crouch. 1996. Direct and underspecified in-
terpretations of LFG f-structures. In Proceedings of the 16th Interna-
tional Conference on Computational Linguistics (COLING-96), vol. 1,
pages 262–267. Copenhagen, Denmark.

von Stechow, Arnim and Wolfgang Sternefeld. 1988. Bausteine syntaktischen
Wissens. Opladen: Westdeutscher Verlag.

Zaenen, Annie. 1989. Nominal arguments in Dutch and WYSIWYG LFG.
Unpublished manuscript, Xerox PARC.

Zaenen, Annie and Ronald Kaplan. 1995. Formal devices for linguistic gen-
eralizations: West Germanic word order in LFG. In J. Cole, G. Green,
and J. Morgan, eds., Linguistics and Computation, pages 3–27. Stanford,
California: CSLI Publications. Reprinted in Dalrymple et al. 1995, pp.
215–239.

Subject Index

φ, see also functional-structure
function, 4
image, 4

-Lunknown, see lexicon
-Munknown, see lexicon
adjunct, see adjunct
comp, 32, 122, see also comple-

ment
closed, 54
finite, 56

dp hypothesis, 107
np, see also nominal, see also noun

constituent, 88
rule, 94

obj2, see object
obj, see object
obl-comp, 125
obl, see oblique
parenp, 155
pp, see preposition
predlink, 46, 74
pred, 3, 6, 46
pro, 80
subj, see subject
vp, see also verb

deletion, 64
fronting, 64
relative, 101

xcomp, 32, 54, see also comple-
ment

do-support, 27

accentuation, 189
active, 50
adjective, 8, 53, 79, 88–90, 109,

111
pp modifier, 111
agreement, 110
as argument, 120
attributive, 112–114, 119
comparative, 53, 111, 112,

124, 125
than, 53
morphological, 124
periphrastic, 124, 127
postnominal, 125
predicative, 125
prenominal, 125

degree, 112, 124, 125, 127
deverbal, 111, 112, 116
equative, 124, 128
extraction, 122
head, 45
inflection, 110, 112, 119, 120
morphology, 124
postnominal, 116, 117
predicative, 105, 116, 119, 127

241

242 / A Grammar Writer’s Cookbook

agreement, 119
prenominal, 111, 112, 127
quantifying, 108
rule, 102, 122
strong, 110
subject, 123
superlative, 111, 112, 124, 129
uninflected, 116, 140
weak, 110

adjunct, 6, 19, 48, 58, 139
locative, 134
semantic relatedness, 48
set, 59

adverb, 19, 50, 58, 85, 89, 111, 116,
139, 140, 220

adjective modifier, 111
case, 139
clausal, 39
clausal modification, 139
constituent modification, 139
discourse, 141
form, 140
frequency, 141
manner, 141
nominal, 141
placement, 140
sentential, 142
time, 139, 141

agreement, 5
gender, 59, 152
number, 59, 152
participle, 85
person, 152
verb, 149, 151, 153, 206, 207,

210
AlethDic, 205
ambiguity, 15, 140, 219

syntactic, 207
analysis, 2

linguistically motivated, 12
parallel, 2
phonological, 7

semantic, 7
syntactic, 7

anaphor, 80
binding, 7

animacy, 12, 79
annotation, 4
apposition, 89, 90, 97, 116
architecture, 165

grammar, 3
argument, 19, 97, 101

comp, 123
np, 53, 85
obj2, 45, 51
obj, 45, 50
obl, 45, 52
subj, 45
xcomp, 54
changing, 82
clausal, 54, 111
direct, 46
dummy, 46
empty, 101
expletive, 46, 82, 84

object, 81
nonexpletive, 46
postverbal, 73
second, 50
semantic, 84
sentential, 47
subcategorized, 45, 46
subject, 49
suppression, 51
unexpressed, 61
vs. adjunct, 46

