
Proceedings of the Grammar Engineering Across Frameworks
(GEAF07) Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

Contents

1 Editor’s Note 4

2 Jason Baldridge, Sudipta Chatterjee, Alexis Palmer, and Ben Wing:
DotCCG and VisCCG: Wiki and Programming Paradigms for Im-
proved Grammar Engineering with OpenCCG 5

3 Emily M. Bender: Combining Research and Pedagogy in the Develop-
ment of a Crosslinguistic Grammar Resource 26

4 Daniel G. Bobrow, Bob Cheslow, Cleo Condoravdi, Lauri Karttunen,
Tracy Holloway King, Rowan Nairn, Valeria de Paiva, Charlotte Price,
and Annie Zaenen: PARC’s Bridge and Question Answering System 46

5 António Branco and Francisco Costa: Accommodating Language Vari-
ation in Deep Processing 67

6 Elizabeth Owen Bratt, Karl Schultz, and Stanley Peters: Challenges
in Interpreting Spoken Miliary Commands and Tutoring Session Re-
sponses 87

7 Lucas Champollion, Joshua Tauberer and Maribel Romero: The Penn
Lambda Calculator: Pedagogical Software for Natural Language Se-
mantics 106

8 Nikos Chatzichrisafis, Dick Crouch, Tracy Holloway King, Rowan Nairn,
Manny Rayner, and Marianne Santaholma: Regression Testing For
Grammar-Based Systems 128

9 Ji Fang and Tracy Holloway King: An LFG Chinese Grammar for
Machine Use 144

10 Lars Hellan: On ‘Deep Evaluation’ for Individual Computational Gram-
mars and for Cross-Framework Comparison 161

11 Tracy Holloway King and John T. Maxwell III: Overlay Mechanisms
for Multi-level Deep Processing Applications 182

12 François Lareau and Leo Wanner: Towards a Generic Multilingual
Dependency Grammar for Text Generation 203

13 Montserrat Marimon, Núria Bel, and Natalia Seghezzi: Test-suite Con-
struction for a Spanish Grammar 224

2

14 Yusuke Miyao, Kenji Sagae, Jun’ichi Tsujii: Towards Framework-
Independent Evaluation of Deep Linguistic Parsers 238

15 Stefan Müller: The Grammix CD-ROM A Software Collection for De-
veloping Typed Feature Structure Grammars 259

16 Paula S. Newman: Grammars and Programming Languages: To Fur-
ther Narrow the Gap 267

17 Nick Pendar: Soft Constraints at Interfaces 285

18 Yukiko Sasaki Alam: A Morpho-Syntactic Analyzer of Controlled Japa-
nese 306

19 Tam Wai Lok, Miyao Yusuke, and Tsujii Jun’ichi: Framework Inde-
pendent Summarized Parser Output in XML and its Example-based
Documentation 319

3

1 Editor’s Note

The papers in this volume came out of the workshop on Grammar Engineering
Across Frameworks held at Stanford University in conjunction with the LSA Lin-
guistics Institute in July 2007. The workshop included a panel discussion on eval-
uation methodologies and metrics, a regular session, and a demo session.

We would like to thank the Department of Linguistics at Stanford and the LSA
Institute for assistance both financial and logistical in putting on the workshop. For
logistical support, we are particularly grateful to Vivienne Fong, Anubha Kothari,
David Hall and Daria Suk. Additional financial support came from Powerset and
CSLI, whom we thank for their sponsorship of the workshop.

Our appreciation also to the program committee, who not only selected the
papers to be presented but also provided valuable feedback to the authors: Jason
Baldridge, Srinivas Bangalore, John Bateman, Miriam Butt, Aoife Cahill, Stephen
Clark, Berthold Crysmann, Steffi Dipper, Dan Flickinger, Ron Kaplan, Montserrat
Marimon, Owen Rambow, and Jesse Tseng.

Finally, we would like to acknowledge the workshop participants, many of
whom traveled to Stanford from far away. The discussions were lively and produc-
tive, and we hope to see more venues for exchange within the grammar engineering
community about topics of mutual interest.

4

DotCCG and VisCCG: Wiki and Programming Paradigms for
Improved Grammar Engineering with OpenCCG

Jason Baldridge†, Sudipta Chatterjee‡,
Alexis Palmer†, and Ben Wing‡

†Dept. of Linguistics,‡Dept. of Computer Science

University of Texas at Austin

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

5

Abstract

We present a suite of tools for simplifying the creation and maintenance
of grammars for the OpenCCG parsing and realization system.The core of
our approach relies on a terse but expressive textual format, DotCCG, for
declaring CCG grammars. It supports powerful string expansions that allow
grammar developers to eliminate redundancy in the declaration of both mor-
phology and category definitions. Grammars written in this format are con-
verted into the XML utilized by OpenCCG using theccg2xml utility, which
–like a programming language compiler– provides information regarding er-
rors in the grammar, including the type of error and the line number on which
it occurs. DotCCG grammars can be edited with VisCCG, a graphical inter-
face which provides visualization of various components ofthe grammar and
allows local editing of information in a manner inspired by wikis. We also
report on resources developed to facilitate wide use of the OpenCCG tool
suite presented in this paper and on recent uses of the tools in both academic
research and classroom environments.

1 Introduction

A major challenge of grammar engineering is enabling users with little computer
experience to create complex grammars. Many users encounter significant obsta-
cles and easily get frustrated by trivial syntax errors and non-intuitive formats. At
the same time, more experienced users can feel needlessly constrained by grammar
engineering aids designed for novice users. Such frustrations slow users down and
can result in a focus on mechanics more than on the grammar itself.

This paper presents two contributions for improving current practice in gram-
mar engineering. First, it provides a terse but expressive format for declaring Com-
binatory Categorial Grammars (CCG) (Steedman, 2000; Steedman and Baldridge,
To appear) that utilizes ideas from software engineering for reducing redundancy in
CCG grammars. The basic idea is general enough to be used withother formalisms.
Second, it describes a wiki-inspired editing interface, VisCCG, that supports gram-
mar visualization while allowing users to directly edit plain text grammars.

The core motivation for these developments is to improve thegrammar de-
velopment cycle for OpenCCG (openccg.sf.net) (Hockenmaier et al., 2004;
Baldridge and Kruijff, 2002; White and Baldridge, 2003), a parsing and realization
system that uses CCG, and to provide a model for facilitatinggrammar develop-
ment for both novice and expert grammar writers. OpenCCG haslong lacked such
an environment despite its use in a number of projects. Grammars developed with
VisCCG are compiled into OpenCCG’s native XML format, much in the same

†We would like to thank Emily Bender, Fred Hoyt, Geert-Jan Kruijff, Mark Steedman, Michael
White, students in Jason Baldridge’s categorial grammar, computational syntax, and computational
linguistics courses at UT Austin in 2006/7, and the participants of the GEAF 2007 workshop for
valuable feedback. This research was supported by a LiberalArts Instructional Technology Grant
from the University of Texas at Austin.

6

manner as wiki pages produce HTML. The goal is to create a grammar engineer-
ing environment for CCG that is both easy tolearn to use and easy to use.

We begin by motivating our work in the context of OpenCCG as well as other
grammar engineering platforms. In section 4 we then briefly introduce CCG and
OpenCCG and some of the problems with OpenCCG’s native XML grammar for-
mat. Section 5 discusses DotCCG, followed by an extensive discussion of its pa-
rameterized macro mechanisms in section 6. Then we present VisCCG and con-
clude with a brief discussion of uses of our tools and resources for developing
OpenCCG grammars.

2 Motivation

A graphical user interface (GUI) was developed for Grok, OpenCCG’s predeces-
sor, but development was ceased as the parsing system itselfwas improved (see
Bierner (2001) and Baldridge (2002) for specific reference to Grok). Developing
grammars for OpenCCG has since involved working with unwieldy XML specifi-
cations. Our work was initiated to address this (rather large) gap in CCG grammar
development.1 Several aspects of our approach are novel and may be useful inthe
context of work in other formalisms and/or grammar engineering environments.

The schism between computational definitions and the grammar they are sup-
posed to express has been addressed in various ways, with visualization being a
common strategy for more intuitive representations of the grammar. One approach
is to develop a GUI for editing objects such as trees and feature structures, such
as that of the XTAG system (Doran et al., 2000). The XTAG system included a
graphical tree-drawing editor which allowed the user to attach features and labels
to nodes of a tree. In such systems, grammar developers usually do not work with
the underlying code. A high-level approach like that of the XTAG tree editor is
friendly for novice users but can be frustratingly restrictive for experienced users.

An alternative is to develop grammars by working with a low-level format and
then visualizing them with a separate GUI whichdisplaysinformation. For ex-
ample, the LKB system (Copestake, 2002) provides extensive, highly configurable
displays of various components of grammars written in the Type Description Lan-
guage. The display functionality in the XLE system for grammar development in
the Lexical-Functional Grammar framework (Butt et al., 1998) is similarly infor-
mative and configurable. In such systems, however, the developer cannot directly
edit the grammar using the GUI. Instead, the plain text grammar is edited and then
reloaded to view the effect of the modifications in the graphical representation.

An interesting compromise between visualization and low-level specification
can be observed with the use of wikis for creating web content. HTML and XML
are cumbersome and unintuitive formats; wiki notation as analternative has en-

1Concurrently with our work, Scott Martin and Michael White at Ohio State University developed
a complementary tool calledgrammardoc which produces a set of HTML pages for visualizing
OpenCCG grammars. Bothgrammardoc and our tools are distributed with the OpenCCG system.

7

1 pay ** close ** attention wiki syntax
2 pay close attention HTML syntax
3 paycloseattention display

Figure 1: Wiki-style notation as shorthand for HTML

abled lay users to create web content quickly and effectively. For example, in one
common wiki syntax, boldfaced text is indicated with doubleasterisks around the
text. This shorthand (Figure 1, line 1) is then converted into HTML (line 2) and
displayed as boldfaced text (line 3). Wikis also make it easyto edit small portions
of documents while visualizing the rest, and they provide immediate feedback on
the visual outcome of edits. DotCCG provides a similar shorthand notation for
OpenCCG’s XML, and VisCCG provides user-friendly visualization and editing.

Software engineering provides another source of ideas for improving grammar
engineering. Most grammar specifications can be viewed as programming lan-
guages particularized to natural language, yet grammar platforms typically do not
provide much support for error checking and error messages.Ourccg2xml utility
compiles DotCCG to OpenCCG’s XML and supports such checkingin the process,
while VisCCG provides feedback in real-time (during editing).

Integrated Development Environments (IDEs) for programming languages can
be used to improve productivity for many developers. A key property of IDEs is
that they are optional – a developer may use a plain text editor to write programs if
they wish. We see VisCCG in this light. It is particularly useful for those who are
creating their first grammars. In the classroom setting, we observed that users with
less experience working with computers tend to stick with editing their grammars
using VisCCG, but many others –particularly those with programming experience–
switch over to their favorite text editor (e.g. Emacs or Vi) once they understand the
DotCCGformat. The latter would still periodically load their grammars in VisCCG.
We see this availability of choice as a highly desirable feature of the new tools we
have developed for OpenCCG: the DotCCG format,ccg2xml , and VisCCG.

3 Combinatory Categorial Grammar

CCG is a lexicalized grammar formalism that has attracted both linguistic and com-
putational interest. It has a universal rule component thatdrives the combination
of categories and their semantics to provide compositionalanalyses for sentences.
Categories may be either atomic elements or (curried) functions which specify the
canonical linear direction in which they seek their arguments. Some simplified
example lexical entries are given below:

Olivia := np

Finn := np

plane:= n

the := np/⋆n
saw:= (s\np)/np

thinks:= (s\np)/⋄s

8

The most basic rules are forward (>) and backward (<) application. CCG also
utilizes rules based on the composition (B), type-raising (T), and substitution (S)
combinators of combinatory logic. The rules of CCG are:2

(>) X/⋆Y Y ⇒ X (<) Y X\⋆Y ⇒ X

(>B) X/⋄Y Y/⋄Z ⇒ X/⋄Z (<B) Y\⋄Z X\⋄Y ⇒ X\⋄Z
(>B

×
) X/×Y Y\×Z ⇒ X\×Z (<B

×
) Y/×Z X\×Y ⇒ X/×Z

(>T) X ⇒ Y/(Y\X) (<T) X ⇒ Y\(Y/X)
Each rule is keyed to a modality; this allows lexical items toselectively utilize
some rules but not others. For example, the/⋆ slash on the category forthekeeps
the composition rules from causing ungrammatical word order permutations within
English noun phrases. See Baldridge (2002) and Baldridge and Kruijff (2003) for
full explication of the computational and linguistic significance of modalities.

Though the application rules do the majority of the work, theothers are cru-
cial for building the non-standard constituents for which categorial grammars are
well-known. With these rules and the categories given above, we can provide an
incremental derivation for a sentence such as ‘Finn thinks Olivia saw the plane’:

Finn thinks Olivia saw the plane

np (s\np)/⋄s np (s\np)/np np/⋆n n
>T >T >

s/(s\np) s/(s\np) np
>B

s/⋄s
>B

s/(s\np)
>B

s/np
>

s
The constituents/np derived above for ‘Finn thinks Olivia saw’ is also used in
analyses for relative clauses like ‘the plane that [Finn thinks Olivia saw]’ and right-
node raising sentences like ‘[Kestrel heard] and [Finn thinks Olivia saw] the plane’.

There has been a great deal of work in computational linguistics using CCG
over the past two decades, and there is an even greater degreeof activity in recent
years. A major development was the creation of CCGbank (Hockenmaier and
Steedman, 2007), which has allowed the creation of fast and accurate probabilistic
CCG parsers for producing deep dependencies (Hockenmaier,2003; Bos et al.,
2004; Clark and Curran, 2007). CCG has also been used to induce semantic parsers
from sentences paired with logical forms (Zettlemoyer and Collins, 2007).

Work with OpenCCG represents another major branch of CCG research. It is
used for testing and developing syntactic and semantic analyses (Bierner, 2001;
Baldridge, 2002; Kruijff and Baldridge, 2004; Gerstenberger and Wolksa, 2005)
and for research into CCG parsing and realization (Hockenmaier et al., 2004;
White and Baldridge, 2003; White, 2006b; White et al., 2007). It performs pars-
ing/realization in the systems of a number of projects, manyof which are given in
Figure 2. Most of these are dialog systems, including natural language interfaces
for robots (CoSy, JAST, and INDIGO) and MP3 systems (SAMMIE).

2We exclude substitution here for space reasons. An example is>S: (X/⋄Y)/⋄Z Y/⋄Z⇒ X/⋄Z.

9

Project References/Website
AdaRTE Rojas-Barahona (2007)

http://www.labmedinfo.org/research/adarte/adarte.ht m
COMIC Foster and White (2005, 2007); Nakatsu and White (2006);

White (2006a) http://www.hcrc.ed.ac.uk/comic/
CoSy Kruijff et al. (2007) http://www.cognitivesystems.org
CrAg Isard et al. (2006) http://www.hcrc.ed.ac.uk/crag/
DIALOG Wolska and Kruijff-Korbayová (2004); Benzmülleret al. (2007)

http://www.ags.uni-sb.de/ ∼dialog/
FLIGHTS Moore et al. (2004)
INDIGO http://www.ics.forth.gr/indigo/
JAST Rickert et al. (2007) http://www.euprojects-jast.net/
Methodius Isard (2007) http://www.ltg.ed.ac.uk/methodius/
SAMMIE Becker et al. (2006) http://www.talk-project.org

Figure 2: Example projects that use OpenCCG for parsing and realization.

4 OpenCCG’s XML Format

The underlying native specification format of OpenCCG is XML. Grammatical in-
formation is split across six interdependent files, some of which define components
that were directly inspired by XTAG (Doran et al., 2000). Each file defines a major
component of the grammar, including (a) a structured lexicon containing families
of lexical entries, (b) a morphological database pairing words with their stems and
morphological features, (c) morphological macros instantiating feature values on
lexical entries, (d) a hierarchy of typed features, (e) a setof parameterized CCG
rules, and (f) a testbed of sentences used for simple regression testing.

As an example of what is involved in creating lexical entriesin OpenCCG, Fig-
ure 3 shows a fragment of the XML lexicon, morphology, and typed-feature files
for an Ojibwe3 grammar. This fragment defines a noun family that has a singlelex-
ical category, which contains three lexical items:gaago‘porcupine’,kwe‘woman’,
andmzinig‘book’. Each lexical item inflects with four forms: singularproximate,
singular obviative, plural proximate, and plural obviative. The inflectional suffixes
vary according to the stem.Gaagoandkweare of animate gender, whilemzinig
is inanimate. A basic feature hierarchy is defined, consisting of person (2nd, 1st,
3rd, non3rd), number (singular, plural), gender (animate,inanimate), and obviation
status (proximate, obviative). Note that the majority of the XML for defining the
feature hierarchy has been truncated for space reasons.

Developing grammars directly in XML is time-consuming and error prone.
XML was designed as a format to standardize communication ofdata among com-
puters, not for direct editing by humans. Furthermore, OpenCCG’s XML for-
mat contains many redundancies and interdependencies, leading to errors when
a change is made in one place and not propagated elsewhere. For example, the
association between the part of speechN and the three lexical items is declared in
the lexicon file and in multiple places throughout the morphology file. The decla-
rations of multiple inflected forms of the same stem are also highly repetitive and
fail to express any generalizations over the forms. Finally, the features attached to

3Ojibwe is an Algonquian language of the upper Great Lakes region and southeastern Ontario.

10

Ojibwe lexicon file

<family name=‘‘N’’ pos=‘‘N’’ closed=‘‘true’’>
<entry name=‘‘Entry-1’’>

<atomcat type=‘‘n’’>
<fs id=‘‘1’’>

<feat attr=‘‘index’’>
<lf>

<nomvar name=‘‘X’’/>
</lf>

</feat>
</fs>
<lf>

<satop nomvar=‘‘X’’>
<prop name=‘‘[‘DEFAULT’]’’/>

</satop>
</lf>

</atomcat>
</entry>
<member stem=‘‘mzinigna’’/>
<member stem=‘‘gaago’’/>
<member stem=‘‘kwe’’/>

</family>

Ojibwe morphology file

<entry word=‘gaago’ macros=‘@3rd @sg @prox @anim’ pos=‘N’ stem=‘gaago’/>
<entry word=‘gaagon’ macros=‘@3rd @sg @obv @anim’ pos=‘N’ stem=‘gaago’/>
<entry word=‘gaagog’ macros=‘@3rd @pl @prox @anim’ pos=‘N ’ stem=‘gaago’/>
<entry word=‘gaagong’ macros=‘@3rd @pl @obv @anim’ pos=‘N ’ stem=‘gaago’/>
<entry word=‘mzinigna’ macros=‘@3rd @sg @prox @inan’ pos= ‘N’ stem=‘mzinig’/>
<entry word=‘mzinignan’ macros=‘@3rd @sg @obv @inan’ pos= ‘N’ stem=‘mzinig’/>
<entry word=‘mzinignag’ macros=‘@3rd @pl @prox @inan’ pos =‘N’ stem=‘mzinig’/>
<entry word=‘mzinignang’ macros=‘@3rd @pl @obv @inan’ pos =‘N’ stem=‘mzinig’/>
<entry word=‘kwe’ macros=‘@3rd @sg @prox @anim’ pos=‘N’ st em=‘kwe’/>
<entry word=‘kwewan’ macros=‘@3rd @sg @obv @anim’ pos=‘N’ stem=‘kwe’/>
<entry word=‘kwen’ macros=‘@3rd @pl @prox @anim’ pos=‘N’ s tem=‘kwe’/>
<entry word=‘kwenwan’ macros=‘@3rd @pl @obv @anim’ pos=‘N ’ stem=‘kwe’/>

<macro name="@anim">
<fs id="1" attr="GEND" val="anim"/>

</macro>
<macro name="@inan">

<fs id="1" attr="GEND" val="inan"/>
</macro>
...

Ojibwe typed-feature file

<type name="GEND"/>
<type name="anim" parents="GEND"/>
<type name="inan" parents="GEND"/>
<type name="OBV"/>
<type name="prox" parents="OBV"/>
<type name="obv" parents="OBV"/>

...

Figure 3: XML specifying an Ojibwe noun family containing three lexical items.

11

feature {
gend<1>: anim inan;
pers<1>: 1st 2nd 3rd;
num<1>: sg pl;
obv<1>: prox obv;

}

family N {
entry: n<1>[X]: X(*);

}

def noun(stem, obv-end, pl-end, gend) {
word stem:N {

stem: 3rd sg prox gend;
stem.obv-end: 3rd sg obv gend;
stem.pl.end: 3rd pl prox gend;
stem.obv-end.pl-end: 3rd pl obv gend;

}
}

noun(gaago, n, g, anim)
noun(mzinigna,n, g, inan)
noun(kwe, wan, n, anim)

Figure 4: DotCCG equivalent of the Ojibwe XML fragment givenin Figure 3.

inflected forms need to be declared both in the morphology andtyped-feature files.

5 DotCCG: shorthand for OpenCCG

DotCCG was created to overcome the deficiencies of direct XMLinput of gram-
mars.4 It is a human-friendly format which seeks to eliminate redundancy and
boost expressiveness while requiring far fewer lines of code than raw XML. It
was designed to be concise, flexible, and easy to use, and specifically intended
for direct input and editing using a text editor. The grammaris placed in a sin-
gle .ccg file, with declarations in any order and freely grouped or separated. All
of the XML required by OpenCCG is generated by passing the.ccg file through
ccg2xml , a program written in Python and implemented using PLY.5 Handling the
dependencies in this way greatly reduces the burden on the grammar developer and
increases the grammar’s modularity and maintainability. Figure 4 shows the full
DotCCG equivalent of the Ojibwe XML fragment.

DotCCG was designed with an emphasis on making the grammar specification
language as tolerant and expressive as possible. The general feel of DotCCG syntax
is like C, Java, or Perl. However, the syntax is very forgiving on the usage of com-
mas, semicolons, and other terminators and separators. In fact, this punctuation can

4An existing solution using XSLT transformations is available (Bozşahin et al., 2006) but requires
significant technical expertise.

5PLY, available athttp://www.dabeaz.com/ply/ , is a package that provides functionality
equivalent to Lex and YACC.

12

be omitted as long as no syntactic ambiguity will result.6 This eliminates one of
the major stumbling blocks grammar engineers typically face when adjusting to an
unfamiliar format. Although DotCCG looks similar to a traditional programming
language, the format is intended for use by non-programmersas well as program-
mers. Its semantics are on a higher level than most programming languages, and
it consistently favors expressiveness and ease-of-use over rigid formatting. It is le-
nient in its handling of commas and other punctuation, and most syntactic elements
can be omitted if not needed, with sensible default behavior.

The five sections of DotCCG grammars are described below. Each section is
implemented within the.ccg file with a series of declarations.

Features — Declaring features allows for simple specification of and refer-
ence to features in lexical entries and categories. For example, the Ojibwe gram-
mar fragment shown above creates a simple feature structurewith person, number,
gender and obviation features. The character in angle brackets following the name
of the feature is required by OpenCCG and relates to its mechanism for unifying
feature values across lexical categories. Features in DotCCG can also be nested
and allow for multiple inheritance.