argument-structure, 3, 74
article, 107, 109

definite, 110, 113
indefinite, 110

aspect, 7, 64, 69
Aktionsart, 77
specification, 34

attribute, 3, 4

Subject Index / 243

nondistributive, 147
reflexive, 84

attribute-value matrix, 3
automatic extraction, 185
auxiliary, 8, 45, 63, 159

finite, 12
passive, 64
perfective, 64, 68
progressive, 64

binary branching, 9
bracketing tool, 217

C language, 14
c-structure, see constituent-

structure
case, 7, 50, 53, 79, 104, 139

accusative, 50, 132
dative, 51, 132
genitive, 58, 89, 90, 132

prenominal, 107
idiosyncratic, 132
morphology, 49
nominative, 49
overt, 79

case conversion, 189
CELEX, 205
chart-parser, 14, 170, 180
chunk parsing, 206
circumposition, 137
clause, 6, 19

adjunct, 19, 31, 38, 41
conditional, 41, 43
finite, 38, 40, 41
infinitive, 38
participial, 38–40
subordinate, 38

declarative, 19, 20, 32, 85, 158
embedded, 20, 31, 33, 72, see

also clause subordinate
declarative, 32, 37
finite, 35

infinitive, 33
interrogative, 35, 218

finite, 56, 90, 98
imperative, 2, 19, 20, 29, 43,

85
infinitive, 31
mood, 31
morphological, 31
verb form, 29

infinitive, 29, 31, 89, 218
interrogative, 2, 19, 25, 26, 36,

43, 58, 131, 135
wh-phrase, 19, 25, 26, 35
complement, 37
marker, 25, 26, 36
morpheme, 36
multiple, 26
yes-no, 25, 158

main, 12, 19, 32
nonfinite, 56, 90
number, 124
person, 124
root, 19
subcategorized, 19
subordinate, 12, 19, see also

clause embedded
for, 218
that, 19, 21, 32, 57, 122, 218
to, 218
when, 19
whether, 218
concessive, 19
conditional, 19

clitic, 26, 79, 85, 86, 90
climbing, 77
dative, 52
position, 30
postverbal, 85
preverbal, 85
Romance, 86

closed class, 63
coherence, 6

244 / A Grammar Writer’s Cookbook

comparative, 8, 58, 61, 89, see also
adjective

phrase, 124, 125, 128, 129
complement

comp, 54
xcomp, 65
clausal, 41, 56
closed, 32, 56
embedded, 75
finite, 32
nonfinite, 32, 218
open, 56
sentential, 75, 105
verbal, 23, 68

complementation, 7
complementizer, 36, 37, 98, 218

whether, 136
declarative, 36
interrogative, 136
overt, 32, 40

completeness, 6
complex category, 196, 200, 223
complex predicate, 76

Funktionsverbgefüge, 77
causative, 76
verb-noun, 77

compound, see noun
computational grammar, 1
conjunction, 40, 125, 151

comparative, 127
subordinating, 39, 41, 47

constituent, 7, 19
node, 4
order, 90

constituent-structure, 3, 13
hierarchical, 64, 90
mother node, 4
node, 4
rule, 26
tree, 4

constraint
defining, 146

existential, 145
mutual, 7
nondefining, 145
wellformedness, 33

Construction Grammar, 31
context free skeleton, 3
contexted unification, 180
control, 7, 8

anaphoric, 32, 38, 56
equation, 74
functional, 32

cookbook, 1
coordination, 8, 59, 88, 112, 145,

147, 152, 199, 225
np, 147–149
conjunct, 146
constituent, 145
gender, 149
nonconstituent, 145
number, 147, 149
person, 147, 149
rule, 148, 149
same category, 147, 150
schema, 148

core construction, 2
corpus, 2

dative alternation, 52, 63, 201
default, 20
demonstrative, see pronoun
determiner, 79, 80, 88, 102, 107,

109, 223
case, 109, 110
definite, 109
gender, 109, 110
inflectional paradigm, 109
morphosyntax, 109
number, 109, 110
strong, 108, 110
weak, 108, 110

determiner phrase, 107
dictionary

Subject Index / 245

machine-readable, 47
discourse

packaging, 22
particle, 141

dominance, 3
DRS

underspecified, 8
DRT (Discourse Representation

Theory), 8

EAGLES, 214, 226
elephants, 57
ellipsis, 125
emacs lfg-mode, 166
embedding

hierarchy, 70

f-structure, see functional-
structure

feature, 8
clash, 113

finite-state
cascade, 171, 187, 205, 206
longest match operator, 171
module, 14
morphological analysis, 14,