Words — Word declarations associate lexical items with particular categories
and features as well as specifying morphological information. The following are
two examples for English, one showing a simple wordthe of family Det , and the
other showing a pseudo-wordpro1 of family Pro and semantic classanimate ,
with various surface realizations according to case and number:

(1) word the:Det;
word pro1:Pro(animate) {

I: 1st sg nom;
me: 1st sg acc;
we: 1st pl nom;
us: 1st pl acc; }

Word declarations are commonly placed inside of expansions, as in thenoun ex-
pansion in the Ojibwe fragment. See section 6 for further discussion.

Rules— This section specifies the rules allowed or disallowed in the particular
grammar. The CCG rules enabled by default are the forward andbackward vari-
eties of application, harmonic composition, and crossed composition. Substitution
rules must be invoked explicitly. OpenCCG supports the modalities of Baldridge
and Kruijff (2003), so the applicability of the rules is controlled by the use of these
modalities on slashes in categories.

Type-raising can be invoked and restricted to particular argument and result
categories. For example, the following declaration adds the rulenp⇒ s$/(s$\np):

(2) typeraise + $: np => s;

Type-changing rules can also be added. The following would be one way of
implementing pro-drop in a grammar (sfin\npnom changes tosfin):

6The only situation where separators are required occurs in arguments to textual expansions,
which can consist of arbitrary text.

13

(3) typechange: s[finite]\np[nom] => s[finite] ;

Lexicon/Categories— Lexical families consist of one or more category declara-
tions and optional specification of lexical items which are members of that family.
For example, in English the lexical familyDet has just a single category:np/⋄n.
The family for dative alternation verbs, though, has two possible categories, one
for the double object construction and one for the pp-complement construction.

There are two types of intransitive verbs in Ojibwe, those with an animate
subject (VAI) and those with an inanimate one (VII). The category declarations
for these two families are shown below.7 Features are enclosed in square brackets,
and the final term, after the second colon, is the semantic representation.

(4) family VAI {
entry: s<8>[E] | n<1>[anim X]: E:action (* <actor>X:sem-obj); }

family VII {
entry: s<8>[E] | n<1>[inan X]: E:action (* <actor>X:sem-obj); }

Testbed— The testbed contains a list of constructions and the numberof parses the
grammar is expected to find for each construction. The testbed facility provides for
simple regression testing, e.g. whether the expected number of parses are obtained
and whether sentences can be reverse realized from their parse results.8

(5) testbed {
wiisniwag gaagog: 1; ## the porcupines eat
wiisniwag mzinignan: 0; ## * the books eat }

6 Expansions with DotCCG

6.1 Introduction to expansions

Most grammar engineering systems provide mechanisms to reduce redundancy.
These support the expression of various levels of generalization while providing
power and flexibility. For example, XLE has macros and parameterized rules, and
the LKB uses types to capture lexical and syntactic regularities. DotCCG offers
parameterized string-rewrite functions that we callexpansions.

We chose expansions as our primary abstraction mechanism because they are
flexible and easy to use. The definitions directly specify their expansions and mir-
ror what will be inserted and processed when an expansion call is made. The lack of
a need to “program” data makes expansions easy to use for non-programmers. Fur-
thermore, expansions can abstract overanyportion of a text, regardless of whether
such a usage was anticipated in the initial design of the grammar. A programmed
mechanism, by contrast, either has to impose a uniform structure on all specifica-
tions or have separate mechanisms to handle each type of structure.

7The numbers in angle brackets represent the feature structure ID assigned to the category. These
are global for the grammar: this is one of the main weaknessesof OpenCCG grammar specification.

8The sentences given here are not surface forms but rather idealizations of Ojibwe sentences prior
to phonological processes.

14

Our expansions are quite similar to XLE macros and parameterized rules, but
with greater syntactic flexibility, fewer constraints, andincreased string manipula-
tion capabilities. The expansions allow DotCCG to handle quite complex morphol-
ogy without having to interface with external morphological analyzers. Of course,
there are many advantages to interfacing with existing tools such as morphological
analyzers, and XLE grammars have been successfully interfaced with finite-state
analyzers (Kaplan et al., 2004). Along with the flexible syntax, of course, comes a
reduced level of control over expansions, for good and for ill. Unlike XLE, for ex-
ample, no error occurs if not all input arguments appear in the output specified for
the expansion. While this may allow a user to write expansions with unexpected
consequences, it gives the expansions a broader range of possible functionalities.

A disadvantage to our solution is that expansions are a meta-theoretic con-
struct and as such are not visible in the underlying grammar framework itself. By
the time OpenCCG sees the grammar, all expansions have takenplace, and there
is no record of how the expanded structures were constructed. Thus, it may be
hard to debug a problem occurring in a group of deeply nested expansions,9 and
injudicious use of expansions can lead to quite obfuscated code.

A simplified version of an expansion contained in Figure 4 is given in (6).
It defines a parameterized expansion namednoun , with two formal parameters
stem andgend . Calling this expansion withnoun(gaago, anim) produces the
expanded text given in (7).

(6) def noun(stem, gend) {
word stem:N {

stem: 3rd sg prox gend;
stem.n: 3rd sg obv gend;
stem.g: 3rd pl prox gend;
stem.ng: 3rd pl obv gend;

}}
noun(gaago, anim)

(7) word gaago:N {
gaago: 3rd sg prox anim;
gaagon: 3rd sg obv anim;
gaagog: 3rd pl prox anim;
gaagong: 3rd pl obv anim;

}

Occurrences of formal parameters inside of the expanded text have been replaced
with their actual values, and strings separated by a period have been concatenated.

6.2 Nested expansions for complex morphology

Expansions in conjunction with word declarations make it easy to express arbi-
trarily complicated morphology. They are used extensivelyin DotCCG grammars.
Expansions can be nested inside of each other without restriction, allowing almost
any pattern of syncretism to be factored out with little or norepetition.

As an example, a large fragment of Classical Arabic, including all noun, verb,
adjective and pronoun morphology and correct handling of resumptive pronouns in
relative clauses, was implemented in an 800-line.ccg file (about 20% of which is
comments). It produces a vocabulary with more than 1100 words. The following
portion shows how some of the complexities of present-tenseverbs can be handled:

9To help alleviate this,ccg2xml provides options to debug expansion problems, such as dis-
playing the text after expansion processing.

15

Arabic verb fragment. We are omitting a great deal: dual num ber,
jussive mood, all past tense forms, doubled verbs, etc.

All present-tense verbs can be reduced to four forms (five, counting the
dual), plus prefixes.

def gen-pres(mood, fsing, fsing-fem, fplur-masc, fplur-f em) {
A special phonological rule collapses adjacent glottal st ops: e.g.
_a_kulu -> _aakulu. We implement using regsub() -- see belo w.
_ . regsub(’ˆ([aiu])_’, ’\1\1’, fsing): pres, mood, 1st, sg ;
t.fsing: pres, mood, 2nd, m, sg;
t.fsing-fem: pres, mood, 2nd, f, sg;
y.fsing: pres, mood, 3rd, m, sg;
t.fsing: pres, mood, 3rd, f, sg;

n.fsing: pres, mood, 1st, pl;
t.fplur-masc: pres, mood, 2nd, m, pl;
t.fplur-fem: pres, mood, 2nd, f, pl;
y.fplur-masc: pres, mood, 3rd, m, pl;
y.fplur-fem: pres, mood, 3rd, f, pl;

}

Most verbs can be reduced to two stems (one for feminine plur al and one
for all other cases), with a specific set of endings, which v ary between
indicative and subjunctive.

def two-form-pres-indic(formv, formc) {
gen-pres(indic, formv.u, formv.iina, formv.uuna, formc. na)

}
def two-form-pres-subj(formv, formc) {

gen-pres(subj, formv.a, formv.ii, formv.uu, formc.na)
}

The basic Arabic verb conjugations are strong, second-wea k, doubled, and
third-weak. Strong verbs have one stem, while second-weak and doubled
(not included here) have two. Second-weak verbs have many s ubtypes, so
we require that each verb give both stems.

def strong-pres(form) {
two-form-pres-indic(form, form)
two-form-pres-subj(form, form)

}
def 2nd-weak-pres(formv, formc) {

two-form-pres-indic(formv, formc)
two-form-pres-subj(formv, formc)

}

Third-weak verbs merge stem and endings, and have three sub types, ending
in -aa, -ii, or -uu in the base form.

def 3rd-weak-pres-aa(form) {
gen-pres(indic, form.aa, form.ayna, form.awna, form.ayn a)
gen-pres(subj, form.aa, form.ay, form.aw, form.ayna)

}
def 3rd-weak-pres-ii(form) { ... } # Omitted to save space
def 3rd-weak-pres-uu(form) { ... } # Omitted to save space

Here we provide expansions for the various conjugations. (These are
appropriate for a full verb paradigm, including both prese nt and past
tense, but the past-tense expansion has been commented out .) Each lexical
entry specifies the past-tense stem (which is used to form t he verb’s
"dictionary form"), some properties (valency and English translation), a

16

present-tense stem, and any other required info. Second-w eak verbs have
two stems for each of present and past, while third-weak ver bs specify
the past (ay/aw/ii) and present (ii/uu/aa) subtypes.

def strong-verb(past, props, pres) {
word past: props {

strong-pres(pres)
}

}
def 2nd-weak-verb(pastv, props, pastc, presv, presc) {

word pastv: props {
2nd-weak-pres(presv, presc)

}
}
def 3rd-weak-verb(past_stem, props, past_type, pres_ste m, pres_type) {

word past_stem . past_type: props {
Note how we are dynamically constructing the expansion cal l!

3rd-weak-pres- . pres_type(pres_stem)
}

}

Here we declare the actual verbs. These are identical to how they appear
in the full grammar, where each one expands to 52 individual forms.

strong-verb(katab, TransV(pred=write), aktub)
2nd-weak-verb(kaan, TransV(pred=be), kun, akuun, akun)
3rd-weak-verb(_a9T, DitransV(pred=give), ay, u9T, ii)

Note that Arabic verbs are formed in a complex fashion involving prefixes,
suffixes, and internal stem changes. In general, there are different stems for past
and present, and many verbs have two stems in each tense. The endings also vary
in complicated ways among different moods and classes. By the judicious use of
nested expansions, however, we can reduce each lexical entry down to a very small
size, where only the class and underivable stem forms are given. The following
table shows the indicative and subjunctive moods generatedfor the three sample
verbs: kataba ‘write’ (strong verb),kaana ‘be’ (2nd-weak verb; note the short
vowel inyakunna), and’a9Taa ‘give’ (3rd-weak verb).

kataba.IND kataba.SBJ kaana.IND kaana.SBJ ’a9Taa.IND ’a9Taa.SBJ
1sg ’aktubu ’aktuba ’akuunu ’akuuna ’a9Taa ’a9Taa
2sg.m taktubu taktuba takuunu takuuna ta9Taa ta9Taa
2sg.f taktubiina taktubii takuuniina takuunii ta9Tayna ta9Tay
3sg.m yaktubu yaktuba yakuunu yakuuna ya9Taa ya9Taa
3sg.f taktubu taktuba takuunu takuuna ta9Taa ta9Taa
1pl naktubu naktuba nakuunu nakuuna na9Taa na9Taa
2pl.m taktubuuna taktubuu takuunuuna takuunuu ta9Tawna ta9Taw
2pl.f taktubna taktubna takunna takunna ta9Tayna ta9Tayna
3pl.m yaktubuuna yaktubuu yakuunuuna yakuunuu ya9Tawna ya9Taw
3pl.f yaktubna yaktubna yakunna yakunna ya9Tayna ya9Tayna

6.3 Expansions and built-in functions

Expansions are made even more powerful by three built-in expansion functions,
which provide the full power of regular-expression matching and replacement.
regsub(PATTERN, REPLACEMENT, TEXT) returns TEXT, but with all oc-
currences of PATTERN (a regular expression) replaced with REPLACEMENT
(a standard regular expression substitution expression, including backreferences

17

to captured text).ifmatch(PATTERN, TEXT, IF-TRUE, IF-FALSE) matches
regular expression PATTERN against TEXT, returning IF-TRUE if it matches and
IF-FALSE otherwise.ifmatch-nocase functions similarly, but the matching is
case-insensitive.

An example of the usage of these functions is computing English plurals:

(8) def pluralize(Word) {
ifmatch(’ˆ. * [aeiou][oy]\$’, Word, Word . s,

ifmatch(’ˆ. * ([sxoy]|sh|ch)\$’, Word,
regsub(’ˆ(. *)y\$’, ’\1i’, Word) . es,

Word . s))}

This definition handles both-s and-esendings, including words ending with-y. It
will correctly mapcat, box, boy, ladyinto cats, boxes, boys, ladies, respectively.

Expansions in combination withregsub can also be used to handle complex
cases such as infixation in Tagalog, where verbs can take on a number of different
voice affixes that single out a particular participant in an event (Kroeger, 1993). For
example, the stembili ‘buy’ can take the inflected formsbumili (actor),binili (ob-
ject),binilhan (dative),ipinambili (instrumental),ibinili (benefactive), andkabibili
(recent-perfective). The following DotCCG fragment demonstrates this, breaking
the stem into two parts to allow for infixation and usingregsub to handle redupli-
cation inkabibili and the deletion ofi and insertion ofh in binilhan:10

(9) def reduplicate (Word) { regsub(’ˆ(..)(. *)$’, ’\1\1\2’, Word) }

def regular_verb (St1, St2, LF) {
St1 . um . St2 :VerbAV (pred=LF);
St1 . in . St2 :VerbOV (pred=LF);
St1 . in . regsub(’ˆ(. *)i$’, ’\1h’, St2) . an :VerbDV (pred=LF);
ipinam . St1 . St2 :VerbIV (pred=LF);
i . St1 . in . St2 :VerbBV (pred=LF);
ka . reduplicate(St1 . St2) :VerbRP (pred=LF);

}

regular_verb (b, ili, buy);

6.4 Expansions for inheritance-like effects

In grammar engineering, inheritance is often used to eliminate redundancy by al-
lowing partial definitions to be used as a base upon which further definitions are
built. Inheritance (including defaults) is in fact one of the core aspects of the LKB
system (in that it uses the Type Description Language) whichallows complex lin-
guistic signs to be built elegantly with a series of incremental declarations using
inheritance. Villavicencio (2002) utilizes inheritance in the LKB to create a cate-
gorial grammar which defines the transitive verb and sentential complement cate-
gories as extensions of the intransitive verb category, ditransitives as extensions of
transitives, and so on.

10Tagalog verbal morphology in general is of course much more complex than for this one stem,
but this shows in principle how such patterns can be captured.

18

OpenCCG does not provide support for inheritance in general, but the XML
format does provide special declarations to allow the inheritance patterns used by
Villavicencio (Baldridge, 2002). Interestingly, expansions provide an alternative
way to achieve this effect:

(10) def iv_cat (PostSyn, MoreSem) {
s[E] \ np[X nom] PostSyn: E(* <Subject>X MoreSem)

}
def tv_cat (PreSyn, PostSyn, MoreSem) {

iv_cat(PreSyn / np[Y acc] PostSyn, <DirectObject>Y MoreSe m)
}
family IntransV(V) {

entry: iv_cat(,);
}
family TransV(V) {

entry: tv_cat(,,);
}
family DitransV(V) {

entry: tv_cat(, / np[Z acc] , <IndirectObject>Z);
entry: tv_cat(/ pp[Z acc] , , <IndirectObject>Z);

}

This shows the declaration of a parameterized expansion,iv cat , which defines
a category (and its semantics) while leaving variables embedded in it that allow
further syntactic and semantic arguments to be added. Thetv cat definition in
turn builds oniv cat , allowing arguments to be inserted either before or after
the direct object. TheDitransV family makes use of this, providing entries that
implement both double-object and PP-shifted forms of a ditransitive verb.

An important aspect of OpenCCG that supports this sort of inheritance in the
semantics is the use of hybrid logics (Baldridge and Kruijff, 2002) for representing
logical forms as a flattened set of elementary predications.11

Expansions provide a very flexible means to generalize not only how words are
defined (morphology), but also how categories are constructed. The space savings
(in terms of the amount of grammar code which a grammar engineer is confronted
with) can be orders of magnitude in size: for example, the 16 DotCCG lines given
above translate into 200+ (harder to maintain) lines in OpenCCG’s XML.

Of course, constructing words and categories in this way canmake it difficult
to see exactly what the lexicon looks like directly in DotCCG. VisCCG, described
in detail in the next section, is able to display—at various levels of granularity—
the resulting lexicon, both the words and the categories that are available,while the
grammar is being edited for faster development and debugging.

7 VisCCG: wiki-style GUI editing

DotCCG provides a great deal of power to the grammar engineerwith or without a
GUI. However, for many users, a GUI is still an important means for using a gram-
mar platform effectively, and visualization can help even the advanced developer

11Similar representations, e.g. Minimal Recursion Semantics, would work equally well in this
regard.

19

Figure 5: Debugging with CCG

see the structure and definitions of a grammar more effectively. VisCCG takes a
wiki-like approach, which enables grammar visualization while never taking the
developer too far from the underlying definitions. The goal is to allow new users
to begin using the system very quickly without constrainingadvanced users within
the bounds of purely-graphical editing (as opposed to textual editing in conjunction
with visualization).

When starting new grammars, it is often useful to iron out nuances of the lex-
icon, rules or morphology before expanding the grammar significantly. VisCCG
allows users to begin with a few essential aspects such as rules and features and
then visualize and debug them even without a complete grammar. This adheres to
the software engineering paradigm of rapid application development. Individual
sections can be edited and visualized independently, enhancing the maintainability
of the grammars.

VisCCG allows the user to begin a new grammar with a template that organizes
the modules of the grammar. This simplifies bootstrapping ofgrammar develop-
ment and also helps maintain a de facto standard for grammarsdeveloped using the
system – though users are free to deviate from it if they wish.More importantly,
as the grammar evolves over time with perhaps multiple people contributing to and
refining the grammar, the subsection to be edited is easily localized.

IDEs for programming languages provide detailed debugginginformation for
syntax errors in source code. Similarly, VisCCG identifies syntax errors in the
DotCCG source and highlights them for users to fix, as illustrated in figure 5.

20

Figure 6: Local editing in Lexicon mode. ThePro family has been selected for
editing from the graphical display (the top pane); this opens the grammar file for
editing at the location which specifies the family (the lowerpane).

The line numbers displayed beside the source help localize and isolate individ-
ual errors. This capability alone dramatically improves development time, even for
experienced developers.

The visualization of a grammar is often very different from what we can ex-
press in text. VisCCG enables users to view the grammar at various levels of
granularity, allowing the user to spot errors and generalizations easily and with-
out needing to view unrelated information, such as details of features or semantics.
As with wikis, VisCCG allows a user to locally edit a small part of the grammar.
This is made possible by the terseness of DotCCG, which itself is made possi-
ble by the fact that CCG categories can be concisely specifiedin a linear format.
VisCCG additionally allows editing to occur while the user continues to view the
graphical representation of the grammar. This feature allows seamless editing of
one category definition in the ‘Lexicon’ tab while other categories are visualized
at the desired granularity. Also, the results of such an editare immediately visible,
allowing the user to try out various features before saving changes. An example of
editing the ‘Pro’ family is illustrated in Figure 6.

VisCCG has many different modes of visualization. The initial screen is a basic
editor that allows the user to develop their grammar from scratch. The ‘Testbed’ tab
also the user to input new test sentences, and the ‘Feature’ tab provides a straight-
forward means of editing the feature hierarchy. The ‘Words’tab lists all available
lexical items as well as their various inflected forms. This is especially useful for
checking the output of expansions, and in particular expansions which produce
words based on stems and morphological regularities. This rich set of capabilities

21

enables the user to update the grammar with a tight editing and visualization cycle.
These capabilities also ease the process of grammar development by allowing the
user to focus on particular sections, while being able to switch back to any other
view easily.

8 Uses of and resources for DotCCG and VisCCG

VisCCG has been used so far in both graduate and undergraduate classes to teach
both CCG and grammar engineering. Even students with littlecomputational back-
ground were able to use the tools effectively with just a single lab session. Previ-
ous courses that used the XML format proved it to be frustrating for students, and
required many sessions for them to use at all (and certainly not master). This ex-
perience was in fact the genesis of DotCCG.

For teaching purposes and to facilitate wider use of VisCCG,we have devel-
oped a wiki12 which focuses on the various computational and linguistic resources
available for learning to use and for using the system. Theseresources include tuto-
rials, links to software download sites, and access to a number of grammars which
have been developed using VisCCG. Among these are small (in many cases tiny)
grammars for Tagalog, Ojibwe, French, and Hungarian, as well as some small-
domain English grammars. Though no truly broad-coverage grammar has been
developed with our new tools to date, they are already being used to develop gram-
mars used in some of the projects listed in Figure 2, including AdaRTE, INDIGO,
and Methodius.

We see a number of interesting directions for development ofthe tools dis-
cussed in this paper. In addition to refining the presentation of the various compo-
nents of the grammar, it would be extremely useful to be able to run the OpenCCG
parser from inside VisCCG. It would also be interesting to expand the grammar ini-
tialization process to include something like the customization questionnaire used
in the Grammar Matrix (Bender and Flickinger, 2005).

9 Conclusion

We have presented an overview and motivation of our work on a set of tools for im-
proving grammar engineering for OpenCCG. The approach is two-pronged in that
it improves textual representations of CCG grammars via theDotCCG format and
it allows the information in such grammars to be visualized with VisCCG. VisCCG
furthermore supports wiki-style editing that enables users to edit small sections of
the grammar while visualizing the rest and to see the resultsof their edits immedi-
ately. However, the use of VisCCG for editing is optional – DotCCG grammars can
be edited with any plain-text editor as well. The simplicity, flexibility and power

12http://comp.ling.utexas.edu/wiki/doku.php/openccg

22

of DotCCG and the optional availability of VisCCG is crucialfor supporting the
needs of both new and advanced users.

References

Baldridge, Jason. 2002.Lexically Specified Derivational Control in Combinatory
Categorial Grammar. Ph. D.thesis, University of Edinburgh.

Baldridge, Jason and Kruijff, Geert-Jan. 2003. Multi-Modal Combinatory Catego-
rial Grammar. InProceedings of EACL, Budapest, Hungary.

Baldridge, Jason and Kruijff, Geert-Jan M. 2002. Coupling CCG and Hybrid Logic
Dependency Semantics. InProceedings of ACL.

Becker, Tilman, Blaylock, Nate, Gerstenberger, Ciprian, Kruijff-Korbayov, Ivana,
Korthauer, Andreas, Pinkal, Manfred, Pitz, Michael, Poller, Peter and Schehl,
Jan. 2006. Natural and intuitive multimodal dialogue for in-car applications: The
SAMMIE system. InProceedings of the ECAI Sub-Conference on Prestigious
Applications of Intelligent Systems (PAIS 2006), Riva del Garda, Italy.

Bender, Emily M. and Flickinger, Dan. 2005. Rapid Prototyping of Scalable Gram-
mars: Towards Modularity in Extensions to a Language-Independent Core. In
Proceedings of the 2nd International Joint Conference on Natural Language
Processing IJCNLP-05 (Posters/Demos), Jeju Island, Korea.

Benzmüller, Christoph, Horacek, Helmut, Kruijff-Korbayova, Ivana, Pinkal, Man-
fred, Siekmann, Jörg and Wolska, Magdalena. 2007. NaturalLanguage Dialog
with a Tutor System for Mathematical Proofs. In Ruqian Lu, J¨org Siekmann and
Carsten Ullrich (eds.),Cognitive Systems, volume 4429 ofLNAI, Springer.