171
preprocessing, 183
technology, 183
tokenizer, 171, 185
transducer, 183, 184, 186, 205
two-level morphological ana-

lyzers, 171, 186, 204
function

open, 32
functional equation, 98
functional uncertainty, 22, 70

inside-out, 83
functional uniqueness, 6
functional-structure, 3, 4

embedding, 65
flat, 64, 66

illformed, 5
parallel, 8

gender, 5, 7, 59, 79, 109
grammatical, 87

generation, 180, 211
grammar

checking, 194
complexity, 220, 221
context free, 3
control, 194
coverage, 217
development environment, 13
engineering, 1, 203
evaluation, 214
file sharing, 195
integration, 194

Unix cvs, 194
maintenance, 15, 194–196,

199, 201
modularity, 15, 223
performance, 215, 217, 221,

223, 224
rule interactions, 217

sharing, 194
transparency, 15, 195

Grammar Writer’s Workbench,
180

grammatical function, 3
alternation, 201

guesser, 14, see also finite-state

head-modifier, 3, 7, 13
header, 155, 157, 211, 219
HPSG, 43, 193, 198

inflection
strong/weak, 110, 112

inheritance hierarchy, 198
inversion

auxiliary, 25, 27, 36, 41

Kleene star *, 23

246 / A Grammar Writer’s Cookbook

language universal, 13
lexical look-up, 14
lexical rule, 196, 198, 201

passive, 62
lexicon, 14, 140
− operator, 179
+ operator, 179
= operator, 179
etc feature, 178
only feature, 178
CELEX, 205
AlethDic, 205
base form, 177
category, 177
closed class, 176, 195
effective entry, 178
modularization, 194
morphcode, 177
open class, 177, 195
organization, 176
override, 178
sample entry, 177
semi-automatic compilation,

205
subentries, 179
sublexical entries, 173
technical terms, 176, 195
unknowns, 175, 218

LFG, 1–4, 6–8, 13
formalism, 13
implementation, 13, 14
modular organization, 7
principle, 42

LFG-DOP, 206
linear order, 13, 58, 90, 153
linear precedence, 7
linguistic principle, 1
linguistic theory, 2
linking, 3, 63
locative inversion, 133

m-structure, see morphosyntactic-

structure
machine translation, 2, 181

Verbmobil, 204
macro

example, 198
linguistic generalization, 199

Mapping Theory, 63
Medley, 83
metavariable, 4
modal, 13, 45, 69
modifier

nonsubcategorized, 139
modularity, 193, 201

file systems, 195
linguistic generalizations, 196
rule, 195

mood, 29, 33
morphcode, 177
morpheme, 25
morphological analyzer, 14, 97,

102, see also finite-state,
175, 218

morphology, 7, 91
cut-and-paste, 13
markers, 64

morphosyntactic-structure, 7, 68,
110, 118

display, 168
morphosyntax, 159

properties, 7
wellformedness, 68

multiword, 136, 183–185, 209

negation, 76, 139, 141
clausal, 142, 143
constituent, 143
pleonastic, 143
postposed particles, 143

node, 4
nonterminal, 4
preterminal, 5

nominal, 48, 79

Subject Index / 247

adjective head, 102
complement, 71
definite, 22
German np, 200
gerund, 57, 79, 104

clausal, 104
head, 102
modifier, 79, 88–90, 107
verbal modifier, 79

normalizer, 14, see also finite-state
notation

template, 197
noun, 8, 87

compound, 88, 91, 94, 187,
219

lexical, 91, 94, 97
nonlexical, 94
syntactic, 91

count, 88
deverbal, 104
genitive, 107
head, 59, 89, 90, 107

empty, 103, 209, 221
main, 48
mass, 88
modifier, 48
postnominal modifier, 88
proper, 79, 88, 156

genitive, 107
noun phrase

headless, 103
number, 5, 7, 79, 89, 218

cardinal, 112, 115
inflection, 114
ordinal, 112, 114

o-projection, see also optimality,
207

display, 168
object, 3, 7, 47, 50

case, 134
dative, 62

direct, 51, 52
double, 45
expletive, 46
indirect, 51, 52, 63
nonpronominal, 85
optional, 21
reflexive, 84
secondary, 21, 51
sentential, 105
underlying, 64

oblique, 21, 47, 52, 63, 124
locative, 45

optimality, 219
as a diagnostic method, 221
candidate set, 208
competition, 208
constraint ranking, 208
marks, 204, 207

dispreferred, 209, 223
negative, 208
neutral, 208, 223
nogood, 204, 208, 211, 223
positive, 208
preference, 209
ungrammatical, 208, 210

optimal solution, 167, 215
Optimality Theory, 207
ranking, 208
unoptimal solution, 167

overgeneration, 15

packed representation, 170
parallel

generalizations, 195
grammar, 2, 3

development, 2
maintenance, 195

parallel aligned corpora, 185
PARC, 8
parenthetical, 61, 155
ParGram, 3, 47, 63, 83, 105, 194,