Bierner, Gann. 2001.Alternative Phrases: Theoretical Analysis and Practical Ap-
plications. Ph. D.thesis, Division of Informatics, University of Edinburgh.

Bos, Johan, Clark, Stephen, Steedman, Mark, Curran, James R. and Hockenmaier,
Julia. 2004. Wide-Coverage Semantic Representations froma CCG Parser. In
Proceedings of COLING-04, pages 1240–1246.

Bozşahin, Cem, Kruijff, Geert-Jan M. and White, Michael. 2006. Specifying
Grammars for OpenCCG: A Rough Guide. http://openccg.sf.net/.

Butt, Miriam, King, Tracy Holloway, Niño, Marı́a-Eugeniaand Segond,
Frédérique. 1998.A Grammar Writer’s Cookbook. Stanford, CA: CSLI.

Clark, Stephen and Curran, James. 2007. Wide-Coverage Efficient Statistical Pars-
ing with CCG and Log-Linear Models.Computational Linguistics33(4).

Copestake, Ann. 2002.Implementing Typed Feature Structure Grammars. Stan-
ford, CA: CSLI Publications.

23

Doran, Christine, Hockey, Beth Ann, Sarkar, Anoop, Srinivas, B. and Xia, Fei.
2000. Evolution of the XTAG System. In Anne Abeillé and OwenRambo (eds.),
Tree Adjoining Grammars: Formalisms, Linguistic Analysisand Processing,
pages 371–404, Stanford, CA: CSLI Publishing.

Foster, Mary Ellen and White, Michael. 2005. Assessing the impact of adaptive
generation in the COMIC multimodal dialogue system. InProceedings of the
IJCAI 2005 Workshop on Knowledge and Reasoning in PracticalDialogue Sys-
tems, Edinburgh.

Foster, Mary Ellen and White, Michael. 2007. Avoiding repetition in generated
text. InProceedings of ENLG, Schloss Dagstuhl.

Gerstenberger, Ciprian-Virgil and Wolksa, Magdalena. 2005. Introducing Topo-
logical Field Information into CCG. InProceedings of the 10th ESSLLI Student
Session, pages 62–74, Edinburgh, UK.

Hockenmaier, Julia. 2003. Parsing with Generative Models of Predicate-Argument
Structure. InProceedings of ACL.

Hockenmaier, Julia, Bierner, Gann and Baldridge, Jason. 2004. Extending the cov-
erage of a CCG System.Research in Language and Computation2, 165–208.

Hockenmaier, Julia and Steedman, Mark. 2007. CCGbank: A Corpus of CCG
Derivations and Dependency Structures Extracted from the Penn Treebank.
Computational Linguistics33(3), 355–396.

Isard, Amy. 2007. Choosing the Best Comparison Under the Circumstances. In
Proceedings of the International Workshop on Personalization Enhanced Access
to Cultural Heritage (PATCH07), Corfu, Greece.

Isard, Amy, Brockmann, Carsten and Oberlander, Jon. 2006. Individuality and
Alignment in Generated Dialogues. InProceedings of INLG-06, pages 22–29.

Kaplan, R. M., Maxwell, J. T., King, T. H. and Crouch, R. S. 2004. Integrating
Finite-state Technology with Deep LFG Grammars. InProceedings of Combin-
ing Shallow and Deep Processing for NLP, ESSLLI 2004.

Kroeger, Paul. 1993.Phrase Structure and Grammatical Relations in Tagalog.
Stanford: CSLI Publications.

Kruijff, Geert-Jan and Baldridge, Jason. 2004. Generalizing Dimensionality in
Combinatory Categorial Grammar. InProceedings of COLING-04.

Kruijff, Geert-Jan M., Zender, Hendrik, Jensfelt, Patric and Christensen, Henrik I.
2007. Situated Dialogue and Spatial Organization: What, Where. . . and Why?
International Journal of Advanced Robotic Systems4(2).

24

Moore, Johanna D., Foster, Mary Ellen, Lemon, Oliver and White, Michael. 2004.
Generating tailored, comparative descriptions in spoken dialogue. InProceed-
ings of FLAIRS 2004, Miami Beach.

Nakatsu, Crystal and White, Michael. 2006. Learning to Say It Well: Reranking
Realizations by Predicted Synthesis Quality. InProceedings of COLING-ACL
2006.

Rickert, Markus, Foster, Mary Ellen, Giuliani, Manuel, By,Tomas, Panin, Giorgio
and Knoll, Alois. 2007. Integrating language, vision and action for human robot
dialog systems. InProceedings of HCI International 2007, Beijing.

Rojas-Barahona, Lina M. 2007. Adapting Combinatory Categorial Grammars in
a Framework for Health Care Dialogue Systems. InProceedings of the 11th
Workshop on the Semantics and Pragmatics of Dialogue (DECALOG 2007),
pages 187–188.

Steedman, Mark. 2000.The Syntactic Process. MIT Press/Bradford Books.

Steedman, Mark and Baldridge, Jason. To appear. Combinatory Categorial Gram-
mar. In Robert Boersley and Kersti Börjars (eds.),Nontransformational Syntax:
A Guide to Current Models, Blackwell.

Villavicencio, Aline. 2002.The Acquisition of a Unification-Based Generalised
Categorial Grammar. Ph. D.thesis, University of Cambridge.

White, Michael. 2006a. CCG Chart Realization from Disjunctive Inputs. InPro-
ceedings of INLG-06.

White, Michael. 2006b. Efficient Realization of CoordinateStructures in Combina-
tory Categorial Grammar.Research on Language and Computation4(1), 39–75.

White, Michael and Baldridge, Jason. 2003. Adapting Chart Realization to CCG.
In Proceedings of ENLG.

White, Michael, Rajkumar, Rajakrishnan and Martin, Scott.2007. Towards Broad
Coverage Surface Realization with CCG. InProceedings of the Workshop on
Using Corpora for NLG: Language Generation and Machine Translation (UC-
NLG+MT), Copenhagen.

Wolska, Magdalena and Kruijff-Korbayová, Ivana. 2004. Analysis of Mixed Natu-
ral and Symbolic Input in Mathematical Dialogs. InProceedings of ACL, pages
25–32.

Zettlemoyer, Luke and Collins, Michael. 2007. Online Learning of Relaxed CCG
Grammars for Parsing to Logical Form. InProceedings of EMNLP-CoNLL
2007.

25

Combining Research and Pedagogy in the Development of a
Crosslinguistic Grammar Resource

Emily M. Bender
University of Washington

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

26

Abstract

This paper describes how a graduate course in multilingual grammar en-
gineering has been used to inform the development of the LinGO Grammar
Matrix. When the course was first taught (in 2004), the Grammar Matrix con-
sisted only of the cross-linguistic core grammar. Over time, the lab instruc-
tions for the students in the course sparked the developmentof extensions
to the Matrix providing ‘libraries’ of analyses of crosslinguistically variable
phenomena. At the same time, the students’ course work has provided valu-
able feedback both in error checking of the core grammar and refinement of
the libraries. Based on the experience of teaching this class for four years, I
suggest that grammar engineering courses present a rich opportunity for the
combination of pedagogy and research. Involving even beginning grammar
engineers in on-going investigations can be rewarding for all involved.

1 Introduction

This paper is an exploration of how student work can be harnessed to further cur-
rent research goals in a way that also benefits the students, and how individual
faculty or researchers can efficiently combine both teaching and research roles. In
particular, I present some reflections on these ideas from the vantage point of re-
search on the LinGO Grammar Matrix (Bender et al., 2002) and the University
of Washington’s Linguistics 567: “Knowledge Engineering for Natural Language
Processing”. In Section 2, I briefly present the Grammar Matrix. Section 3 de-
scribes how the course is structured. Section 4 gives examples of how student
work has provided valuable feedback to the Grammar Matrix. Section 5 outlines
possible future directions for the course.

2 The Grammar Matrix

This section briefly introduces the Grammar Matrix, situating it in its theoretical
context, and describing the contents of the core grammar andthe phenomenon
specific libraries.

2.1 Theoretical context

The LinGO Grammar Matrix (Bender et al., 2002; Flickinger and Bender, 2003;
Bender and Flickinger, 2005; Drellishak and Bender, 2005) is a starter-kit designed
to facilitate the rapid development of broad-coverage precision grammars. In ad-
dition, it is intended to promote consistency in semantic representations such that

†The Grammar Matrix project is a collaborative effort, and I would like to acknowledge the
contributions of Scott Drellishak, Chris Evans, Dan Flickinger, Stephan Oepen, Kelly O’Hara, and
Laurie Poulson, as well as the students in Linguistics 471 and 567 in 2004-2007. The original
inspiration for the course came from Petter Haugereid. The Grammar Matrix project is supported by
NSF grant BCS-0644097 and a gift to the Turing Center from theUtilika Foundation.

27

broader applications using a Matrix-derived or Matrix-compatible grammar can
easily be adapted to additional languages by switching in different Matrix-derived
or Matrix-compatible grammars. The Grammar Matrix has alsoemerged as an in-
teresting platform for exploring generalizations and the range of variation across
languages in syntax and the syntax-semantics interface. Inthis respect, it repre-
sents a kind of computational linguistic typology.

The Grammar Matrix is couched within the Head-driven PhraseStructure Gram-
mar framework (HPSG; Pollard and Sag 1994), and uses MinimalRecursion Se-
mantics (MRS; Copestake et al. 2005) for the semantic representations. It is imple-
mented in tdl, a typed-feature formalism interpreted by theLKB grammar develop-
ment environment (Copestake, 2002) and the PET parser (Callmeier, 2000). The
Grammar Matrix is developed within the context of the DELPH-IN consortium
(www.delph-in.net), as part of a larger constellation of grammars and associated
software.

More broadly, the Grammar Matrix is an instance of multilingual grammar
engineering. In this sense, it is similar in spirit to the ParGram project (Butt et al.,
2002; King et al., 2005), the MetaGrammar project (Kinyon etal., 2006), KPML
(Bateman et al., 2005), Grammix (Müller, 2007) and OpenCCG(Baldridge et al.,
2007). Among approaches to multilingual grammar engineering (Bender et al.,
2005), the Grammar Matrix’s distinguishing characteristics include the deployment
of a shared core grammar for crosslinguistically consistent constraints and a series
of libraries modeling varying linguistic properties.

2.2 Core grammar

The core grammar consists of types and constraints which aremeant to be crosslin-
guistically useful. The core grammar always, in fact, represents a set of working
hypotheses about language universals within the general framework of the Gram-
mar Matrix. As constraints are found to be incorrect for languages analyzed using
the Matrix, they are removed from the core grammar. Types found to be irrelevant
for particular languages are also intended to be moved out tothe libraries, though
in practice this process is slower, as the presence of irrelevant types in a grammar
does not affect the analyses assigned to strings by the grammar, provided those
types are not used in any rule or lexical item instances.

The core grammar focuses on the following six aspects of a grammar: (i) the
basic feature geometry, (ii) basic construction types (e.g., head-subject phrases,
head-adjunct phrases, and coordination phrases), (iii) semantic composition, or the
way in which the semantic representations of phrases are computed on the basis
of the semantic representations of their daughters and the contribution of the rule
licensing the phrase, (iv) basic lexical types, including linking types associating
syntactic with semantic arguments, (v) basic types for lexical rules, and (vi) col-
lateral files for interaction with the parsing, generation and grammar development
software (the LKB and PET).

28

2.3 Libraries and customization

The core grammar itself has already proven useful, jump-starting the development
of several grammars including the NorSource grammar of Norwegian (Hellan and
Haugereid, 2003), the Spanish Resource Grammar (Marimon etal., 2007) and the
Modern Greek Resource Grammar (Kordoni and Neu, 2005). If the goal is the
reuse of grammar code across languages, however, restricting the Matrix to those
types and constraints which are valid across all languages is quite limiting: In
other words, it seems likely that the analysis (or implementation) of, say, verb-
final word order used in Japanese ought to also be applicable to another verb-final
language, such as Malayalam.1 This is the motivation behind the development
of phenomenon-specific libraries which provide analyses ofdifferent variations on
the same phenomenon (e.g., major constituent word order, AND-coordination, etc.)
(Bender and Flickinger, 2005; Drellishak and Bender, 2005). These analyses are
accessed through a website2 which presents the user with a typological question-
naire and outputs a working grammar combining the Matrix core grammar with
information from the libraries on the basis of the user’s answers to the question-
naire.

The statement above about cross-linguistic applicabilityof particular analy-
ses is a hypothesis to be tested: Given the interconnectedness of analyses of dis-
parate phenomena within a grammar, it is nota priori obvious that one and the
same analysis of a given phenomenon (e.g., verb-final order)will integrate prop-
erly with the required analyses of all the rest of the phenomena in two different
languages. In fact, in developing the libraries to date, we have found them to be
non-modular in several respects. It is not possible, for example, to fully specify
the head-complement rule which is output by the basic word order module without
also knowing whether adpositions, complementizers, and auxiliaries (if present)
precede or follow their complements. Nonetheless, it is interesting to work to-
wards universal coverage in the libraries while attemptingto properly account for
their interactions. It is in this way that the development ofthe Matrix becomes an
exercise in computational linguistic typology.

The Matrix libraries are a type of parameterization of linguistic variation, and
in that sense, this approach is similar to the Principles andParameters approach
(P&P) (Chomsky, 1981,inter alia). However, where P&P work typically tries
to derive multiple disparate surface phenomena from each parameter, the Matrix
libraries target one phenomenon at a time. Another important difference is that
the Matrix is a grammar engineering project, producing grammar fragments which
can be run against test suites to validate the interaction ofthe analyses (Oepen and
Flickinger, 1998; Bender, 2006; Bender et al., 2007).

The current libraries address major constituent order, strategies for express-
ing sentential negation and (matrix) yes-no questions, a handful of lexical prop-

1Asher and Kumari (1997) give SOV as the basic order in Malayalam, but also state that there is
a good deal of freedom of order of constituents even in unmarked sentences.

2http://www.delph-in.net/matrix/customize/matrix.cgi

29

erties (optionality of determiners, NP v. PP arguments of verbs, intransitive and
transitive argument frames) (Bender and Flickinger, 2005)and AND-coordination
(Drellishak and Bender, 2005). The coordination library inparticular is based on
a thorough typological study of the phenomenon in question (Drellishak, 2004).
Current work is targeting case, verb-argument agreement inperson, number and
gender, tense and aspect, argument optionality, and demonstratives. In addition,
we are developing general mechanisms for handling lexical rules and the interac-
tions between them through the customization interface.

The general methodology for constructing libraries beginswith a survey of the
typological and syntactic research literature to map out the typological domain.
Then we create analyses for each variant and construct questions to elicit informa-
tion needed to decide between the variants from the linguist-user. The next step is
to create the software to select and output analyses on the basis of the linguist-user’s
answers, while accounting for interactions with other existing libraries. Finally, we
also create test items and filters for the regression testingsystem (Poulson, 2006;
Bender et al., 2007) to validate the new functionality, check for regressions in pre-
viously covered territory, and document the new functionality for future regression
testing purposes.

2.4 Goals of the project

This section has outlined the current state of the Grammar Matrix project. Our
long-term goals for this project are: (i) to increase the gain of the jump-start, i.e.,
the size of the initial grammar fragments provided by the customization system,
(ii) to facilitate the deployment of NLP technology such as grammar checkers,
machine translation systems and computer assisted language learning software for
low-density languages, (iii) to integrate the Grammar Matrix with other technolo-
gies for language documentation and to foster collaboration between field linguists
and grammar engineers (Bender et al., 2004), and (iv) to further develop the re-
search field of computational linguistic typology.

In the next sections, I describe the class which has been the driving force behind
much of the development of the Grammar Matrix over the past four years, and the
ways in which student work in the course provides feedback which is folded back
into the Grammar Matrix.

3 Course overview

The pedagogical goals of the course are (i) to give students hands-on experience in
the development of substantial linguistic resources for NLP; (ii) to illustrate the im-
portance of test suite creation in the development and evaluation of such resources;
and (iii) to explore the nature of linguistic hypothesis testing given the intercon-
nectedness of subsystems within grammars. The students aretypically graduate

30

students in computational linguistics,3 though graduate students and advanced un-
dergraduates in general linguistics and computer science also attend. All have taken
an introductory theoretical HPSG syntax course as a prerequisite.

3.1 Course outline

The course is organized around weekly lab assignments. The course meetings are
divided into lectures covering background material and discussion sessions which
are driven by student questions and which typically involveinteractive work with
the grammar development environment (the LKB; Copestake, 2002).

In the first week, the students get to know the LKB by extendinga grammar for
a small fragment of English. They also choose the language they will be working
with for the rest of the quarter and find reference grammars. Each student must
choose a different language which has not been studied before in the class. In four
years, we have covered 42 languages, from American Sign Language to Zulu, rep-
resenting the language families Indo-European (15 languages), Afro-Asiatic (3),
Niger-Congo (3), Altaic (2), Austronesian (2), Dravidian (2), Na-Dene (2), Sino-
Tibetan (2), Uralic (2), Eskimo-Aleut (1), and Uto-Aztecan(1).4 In addition, the
languages covered include two creoles, three languages theEthnologue classifies
as isolates or quasi-isolates (Basque, Japanese, and Korean), one signed language
(ASL), and one invented language (Esperanto). Students typically end up working
with languages they have not studied before.5

In the second and third weeks, the students create test suites for their languages
covering the phenomena to be analyzed in the class. In the process of creating
these test suites, they become familiar with their reference grammars and in some
cases seek out native speaker consultants to ask for acceptability judgments. The
test suites include both positive and negative examples, with the latter typically
outnumbering the former. Students are encouraged to use a restricted vocabulary,
to illustrate each phenomenon with sentences that are as simple as possible, and to
include examples illustrating the interaction of multiplephenomena (e.g., negative
questions).

In the remaining seven weeks, students incrementally extend grammars for
fragments of their languages. They begin by customizing anddownloading a copy
of the Matrix through the Matrix customization web page. If the libraries do not yet
include an analysis of the appropriate variation on some phenomenon, the starter
grammars will be correspondingly smaller (omitting coordination, say, or senten-
tial negation).

In subsequent labs, students add case and agreement (as appropriate for their

3Particularly in the professional MA program in computational linguistics, for which this course
serves as an elective, see http://compling.washington.edu.

4These counts are based on the Ethnologue’s classifications of the languages in question (Gordon,
2005).

5Artificial languages are generally not allowed. The criterion is that the language must have or
have had native speakers, which Esperanto does (Gordon, 2005).

31

languages), move from a full-form lexicon to one incorporating lexical rules, and
add the rules and types needed to treat argument optionality(pro-drop), demonstra-
tive adjectives or determiners, (other) adjectives and adverbs, embedded declara-
tives and polar interrogatives, and expressions of ability(e.g., modals). In this,
the students are guided by lab instructions describing the phenomena to be ana-
lyzed, enumerating known variations on those phenomena, and suggesting Matrix-
compatible analyses for each variation. When the lab instructions do not anticipate
a variation that turns up in one of the languages, the studentworking on that lan-
guage and I work together to produce an appropriate analysis, which the student
tests by implementing it.

The lab requirements crucially include a write-up explaining how the phenom-
ena treated that week manifest in the student’s language, detailing the analyses that
the student developed, and describing any difficulties thatthe student encountered.
These write-ups are critical for communication between thestudents and the in-
structor in the on-going development of the grammar, and forthe incorporation of
feedback from the course grammars into the Grammar Matrix itself.

As a grand finale, we use the LOGON open-source translation software (Oepen
et al., 2004a; Bond et al., 2005) to put the grammars togetherinto an NxN machine
translation system. The coverage is necessarily limited, but the students are always
excited to see their grammars ‘talking’ to each other, and itserves as a motivating
end point for the grammar development.

3.2 Test suites and grammar evolution

The students track the progress of their grammars using the[incr tsdb()] compe-
tence and performance profiling system (Oepen, 2002).[incr tsdb()] allows the
students to compare the coverage, ambiguity, and overgeneration of their gram-
mars over their test suite across different stages in the grammar’s development,
and to discover which test items have different analyses across test runs. Students
are encouraged to use this not only for overall benchmarkingbut also to explore
the consequences of particular changes to the grammar in theprocess of grammar
development.

While the bulk of the test suite development is done at the beginning of the
quarter, the test suites continue to evolve over time for a variety of reasons: In some
cases, students change their transcription system or opt for a more morphophono-
logically abstract representation, and end up editing their test suites consistently.
In other cases, in the course of grammar development, students discover and cor-
rect errors in their test suites. A third possible reason fortest suite evolution is the
addition of further examples to test interactions and corner cases unnoticed in the
original test suite development.

Figure 1 illustrates the evolution of the test suites on the one hand and cover-
age and ambiguity over those test suites on the other for two grammars: a Hebrew
grammar developed in 2006 by Margalit Zabludowski and a Zulugrammar devel-

32

 0

 50

 100

 150

 200

Lab 9Lab 8Lab 7Lab 6Lab 5Lab 4.2Lab 4.1

ill-formed
well-formed

 0

 50

 100

 150

 200

Lab 9Lab 8Lab 7Lab 6Lab 5Lab 4.2Lab 4.1

ill-formed
well-formed

Hebrew test suite evolution Zulu test suite evolution

 0

 20

 40

 60

 80

 100

Lab 9Lab 8Lab 7Lab 6Lab 5Lab 4.2Lab 4.1

coverage
overgeneration

 0

 20

 40

 60

 80

 100

Lab 9Lab 8Lab 7Lab 6Lab 5Lab 4.2Lab 4.1

coverage
overgeneration

Hebrew coverage Zulu coverage

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Lab 9Lab 8Lab 7Lab 6Lab 5Lab 4.2Lab 4.1

avg parses

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Lab 9Lab 8Lab 7Lab 6Lab 5Lab 4.2Lab 4.1

avg. parses

Hebrew ambiguity Zulu ambiguity

Figure 1: Test suite and grammar evolution for two languages

33

oped in 2007 by Kelly O’Hara. Each point on the graph represents one week’s lab.6

As can be seen from the graphs, the grammar writers were able to substantially in-
crease their coverage over grammatical sentences without overgenerating.7 The
ambiguity rates reflect typical progress as well: Some changes to the grammars in-
troduce spurious ambiguity, which is corrected in later versions. At the same time,
there is a gradual increase in real ambiguity as the grammarsexpand to cover more
phenomena.