195, 206, 212, 214, 217,

248 / A Grammar Writer’s Cookbook

225
parser

chunk parsing, 206
context-free backbone, 193
data-oriented parsing (dop),

206
deep parsing, 206
LFG-DOP, 206
partial parsing, 206
shallow parsing, 206

participle, 39, 41, 89, 90
nominal modifier, 91
passive, 39, 64
past, 64, 68, 85
present, 39, 64

particle, 34, 59, 71
interrogative, 37
negation, 141
verb, 72, 217

passive, 47, 49, 50, 61, 62, 131, 201
medial, 62, 82

performance, 203, 212
person, 5, 79
phonology, 7

intonation, 19, 25, 50
prosody, 7, 85
weight, 22

phrasal idiom, 188
phrase structure

rule, 4
tree, 3, 8

plural, 115
polarity, 158, 159
position, 13

in situ, 25
clause final, 12, 38, 72, 99
clause initial, 25, 38, 99
clause internal, 99
clause second, 12, 72
object, 81
postverbal, 74
predicative, 119

preverbal, 22
subject, 27, 81
verb final, 12, 13
verb second, 12, 13

possessive, 103, 104
postposition, 131
precedence, 3
predicate, 6, 63

argument, 3
local, 6
main, 38, 48, 65, 66
semantic, 120
top level, 65

predicate-argument, 3, 7, 13
predicative, 8, 73, 74, 128

controlled subject, 74
prefix

separable, 72
verbal, 72

preposition, 52, 53, 59, 61, 71, 86,
109, 131

directional, 131
incorporation, 132
instrumental, 131
locative, 131
multiple, 137
nested, 137
nonsemantic, 131
relative complement, 136
semantic, 131
stranding, 131

prepositional phrase, 2, 19, 79, 88,
89, 131, 141

adjunct, 134
clausal complement, 131, 136
interrogative complement,

136
locative, 53
nominal complement, 131,

136
rule, 137

preprocessing, 183

Subject Index / 249

pro-drop, 49
Prolog, 216
pronoun, 8, 49, 50, 79, 87, 156, 159

demonstrative, 80, 223
expletive, 79, 81, 123
free relative, 101
interrogative, 37, 79, 80, 100
nonanaphoric, 81
nonclitic, 85, 86
nonovert, 38
null, 198
personal, 79, 80
phrase structure position, 85
reflexive, 50, 62, 84
relative, 59, 79, 80, 97

property
idiosyncratic, 64
language particular, 7
language universal, 7
surface, 7

psych construction, 51
punctuation, 20, 149, 155, 189,

211, 219
comma, 112, 116, 148, 158
parentheses, 155
semicolon, 149

QLF (quasi logical formula), 3
quantifier, 107, 108
question, see clause interrogative

tag, 155

reflexive, 62, 82
morphological marking, 83
predicationally empty, 83

Relational Grammar, 64
relative clause, 2, 8, 12, 59, 79, 88–

90, 97, 131, 135
bound, 97
extraposed, 58
free, 79, 97, 99
head, 101

resultative, 120
robustness, 203, 205, 207, 212
rule

notation, 180
syntactic, 48

rule interactions, 217
legitimate, 220
undesirable, 217

SADAW, 205
schemata, 201

phrase structure, 12
subcategorization frame, 62

scrambling, 27, 76
semantic value, 3
semantic-structure, 7, 58, 74
semantics, 7, 80, 125

Discourse Representation
Structures, 8

evaluation module, 19
formal logic, 7
interpretation, 8
lexical, 3
linear logic, 8
module, 48

semi-automatic extraction, 205
subcategorization frame, 47

set
distribution, 145, 147
generalization, 145

specifier, 48
speed, 203
statistics

data-oriented parsing, 206
stochastic methods, 206

structure
hierarchical, 88
internal, 20
predicate-argument, 63

structured programming, 193
subcategorization frame, 45, 46,

197, 205, 217

250 / A Grammar Writer’s Cookbook

alternation, 61
ditransitive, 47, 51, 52, 64
idiosyncratic, 53
intransitive, 47, 49, 62, 73, 85
schemata, 62
semi-automatic extraction,

47, 205
transitive, 47, 49–51, 61, 62,

64, 85, 135, 217
subject, 3, 7, 19, 48, 49, 74

pro, 39, 57
active, 50
controlled, 56
demoted, 61
doubling, 26
embedded, 32, 54
expletive, 123
genitive, 104
matrix, 54
nominative, 62
nonargument, 53
nonovert, 19, 30, 49, 56
null, 104
overt, 54
position, 21, 46
second person, 30
sentential, 105, 217
underlying, 64

subject condition, 48
sublexical

categories, 169
rules, 172

subordinator, 38
subtree, 167, 212, 225
syntax

construction, 2
level of representation, 3, 7
theory, 3

tagger, 185
likely, 206
part of speech, 190, 206

Xerox tagger for English, 206
TASTE, 216
TCL, 166
technical term, 184
template, 63, 196

bridge verb, 75
called by a rule, 198
example, 196
hierarchy, 198
linguistic generalization, 196
notation, 197
reflexive verb, 84
verb classes, 197
verbal, 75, 217

tense, 7, 27, 33, 64, 68, 69
complex, 64, 69
specification, 34

testing, 212, 220
bracketing tool, 217
EAGLES, 214, 226
optimality, 221
rule interactions, 217
statistics, 214
TASTE, 216
testsuite, 212, 217, 223, 224
treebank, 215
TSNLP, 214, 226
unseen corpora, 214

thematic argument structure, 48
thematic role, 4, 45

agent, 4, 48, 63
demoted, 61
underlying, 64

patient, 4, 48
theme, 63

underlying, 64
time expression, 183, 189
title, 183
tokenization, 171, 186
tokenizer, 14

nondeterministic, 186
topic, 21

Subject Index / 251

topicalization, 19
vp, 65

transducer, 14
transparency, 194
treebank, 215
TSNLP, 214, 226
two-level morphological analyzers,

see finite-state

unaccusative, 27, 64
unergative, 27, 64
unification, 6, 14, 110

disjunctive lazy, 170
Unix, 166, 194
unknown, see also lexicon

construction, 204
lexicon, 204

user interface, 166

variability
language dependent, 8

verb, 6, 8, 19
agreement, 49, 104
bridge, 75
causative, 82
coherent, 76, 77

lassen, 76
complex, 13, 76
construction, 48
copula, 46, 73, 74, 123
embedded, 97
finite, 12, 20, 72
head, 45
linking, 74
main, 32, 64, 66

nonfinite, 12
morphology, 19
noncoherent, 76
particle, 59
placement, 19
raising, 64, 65
reflexive, 82, 84

derivation, 84
root, 33
verbal elements, 45
weather, 46

verb class
template, 197

verb phrase
infinitive, 41

Verbmobil, 204
voice, 64

wellformedness
condition, 6
syntactic, 120

word order, 7, 153
fixed, 12
flexible, 12, 88

X′

approach, 43
principle, 8
theory, 8, 43

XLE, 14, 83, 163, 165, 166, 180,
196, 212, 216

chart-parser, 170
output, 167
user manual, 14

Name Index

Abney, S., 107, 206
Abush, D., 33
Ait-Mokhtar, S., 185
Alshawi, H., 3
Alsina, A., 48, 63, 77
Andrews, A., 86

Baayen, R., 205
Baker, M., 48, 132
Baur, J., 205
Bech, G., 76
Berman, J., 58, 86, 105
Bod, R., 206
Bröker, N., 214
Brazil, K., 205
Breidt, L., 184
Bresnan, J., 3, 4, 6, 8, 32, 45, 46,

54, 56, 63, 64, 81, 105,
121, 125, 132, 145, 198,
201, 207

Brun, C., 185
Buscha, J., 214
Butt, M., 63, 68, 69

Cacciari, C., 188
Carpenter, B., 193
Chanod, J.-P., 185, 206
Chomsky, N., 48
Copperman, M., 190