3.3 Challenges and benefits

The course described here is tremendously challenging for both the students and
the instructor, but also has benefits in proportion to the challenges. For the stu-
dents, the challenges largely come from the fact that they are asked to master quite
a bit of material quickly and in parallel: The software we use(the LKB, [incr
tsdb()], emacs), the Grammar Matrix itself (including its assumptions and general
structure), and the language they are working with (which isoften completely new
to them). For students coming from a primarily linguistic background, there are
also engineering skills to master, such as the debugging process. In addition, the
assignments are generally open-ended. In my experience, the students have typ-
ically taken this open-endedness as a challenge to extend their grammars further
and stretch for broader coverage and higher precision. The flip side of these chal-
lenges are the benefits: Because the course is intimately connected with a larger
research project, the students are participating in knowledge creation, which they
tend to find extremely motivating. At the same time, having all of their effort in the
course directed to a single, original, course project givesthem a potential spring
board for further research as well as valuable experience topoint to when they are
on the job market

From the instructor’s point of view, the first challenge is again the open-end-
edness of the assignments. This makes student evaluation difficult, as the students
submit highly diverse work, both in terms of the specific aspects of their languages
they work on and in terms of the distance they go with the assignments. A second
challenge is dealing with many languages at once. Here, I found that giving specific
instructions for lab write-ups guiding students to providethe relevant background
information about the analyses they are implementing has been very important. In
fact, the ability to deal with many languages at once is one ofthe main benefits from
my point of view as well, especially dealing with the same or similar phenomena
in many languages. In order to answer a question about a particular analysis (e.g.,
of case) in a Matrix-derived grammar, I need to review the relevant aspects of the
Matrix. Not only is it easier to answer a question about case in another language
while all the information is fresh in my mind, it is also very useful to get a compar-

6The first entry for Lab 4 represents the grammar fragment as downloaded from the customization
system. The second represents the addition of some of the missing vocabulary.

7The higher coverage of the Zulu grammar as compared to the Hebrew mainly reflects the fact
that the Hebrew test suite staked out a more ambitious fragment of the language.

34

ative view on case (or any other phenomenon) by considering data and especially
difficulties in analysis from multiple languages all at once. More generally, the
students’ work provides feedback to the Matrix which allowsfor error detection,
library development, and library refinement, as discussed in the next section.

4 Feedback to the Matrix

The Grammar Matrix project faces sizeable hurdles in evaluation and validation
(Poulson, 2006). The Matrix core grammar itself cannot be directly tested, as it is
not a grammar of any particular language, and cannot parse orgenerate any strings.
The Matrix customization system and libraries can be validated through autogen-
eration of test suites for abstract language types (Bender et al., 2007), but this is
only validation, and not evaluation. The test suite generation system allows us to
verify that the libraries have the behavior we intend them to, and that they interact
in reasonable ways. It does not provide a means of testing thelinguistic correctness
of the system, i.e., its typological predictions. Are the libraries complete? Do the
libraries interact in ways that predict the facts of actual human languages? This
section will describe how student work in the class can help with detecting errors
in the core grammar (Section 4.1) and with detecting lacunaein existing libraries
(Section 4.3). In addition, the course played an important role in the development
of the initial set of libraries (Section 4.2).

4.1 Error detection

The Grammar Matrix core was originally derived from the English Resource Gram-
mar (ERG; version of November 2001), by taking ERG and removing all types
or constraints that appeared to be English-specific. This process was informed
by comparison with the JACY grammar of Japanese (Siegel and Bender, 2002).
Nonetheless, this process was expected to be somewhat error-prone: English-specific
constraints could easily be missed, and constraints which are in fact general could
also be removed. In the intervening six years, the core grammar has grown and
been refined. We have added linking and lexical rule types, which were not mod-
eled directly on the analogous types in the ERG (though the ERG was a reference
point), and we have explored new analyses of phenomena such as the marking of
illocutionary force and the licensing and interpretation of dropped arguments.

The core grammar is abstract in the sense that it cannot in itself parse or gener-
ate any sentences. That is, while the Matrix core grammar hasmany of the essential
ingredient for actual rules and lexical entries, in includes no fully specified rules.
Among the types that define the phrase structure rules, for example, there is an
abstract head-complement phrase type which describes the syntactic and semantic
effects of combining a head with a complement it is seeking. This type does not
specify the order of its head and non-head daughters. In any particular grammar it
will be cross-classified with either the head-final or the head-initial type (or both,

35

instantiated by separate rule instances).
Unfortunately, abstract does not necessarily mean simple,and even these rela-

tively underspecified types bear constraints which relate to many different analyses.
For example, the Matrix provides a featureMC (for ‘main clause’) which records
whether a constituent displays phenomena restricted to root (or alternatively sub-
ordinate clauses). For example, in English, subject-auxiliary inversion is limited
to root clauses, and in German (and similar V2 languages) themajor constituent
order differs between the clause types. A constituent whichis [MC +] is restricted
to main clauses, while a [MC −] constituent is restricted to subordinate clauses.
A constituent which is underspecified forMC can appear in either. Following the
ERG, we provide a third possible (non-underspecified) valuena (‘not applicable’)
for non-clausal constituents. Analyses which make use of this feature rely on its
being specified for every constituent, and thus all of the phrase structure rules must
inherit a specification for the feature from some supertype.

This is just one example of the way in which individual types bear constraints
which relate to multiple different linguistic phenomena, even in the abstract core
grammar. Since the core grammar was derived from a broad-coverage grammar
and since it aims to support the development of similarly broad-coverage gram-
mars, it is a complex object. Thus in general, even with perfect knowledge of
linguistic typology, it would not be possible to examine thecore grammar directly
and find all of the errors it contains. It is only in applying the Matrix to particular
languages that we can hope to find out where the current working hypotheses are
incorrect.

In addition to removing constraints which turned out not to be universal, the
analysis of new languages sometimes leads to the addition oftypes to the Matrix
core. The most interesting example from the past year is the introduction of ternary
rules for certain constructions. The ternary rules types were added to handle nega-
tion in Hausa (for the grammar developed by Kelsey Hutchins), which is marked
by two particles, one on either side of the clause:8

(1) Hausa (hau)
bàà rashı̀n n āmàà zâi kashè mùtûm ba
NEG lack.of meat FUT kill person NEG

‘It is not that lack of meat will kill a person.’ (Newman, 2000, 363)

The analysis we developed for such examples involves a ternary rule which requires
a finite clause as its middle daughter and specific lexical items (the left and right
negation markers) as its left and right daughters, as illustrated in Figure 2. The
middle daughter is the syntactic head, but the constructionitself functions as the
semantic head.

Previously, Matrix-derived grammars (following the ERG) had handled all con-
structions with unary or binary phrases, using recursing binary phrases to model

8For improved automatic discovery of this document, all examples are labeled with the name of
the language represented, followed by the ISO 639-3 language code, in parentheses.

36

S

Neg

bàà

S

NP

rashı̀n n ām

VP

zâi kashè mùtûm

Neg

ba

Figure 2: Schematic tree for Hausa example (1), ‘It is not that lack of meat will kill
a person.’

variable arity in, for example, head-complement constructions with multiple com-
plements for a single head and coordination of more than two coordinands. This
construction in Hausa is different, however, in that it requires specifically three
daughters. While it would certainly have been possible to attach one of the two
markers lower than the other, such an analysis would have required diacritic fea-
tures in order to require the second marker (and ensure that nothing else attached
in between).

The ternary rule types were immediately useful for another grammar being
developed at the same time by Sarah Churng for American Sign Language (ASL).
In ASL, many grammatical features are signaled through ‘non-manual markers’
(NMMs) (Baker and Padden, 1978), typically facial expressions. These NMMs
extend over whole constituents, and in fact constitute a separate parallel channel to
the signal. For the purposes of building a Matrix-derived grammar, we developed
a transliteration system which indicates the NMMs through left and right brackets.

(2) American Sign Language (ase)
JOHN〈ne BUY HOUSE ne〉
John nm-neg buy house nm-neg
‘John is not buying a house.’

These left and right pairs (for negation and yes-no questions) were then parsed by
the same kind of ternary-branching rules required for Hausa.9

Error detection in the Grammar Matrix depends on the deployment of the
Matrix in grammars for many languages, but building such grammars is time-
consuming, even with the jump-start provided by the Matrix.Feedback does come

9The types for ternary rules are another case where there is tension between the strict interpre-
tation of the core grammar as universally valid types and constraints and other classifications of the
types. It is quite likely that there are languages for which we will never need ternary rules, and yet
since these types do much the same work as the basic types for unary and binary rules, they are
currently stored as part of the core grammar.

On the other hand, these types might turn out to be useful in many languages when we consider
punctuation.

37

in from research groups around the world using the Grammar Matrix, but the com-
munication is uneven in such cases: users may simply decide to edit the Matrix
core grammar without reporting back to the Matrix developers. In the context of
the class, on the other hand, I get to explore as many languages as there are stu-
dents, with extensive information on how each grammar was able to use the Matrix,
and where the Matrix needed to be modified.

4.2 Library development

The initial set of libraries (Bender and Flickinger, 2005) also grew directly out
of the course. In the first two years of teaching this course (in 2004 and 2005),
I developed and expanded an initial set of lab instructions,covering basic word
order, case, agreement, modification, the expression of ability, sentential negation,
argument optionality, and matrix and embedded statements and yes-no questions.
In some cases, these directions were fairly open-ended. In others, by the end of the
second time teaching the course, they were specific enough that it was clear that
there was only a little work left to make them so precise a machine could follow
them.

With the initial libraries and customization system in place, the Grammar Ma-
trix can provide a greater jump-start (provided appropriate options are available
within the libraries for the language in question). This means that students can
explore their languages in greater detail within the 10-week course. In the most
recent course, in addition to the phenomena from years one and two, we have been
looking into the marking of discourse status (in particulardefiniteness and demon-
stratives) and coordination, with the latter supported by and providing feedback to
the Matrix coordination library (Drellishak and Bender, 2005).

4.3 Library refinement

Just as the class provides a chance to find errors and lacunae in the Matrix core
grammar, it also provides crucial feedback to the libraries. As the negation and
yes-no question libraries were not based on thorough studies of the typological
literature, it is not surprising that we have already turnedup cases that were not
covered. For negation, this includes the circumfixal negation described above for
Hausa and ASL. For the question library, Wendy Bannister’s work on Malayalam
turned up what is likely a common strategy: question markingvia inflection on the
main verb, as illustrated in (3) (Asher and Kumari, 1997, 8):

(3) Malayalam (mal)

a. Avan vannu
He come.past
‘He came.’

38

b. Avan vann-oo
He come.past-Q
‘Did he come?’

In addition, the French grammar developed by Fabiola Henri and Gwendoline
Fox10 turned up another problem with the question library: Unlikethe negation
library, the question library only allowed for one kind of question marking per
language. In fact, however, French is representative in allowing multiple strate-
gies: a sentence-initial question marker (est-ce que) and subject-verb inversion, as
illustrated in (4).

(4) French (fra)

a. Est-ce qu’ il est parti?
Q 3SG.NOM.MASC be.3SG leave.PAST-PART.
‘Has he left?

b. Est-il parti?
be.3SG-3SG.NOM.MASC leave.PAST-PART.
‘Has he left?

Even with the coordination library, which was based from itsinception on a
typological study, the course grammars have turned up an unhandled case: The
coordination library currently provides for multiple coordination strategies within
a single language, each with its own coordination mark, but any given strategy
will use only one mark. Michelle Neves’s work on Indonesian showed this to
be inadequate, as Indonesian can mix the coordinatorssertaanddan in the same
coordinate structure, typically usingdan for all but the last coordinand pair of
coordinands, which are joined instead byserta(Sneddon, 1996, 339-340):11

(5) Indonesian (ind)
Ini untuk hiasan dinding dan meja serta kursi
DEM. for decoration wall CONJ tableCONJchair
‘These are decorations for walls, tables and chairs.’

The course grammars also provide interesting information on the interaction
between libraries. For example, one of the course grammars for 2007 (developed
by Ryan Georgi) was for Modern Standard Arabic (MSA). In MSA,word order
interacts with agreement: Both VSO and SVO are possible. In VSO word order,
the verb agrees with the subject in person, number, and gender, whereas in SVO
word order, there is only agreement in person and gender (Soltan, 2006, 240).

10Students in a similar course at the LSA Institute, Stanford 2007, taught by Stephan Oepen, Dan
Flickinger, and myself

11Sentence (5) is constructed on the basis of the Sneddon, but does not appear in this form in the
book.

39

(6) Modern Standard Arabic (arb)

a. Pal-Pawlaad-u qaraP-uu d-dars-a
the-boys-NOM read-3.PL.MASC the-lesson-ACC

‘The boys read the lesson.’

b.*Pal-Pawlaad-u qaraP-a d-dars-a
the-boysNOM read-3.SG.MASC the-lesson-ACC

‘The boys read the lesson.’

c. qaraP-a l-Pawlaad-u d-dars-a
read-3.SG.MASC the-boysNOM the-lesson-ACC

‘The boys read the lesson.’

c.*qaraP-uu l-Pawlaad-u d-dars-a
read-3.PL.MASC the-boysNOM the-lesson-ACC

‘The boys read the lesson.’

The word order library does not yet allow for variable word order of this kind.
Verb-final (i.e., variation between SOV and OSV), verb-initial (variation between
VSO and VOS), and free word order (of major constituents) areallowed, but not
yet variation between VSO and SVO. It is not clear how soon thecustomization
system will achieve the level of complexity required to specify an MSA-style sys-
tem through the customization interface. Nonetheless, as we extend the word order
library and begin to develop a library for agreement as well,MSA provides an
interesting case to work towards.

4.4 Summary

This section has described how student work based on the Grammar Matrix in the
grammar engineering course has contributed to error detection in the core grammar
as well as to the development and refinement of the libraries.To a certain extent,
any context in which the Matrix is applied to new languages will have similar ben-
efits. However, there are some ways in which the classroom context is particularly
helpful, compared to, for example, feedback from other research groups using the
Grammar Matrix. The first is the degree of detail that is available. The students
turn in multiple versions of their grammars, along with write-ups of the linguis-
tic data analyzed and the analyses themselves. The grading work for the course
thus doubles as information gathering for the Matrix project. The second major
benefit of the classroom context is the coordinated, focusedattention of many par-
ticipants (students and instructor) on the same phenomena at the same time. It is
much easier to integrate new information about different languages in this format,
than when the information comes in a less coordinated fashion. Finally, as noted
above, the pedagogical work of developing the lab instructions fed directly into
the research/engineering work of developing the libraries. At the same time, it
should be noted that the course grammars alone are not sufficient to test the Gram-
mar Matrix. In particular, they remain small grammars, withonly 10 weeks of

40

development time. To learn how the various proposed analyses scale as grammars
reach both interesting coverage and interesting ambiguity, the Matrix needs to be
embedded in grammars undergoing sustained development.12

5 Future Directions

As the jump-start provided by the Grammar Matrix grows, the course grammars
should attain greater complexity, even within the same 10-week time period. Ini-
tially, this will simply mean grammars which cover more phenomena. Beyond a
certain level of complexity, however, I anticipate bigger changes. Within a few
years, it should be feasible to have the students collect small corpora, and then
process those corpora with their grammars. This will quickly turn up additional
phenomena to work on (cf. Baldwin et al., 2005).13

In addition, as the grammars gain complexity they will also display more am-
biguity. This makes it interesting to explore the creation of treebanks in the Red-
woods style (Oepen et al., 2004b), where grammar engineers select among the trees
proposed by the grammar on the basis of minimal discriminants. These treebanks
can be used to train parse selection models (Toutanova et al., 2002). They will also
represent small but interesting resources for low-densitylanguages.

Finally, a recent project at the Turing Center at the University of Washington14

has been piloting a many-to-many machine translation system based on the LO-
GON machine translation infrastructure (Oepen et al., 2004a; Bond et al., 2005)
and using nine grammars from the first four years of the grammar engineering
class.15 The current system has only a toy vocabulary but works acrossan inter-
esting range of grammatical phenomena. As this MT system grows more robust, it
will be interesting to explore adding the course grammars toit as they are produced.

6 Conclusion

The Grammar Matrix project is well-suited to harnessing student work. It needs
input from many languages, and relatively basic input is still quite valuable: the
first grammatical phenomena one might try to account for in a language (e.g., word
order, valence patterns, case, agreement) are currently under development in the
Grammar Matrix. As the customization system grows, each newgrammar will still
provide useful information: either the libraries will handle the variants found in a
grammar and the student can explore additional phenomena atthe boundaries of

12Thanks to an anonymous reviewer for highlighting this point.
13Note that in order to make this practical, however, we will need to handle standard orthography

as well as morphophonology. Currently, in order to focus on morphosyntax, I advise students to
abstract away from these, working with a transliteration system and assuming a morphophonological
preprocessor.

14http://turing.cs.washington.edu
15The grammars are for Armenian, Esperanto, Farsi, Finnish, Hausa, Hebrew, Icelandic, Italian

and Zulu. In addition, we have a purpose-built grammar for English with similar coverage.

41

Matrix development, or the language will turn up a new variant to be incorporated
into one of the libraries, or both.

There is no denying that the course is very intense for both the students and
the instructor. To the extent that it is intense, it is also rewarding, certainly for
me and I believe also for the students. I find that most of the additional work I
put into teaching this course (above the commitment required for other courses) is
effectively research effort, in that it feeds back into the Grammar Matrix project.

I also believe that there should be similar opportunities tointegrate student
course work into sustained projects elsewhere within the field of grammar engi-
neering, as we need detailed attention to many separate linguistic phenomena. The
problem in many cases is to find ways to lower the barriers to entry, such that the
student projects become tractable, while also maintainingchecks on the quality of
the data or analyses added to the system.

References

Asher, Ronald E. and Kumari, T.C. 1997.Malayalam. London: Routledge.

Baker, Charlotte and Padden, Carol. 1978. Focusing on the Non-manual Compo-
nents of American Sign Language. In P. Siple (ed.),Understanding Language
Through Sign Language Research, pages 27–57, New York: Academic Press.

Baldridge, Jason, Chatterjee, Sudipta, Palmer, Alexis andWing, Ben. 2007.
DotCCG and VisCCG: Wiki and Programming Paradigms for Improved Gram-
mar Engineering with OpenCCG. In Tracy Holloway King and Emily M. Bender
(eds.),Proceedings of the GEAF 2007 Workshp, Stanford, CA: CSLI.

Baldwin, Timothy, Beavers, John, Bender, Emily M., Flickinger, Dan, Kim, Ara
and Oepen, Stephan. 2005. Beauty and the Beast: What runninga broad-
coverage precision grammar over the BNC taught us about the grammar —
and the corpus. In Stephan Kepser and Marga Reis (eds.),Linguistic Evidence:
Empirical, Theoretical, and Computational Perspectives, Berlin: Mouton de
Gruyter.

Bateman, John A., Kruijff-Korbayová, Ivana and Kruijff, Geert-Jan. 2005. Mul-
tilingual Resource Sharing Across Both Related and Unrelated Languages: An
Implemented, Open-Source Framework for Practical NaturalLanguage Genera-
tion. Research on Language and Computation, Special Issue on Shared Repre-
sentations in Multilingual Grammar Engineering3(2), 191–219.

Bender, Emily M. 2006. Grammar Engineering for Linguistic Hypothesis Testing.
In Proceedings of Texas Linguistic Society X, Stanford: CSLI Publications.

Bender, Emily M. and Flickinger, Dan. 2005. Rapid Prototyping of Scalable Gram-
mars: Towards Modularity in Extensions to a Language-Independent Core. In

42

Proceedings of the 2nd International Joint Conference on Natural Language
Processing IJCNLP-05 (Posters/Demos), Jeju Island, Korea.

Bender, Emily M., Flickinger, Dan, Fouvry, Frederik and Siegel, Melanie. 2005.
Introduction.Research on Language and Computation, Special Issue on Shared
Representations in Multilingual Grammar Engineering3(2).

Bender, Emily M., Flickinger, Dan, Good, Jeff and Sag, Ivan A. 2004. Mon-
tage: Leveraging Advances in Grammar Engineering, Linguistic Ontologies,
and Mark-up for the Documentation of Underdescribed Languages. InProceed-
ings of the Workshop on First Steps for Language Documentation of Minority
Languages: Computational Linguistic Tools for Morphology, Lexicon and Cor-
pus Compilation, LREC 2004, Lisbon, Portugal.

Bender, Emily M., Flickinger, Dan and Oepen, Stephan. 2002.The Grammar
Matrix: An Open-Source Starter-Kit for the Rapid Development of Cross-
Linguistically Consistent Broad-Coverage Precision Grammars. In John Carroll,
Nelleke Oostdijk and Richard Sutcliffe (eds.),Proceedings of the Workshop on
Grammar Engineering and Evaluation at the 19th International Conference on
Computational Linguistics, pages 8–14, Taipei, Taiwan.

Bender, Emily M., Poulson, Laurie, Drellishak, Scott and Evans, Chris. 2007. Vali-
dation and Regression Testing for a Cross-linguistic Grammar Resource. InACL
2007 Workshop on Deep Linguistic Processing, pages 136–143, Prague, Czech
Republic: Association for Computational Linguistics.

Bond, Francis, Oepen, Stephan, Siegel, Melanie, Copestake, Ann and Flickinger,
Dan. 2005. Open Source Machine Translation with DELPH-IN. In Open-Source
Machine Translation: Workshop at MT Summit X, pages 15–22, Phuket.

Butt, Miriam, Dyvik, Helge, King, Tracy Holloway, Masuichi, Hiroshi and Rohrer,
Christian. 2002. The Parallel Grammar Project. In John Carroll, Nelleke Oost-
dijk and Richard Sutcliffe (eds.),Proceedings of the Workshop on Grammar
Engineering and Evaluation at the 19th International Conference on Computa-
tional Linguistics, pages 1–7.

Callmeier, Ulrich. 2000. PET — A Platform for Experimentation with Efficient
HPSG Processing Techniques.Natural Language Engineering6 (1) (Special Is-
sue on Efficient Processing with HPSG), 99 – 108.

Chomsky, Noam. 1981.Lectures on Government and Binding. Dordrecht: Foris.

Copestake, Ann. 2002.Implementing Typed Feature Structure Grammars. Stan-
ford, CA: CSLI Publications.

Copestake, Ann, Flickinger, Dan, Pollard, Carl and Sag, Ivan A. 2005. Minimal
Recursion Semantics: An Introduction.Research on Language & Computation
3(2–3), 281–332.

43

Drellishak, Scott. 2004. A Survey of Coordination in the World’s Languages, MA
thesis, University of Washington.

Drellishak, Scott and Bender, Emily M. 2005. A CoordinationModule for a
Crosslinguistic Grammar Resource. In Stefan Müller (ed.), The Proceedings
of the 12th International Conference on Head-Driven PhraseStructure Gram-
mar, Department of Informatics, University of Lisbon, pages 108–128, Stanford:
CSLI Publications.

Flickinger, Dan and Bender, Emily M. 2003. Compositional Semantics in a Mul-
tilingual Grammar Resource. In Emily M. Bender, Dan Flickinger, Frederik
Fouvry and Melanie Siegel (eds.),Proceedings of the Workshop on Ideas and
Strategies for Multilingual Grammar Devel, ESSLLI 2003opment, pages 33–42,
Vienna, Austria.

Gordon, Raymond G., Jr. (ed.). 2005.Ethnologue: Languages of the
World. Dallas, TX: SIL International, fifteenth edition, online version:
http://www.ethnologue.com.

Hellan, Lars and Haugereid, Petter. 2003. NorSource: An Exercise in Matrix
Grammar-Building Design. In Emily M. Bender, Dan Flickinger, Freerik Fouvry
and Melanie Siegel (eds.),Proceedings of the Workshop on Ideas and Strategies
for Multilingual Grammar Development, ESSLLI 2003, pages 41–48, Vienna,
Austria.

King, Tracy Holloway, Forst, Martin, Kuhn, Jonas and Butt, Miriam. 2005. The
Feature Space in Parallel Grammar Writing.Research on Language and Com-
putation, Special Issue on Shared Representations in Multilingual Grammar En-
gineering3(2), 139–163.