Crouch, R., 3
Cutting, D., 206

Dalrymple, M., 2, 7, 8, 63, 82, 83,
145, 166, 180

Dorna, M., 2, 181

Eckle, J., 205
Eckle-Kohler, J., 205
Emele, M., 2, 181
Erbach, G., 194

Feldweg, H., 206
Fillmore, C., 31, 43
Frank, A., 52, 63, 77, 86, 207

Gazdar, G., 145
Grefenstette, G., 185
Grimshaw, J., 46, 48, 86
Gross, M., 188
Gulikers, L, 205

Halvorsen, K., 2, 7
Heid, U., 205
Helbig, G., 77, 214

Johnson, M., 70

König, E., 141
Kamp, H., 8, 33, 108
Kanerva, J., 3, 63

253

254 / A Grammar Writer’s Cookbook

Kaplan, R., 2–4, 6, 7, 13, 22, 23,
45, 69, 70, 81, 132, 145,
170–172, 180, 187, 197,
206

Kaplan, R. 1995, 70
Karttunen, L., 171, 187
Kathol, A., 43
Kay, M., 171, 180
Kay, P., 31, 43
Kayne, R., 9
Kehler, A., 145
King, T.H., 64, 207
Kiss, K., 20
Knuth, D., 193
Korzen, H., 118
Koskenniemi, K., 171
Kuhn, J., 207, 216, 221, 223, 224
Kupiec, J., 190, 206

Lamping, J., 145
Light, M., 205

Manning, C., 145
Maxwell, J., 13, 22, 23, 70, 145,

170, 180, 197, 207
Milsark, G., 104
Mohanan, T., 48, 50
Moshi, L., 3, 46, 63

Netter, K., 7, 205
Newman, P., 171, 172
Niño, M.-E., 68, 69
Nolke, H., 117
Nunberg, G., 20, 148, 188

Oberhauser, F., 205

Pedersen, J., 206
Penn, G., 193
Perlmutter, D., 64
Peterson, P., 145
Piepenbrock, R., 205
Pollard, C., 64, 198

Prince, A., 207
Pullum, G., 34

Quint, J., 187
Quirk, R., 139

Rambow, O., 76
Reyle, U., 8, 33, 108
Rohrer, C., 221

Sag, I., 64, 145, 198
Saraswat, V., 145
Schiller, A., 171
Segond, F., 68, 69, 184, 190
Sells, P., 8
Shemtov, H., 180
Sibun, P., 206
Siegel, M., 120, 194
Smolensky, P., 207
Sternefeld, W., 76

Tabossi, P., 188
Tapanainen, P., 184, 185, 206

Uszkoreit, H., 194

Valetto, G., 184
Vallduv́ı, E., 20
van Genabith, J., 3
von Stechow, A., 76

Wasow, T., 145
Wedekind, J., 7
Weisler, S., 145

Zaenen, A., 7, 22, 49, 63, 70, 180,
187

	Cover
	Contents
	Acknowledgements
	Abbreviations
	1. Introduction
	1.1 Parallel Grammars
	1.2 Overview of LFG
	1.3 Levels of Representation
	1.4 Implementation and Environment

	I. The Grammars: General Analyses
	2. The Clause
	2.1 Root Clauses
	2.1.1 Declaratives
	2.1.2 Interrogatives
	2.1.3 Imperatives

	2.2 Embedded Clauses
	2.2.1 Subcategorized Declaratives
	2.2.2 Subcategorized Interrogatives

	2.3 Clausal Adjuncts
	2.3.1 Infinitival Adjuncts
	2.3.2 Participial
	2.3.3 Finite

	2.4 What about X' Theory?

	3. Verbal Elements
	3.1 Subcategorization
	3.2 Nonverbal Subcategorization
	3.3 Types of Grammatical Functions
	3.3.1 Subjects
	3.3.2 Objects
	3.3.3 Secondary Objects (OBJ2)
	3.3.4 Obliques
	3.3.5 XCOMP and COMP
	3.3.6 Adjuncts

	3.4 Altering Subcategorization Frames
	3.5 Auxiliaries
	3.5.1 Brief Introduction to the Auxiliary Systems
	3.5.2 Previous Analyses
	3.5.3 Flat F-structure Analysis
	3.5.4 Morphosyntactic Structure
	3.5.5 The Treatment of Tense/Aspect

	3.6 Modals
	3.7 Particle Verbs
	3.8 Predicatives
	3.8.1 Controlled Subject Analysis
	3.8.2 Predlink Analysis

	3.9 Bridge Verbs
	3.10 Verbal Complexes
	3.10.1 German Coherent Verbs
	3.10.2 French Causatives
	3.10.3 Noun-Verb Constructions

	4. Nominal Elements
	4.1 Pronouns
	4.1.1 Personal and Demonstrative Pronouns
	4.1.2 Interrogative and Relative Pronouns
	4.1.3 Expletive Pronouns
	4.1.4 Reflexives
	4.1.5 Clitics

	4.2 Full Noun Phrases
	4.2.1 English
	4.2.2 German
	4.2.3 French
	4.2.4 F-structure

	4.3 Compounds and N-N Sequences
	4.4 Relative Clauses
	4.4.1 Bound Relatives
	4.4.2 Free Relatives

	4.5 NPs without a Head Noun
	4.5.1 Nominalized Adjectives
	4.5.2 Headless NPs

	4.6 The NP Squish
	4.6.1 Gerunds
	4.6.2 Sentential Subjects

	5. Determiners and Adjectives
	5.1 Determiners
	5.1.1 Types of Specifiers
	5.1.2 Morphosyntactic Considerations

	5.2 Adjectives
	5.2.1 Prenominal Adjectives
	5.2.2 Postnominal Adjectives
	5.2.3 Predicative Adjectives
	5.2.4 Arguments of Adjectives
	5.2.5 Degrees of Comparison

	6. Prepositional Phrases
	6.1 Semantic Prepositions
	6.2 Nonsemantic Prepositions
	6.3 Interrogatives and Relatives
	6.4 Clause-Taking Prepositions
	6.5 Multiple Prepositions

	7. Adverbial Elements
	7.1 Adverbs
	7.2 PPs as Adverbials
	7.3 NPs as Adverbials
	7.4 Negation
	7.4.1 Clausal Negation
	7.4.2 Constituent Negation
	7.4.3 Pleonastic Negation

	8. Coordination
	8.1 Basic Approach
	8.2 Same Category Coordination
	8.2.1 General Schema
	8.2.2 Special Rules for Clauses

	8.3 NP Coordination
	8.3.1 Basic Structure
	8.3.2 Agreement

	8.4 Problems

	9. Special Constructions
	9.1 Parentheticals
	9.2 Headers
	9.3 Tag Questions

	II. Grammar Engineering
	10. Overview
	11. Architecture and User Interface
	11.1 The User Interface
	11.2 The XLE Output
	11.3 The Architecture
	11.3.1 The Tokenizer
	11.3.2 The Morphological Analyzer

	11.4 Lexical Lookup
	11.4.1 Types of Lexicons
	11.4.2 Structure of a Lexical Entry
	11.4.3 Interaction between Lexical Entries

	11.5 The Chart Parser
	11.6 Generation and Machine Translation

	12. Finite-State Technology
	12.1 Preprocessing
	12.2 Multiword Expressions
	12.2.1 Technical Terms
	12.2.2 Idiomatic expressions

	12.3 Time expressions
	12.4 Guessers and Normalizers
	12.5 Part of Speech Preprocessing

	13. Modularity, Maintainability and Transparency
	13.1 One Grammar, Many Cooks
	13.2 Encoding Generalizations
	13.2.1 Templates
	13.2.2 Complex Categories
	13.2.3 Lexical Rules

	14. Performance
	14.1 Robustness
	14.1.1 Extraction of Subcategorization Frames
	14.1.2 Statistical Methods and Chunk Parsing
	14.1.3 Optimality Theory

	14.2 Testing
	14.2.1 Types of Testsuites
	14.2.2 Further Tools and Databases

	14.3 Measuring Performance
	14.3.1 Rule Interactions
	14.3.2 Grammar Internal Performance
	14.3.3 Cross-grammar Performance

	A. Appendix: Feature Standardization
	A.1 General Guidelines
	A.2 Sample Features
	A.3 Grammatical Functions

	References
	Subject Index
	Name Index
	Back Cover