Kinyon, Alexandra, Rambow, Owen, Scheffler, Tatjana, Yoon,SinWon and Joshi,
Aravind K. 2006. The Metagrammar Goes Multilingual: A Cross-Linguistic
Look at the V2-Phenomenon. InIn Proceedings of the Eighth International
Workshop on Tree Adjoining Grammar and Related Formalisms (TAG+8), Syd-
ney, Australia.

Kordoni, Valia and Neu, Julia. 2005. Deep Analysis of ModernGreek. In Keh-
Yih Su, Jun’ichi Tsujii and Jong-Hyeok Lee (eds.),Lecture Notes in Computer
Science, volume 3248, pages 674–683, Berlin: Springer-Verlag.

Marimon, Montserrat, Bel, Núria and Seghezzi, Natalia. 2007. Test-suite Construc-
tion for a Spanish Grammar. In Tracy Holloway King and Emily M. Bender
(eds.),Proceedings of the GEAF 2007 Workshop, Stanford, CA: CSLI Publica-
tions.

Müller, Stefan. 2007. The Grammix CD-ROM: A Software Collection for Develop-
ing Typed Feature Structure Grammars. In Tracy Holloway King and Emily M.

44

Bender (eds.),Proceedings of the GEAF 2007 Workshop, Stanford, CA: CSLI
Publications.

Newman, Paul. 2000.The Hausa Language: an Encyclopedic Reference Gram-
mar. New Haven: Yale University Press.

Oepen, Stephan. 2002.Competence and Performance Profiling for Constraint-
based Grammars: A New Methodology, Toolkit, and Applications. Ph. D.thesis,
Universität des Saarlandes.

Oepen, Stephan, Dyvik, Helge, Lønning, Jan Tore, Velldal, Erik, Beer-
mann, Dorothee, Carroll, John, Flickinger, Dan, Hellan, Lars, Johannessen,
Janne Bondi, Meurer, Paul, Nordgård, Torbjørn and Rosén,Victoria. 2004a.
Som å kapp-ete med trollet? Towards MRS-Based Norwegian – English Ma-
chine Translation. InProceedings of the 10th International Conference on The-
oretical and Methodological Issues in Machine Translation.

Oepen, Stephan, Flickinger, Daniel, Toutanova, Kristina and Manning, Christo-
pher D. 2004b. LinGO Redwoods. A Rich and Dynamic Treebank for HPSG.
Journal of Research on Language and Computation2(4), 575 – 596.

Oepen, Stephan and Flickinger, Daniel P. 1998. Towards Systematic Grammar Pro-
filing. Test Suite Technology Ten Years After.Journal of Computer Speech and
Language12 (4) (Special Issue on Evaluation), 411 – 436.

Pollard, Carl and Sag, Ivan A. 1994.Head-Driven Phrase Structure Grammar.
Studies in Contemporary Linguistics, Chicago, IL and Stanford, CA: The Uni-
versity of Chicago Press and CSLI Publications.

Poulson, Laurie. 2006. Evaluating a cross-linguistic grammar model: Methodology
and test-suite resource development, MA thesis, University of Washington.

Siegel, Melanie and Bender, Emily M. 2002. Efficient Deep Processing of
Japanese. InProceedings of the 3rd Workshop on Asian Language Resources
and International Standardization at the 19th International Conference on Com-
putational Linguistics, Taipei, Taiwan.

Sneddon, James Neil. 1996.Indonesian: A Comprehensive Grammar. London and
New York: Routledge.

Soltan, Usama. 2006. Standard Arabic subject-verb agreement asymmetry revis-
ited in an Agree-based minimalist syntax. In Cedric Boeckx (ed.), Agreement
Systems, Amsterdam: John Benjamins.

Toutanova, Kristina, Manning, Chris and Oepen, Stephan. 2002. Parse Ranking for
a Rich HPSG Grammar. InProceedings of The First Workshop on Treebanks and
Linguistic Theories (TLT2002), Sozopol, Bulgaria.

45

PARC’s Bridge and Question Answering System

Daniel G. Bobrow, Bob Cheslow, Cleo Condoravdi, Lauri
Karttunen, Tracy Holloway King, Rowan Nairn, Valeria de

Paiva, Charlotte Price, and Annie Zaenen

PARC

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

46

Abstract

This paper describes the Bridge system, a system designed to robustly
map from natural language sentences to abstract knowledge representations.
The system runs on PARC’s parser, generator, and ordered rewrite platform
XLE. The Bridge system has been extended to include a type of light infer-
ence, based on an entailment and contradiction detection algorithm which also
runs on XLE. The paper then describes a search and question answering ap-
plication, Asker, which uses the Bridge system to create a semantic index of
text passages and which allows a user to query the index in natural language.

1 Introduction

Bridge is a PARC system that robustly maps natural language sentences into a log-
ical abstract knowledge representation language (AKR). Using this mapping, we
have built an application, Asker, that supports high-precision question-answering
of natural language queries from large document collections (e.g., the Wikipedia,
newswire, financial reports). For example, if a collection includes the sentence The
reporter failed to discover that three young men were killed in the attack on Ryad.,
then the system could answer the query Did anyone die in the attack on Ryad? with
YES (perhaps indicating who died) and highlight the phrase in the document in the
collection that contains this information.

The basic system components and their connection is shown in the diagrams in
Figures 1–4. Natural language text is mapped into a first level of abstract knowl-
edge representation (AKR0) (see section 2). Text passages are then passed through
an expansion step to produce a representation with addtional inferrable facts (P-
AKR). In contrast, queries are passed through a simplification step to produce a
representation with fewer facts (Q-AKR), a smaller kernel from which the rest can
be inferred. Asker uses the expanded passage to compute index terms that capture
semantic roles in the representation (section 4.1). To retrieve potential answer pas-
sages from the collection, index terms from the query representation identify stored
texts with corresponding semantic structure (section 4.2); as a backoff, texts are re-
trieved that share expanded, normalized keywords with the query. Entailment and
contradiction detection (ECD) can be performed to determine subsumption rela-
tions between the passage and question and hence provide an answer (section 3).
ECD can be used separately to check whether a given passage text entails or con-
tradicts a given query/hypothesis text.

This work was sponsored in part by DTO. Approved for Public Release; distribution unlimited.
We thank the audience of GEAF for providing extensive feedback on the QA demo of the system. We
also thank all of the people who have worked on the system over time. Ron Kaplan and Dick Crouch
were central members of the team, and helped define the framework of the Bridge/Asker system. Dick
Crouch was a major designer and implementor of key components. John T. Maxwell III is a major
designer and implementor of the core XLE system. We also want to thank the interns and postdocs
who contributed: Tina Bögel, Hannah Copperman, Liz Coppock, Olya Gurevich, Anubha Kothari,
Xiaofei Lu, Johannes Neubarth, Matt Paden, Karl Pichotta, and Kiyoko Uchiyama.

47

Bridge Processing

input: text

1. preprocessing
2. syntax rules

3. semantics rules
4. basic AKR rules

output: AKR0

passage query
expansion simplification

output: P-AKR output: Q-AKR

Figure 1: Syntactic Lexical-Function Grammar (LFG) rules and semantic and KR-
specific ordered rewrite rules produce a basic knowledge representation for passage
and query texts. Passages expand inferences based on linguistic properties. Queries
are simplified to their core meaning to remove unnecessary structure.

Bridge ECD

input: passage text input: query text

Bridge mapping to P-AKR Bridge mapping to Q-AKR

Subsumption/inconsistency
check

output: YES, NO, UNKNOWN
output: wh-phrase alignment

Figure 2: Expanded passage representations are compared using subsumption with
simplified query representations to determine if the passage entails the query.

48

Asker Semantic Index Creation

input: text

1. Bridge mapping to P-AKR
2. index term extraction

output: semantic index

Figure 3: Index terms for each passage reflect the semantic roles of terms in a sen-
tence.

Asker Run-time Search and Question Answering

input: natural language query

Bridge mapping to Q

retrieval of retrieval of
semantic matches expanded keyword

matches

1. passage ranking
2. Bridge ECD on query and each passage

output: passages with answers

Figure 4: Use of index terms in the query supports more precise retrieval of rel-
evant sentences. Keywords, expanded with WordNet synonym sets (synsets) and
hypernyms, provide a backoff for recall.

The mapping from syntactic structures to (linguistic) semantics and then ab-
stract knowledge representations (AKR) runs on the XLE platform (Maxwell and
Kaplan, 1996; Crouch et al., 2007) and is described in Crouch and King (2006) and
Crouch (2005). The logic of the representations has been described in Bobrow et al.
(2005) and de Paiva et al. (2007). The linguistic, semantic rationale for the use
of concepts in AKR was originally described in Condoravdi et al. (2001, 2003).
Components of the system have been described in Crouch and King (2005), Gure-
vich et al. (2005), and Nairn et al. (2006). An earlier application to a collection of
copier repair tips written by Xerox technicians is described in Crouch et al. (2002)
and Everett et al. (2002). The more recent application to question-answering in

49

the framework of the PASCAL-organized1 competition Recognizing Textual En-
tailment (RTE) is described in Bobrow et al. (2007).

In this paper, we first describe the AKR language that our system uses (section
2). AKR is designed to meet two constraints that are somewhat in tension: a natural
representation of language constructs on the one hand and a straightforward compu-
tation of direct inferential relations between two texts on the other. Our entailment
and contradiction detection algorithm (section 3) implements this inference proce-
dure between two possibly ambiguous texts without the need for disambiguation.
Finally, we discuss the structure of the Asker repository which indexes sentences on
the basis of their AKR representation in a large scale database (over 10 documents)
and allows real-time semantic retrieval from this index (section 4).

2 Abstract Knowledge Representation (AKR)

We start our discussion of AKR representations with the sentence John Smith dis-
covered that three men died. The full AKR is as in (1).

(1) Conceptual Structure:
subconcept(discover:2, [detect-1, , identify-5])
role(Theme, discover:2, ctx(die:5))
role(Agent, discover:2, Smith:1)
subconcept(Smith:1, [male-2])
alias(Smith:1, [John, Smith, John Smith])
role(cardinality restriction, Smith:1, sg)
subconcept(die:5, [die-1, die-2, , die-11])
role(Theme, die:5, man:4)
subconcept(man:4, [man-1, , world-8])
role(cardinality restriction, man:4, 3)

Contextual Structure:
context(t)
context(ctx(die:5))
top context(t)
context lifting relation(veridical, t, ctx(die:5))
context relation(t, ctx(die:5), crel(Theme, discover:2))
instantiable(Smith:1, t)
instantiable(discover:2, t)
instantiable(die:5, ctx(die:5))
instantiable(man:4, ctx(die:5))

Temporal Structure:
temporalRel(startsAfterEndingOf, Now, discover:2)
temporalRel(startsAfterEndingOf, Now, die:5)

1See the PASCAL website: www.pascal-netword.org

50

The representation for this sentence has two contexts: the top context t, speci-
fying what the author of the sentence is committed to as the true state of the world
by virtue of uttering the sentence; and ctx(die:5), specifying what was discovered
by John Smith, which is the proposition that three men died.

The verb discover carries a presupposition that what is described as being dis-
covered is true according to the author of the sentence; that is, one can only be said
to discover true facts. This is part of lexical knowledge and is captured in this exam-
ple by context lifting relation(veridical, t, ctx(die:5)). Because of this veridical
relation, in the expansion to P-AKR, the clauses:

(2) instantiable(die:5, t)
instantiable(man:4, t)

are added to the contextual structure. These instantiability statements capture exis-
tence commitments in our representation. As a result, the system will answer YES
to the passage-query pair John discovered that three men died. Did three men die?
In the top context t, we also have the instatiability claims:

(3) instantiable(Smith:1, t)
instantiable(discover:2, t)

Within the context of what was discovered by John Smith we have two concepts,
the dying event die:5, and the concept man:4. For each of these, the representation
has a subconcept expression. These expressions encode WordNet’s representation
of the verb die (a list of 11 synsets, corresponding to the 11 verb senses for die dif-
ferentiated in WordNet) and the noun man (a list of 8 synsets):

(4) subconcept(die:5, [die-1, die-2, die-3, , die-11])
subconcept(man:4, [man-1, serviceman-1, , world-8])

We are using WordNet (Fellbaum, 1998) as a surrogate for the taxonomic part of an
ontology because it is the largest available resource for mapping English words into
an (approximate) abstraction hierarchy through WordNet’s hypernyms. We have
patched WordNet in places where omissions and extra entries became problems for
the system. Since VerbNet, whose use is described below, links to WordNet, we
have also made these two resources more consistent.

To capture the fact that the number of dying men is three, the representation
includes a cardinality restriction on the concept man:4.2 The dying event is related
to its undergoer participants via role(Theme, die:5, man:4). In the top context
we have two more concepts, the concept for John Smith and the discovering event
discover:2, a subconcept of WordNet’s synsets for the verb discover.

2Our representations deal with quantifiers in general through a combination of instantiability state-
ments, contexts and cardinality restriction clauses.

51

While WordNet knows about some words used as names,3 it does not list every
man named John in history, nor does it list every masculine name. The English mor-
phology associated with the system’s syntactic grammar knows that John is a man’s
name, and the semantics uses this information to create a subconcept structure based
on WordNet: subconcept(Smith:1, [male-2]). The name itself is captured in an
alias fact. Incorporated into the system is a theory of when two aliases can refer to
the same individual. So John Smith can be mentioned later as John, Smith, or John
Smith. These three possiblities are included in the alias fact. Given a passage-query
pair like John Smith arrived and John Bowler left. Did Bowler leave? the system
will answer YES. Moreover, to the passage-query pair John Smith arrived and John
Bowler left. Did John leave? the system will answer YES: [John Bowler], since
at least one of the people named John in the passage did leave.

Finally, the concept discover:2 is restricted to have Smith:1 as its agent role
(role(Agent, discover:2, Smith:1)) and the context specifying what John discov-
ered as its theme role (role(Theme, discover:2, ctx(die:5))).

The temporal relations capture the relative time ordering of the events described
with respect to the time of utterance or writing of the sentence. Now (the time of
utterance) is after the discovering, and the dying, as represented by:

(5) temporalRel(startsAfterEndingOf, Now, discover:2)
temporalRel(startsAfterEndingOf, Now, die:5)

As indicated by this example, AKR representations can express the content of
beliefs, possible states of the world, counterfactuals, etc.

2.1 Existence and Restrictions

Terms like die:5 and man:4 do not refer to individuals, but to concepts (or types).
When the AKR makes reference to a subconcept man:4 of the kind [man-1, ser-
viceman-1, man-3, , world-8] restricted to be a kind of man that died, the AKR
does not make a commitment that there are any instances of this subconcept in the
world being described by the author of a sentence. For example, the sentence John
imagined that three men died., has in the AKR an embedded context representing
what is being imagined. Because this embedded context is not veridical with respect
to the top context, there is no commitment (by the author or in the representation)
about there actually being any dead men.

The instantiable assertions represent the existence of the kinds of objects de-
scribed. In the top-level context t, there is a commitment to an instance of a male
individual with the name John Smith and of a discover event discover:2 made by
him. While the three men and the dying event occur in the context of what was
discovered by John Smith, they become instantiable at the top context because dis-
cover with a that complement is marked as a factive verb (Nairn et al., 2006).

3For example, WordNet has synsets for the evangelist John and the English King John who signed
the Magna Carta. There are also entries for the common noun john.

52

Compared to traditional first order logic with complex quantifiers, AKR sepa-
rates the descriptions of types of events and objects (in the conceptual block) from
the commitments to existence (in the contextual block). The conceptual block in-
cludes subconcept assertions, role restrictions and cardinality constraints. The con-
textual block includes (un)instantiability of these concepts in contexts, and relations
between contexts, including context-lifting rules similar in spirit to those in Mc-
Carthy’s context logic (McCarthy, 1993). The use of contexts to capture a collec-
tion of statements true in a context and the use of contexts as arguments (reifying the
collection of statements) makes AKR technically not first order, but the reasoning
in the system preserves many first order properties locally.

2.2 Lexical resources

Mapping to AKR and textual inference depend crucially on words and ontological
relations between the concepts they map to. We have integrated a number of exist-
ing lexical resources into a Unified Lexicon (UL) (Crouch and King, 2005), adding
new annotations to classes of words to support desired inferences. The basic size
of the UL is shown in (6).

(6) Unified Lexicon: Part of Speech of Entries
POS Number of Entries
verbs 42,675
nouns 14,293
adjectives 8,537
deverbal adjectives 1,291
adverbs 13

Note that many words have no UL entry because their behavior in the mapping to
AKR is predictable from their syntactic structure (e.g., most nouns, adjectives, and
adverbs). In addition, adjectives and nouns that are predictably derived from verbs
(e.g, the hopping frog, the defeated champion, the writing of the book) do not need
entries in the UL to trigger the appropriate mapping rules.

2.2.1 Basic Concept and Role Lookup

The mapping rules and the UL use WordNet synsets and hypernyms. The system
maps the words recognized by WordNet into the associated synsets directly via the
WordNet API; a copy of WordNet is not included in the UL. Words not in Word-
Net are mapped to, generally singleton, synsets based on information from the XLE
morphology and syntax (e.g., the treatment of person names discussed above). Ini-
tially all synsets for a given word are retrieved; this list is then trimmed to a subset
of the WordNet concepts if additional information is available, for example from
VerbNet or from the context of the text. Noun-noun compounds (e.g., theme park)
and adjective-noun compounds (e.g., high school) known to WordNet are assigned
the appropriate WordNet synsets.

53

VerbNet (Kipper et al., 2000) is used to map from syntactic predicate-argument
structures to event structures with named roles, occasionally simplified by collaps-
ing certain role distinctions. These role and event structures have been heuristically
augmented to cover all of the verb-subcategorization frame pairs in the XLE syn-
tactic lexicon (e.g., the role assignments from verbs known to VerbNet can be used
to provide roles for other verbs in their WordNet synset with the same subcatego-
rization frames). This results in significant expansion of the coverage of VerbNet:
of the 42,000 verb entries in the UL, 25,000 are not directly from VerbNet. Ex-
amples of the VerbNet roles can be seen in the AKRs in examples such as (1).

2.2.2 Lexical Marking for Rule Triggering

In addition to these basic resources, the UL incorporates information about lexical
items that is needed to trigger mapping rules that affect the contextual facts, espe-
cially those involving relations between contexts (Nairn et al., 2006). These lexical
classes are shown in (7).

(7) Unified Lexicon: Lexical Marking for Rule Triggering
Lexical Class Number Example
factives 230 John discovered that Mary left.
implicatives 192 John managed to leave.
propositional attitude 762 John abhors that Mary left.
neutral 33 John sought a unicorn.4

temporal relation 721 John longs to leave.
temporal: forward shift 301 John authorized Mary to leave.
temporal: simultaneous 70 John attempted to leave.
sentential adverbs 13 Obviously John left.

For example, the factivity of the verb discover when used with a that complement is
marked. This marking indicates that discover’s Theme context argument is veridi-
cal with respect to its immediately higher context, enabling the lifting of instantia-
bility from the lower context to the higher one, as described in (1).

2.2.3 Lexical Marking for Normalization

Lexical resources are also used in the normalization of representations. Relevant
lexical classes are shown in (8). A canonical example of this type of normalization
is the mapping of eventive nominal expressions into equivalent verbal counterparts
(e.g., Rome’s destruction of Carthage is mapped to the same representation as Rome
destroyed Carthage.) (Gurevich et al., 2005). The UL contains related noun-verb

4This marking is meant for intensional predicates with respect to an argument position, distin-
guishing between seek and find, for instance. It results in having no instantiability assertion, capturing
an existential commitment, for the term corresponding to the relevant argument of the predicate (in
the case of seek the direct object). By default there is an instantiability assertion for every argument
of a predicate in the context of predication.

54

pairs which are used by the rules to map nouns and their associated phrases into their
verbal, eventive counterparts with appropriate arguments. These entries not only in-
clude the pairings (e.g. destruction-destroy, employer-employ) but also classifica-
tion information. Some of this information involves the mapping of arguments; for
example, agentive nominals like employer refer to the agent of the event, while -ee
nominals like employee refer to the patient. Other information involves the degree
of lexicalization; this determines whether the mapping to the eventive representa-
tion is obligatory or optional. These rules, in conjunction with the lexical class in-
formation, capture ambiguity in the language; for example, Rome’s destruction can
mean either that Rome is the patient of the destroying event or the agent.

(8) Unified Lexicon: Lexical Marking for Normalization
Lexical Class Number Example
deverbal nouns 5,484 Rome’s destruction of Carthage
become adjective 51 The child sickened.
become more adjective 121 John darkened the room.
pertainyms 289 Japanese children
conditional verb 29 John wasted the chance to leave.
ability nouns 11 John had the choice to leave.
asset nouns 15 John had the money to leave.
bravery nouns 16 John had the strength to leave.
chance nouns 19 John had the chance to leave.
effort nouns 13 John took the trouble to leave.
certainty adjectives 3 John is sure to leave.
consider verb 4 John considered the boy foolish.

The mapping of texts to AKR involves changes of representation to aid infer-
ence. Among these are the representation of linguistic paraphrases and idioms which
fall into classes that are lexicalized appropriately. For example, the “become ad-
jective” verbs like redden are rewritten to an AKR similar to that of become red.
Phrases such as take a turn for the worse are mapped to the representation for worsen.
An additional, related large class of items are light verbs such as take, where the
meaning of the verb phrase depends on an argument of the verb. Some examples of
light verb use include take a flight and use a hammer that can be transformed into
fly and hammer. Some verbs are marked as conditionally implicative because they
form implicative constructions with a particular class of nouns. For example, have
the foresight to X is semantically the same type as manage to X. As the best repre-
sentation for the output of these rules is still being explored, there are only a few
lexicalizations for each class currently implemented.

As mentioned above, many noun-noun compounds are known to WordNet and
hence are given the appropriate WordNet synset. However, many such compounds,
especially the less-lexicalized ones, are not in WordNet. The AKR mapping rules
define noun-noun relations based on the meaning of the head noun and the meaning
of its modifier, where the meanings are (upper level) WordNet synsets. For exam-

55

ple, a food solid modifying a type of tableware (e.g, meat plate) creates a for rela-
tion. These rules allow multiple mappings to reflect the multiple readings of many
noun-noun compounds (e.g., a wood box can mean either a box made of wood or a
box for holding wood).

Not all normalization is triggered by lexical classes that are encoded in the UL:
the structure of the representations is often sufficient to determine how to map them
into AKR. Our general approach is to capture the similar content of alternative lin-
guistic expressions by normalizing their AKR to a common representation. This
normalization occurs at many levels. For example, the syntax abstracts away from
word order and localizes dependencies (e.g. in John wants to leave., John is local-
ized as the subject of both want and leave), the semantics canonicalizes passives
to actives (The cake was eaten by John. becomes John ate the cake.)5 and nega-
tive quantifiers on subjects (No boy left. introduces a sentential negation similar to
not). Lexically-based inferences provide further information. One significant type
of such inferences is associated with verbs of change, such verbs of change of loca-
tion (e.g. from John left Athens. one concludes that John was in Athens before the
departure and was not there at least for a while afterwards). The information about
pre- and post-conditions of events described by verbs of change such as leave is
productively extracted from the VerbNet event structure into the UL and then used
by the mapping rules.

2.2.4 Lexical Marking for Expansion of Representation

Some mappings expand the representation instead of, or in addition to, normalizing
it. Most of these mappings expand just the passages and not the queries. Sample
lexical classes of this type are shown in (9).

(9) Unified Lexicon: Lexical Marking for Expansion of Representation
Lexical Class Number Example
lethal cause verbs 29 John strangled his victim.
symmetric nouns 2 John is Mary’s partner.

Such expansions are sometimes specific enough that they are done exclusively
in the rules and are not currently in the UL. For example, in a text, buy is inferred
from sell, with appropriate role substitutions, and vice versa. As a result, a query
about a buying event can match against a passage described in the text as a selling
event. These are done as relatively constrained lexical classes in order to correctly
map the arguments of one event to those of the other (e.g. win-lose maps its sur-
face arguments differently from buy-sell).6 Family relations such as husband-wife

5The choice to have the active-passive correspondence dealt with in the mapping component rather
than the UL reduces the size of the UL. The active-passive correspondence could, alternatively, be
encoded in the UL by matching every transitive verb entry with an entry for its passive counterpart,
thus substantially increasing the size of the UL.

6With appropriate, more complex lexical markings, such correspondences could be encoded in the
UL. Mapping rules would then be used to generate terms and role restrictions for the member of the
pair not explicit in the input sentence.

56

are also expanded in the passages to allow them to match with queries using the
converse relation.

A related aspect of our approach is to make information in the structure of cer-
tain phrases explicit. For example, date expressions (e.g., May 1, 2007) and loca-
tion expressions (e.g., Boise, Idaho) are decomposed into subfacts that allow basic
inferencing in conjunction with the rest of the representation. For example, mak-
ing explicit that Boise is in Idaho, not just part of the name of the place, makes it
possible to conclude from the fact that John lives in Boise, Idaho, that John lives in
Idaho.

As seen by the wide range of examples in this section, lexical resources are a
vital component of the Bridge system. The system incorporates existing resources,
such as VerbNet, as well as resources created especially for the system. Each set of
resources is used by the AKR mapping rules to create appropriate representations
of natural language texts. The efficacy of these resources and their implementation
is demonstrated by the ability of the system to use the resulting representations in
applications such as the Asker search and question answering system.

2.3 Ambiguity Management

A hallmark of our computational approach to syntax, semantics, and knowledge
mapping has been the ability to manage ambiguity by combining alternative in-
terpretations into a single packed structure that can be further processed without
the typically exponential cost of unpacking (Maxwell and Kaplan, 1991). For the
traditional example of John saw a girl with a telescope, the packed representation
compactly represents two interpretations: one where the seeing was done with a
telescope and the alternative where the girl was carrying a telescope. In the packed
representation, the common elements of both interpretations are represented only
once, and only the alternative connections need to be expressed. The packed AKR
representation is shown in (10). The alternate connections are shown in the lines
labeled A1 and A2.

(10) Choice Space:
xor(A1, A2) iff 1

Conceptual Structure:
subconcept(see:2, [see-1, , interpret-1])

A1: role(prep(with), see:2, telescope:9)
role(Stimulus, see:2, girl:6)
role(Experiencer, see:2, John:1)
subconcept(John:1, [male-2])
alias(John:1, [John])
role(cardinality restriction, John:1, sg)
subconcept(girl:6, [girl-1, , girl-5])

A2: role(prep(with), girl:6, telescope:9)

57

role(cardinality restriction, girl:6, sg)
subconcept(telescope:9, [telescope-1])
role(cardinality restriction, telescope:9, sg)

Contextual Structure:
context(t)
top context(t)
instantiable(John:1, t)
instantiable(girl:6, t)
instantiable(see:2, t)
instantiable(telescope:9, t)

Temporal Structure:
temporalRel(startsAfterEndingOf, Now, see:2)

The two distinct readings are labeled by A1 and A2, which are a disjoint partition
of the top level choice 1 (xor(A1, A2) iff 1). In reading A1, the seeing concept is
further restricted to be a seeing with a telescope, whereas in A2, the girl is restricted
to be a girl with a telescope.

The mapping from text to AKR via the syntactic and semantic representations
and the entailment and contradiction detection take advantage of the same ambigu-
ity management system, thereby gaining full efficiency by never unpacking.

Each level of representation provides possible sources of additional ambiguity.
Sometimes it is useful to choose a subset of the interpretations for efficiency reasons
or to interface with non-ambiguity-enabled modules and applications. Stochastic
models are used to order the interpretations by probability in the XLE system (Rie-
zler et al., 2002). In addition, rule-based optimality marks allow low probability in-
terpretations through only if there is no more optimal interpretation available (Frank
et al., 2001). This mechanism is used, for example, to apply VerbNet’s sortal restric-
tions on roles so that the subconcept associated with a verb’s arguments can be fur-
ther constrained, thereby increasing precision and decreasing ambiguity. The opti-
mality mechanism treats these sortal restrictions as soft constraints. If in an ambigu-
ous, packed representation one solution satisfies the sortal restrictions and one does
not, only the one that satisfies them appears in the final representation. However,
if all the solutions violate the sortal restrictions, the ones which violate the fewest
restrictions are used. The combination of efficient processing of packed ambiguous
structures with stochastic and rule-based methods for selecting among these repre-
sentations supports practical, robust analysis of natural language texts.

3 Entailment and Contradiction Detection (ECD)

So far we have described how the Bridge system produces AKR logical forms. These
are used for light reasoning, that we call entailment and contradiction detection. It
follows the form of the “textual inference” challenge problems that have been part
of the PASCAL initiative. The task of the challenge is: given two sentences, P (for
passage or premise) and Q (for query or question), determine whether P provides an

58

intuitive answer for Q as judged by a competent user of the language without any
special knowledge. Thus the goal is to decide whether Q follows from P plus some
background knowledge, according to the intuitions of an intelligent human reader.
This decision is supposed to be based simply on the language involved, factoring
out world knowledge, but this distinction is difficult to characterize precisely and
has become the topic of much current research.

We have developed a collection of algorithms for efficiently detecting entail-
ment and contradiction relations holding between AKRs for queries and AKRs for
candidate answer texts. We have taken a very strict approach, not including plausi-
ble inferences. Thus we deal only with a circumscribed set of textual inferences, but
ones that must be handled by any system aiming for the larger task. Our approach
is to expand the passage texts by using the linguistic inference patterns described
earlier. The system tests entailment and contradiction through a subsumption pro-
cess described below. Some special case reasoners support identification of named
objects, comparison of specificity of WordNet synsets, and compatibility of cardi-
nality restrictions. We call our strict form of textual inference “precision-focused
textual inference”; our approach and results are described in Bobrow et al. (2007).

As a simple example consider how we conclude from John saw a happy girl.
that A child was seen. The representations are shown in (11) and (12) respectively.

(11) John saw a happy girl.
Conceptual Structure:

subconcept(happy:12, [happy-1, felicitous-2, glad-2, happy-4])
subconcept(see:6, [see-1, understand-2, witness-2, , see-23])
role(Stimulus, see:6, girl:18)
role(Experiencer, see:6, John:1)
subconcept(John:1, [male-2])
alias(John:1, [John])
role(cardinality restriction, John:1, sg)
subconcept(girl:18, [girl-1, female child-1, girl-5])
role(cardinality restriction, girl:18, sg)
role(subsective, girl:18, happy:12)

Contextual Structure:
context(t)
top context(t)
instantiable(John:1, t)
instantiable(girl:18, t)
instantiable(see:6, t)

Temporal Structure:
temporalRel(startsAfterEndingOf, Now, see:6)

(12) A child was seen.
Conceptual Structure:

subconcept(see:13, [see-1, understand-2, witness-2, see-23])

59

role(Stimulus, see:13, child:3)
subconcept(child:3, [child-1, child-2, child-4])
role(cardinality restriction, child:3, sg)

Contextual Structure:
context(t)
top context(t)
instantiable(see:13, t)
instantiable(child:3, t)

Temporal Structure:
temporalRel(startsAfterEndingOf, Now, see:13)

ECD works on texts that have been analyzed into AKRs. Passage AKRs are ex-
panded to encode linguistically based inferences (none in (11)). The AKR for con-
cept and context denoting terms are aligned across the passage and question repre-
sentations, and rules defining a calculus of entailment and contradiction are applied.

Before determining specificity relations between terms in the premise and con-
clusion AKRs, it is necessary to align these terms: alignments are not always obvi-
ous. They are computed by a heuristic algorithm that considers all plausible align-
ments where there is sufficient conceptual overlap between terms. This may result
in multiple possible alignments with different likelihood scores. Term alignments
with wh-terms (who, what, where, etc.) provide the answers to wh-questions when
an entailment is detected. In the above example, the two seeing events are aligned,
as are the skolems for girl:18 and child:3.

We check each possible term alignment to see if there is an entailment or contra-
diction between the premise and conclusion representations. The technique detects
an entailment or contradiction if any interpretation of a premise entails or contra-
dicts any interpretation of the conclusion.

The detection mechanism is implemented using XLE’s packed rewrite system.
The core idea behind using the rewrite system is that if the premise representation
entails part of the conclusion representation, then that part of the conclusion can be
deleted (i.e. rewritten to nil). A conclusion is entailed if all of its component parts
have been removed. Hence, if there is a choice in which all of the conclusion rep-
resentation has been removed, then there is some interpretation of the premise and
the conclusion under which the premise entails the conclusion. Contradictions are
detected via rules that add a contradiction flag whenever there is a choice of premise
and conclusion interpretations such that parts of the representations conflict.

As a preliminary to deleting entailed conclusion facts or flagging contradictions,
rules are first applied to make explicit the subsumption and specificity relations hold-
ing between concept terms in the premise and conclusion.

The next set of rules explores the consequences of these specificity relations on
instantiability claims. For an upward monotone environment, instantiability of a
specific concept entails instantiability of a more general concept and uninstantia-
bility of a general concept entails uninstantiability of a more specific concept. For
downward monotone environments, the relations are reversed. This captures the

60

pattern that if A little girl hopped. then we know that A girl hopped., since little
girl is more specific than girl. From Girls hopped. we cannot infer that Little girls
hopped., as it is possible that all the hopping girls are big girls, but from All girls
hopped. we can infer that All little girls hopped., as the quantifier creates a speci-
ficity reversing situation.

To return to our example, it is determined from WordNet that a girl is a kind
of child. A happy girl (girl with the role subsective happy) is yet more specific.
Hence the seeing event in the passage is more specific than that in the hypothesis
and hence instantiable(see:6, t) entails instantiable(see:13, t). Instantiability
statements in t are existence statements, and the existence of an instance of a more
specific concept implies the existence of its generalizations (if there is a happy girl,
there is a girl, which means there is a child, and similarly for see).

The ECD algorithm separates the task of structure alignment from the task of
detecting logical relations between the representations. This separation makes the
method more robust than many graph alignment and matching approaches (Braz
et al., 2006) and is applicable to packed representations without full graph match-
ing. This implements a verifiable calculus of entailment and contradiction, which
in theory corresponds (closely) to Natural Logic entailment (van Benthem, 1986;
MacCartney and Manning, 2007). The differences reside in the introductions of
contexts and of packed representations. We believe that the ECD algorithm com-
bines the best of the inference-based and graph-matching approaches. Term align-
ment is robust to variations in the input structures and the absence of precisely for-
mulated axioms. The entailment calculus rules can be sensitive to non-local aspects
of structure and thus deal with more global constraints on entailment or contradic-
tion. In addition, since the approach is ambiguity-enabled, the system can detect
whether any one of the possible interpretations of the putative answer answers any
one of the possible interpretations of the question.

Given this ability to determine entailment and contradiction between a passage
and a query, the Asker system builds up a semantic index of AKRs for passages and
then at run-time produces AKRs for queries. These query AKRs are used to retrieve
possible answer passages and then ECD can be applied to provide answers to the
original query. This process is described in the next section.

4 Indexing and Retrieval

Asker is a search and question answering system. In order to retrieve relevant pas-
sages and documents from a large corpus, a specialized search index is constructed
that encodes the information from the AKR for each sentence. Typical keyword
search indices map words (or their stems) to their document occurrences, along with
word offset information and other metadata. The Asker semantic index contains this
information, but also maps each word’s synonyms and hypernyms to the passages
containing them, along with their semantic roles and relations. The index scales
to retrieve semantically related passages from very large corpora (millions of docu-

61

ments from a single server) in a second or less. The results correspond to the seman-
tic structure of the query, enabling much higher precision than free text searches.
The results of the semantic search can be evaluated by the ECD algorithms to test
for entailment or contradiction and hence answer the query.

4.1 Indexing

Each document in the corpus is broken into sentences, and the AKR for each sen-
tence is fed into the indexer (see Fig. 3). The lexical identifiers (literal strings or
identifiers from linguistic resources) for each word in the AKR are combined with
information about their semantic function in the passage to create a set of index
term strings. These strings are then associated with occurrence information, which
records the relationship of the identifier to the actual word (i.e., alias, synonym, or
hypernym and the number of levels in the ontology from the word to the hypernym),
along with the document, sentence, and predication containing the word, indicators
for montonicity, byte positions of the words in the sentence, and other information.

For example, the AKR for the sentence Ramazi knows Legrande. contains the
semantic roles Agent and Theme, describing the knowing relation between Ra-
mazi and Legrande. These semantic relations are encoded into index terms by com-
bining the term with the role and its position in the relation, e.g. know:Agent:1,
Ramazi:Agent:2 and know:Theme:1 and Legrande:Theme:2. These index terms
are associated in the search index with the information about how they occur in the
passage.

By looking up know:Agent:1, the system will find all occurrences of any agent
knowing anything, and Ramazi:Agent:2 will retrieve occurrences where Ramazi
is the agent of some event. By taking the intersection of these occurrence lists, the
system finds passages where Ramazi knows something. Likewise, the system finds
the intersection of occurrences where the Theme involves knowing Legrande. The
occurrence information specifies the predication containing these relations, so the
system can find those passages containing references to Ramazi knowing Legrande.

The actual index terms are generated using WordNet concept IDs and alias in-
formation, rather than the string. So in this example the term know is associated
with a number of WordNet IDs (synonyms and hypernyms of the term), and each of
these IDs is stored separately in the index. Thus, rather than know:Agent:1, the ac-
tual terms stored would be 587430:Agent:1, 588355:Agent:1, 588050:Agent:1,
etc. The passages associated with these index terms will be retrieved for any term
in a query mapping to the same Wordnet concept.

Finally, this information is inverted to enable efficient lookup of occurrences by
index term. The index format is designed to store all of this information for each
index term in a highly compressed encoding and to permit lookup with little or no
degradation of performance as the corpus grows. The occurrence lists (known as
postings) are arranged to take advantage of regularities in the occurrence data, using
variable-length integers and delta-encoding for compression (as well as bitvectors
for the most frequently occurring terms) and the data is localized using skip-lists

62

to enable efficient disk reads. Each sentence is associated with its containing doc-
ument, and an arbitrary amount of metadata can be stored for each document.

4.2 Retrieval

At query time (see Fig. 1), the semantic search module receives an AKR for the
natural language query. A set of index terms is generated from the query AKR in
the same manner used for indexing of passage AKRs, only with simplification of the
facts instead of augmentation. The postings for the index terms are retrieved, and
the data is processed to find documents containing the appropriately tagged terms
occurring in predications that correspond to those in query.

The system attempts to match each semantic fact in the query with each result
passage, checking to see that the terms align in corresponding predications. For
example, for a query like Does Ramazi know Legrande?, the results would include
the passage Legrand is known by Ramazi., but it would not include Ramazi knows
Hassan, Hussein knows Legrande, but no one knows the cell leader., where both
Ramazi and Legrande play roles in a knowing relationship, but not to each other.

This strategy results in high-precision retrieval. As a back-off strategy, the sys-
tem uses extended key word and key word search techniques. Extended key word
search takes advantage of the stemming of word forms and the mapping into Word-
Net concepts and, for proper nouns, alias facts in order to increase recall of standard
key word search. The results of these key word searches are presented separately
from the full retrieval results and are not input to ECD.

The retrieval process does not test for strict entailment and contradiction, how-
ever. For example, a query of Did Cheney go to Baghdad? Might return the passage
Cheney was believed to have gone to Baghdad., even though it is not entailed by the
query. To check for entailment and contradiction, the results of indexed search can
be filtered through the ECD component (section 3) to eliminate false positives for
answering the question.

5 Discussion and Conclusions

The Bridge system is a complexly engineered combination of linguistic formalisms
based on theoretical criteria. It provides the basis for applications, including entail-
ment and contradiction detection (ECD) and semantic retrieval (Asker). Because
the system is under development by a significant number of people working in par-
allel, it requires a support environment to ensure that changes improve the system
in the intended directions, without losing efficiency or accuracy. Some tools sup-
porting this system development are described in Chatzichrisafis et al. (2007).

The architecture provides a layered set of transformations of English text to an
abstract knowledge representation. The LFG-based syntactic parsing system pro-
duces a dependency structure. The semantics module produces a flattened repre-
sentation that normalizes these functional dependency structures. It maps grammat-

63

ical functions into semantic roles and further normalizes the syntactic dependencies,
e.g., transforming deverbal nouns and adjectives into their underlying verbal form.
Criteria for the syntactic and semantic representations include capturing linguistic
generalizations and parallelisms cross-linguistically (Butt et al., 1999, 2002).

The mapping rules for knowledge representation produce descriptions of the
concepts under discussion, and a contextual structure that captures the nested struc-
ture of contexts. They also specify for each concept whether it is instantiable in the
relevant contexts or not. Passage expansion rules add linguistically supported in-
ferences to the representation, to make the import of the sentence explicit in the rep-
resentation. The criteria for the AKR include natural representation of the distinct
meanings of a text, the ability to be transformed into an (extended) first order form
for use by other logical reasoners, and support for applications, especially Asker.

The architecture is supported by a collection of linguistic resources, some of
which were developed specifically for this system. The broad-coverage English
grammar, morphology, and lexicon were developed over many years for a range of
applications. The semantics module uses WordNet for its linguistic taxonomic on-
tology and VerbNet as a resource for transforming grammatical roles into semantic
roles. These resources have been extended using syntactic resources from the XLE
grammar to produce a Unified Lexicon (UL). In addition, the UL includes lexical
markings needed to support normalization, paraphrase, lexical inference, and struc-
tural inference. Classes of words that support specific extensions to the initial AKR
are lexicalized in the UL. For example, we have identified and categorized over 300
verbs that support pre-suppositional and implicative inference.

Our question answering architecture exploits the AKR representation of sen-
tences. The use of AKR structural components as index terms has significantly im-
proved precision of retrieval from our semantically indexed repository. ECD can
be used as a mechanism to answer questions, not just retrieve relevant passages.

References

Bobrow, Daniel G., Condoravdi, Cleo, Crouch, Richard, Kaplan, Ron, Karttunen,
Lauri, King, Tracy Holloway, de Paiva, Valeria and Zaenen, Annie. 2005. A Ba-
sic Logic for Textual Inference. In Proceedings of the AAAI Workshop on Infer-
ence for Textual Question Answering.

Bobrow, Daniel G., Condoravdi, Cleo, de Paiva, Valeria, Karttunen, Lauri, King,
Tracy Holloway, Nairn, Rowan, Price, Charlotte and Zaenen, Annie. 2007.
Precision-focused Textual Inference. In Proceedings of the ACL-PASCAL Work-
shop on Textual Entailment and Paraphrasing.

Braz, Rodrigo, Girju, Roxana, Punyakanok, Vasin, Roth, Dan and Sammons,
Mark. 2006. An Inference Model for Semantic Entailment in Natural Language.
Machine Learning Challenges, Evaluating Predictive Uncertainty, Visual Ob-

64

ject Classification and Recognizing Textual Entailment, First PASCAL Machine
Learning Challenges Workshop pages 261–286.

Butt, Miriam, Dyvik, Helge, King, Tracy Holloway, Masuichi, Hiroshi and Rohrer,
Christian. 2002. The Parallel Grammar Project. In Proceedings of COLING-2002
Workshop on Grammar Engineering and Evaluation, pages 1–7.

Butt, Miriam, King, Tracy Holloway, Niño, Marı́a-Eugenia and Segond,
Frédérique. 1999. A Grammar Writer’s Cookbook. CSLI Publications.

Chatzichrisafis, Nikos, Crouch, Dick, King, Tracy Holloway, Nairn, Rowan,
Rayner, Manny and Santaholma, Marianne. 2007. Regression Testing For
Grammar-Based Systems. In Tracy Holloway King and Emily M. Bender (eds.),
Proceedings of the GEAF 2007 Workshop, CSLI Publications.

Condoravdi, Cleo, Crouch, Dick, Stolle, Rienhard, de Paiva, Valeria and Bobrow,
Daniel G. 2003. Entailment, Intensionality and Text Understanding. In Proceed-
ings Human Language Technology Conference, Workshop on Text Meaning.

Condoravdi, Cleo, Crouch, Richard, van der Berg, Martin, Everett, John O., Stolle,
Reinhard, de Paiva, Valeria and Bobrow, Daniel G. 2001. Preventing Existence.
In Proceedings of the Conference on Formal Ontologies in Information Systems.

Crouch, Dick, Condoravdi, Cleo, Stolle, Reinhard, King, Tracy Holloway,
de Paiva, Valeria, Everett, John O. and Bobrow, Daniel G. 2002. Scalability of
redundancy detection in focused document collections. In Proceedings First In-
ternational Workshop on Scalable Natural Language Understanding.

Crouch, Dick, Dalrymple, Mary, Kaplan, Ron, King, Tracy Holloway,
Maxwell, John and Newman, Paula. 2007. XLE Documentation,
www2.parc.com/isl/groups/nltt/xle/doc/.

Crouch, Dick and King, Tracy Holloway. 2006. Semantics via F-Structure Rewrit-
ing. In Proceedings of LFG06, pages 145–165, CSLI On-line publications.

Crouch, Richard. 2005. Packed Rewriting for Mapping Semantics to KR. In Pro-
ceedings Sixth International Workshop on Computational Semantics.

Crouch, Richard and King, Tracy Holloway. 2005. Unifying Lexical Resources. In
Proceedings of the Interdisciplinary Workshop on the Identification and Repre-
sentation of Verb Features and Verb Classes.

de Paiva, Valeria, Bobrow, Daniel G., Condoravdi, Cleo, Crouch, Richard, Kaplan,
Ron, Karttunen, Lauri, King, Tracy Holloway, Nairn, Rowan and Zaenen, An-
nie. 2007. Textual inference logic: Take two. In Proceedings of the Workshop on
Contexts and Ontologies: Representation and Reasoning, Workshop associated
with the 6th International Conference on Modeling and Using Context.

65

Everett, John O., Bobrow, Daniel G., Stolle, Reinhard, Crouch, Dick, Condoravdi,
Cleo, de Paiva, Valeria, van den Berg, Martin and Polanyi, Livia. 2002. Making
ontologies work for resolving redundancies across documents. In Communica-
tions of the ACM, volume 45, pages 55–60.

Fellbaum, Christiane (ed.). 1998. WordNet: An Electronic Lexical Database. The
MIT Press.

Frank, Anette, King, Tracy Holloway, Kuhn, Jonas and Maxwell, John T. 2001.
Optimality Theory Style Constraint Ranking in Large-scale LFG Grammars. In
Peter Sells (ed.), Formal and Empirical Issues in Optimality Theoretic Syntax,
pages 367–397, CSLI Publications.

Gurevich, Olga, Crouch, Richard, King, Tracy Holloway and de Paiva, Valeria.
2005. Deverbals in Knowledge Representation. In Proceedings of FLAIRS’06.

Kipper, Karin, Dang, Hoa Trang and Palmer, Martha. 2000. Class-based Construc-
tion of a Verb Lexicon. In AAAI-2000 17th National Conference on Artificial In-
telligence.

MacCartney, Bill and Manning, Christopher D. 2007. Natural Logic for Textual In-
ference. In Proceedings of the ACL 2007 Workshop on Textual Entailment and
Paraphrasing.

Maxwell, John and Kaplan, Ron. 1991. A Method for Disjunctive Constraint Satis-
faction. In Masaru Tomita (ed.), Current Issues in Parsing Technologies, pages
173–190, Kluwer.

Maxwell, John and Kaplan, Ron. 1996. An Efficient Parser for LFG. In Proceedings
of the First LFG Conference, CSLI Publications.

McCarthy, John. 1993. Notes on Formalizing Context. In Proceedings of the 13th
Joint Conference on Artificial Intelligence (IJCAI-93), pages 555–560.

Nairn, Rowan, Condoravdi, Cleo and Karttunen, Lauri. 2006. Computing Relative
Polarity for Textual Inference. In Proceedings of ICoS-5 (Inference in Computa-
tional Semantics).

Riezler, Stefan, King, Tracy Holloway, Kaplan, Ronald M., Crouch, Richard,
Maxwell, John T. and Johnson, Mark. 2002. Parsing the Wall Street Journal us-
ing a Lexical-Functional Grammar and discriminative estimation techniques. In
Proceedings of ACL02.

van Benthem, Johan. 1986. Essays in Logical Semantics. Reidel.

66

Accommodating Language Variation in Deep Processing

António Branco and Francisco Costa
University of Lisbon

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

67

Abstract
We present an approach to handle variation in deep linguistic process-

ing. It allows a grammar to be parameterized as to what language variants
it accepts and also to detect the variant of the input. We also report on the
evaluation of this approach by having the system detect the dialect of input
sentences extracted from corpora of two different dialects.

1 Introduction
This paper proposes a design strategy for deep language processing grammars to
appropriately handle language variants of a given language.

In the benefit of generalization and grammar writing economy, it is desirable
that a grammar can handle language variants — that is variants which share most
grammatical structures and lexicon — in order to avoid the multiplication of indi-
vidual grammars, motivated by inessential differences.

The design presented here allows a grammar to be restricted as to what lan-
guage variant it is tuned to, but also to detect the variant a given input pertains to.
Evaluation of this design is also reported.

We assume the HPSG framework (Pollard and Sag, 1994) and a grammar that
handles two close variants of the same language, European and Brazilian Por-
tuguese. These assumptions are merely instrumental, and the results obtained can
be easily extended to other languages and variants, and to other grammatical frame-
works for deep linguistic processing.

The HPSG setup for handling variation and the experiments themselves were
carried out with a computational HPSG for Portuguese. It is being developed in
the LKB (Copestake, 2002) on top of the Grammar Matrix (Bender et al., 2002),
and it uses MRS for semantic description (Copestake et al., 2001). This grammar
is part of the DELPH-IN Consortium (http://www.delph-in.net).1

2 Handling variation
We propose an approach that allows flexibility with respect to variation in the same
language and also permits a grammar to be tuned to a particular variant. It relies
on the use of a feature VARIANT to model variation. This feature is appropriate for
all signs, and its value declared to be of type variant. Given the working language
variants assumed here for the sake of the evaluation experiment, its possible values
are the ones presented in Figure 1.

This attribute is constrained to take the appropriate value in lexical items and
constructions specific to one of the two varieties. For example, a hypothetical
lexical entry for the lexical item autocarro (bus, exclusive to European Portuguese)
would include the constraint that the attribute VARIANT has the value ep-variant,

1At the time of the experiments reported here, the grammar was of modest size, resulting from a
year and a half of development.

68

ep-variant

variant

single-variant bp-variant

european-portuguese portuguese brazilian-portuguese

Figure 1: Type hierarchy under variant.

and the corresponding Brazilian Portuguese entry for ônibus would constrain the
same feature to bear the value bp-variant. Items that are common to both European
Portuguese and Brazilian Portuguese are left underspecified with respect to this
feature. They do not have to be constrained with [VARIANT variant] because this
constraint is defined in the type sign, from which all lexical types inherit.

Figure 2 shows examples of these cases, with simplified feature structures.
The only two types that are used to mark signs are ep-variant and bp-variant. The
remaining types presented in Figure 1 are used to constrain grammar behavior, as
explained below.





STEM
〈

“autocarro”
〉

VARIANT ep-variant









STEM
〈

“ônibus”
〉

VARIANT bp-variant









STEM
〈

“carro”
〉

VARIANT variant





Figure 2: Constraints on lexical items. Example of an European Portuguese item
(autocarro — bus), a Brazilian Portuguese item (ônibus — bus) and an item com-
mon to both varieties (carro — car).

Lexical items are not the only elements that can have marked values in the
VARIANT feature. Lexical and syntax rules can have them, too. Such constraints
model constructions that markedly pertain to one of the dialects. Section 4 presents
a small examination of these differences.

The feature VARIANT is structure-shared among all signs comprised in a full
parse tree. This is achieved by having all lexical or syntactic rules unify their
VARIANT feature with the VARIANT feature of their daughters (Figure 3).

Since this feature is shared among all signs, it will be visible everywhere, in-
cluding the root node. It is possible to constrain the feature VARIANT in the root con-
dition of the grammar so that the grammar works in a variant-“consistent” fashion:
this feature just has to be constrained to be of type single-variant (in root nodes)
and the grammar will accept either European Portuguese or Brazilian Portuguese.
Furthermore, in the unnatural condition where the input string bears marked prop-
erties of both variants (e.g. from lexical items and syntax rules), that string will
receive no analysis: the feature VARIANT will have the value portuguese in this
case (the greatest lower bounds for ep-variant and the other bp-variant), and there
is no unifier for portuguese and single-variant.

69

[

lexical-rule
VARIANT 1

]

[

sign
VARIANT 1

]

[

phrase
VARIANT 1

]

�
�

�
�
�

H
H

H
H

H

[

sign
VARIANT 1

]
· · ·

[

sign
VARIANT 1

]

Figure 3: Constraints on rules. Lexical and syntax rules identify the VARIANT
feature of the mother with the VARIANT features of all the daughters.

Figure 4 shows an example of this situation, where the marked Brazilian item
dezesseis (sixteen) co-occurs with the marked European item autocarros (buses).
This is specially useful in generation, where one may be interested in generating
all relevant sentences in either European Portuguese or Brazilian Portuguese, but
one does not want to generate sentences with phrases like the one in this example.

If this feature is constrained to be of type european-portuguese in the root
node, the grammar will not accept any sentence with features of Brazilian Por-
tuguese, since these will be marked to have a VARIANT of type bp-variant, which
is incompatible with european-portuguese (there is no unifier for these two types
according to the hierarchy in Figure 1). It is also possible to have the grammar re-
ject European Portuguese sentences in detriment of Brazilian Portuguese ones (by
using type brazilian-portuguese) or to ignore variation completely by assigning to
VARIANT the variant value, thus not constraining the VARIANT feature in the start
symbol.

The mechanism presented here has the following properties:

• Increased coverage and flexibility. The grammar can handle input from all
variants under consideration if the VARIANT feature is constrained with a
general type.

• Parameterization. The grammar can be tuned to a relevant dialect by con-
straining the feature VARIANT with a specific type. This is welcome in pars-
ing, but specially desirable in generation, where the grammar can be config-
ured to generate only in a given selected variant.

• Consistency. If VARIANT is constrained to be single-variant, the grammar can
deal with all variants, but it will reject sentences with mixed characteristics.

The ability to parse more variants means more coverage, which generally in-
creases ambiguity. The last two properties above are ways to control this kind of
ambiguity. If the input string contains an element that can only be found in variety
v1 and that input string yields ambiguity in a different stretch but only in varieties

70

S
[

VARIANT 1 portuguese u single-variant = ⊥
]

�
�

�
�

�
�

�
�

�
�

�
�

��

H
H

H
H

H
H

H
H

H
H

H
H

HH

· · · NP
[

VARIANT 1 bp-variant u ep-variant = portuguese
]

�
�

�
�

�
�

H
H

H
H

H
H

D
[

VARIANT 1 bp-variant
]

dezesseis

N
[

VARIANT 1 ep-variant
]

autocarros

· · ·

Figure 4: Example of an inconsistency. The noun phrase dezesseis autocarros
(sixteen buses) is inconsistent. It should be either dezesseis ônibus (Brazilian Por-
tuguese) or dezasseis autocarros (European Portuguese). The constraint on the
VARIANT of the root node (to be single-variant) rejects the structure.

71

vk other than v1, this ambiguity will not give rise to multiple analyses if the gram-
mar is constrained to accept strings with marked elements of at most one variety.

This can be illustrated with a simple example. The preposition a (to, at) is
homonymous with a form of the definite article. In European Portuguese, in many
contexts definite articles are obligatory before possessives, but in Brazilian Por-
tuguese they are optional in these cases. In Brazilian Portuguese the string a minha
opinião is ambiguous between the reading corresponding to my opinion and to
my opinion, because of the lexical ambiguity of a. The interaction with pro-drop
and various word-order possibilities multiplies possible parses as this and similar
phrases can be the subject, the direct object, the indirect object or a PP adjunct.
But in European Portuguese this string will not be ambiguous between an NP and
a PP in contexts where the article is obligatory. In these contexts, only the reading
corresponding to my opinion will be available.

In general, we can know whether a string is European Portuguese or Brazilian
Portuguese if a marked item or construction occurs. Consider a similar example,
but where the noun is specific to European Portuguese: for instance a minha ideia
(my idea, the Brazilian Portuguese spelling of the word is idéia). If the root node
is constrained to have a VARIANT of type single-variant, the PP reading is rejected
(even when we do not know the specific variant of the input in advance), since the
PP analysis is only available in Brazilian Portuguese where the noun is spelled
differently. That PP will have a VARIANT of type portuguese, which does not unify
with single-variant in the root node, as was seen before. Figure 5 depicts the
corresponding computations.

Variant Detection
With this grammar design it is also possible to use the grammar to detect to which
variety the input happens to belong. This is done by parsing that input and placing
no constraint on the feature VARIANT of root nodes, and then reading the value of
attribute VARIANT from the resulting feature structure: values ep-variant and bp-
variant result from parsing text with properties specific to European Portuguese or
Brazilian Portuguese respectively; the value variant or single-variant (depending
on the constraint on the root node) indicates that no marked elements were detected
and the text can be from both variants.

Also in this case where the language variant of the input is detected by the
grammar, the desired variant-“consistent” behavior of the grammar is enforced if
the feature VARIANT is set to single-variant. The examples in Figure 5 also illustrate
this functioning: the constraint on the feature VARIANT of the marked item ideia is
propagated throughout the syntactic structure.

Evaluation
It is important to gain insight on the quality of the performance of this method.
This is addressed in the next sections. The question we want to find an answer

72

NP
[

VARIANT 1 variant u ep-variant = ep-variant
]

�
�

�
�

�
�

�
�

H
H

H
H

H
H

H
H

D
[

VARIANT 1 variant
]

a

N
[

VARIANT 1 variant u ep-variant = ep-variant
]

�
�

�
�

��

H
H

H
H

HH

POSS
[

VARIANT 1 variant
]

minha

N
[

VARIANT 1 ep-variant
]

ideia

PP
[

VARIANT 1 variant u portuguese = portuguese
]

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
HH

P
[

VARIANT 1 variant
]

a

NP
[

VARIANT 1 bp-variant u ep-variant = portuguese
]

�
�

�
�

�
�

H
H

H
H

H
H

D
[

VARIANT 1 bp-variant
]

minha

N
[

VARIANT 1 ep-variant
]

ideia

Figure 5: Example of ambiguity specific to one variety. When such ambiguous
forms co-occur with items of another variety, they can be resolved by constraining
the start symbol with a VARIANT feature of type single-variant.

73

to is: how appropriate is this design for the handling of variation? A simple way
to evaluate this design is to parse sentences whose original dialect is known and
check whether the grammar can consistently detect the right dialect, by reading off
the value of the feature VARIANT in the feature structure for the sentence.

3 Data
To evaluate the approach to accommodate variation presented above, two corpora
of newspaper text were used, CETEMPublico (204M tokens) and CETENFolha
(32M tokens). The first contains text from a Portuguese newspaper, and the latter
from a Brazilian one. These corpora are only minimally annotated (paragraph and
sentence boundaries, inter alia), but are very large.

Some preprocessing was carried out: XML-like tags, such as the <s> and
</s > tags marking sentence boundaries, were removed and each individual sen-
tence was put on a single line. Some heuristics were also employed to remove
loose lines (parts of lists, etc.) so that only lines ending in . , ! and ? and contain-
ing more than 5 tokens (whitespace delimited) were considered. Other character
sequences that were judged irrelevant and potentially misguiding for the purpose
at hand were normalized: URLs were replaced by the sequence URL , e-mail ad-
dresses by MAIL , hours and dates by HORA and DATA , etc. Names at the beginning
of lines indicating speaker (in an interview, for instance) were removed, since they
are frequent and the grammar used is not intended to parse name plus sentence
strings.

From each of the two corpora, 90K lines were selected, with the smallest length
sentences. Of the resulting 90K+90K, 26% were shown to be fully parsable by the
grammar and set apart. From these 26%, 1800 + 1800 sentences were randomly
chosen.

If a sentence is found in the European corpus, one can be sure that it is possi-
ble in European Portuguese, but one does not know if it is Brazilian Portuguese,
too. The same is true of any sentences in the American corpus — these can also
be sentences of European Portuguese in case they only contain lexical items and
structures that are common to both variants.

In order to address this, a native speaker of European Portuguese was asked
to manually decide from sentences found in the American corpus whether they
were markedly Brazilian Portuguese. Conversely, a Brazilian informant detected
markedly European Portuguese sentences from the European corpus. Thus a three-
way classification is obtained: every sentence was classified as being markedly
Brazilian Portuguese, European Portuguese or common to both variants.

As a result, 5KB of text (140 sentences) from each one of the three classes were
selected for testing, and another 5KB (also around 140 sentences each) for training
(development).

Many more sentences were classified as possible in both dialects than as sen-
tences specific to either one. We only kept a subset of the sentences judged to

74

be common, in order to have a uniform distribution of the three classes in the
data. 16% of the sentences in the European corpus were considered impossible
in Brazilian Portuguese, and 21% of the sentences in the American corpus were
judged exclusive to Brazilian Portuguese. Overall, 81% of the text was common
to both varieties. Since a single marked item or construction in a sentence causes
it to be classified as marked, we see that a very large part of the language variants
overlap (very likely more than 81%).

4 Differences Between European Portuguese and Brazil-
ian Portuguese Found in the Training Corpora

We proceed to an analysis of the training data resulting from the manual classifica-
tion described in Section 3. A brief typology of the markedly Brazilian elements
found in the American training corpus is presented. We also present the relative
frequency of these phenomena based on the same data. We do not present the
marked items found in the European corpus, because, being native speakers of Eu-
ropean Portuguese, we could not always determine the reason why the Brazilian
informant marked sentences as specific to European Portuguese.2

0. Differences due to lack of orthographic harmonization (33.3%)

(a) Phonetic or phonological differences reflected in spelling (9.3%)
e.g. BP irônico vs. EP irónico (ironic)

(b) Pure spelling differences, no phonemic difference (24%)
e.g. BP ação vs. EP acção (action)

1. Lexical differences (26.9% of all differences found)

(a) Different form, same meaning (22.5%)
e.g. BP time vs. EP equipa (team)

(b) Same form, different meaning (4.4%)
e.g. policial: BP police officer, EP criminal novel

2Although we were able to extract a large amount of information from the European Portuguese
training data as well, by checking possible candidates in dictionaries and web searches, we cannot
quantify the different phenomena at stake precisely, as in some cases a decision could not be made.
We should have asked the informants to paraphrase the marked sentences in a way that sounded
acceptable to them, so that we could have detected the markedly European items and constructions
consistently.

75

2. Syntactic differences (39.7%)

(a) Co-occurrence of definite articles and prenominal possessives (12.2%)
BP: Meu pai cuida de tudo.

my father takes care of everything
EP paraphrase: O meu pai cuida de tudo.

the my father takes care of everything
My father takes care of everything.

(b) Different subcategorization frames (9.8%)
Progressive auxiliary estar selects for a gerund in Brazilian Portuguese,
and preposition a plus infinitive in European Portuguese (5.4%)
BP: O gravador está funcionando?

the tape recorder is working.GER
EP paraphrase: O gravador está a funcionar?

the tape recorder is PREP work.INF
Is the tape recorder working?

(c) Clitic placement (6.4%)
BP: Tommy se apaixona por Betsy.

Tommy CLITIC falls in love for Betsy
EP paraphrase: Tommy apaixona-se por Betsy.

Tommy falls in love CLITIC for Betsy
Tommy falls in love with Betsy.

(d) Bare NPs headed by singular count nouns (5.4%)
BP: Médico também é ser humano.

doctor also is being human
EP paraphrase: Um médico também é um ser humano.

a doctor also is a being human
A doctor is a human being, too.

(e) Different subcategorization frame and different word sense (1.9%) e.g.
BP fato (fact, with a sentential complement) vs. EP fato (suit, no com-
plements)

(f) Co-occurrence of prenominal todo and definite articles (0.9%)
BP: Todo mundo aqui gosta deles.

all world here likes of them
EP paraphrase: Todo o mundo aqui gosta deles.

all the world here likes of them
Everyone here likes them.

(g) Contractions of prepositions and articles (0.9%)
BP: Eles estão em uma creche da cidade.

they are in a kindergarten of the city
EP paraphrase: Eles estão numa creche da cidade.

they are in a kindergarten of the city.
They are in one of the city’s kindergartens.

76

(h) Matrix wh-questions without subject-verb inversion or é que (0.9%)
BP: O que ele veio fazer aqui?

what he came to do here?
EP paraphrase: O que é que ele veio fazer aqui?

what is that he came to do here
What did he come here for?

(i) Postverbal sentential negation (0.5%)
BP: Mas, felizmente, isso não existe não, bonitinha .

but fortunately that not exists not foxy
EP paraphrase: Mas, felizmente, isso não existe, bonitinha .

But fortunately that not exists foxy
But fortunately that doesn’t exist, foxy.

(j) other (0.5%)
BP: Enquanto isso, de dia, trabalhava de alfaiate.

while that at day I worked as tailor
EP paraphrase: Enquanto isso, de dia, trabalhava como alfaiate.

while that at day I worked as tailor
Meanwhile, I worked as a tailor during the day.

Figure 6 presents a pie chart of these differences.
One third of the differences found would be avoided if the orthographies were

harmonized (0). Differences that are reflected in spelling can be modeled by the
grammar via multiple lexical entries, with constraints on the feature VARIANT re-
flecting the variety in which the lexical item with that spelling is used. In some
cases, a different solution would be preferable. When the difference is systematic
(e.g. the European Portuguese sequence ón always corresponds to a Brazilian Por-
tuguese sequence ôn, with an example in (0a)), it would be better to have a lexical
rule that affects only spelling and the VARIANT feature producing one variant from
the other.3

Orthographic differences, which account for 33.3% of all differences appear
in 47.9% of the sentences (in the American training corpus). This means that, by
simply looking at lexical items, almost 50% recall could be obtained on these data,
assuming perfect lexical coverage.

Some differences cannot be detected by the grammar. This is the case of (1b),
which would require word sense disambiguation. When word sense differences
are accompanied by different syntax, they can be detected by the grammar (2e)
in limited circumstances (e.g., in that example, the difference is detected only if
the complement is expressed). This places the upper bound for recall for Brazilian
Portuguese between 95.6% and 93.7%, judging by these frequencies.

Interestingly, 40% of the differences are syntactic. These cases are not expected
to be difficult to detect by a grammar, but it may be difficult to take advantage of
them with shallower methods. Consider the example of clitic placement, illustrated

3This was not implemented, because string manipulation is limited in the LKB.

77

Phonetic and Spelling 9%

Spelling 24%

Syntactic 40%

Lexical 27%

Figure 6: Breakdown by type of the differences detected in the Brazilian Por-
tuguese training corpus.

in (2c). It is not a simple matter of clitics preceding the verb in Brazilian Portuguese
and following it in European Portuguese, because they can also precede the verb in
European Portuguese depending on the syntactic context (e.g. in finite subordinate
clauses they must do so). Therefore, syntactic information is crucial to detect some
of the differences found.

Another interesting example is the co-occurrence of definite articles and pos-
sessives (2a). Recall from one of the examples in Section 2 that the feminine
singular form of the definite article, a, is homonymous with a preposition. Syn-
tactic context can disambiguate this situation in several circumstances (e.g. after a
preposition that does not introduce an infinitival clause it can only be an article; as
an article it cannot introduce an NP headed by a noun that is masculine or plural,
etc.).

5 Grammar Preparation
The evaluation experiments were carried out with a computational HPSG for Por-
tuguese developed with the LKB platform (Copestake, 2002) that uses MRS for
semantic representation (Copestake et al., 2001). At the time of the experiments
reported here, this grammar was of modest size. In terms of linguistic phenomena,
it covered basic declarative sentences and basic phrase structure of all categories,
with a fully detailed account of the structure of NPs. It contained 42 syntax rules,
37 lexical rules (mostly inflectional) and a total of 2988 types, with 417 types for
lexical entries. There were 2630 hand-built lexical entries, mostly nouns, with
1000 entries. It was coupled with a POS tagger for Portuguese, with 97% accuracy
(Branco and Silva, 2004; Silva, 2007).

In terms of the sources of variant specificity, this grammar was specifically
designed to handle the co-occurrence of prenominal possessives and determiners
and most of the syntactic constructions related to clitic-verb order. As revealed by
the study of the training corpus, these constructions underlie almost 20% of marked

78

sentences, and they are the bulk of the syntactic differences.
We present a simplified description of how word-order of complement clitics

was controlled by the grammar at the time of the experiments. Basically, several
binary versions of Head-Complement rules are used. In the feature structure for
these rules there is a boolean feature PROCLISIS indicating whether proclisis (cl-
itics before the verb) or enclisis/mesoclisis (clitics after or in the middle of the
verb) is expected according to European Portuguese.4 The value for this feature is
determined by other elements in a sentence. An example: since in finite subordi-
nate clauses proclisis is enforced, complementizers select for a complement with a
PROCLISIS feature with the value + (the start symbol is constrained with the value
− for this feature, because the unmarked order in matrix clauses is enclisis). There
is a Head-Complement construction that ignores this feature and projects a non
clitic complement.

The nature of clitics is represented by a feature WEIGHT: clitics have the value
clitic for this feature, other syntactic constituents have the value non-clitic, and
there is no unifier for these two types. The value of WEIGHT is lexically specified
and always non-clitic for phrases.5 The Head-Complement schema that projects
non-clitics has constraints like:













HEAD-DTR 1

NON-HEAD-DTR 2

[

SYNSEM | LOCAL | CAT | WEIGHT non-clitic
]

ARGS
〈

1 , 2

〉













The feature ARGS has as its value the list of daughters of a syntactic rule. The
order of the elements in this list correlates with word order. The actual value of
ARGS is determined by general types in the Matrix (head-initial and head-final),
from which specific syntactic rules inherit, but we present the constraints on ARGS
here instead of the relevant supertypes, in order for the word-order patterns in these
rules to be visible.

There is a Head-Complement rule that projects a clitic to the left of the verb in
proclisis contexts:

4The choice between enclisis and mesoclisis depends only on verbal tense and mood and is not
relevant for our purposes. The opposition is between proclisis contexts and non proclisis contexts.

5The feature WEIGHT is reminiscent of the same feature in Abeillé and Godard (2003), but here
different values are used. An equivalent treatment would be to enrich the type hierarchy under
synsem, so that the distinction between clitics and non clitics is represented via subtypes of synsem,
as in Miller and Sag (1997). Contrary to much HPSG work on Romance clitics, we chose to have
them combine with verbs in syntax rather than in morphology for practical reasons that relate to
orthography: the resulting string includes a space whenever the clitic precedes the verb. When clitics
follow the verb, a hyphen is used instead, which is removed in a preprocessing step.

79























SYNSEM | LOCAL | CAT

[

HEAD verb
PROCLISIS +

]

HEAD-DTR 1

NON-HEAD-DTR 2

[

SYNSEM | LOCAL | CAT | WEIGHT clitic
]

ARGS
〈

2 , 1

〉























In order to account for variation with respect to clitic placement, there are thus
two versions of Head-Complement rules for clitics in enclisis contexts that are
marked with respect to the VARIANT feature and resort to the feature PROCLISIS:





























SYNSEM | LOCAL | CAT

[

HEAD verb
PROCLISIS −

]

HEAD-DTR 1

NON-HEAD-DTR 2

[

SYNSEM | LOCAL | CAT | WEIGHT clitic
]

ARGS
〈

1 , 2

〉

VARIANT ep-variant

























































SYNSEM | LOCAL | CAT

[

HEAD verb
PROCLISIS −

]

HEAD-DTR 1

NON-HEAD-DTR 2

[

SYNSEM | LOCAL | CAT | WEIGHT clitic
]

ARGS
〈

2 , 1

〉

VARIANT bp-variant





























Turning now to the issue of prenominal possessives, in order to parse items
that are not preceded by articles in Brazilian Portuguese, we just added determiner
versions of possessives that have a marked VARIANT feature, with the value bp-
variant (see Figure 5 above).

Finally, the lexicon contained lexical items specific to European Portuguese
and specific to Brazilian Portuguese. They were taken from the Portuguese Wik-
tionary (http://pt.wiktionary.org), where this information is available. Namely, the
Portuguese Wiktionary contains the categories “Portuguese spelling” (“grafia por-
tuguesa”) and “Brazilian spelling” (“grafia brasileira”), associated with items with
specific spellings, and it is possible to list all the items in these categories. Leav-
ing aside items judged to be very infrequent (e.g. aniónico / aniônico — anionic),
around 740 marked lexical items were coded. Lexical items that are variant specific
that were found in the training corpora (80 more) were also entered in the lexicon.

80

Known Predicted class
class EP BP Common Recall

EP 53 1 86 0.38
BP 6 61 73 0.44

Common 14 1 125 0.89
Precision 0.73 0.97 0.44

Table 1: Confusion matrix for variant detection.

6 Results
The results obtained are presented in Table 1. When the grammar produced mul-
tiple analyses for a given sentence, that sentence was classified as markedly Euro-
pean, respectively Brazilian, Portuguese if all the parses produced VARIANT with
type ep-variant, respectively bp-variant. In all other cases, the sentence would be
classified as common to both. Every sentence in the test data was classified, and
the figure of 0.57 was obtained as overall precision and recall.

The results in Table 1 concern the test corpus, of which all sentences are
parsable. Hence, actual recall over a naturally occurring text is expected to be
lower, given the development status of the grammar used in the experiment. Using
the estimate that only 26% of the input sentences receive a parse by the grammar
that was employed in these experiments (see Section 3), the actual figure for recall
would lie near 0.15 (= 0.57 x 0.26).

Good recall was achieved for Common (89%), which means that the system
erroneously commits to one of the variants only 11% of the time.

In contrast, recall for European Portuguese and Brazilian Portuguese was very
low (38% and 44% respectively). What has the most negative impact on the recall
values for European Portuguese and Brazilian Portuguese is a very high number
of European Portuguese and Brazilian Portuguese test items being classified as
“Common” (61% of all European Portuguese test sentences and 52% of all Brazil-
ian Portuguese test sentences), because no marked item or construction was found.
We believe that this is a consequence of a lack of lexical coverage (see Section
7) of items that are specific to one of the dialects and may also be a consequence
of using only two syntactic cues (regarding clitics and possessives). Therefore,
improving lexical coverage and taking advantage of more syntactic differences be-
tween the two variants should improve recall in this respect. These errors are also
responsible for the low precision for the Common class (44%).

Very good precision was obtained for Brazilian Portuguese (97%): the cues
used to classify a sentence as Brazilian Portuguese thus seem to be very robust
(proclisis in contexts where European Portuguese shows enclisis, absence of defi-
nite articles preceding prenominal possessives, marked lexical items).

Precision for European Portuguese was lower (73%). As can be seen from
Table 1, most of these errors originate from the system classifying as European
Portuguese sentences that the gold standard says are common to both variants.

81

This situation arises because enclisis is correlated with European Portuguese by
the grammar, but this correlation is not very strong in the test sentences (more
about this in Section 7).

7 Error Analysis
Limited lexical coverage is responsible for a large proportion of errors: at least 40%
of the cases of sentences incorrectly classified were due to lexical items specific to
one of the two variants that were not in the lexicon. We used a POS-tagger to guess
the category of unknown words, so problems of lexical coverage often did not have
an impact on parse coverage. However, the POS-tagger cannot guess whether a
word is specific to Brazilian Portuguese or European Portuguese, so these items
were underspecified with respect to their VARIANT feature.

Many of these missing lexical items are interesting or challenging. Some in-
volve derivation. The adverbs tranqüilamente (Brazilian Portuguese) and tran-
quilamente (European Portuguese) — calmly — were not in the lexicon, although
their adjectival bases were (Brazilian tranqüilo, European tranquilo — calm). In
some cases the morphological process involved seems less productive: Brazilian
gringolândia (a place filled with foreigners) from Brazilian gringo (foreigner).
There is also a case of a noun derived from an acronym, with the acronym show-
ing up in the derived form with a phonetic spelling: peemedebista (a member of
the Brazilian political party PMDB). Some other missing lexical entries involve
multi-word expressions or idioms: European de jeito (of acceptable quality, liter-
ally of skill); European a cores vs. Brazilian em cores (in color, using different
prepositions).

In some cases the differences are difficult to detect via dictionaries, as they
involve only grammatical features. One example is the noun ioga (yoga), which
is feminine in Brazilian Portuguese and masculine in European Portuguese. Also,
some differences in spelling only show up in inflected forms (not in the lemma):
European europeia(s) vs. Brazilian européia(s) — European, feminine singular
(plural), the lemma being europeu in both dialects.

It is worth noting that 20 sentences (14 with the class Common and 6 with the
class Brazilian Portuguese) were misclassified by the grammar as European Por-
tuguese. 70% of these errors (11/14 for the Common class and 3/6 for the Brazilian
Portuguese class) are due to clitic placement according to European syntax. The
point here is that clitic placement according to European syntax appears in Brazil-
ian newspaper text as well. In fact, three sentences in the Brazilian Portuguese
class presented enclisis (and also characteristics specific to Brazilian Portuguese)
and were misclassified as European Portuguese by the grammar for this reason and
because the Brazilian Portuguese characteristics were not detected. 11 sentences in
the Common class also presented enclisis, and were misclassified by the grammar
as European Portuguese because of this. Some of these sentences came from the
American corpus, and some from the European one. The justification we find for

82

enclisis appearing in the Common class (in sentences from the European corpus)
is that, since enclisis is possible in Brazilian newspaper text, it is not considered
markedly European when it is seen in European newspaper text, so the Brazilian
informants did not classify sentences with enclisis as markedly European. This
means that there is some interference of genre in these results. While proclisis in
contexts where enclisis is expected in European Portuguese is a so good indicator
of Brazilian Portuguese text, enclisis in European enclisis contexts is not a good
indicator of European Portuguese, as it can also be found in Brazilian Portuguese
text.

The remaining sentences misclassified as European Portuguese are due to mis-
spellings in Brazilian text that unexpectedly conform to European orthography. In
Brazil a diaeresis is used on u (ü) when it follows q or g, precedes e or i and is
pronounced. The errors were due to spellings like aguentar (to bear) and tranquilo
(calm), instead of agüentar and tranqüilo.

A very small number of errors (<1%) was due to the lack of case sensitivity in
the LKB (month names are capitalized in European Portuguese and not capitalized
in Brazilian Portuguese) and word sense differences.

8 Related Work
There is a considerable amount of literature on grammar specialization and gram-
mar porting (Kim et al., 2003).

With the architecture presented here, it is still possible to specialize a grammar
to one of the dialects. In fact this can be done automatically by traversing the source
files with the lexical entries and the syntactic/morphological rules and eliminating
those that are marked to be specific to all but the desired dialect. This can be done
for efficiency reasons. If one wants to parse or generate in a specific variant and
this elimination is not performed, the constructions and lexical items specific to all
others will only be ruled out when the root node is reached. Therefore, it can be
much more efficient to eliminate them in the source files altogether. On the other
hand, our experiments showed a large amount of overlap between the two dialects
under consideration, so we expect that items that are specific to only one of them
should not be frequent in practice. Therefore, the added cost of considering both
dialects at run time may not be too detrimental as far as efficiency is concerned,
but we have not measured the impact of this.

Søgaard and Haugereid (2005) present a proposal similar to ours. They seek
to model variation within Scandinavian languages, by resorting to a LANGUAGE
feature. Stymne (2006) goes even farther and uses a LANG feature in a grammar for
two rather different languages: English and Swedish.

83

9 Conclusions
In this paper we presented an architecture to model language variation with typed-
feature formalisms. The design that was proposed here can allow for parameter-
ization of a grammar to parse or generate only in a given dialect, or parse input
consistently only in one dialect even when the language variant of the input is un-
known beforehand. At the same time, consistency of analysis can be enforced, and
ambiguity controlled. Moreover, this approach also allows the grammar to function
as a dialect classifier, as it can be used to detect the language variant at stake.

We proceeded to evaluate this design, using a grammar for Portuguese that
accommodates both European Portuguese and Brazilian Portuguese. Our results
are promising, and the grammar achieved very high precision in some cases (97%
precision when classifying the input as belonging to Brazilian Portuguese). When
the grammar classified the input as European Portuguese, it was right 73% of the
time, which is another encouraging result. 89% of the sentences that displayed
no dialectal characteristics were also correctly classified as common to European
Portuguese and Brazilian Portuguese.

In other cases, the results can be improved. Many European Portuguese char-
acteristics were not recognized (resulting in 38% recall for European Portuguese),
and neither were several Brazilian Portuguese characteristics (with 44% recall for
Brazilian Portuguese). This means that large improvements can be obtained by
extending the grammar with more dialect specific lexical items and constructions.
In addition, from the several sources of variant specificity, the grammar used here
was prepared to cope only with grammatical constructs that are responsible for at
most 20% of them. Also the lexicon, that included a little more than 800 variant-
distinctive items, can be largely improved.

There are some interesting challenges, too. We came across the classical prob-
lems of lexical coverage, like multi-word expressions and new words.

Some differences between variants are not absolute in practical scenarios. An
example of this that affected our results is the spelling oscillations between u and
ü after q and g in Brazilian Portuguese.

Also, textual genre seemed to affect the results, as Brazilian newspaper text
presents some syntactic properties of European Portuguese, like clitic word order.

Besides, there are problems beyond a grammar’s capacity, like word sense
distinctions. Although word sense differences were frequent in the training data
(present in 6.3% of all marked Brazilian Portuguese lexical items found), they
turned out to be negligible in the errors found in the test data.

These are issues over which more acute insight will be gained in future work,
which will seek to improve the contributions put forth in the present paper.

Given the 97% precision achieved for the Brazilian Portuguese class (with a
somewhat lower precision for the European Portuguese class, of 73%), we think
that our results are the proof-of-concept that an informed approach can produce
very good results in this task, using the architecture we presented.

Summing up, a major contribution of the present paper is a design strategy

84

for type-feature grammars that allows them to be appropriately set to the specific
variant of a given input. Concomitantly, this design allows the grammars to identify
the variety used in the input.

References
Abeillé, Anne and Godard, Danièle. 2003. The Syntactic Flexibility of French De-

gree Adverbs. In Stefan Müller (ed.), Proceedings of the HPSG-2003 Confer-
ence, Michigan State University, East Lansing, pages 26–46, Stanford: CSLI
Publications.

Bender, Emily M., Flickinger, Dan and Oepen, Stephan. 2002. The Grammar Ma-
trix: An Open-Source Starter-Kit for the Development of Cross-Linguistically
Consistent Broad-Coverage Precision Grammars. In John Carroll, Nelleke Oost-
dijk and Richard Sutcliffe (eds.), Procedings of the Workshop on Grammar Engi-
neering and Evaluation at the 19th International Conference on Computational
Linguistics, pages 8–14, Taipei, Taiwan.

Branco, António and Silva, João. 2004. Evaluating Solutions for the Rapid Devel-
opment of State-of-the-Art POS Taggers for Portuguese. In Maria Teresa Lino,
Maria Francisca Xavier, Fátima Ferreira, Rute Costa and Raquel Silva (eds.),
Proceedings of the 4th International Conference on Language Resources and
Evaluation (LREC2004), pages 507–510, Paris: ELRA.

Copestake, Ann. 2002. Implementing Typed Feature Structure Grammars. Stan-
ford, California: CSLI Publications.

Copestake, Ann, Flickinger, Dan, Pollard, Carl and Sag, Ivan A. 2001. Minimal
Recursion Semantics: An Introduction. Language and Computation 3, 1–47.

Kim, Roger, Dalrymple, Mary, Kaplan, Ron, King, Tracy Holloway, Masuichi,
Hiroshi and Ohkuma, Tomoko. 2003. In Emily Bender, Dan Flickinger, Fred-
erik Fouvry and Melanie Siegel (eds.), Proceedings of ESSLLI 2003 Workshop
on Ideas and Strategies for Multilingual Grammar Development, pages 49–56,
Vienna, Austria.

Miller, Phillip H. and Sag, Ivan A. 1997. French Clitic Movement without Clitics
or Movement. Natural Language and Linguistic Theory 15(3), 573–639.

Pollard, Carl and Sag, Ivan. 1994. Head-Driven Phrase Structure Grammar.
Chicago University Press and CSLI Publications.

Silva, João Ricardo. 2007. Shallow Processing of Portuguese: From Sentence
Chunking to Nominal Lemmatization. MSc Dissertation, Faculdade de Ciências
da Universidade de Lisboa, Lisbon, Portugal.

85

Søgaard, Anders and Haugereid, Petter. 2005. Implementing Dialectal Variation in
Typed Feature Structure Grammars. Unpublished Manuscript.

Stymne, Sara. 2006. Swedish-English Verb Frame Divergences in a Bilingual
Head-driven Phrase Structure Grammar for Machine Translation. MSc Disser-
tation, Linköpings Universitet.

86

Challenges in Interpreting Spoken Military

Commands and Tutoring Session

Responses

Elizabeth Owen Bratt, Karl Schultz, and

Stanley Peters

Stanford University CSLI

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender

(Editors)

CSLI Studies in Computational Linguistics

ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

87

Abstract

Various challenges have emerged over several years of grammar

engineering for the spoken dialogue interface to the Navy damage

control simulator DC-Train and the Spoken Conversational Tutor

SCoT-DC, which reviews DC-Train performance. The systems use two

methods for finding interpretations for student utterances from the

recognized string. First, a Gemini grammar interprets full strings

into a complex, structured logical form. A successful Gemini logical

form is the preferred interpretation. Next, a robust Nuance natural language

grammar looks for any interpretable phrases in the utterances which Gemini

could not interpret, and uses heuristics to determine the best set of

slots and values. Voice-Enabled DC-Train and SCoT-DC face challenges

due to speech recognition errors, disfluent speech, underspecified

responses requiring dialogue context for disambiguation, students'

varying levels of familiarity and skill at using the preferred

military terminology, and the need for coordination with the dialogue

manager's strategies for clarification, confirmation and modeling of

student uncertainty.

1 Introduction

We examine various types of challenges faced during the grammar

development for the spoken language interfaces to the DC-Train Navy dam-

age control simulator (Bulitko & Wilkins 1999) and to the Spoken Conversa-

tional Tutor (SCoT-DC) (Schultz et al. 2003), which reviews a student’s DC-

Train performance. First, we describe the task of damage control and the

types of utterances which require coverage. Next, we present an overview of

the spoken natural language architecture and systems used. Finally, we re-

view various categories of spoken input that required special strategies, con-

straints or decisions during grammar engineering.

2 Spoken Commands and Discussion in the Dam-

age Control Domain

Voice-enabled DC-Train (VE-DCT) provides a student the opportu-

nity to play the role of the Damage Control Assistant (DCA) on a DDG-51

destroyer. As DCA, the student is responsible for receiving messages from

others on the ship and making decisions about which personnel should take

which actions to combat adverse events like fires, flooding, and smoke in any

of the 484 compartments on the ship.

88

Figure 1. DC-Train Information Windows

The simpler forms of speech to VE-DCT include brief acknowl-

edgements of incoming messages (affirmative or DCA aye) and brief cancel-

lations of incorrect commands (cancel that or negative).

In their full form, commands to personnel always involve identifica-

tion of the addressee. Full commands also identify either the speaker (DCA)

or the method of communication to the addressee (e.g. NET80, for broadcast

throughout the ship). Next, full commands contain the desired action and any

required parameters, such as a boundary (e.g. primary aft 97), a compartment

number (e.g. 2-126-2-C) or a compartment name (e.g. Combat System

Equipment Room Number 2). This results in commands such as NET80 to

Repair Two electrically and mechanically isolate compartment 1-126-0-C

and Repair Two, DCA, set smoke boundaries primary forward 42 primary aft

78 secondary forward 18 secondary aft 97 above 1 below 3. Requests for

permission (EOOW, DCA, request permission to start fire pump number two)

and informative communication (NET80 to CO, all stations are manned and

ready, zebra is set) are similar in form to commands.

VE-DCT also allows the student to omit the addressee (along with

the speaker or method of communication) and any parameters of a command,

as long as the student fills in the required parameters in response to system

queries. This multi-turn method of issuing commands takes place as seen in

Figure 2.

89

Student: set smoke boundaries

VE-DCT: DCA interrogative for repair team and boundary bulkheads

Student: repair three

VE-DCT: DCA interrogative for boundary bulkheads

Student: primary forward 42, primary aft 78

VE-DCT: DCA interrogative for secondary boundaries

Student: secondary forward 18, secondary aft 97

VE-DCT: To Repair Locker 3, set smoke boundaries as follows: 97, 78, 42,

18, Aye

Figure 2. Interrogative Dialogue in VE-DCT

In SCoT, the student reviews events from the VE-DCT session with

an automated tutor, discussing in particular areas where the student did not

take required actions in the correct order, the correct selection of repair team

by region of the ship, the correct selection of bulkheads to set boundaries for

preventing the spread of fire, smoke or flooding, and how to prioritize actions

by the type and location of compartments affected.

Figure 3. SCoT Display

Since SCoT takes the initiative in leading the tutoring session, the

student’s utterances are generally responses to tutoring questions, such as

90

Assuming you have a fire report, there are 2 other things you should have

done before ordering fire fighting. Lets begin with the first 1. What is it?

The student responses can be very brief (e.g. investigate) or take a longer

form (e.g. I guess I should um set fire boundaries first.) SCoT also permits

gestural input in response to some questions, such as clicking on a compart-

ment or circling it on the ship display. SCoT does not have any tutorial dis-

cussions in which it would be natural for the student to speak and click or

circle compartments at the same time, so natural language interpretation has

not had to support gestural constraints, though this capability would be sup-

ported by the CSLI dialogue manager architecture (Lemon et al. 2001,

Schultz et al. 2003).

In addition to the questions to which students often answer with a

short, simple verb or noun phrase, SCoT also asks more open-ended ques-

tions, requesting definitions for terms (e.g. First of all can you tell me what

primary boundaries are?) and reasons for actions (e.g. Why is it necessary to

isolate when you have a report of fire?). Answers to these questions gener-

ally are syntactically more complex, such as First two bulkheads around the

crisis, To see if it's a false fire, and Prevent smoke from spreading to other

compartments.

VE-DCT and SCoT have been used in a number of experiments and

data collections, which have given results for the experimental conditions

studied, but also on the range of possible user input and ways it can support

student modeling (Jones, Bratt & Schultz 2007).

Theme # of Sub-

jects

Type of Subject Year Results

Different Tutoring

Topics at Different

Times

30 Stanford students 2004 Pon-Barry

et al. 2004,

Peters et al.

2004

Natural Language-

based Tutoring Strate-

gies

40 Stanford students 2004 Pon-Barry

et al. 2006

Multimodality and

Active/Passive Tutor-

ing

210 U.S. Naval

Academy mid-

shipmen

2005 Bratt et al.

2005

Human Coaching with

DC-Train and SCoT

5 Stanford students 2005 Bratt et al.

2005

Human Coaching with

DC-Train and SCoT

10 Surface Warfare

Officers’ School

students

2006 No paper

yet

Figure 4. Experiments with DC-Train and SCoT

91

3 Architecture of the Natural Language Interface

After the spoken input into VE-DCT and SCoT is transformed into a

string of words by Nuance speech recognition, the natural language under-

standing takes place in one of two components, as shown in Fig-

ure 5.

If the string is well-formed in our Gemini unification-based grammar

(Dowding et al. 1993), then it receives a Gemini logical form, from which the

Dialogue Manager will extract relevant information. If Gemini cannot inter-

pret the string, perhaps because it has disfluencies or previously unencoun-

tered phrasings, then a robust slot-filling Nuance grammar will look for the

maximum number of words it can interpret with the minimum number of

grammar rules, and return slot-value pairs for its best interpretation.

Our model for these two forms of interpretation is that Gemini is in-

tended to be a linguistically motivated grammar, which uses phrases like NP

(noun phrase) and VP (verb phrase), and builds a logical form (LF) capable

of representing embedding and other complex relationships. The Nuance

slots are intended as a fallback mechanism, which capture partial meaning

that is helpful when we cannot understand the entire utterance. The Nuance

slots are mainly a flat representation, though certain items, such as bounda-

ries do involve nesting of a single level of structure (rank, direction and frame

number for each boundary). Because the Nuance slots involve filling slots

from phrases, in sentences which did not parse in Gemini, the emphasis is on

Figure 5. Paths of Interpretation

92

very local interpretation. This means that very particular, idiosyncratic pat-

terns are easy to include in Nuance, since there is less chance of their affect-

ing rules elsewhere, than in a more interconnected, richer system like Gemini.

The Nuance slots are close to the domain representation used by the dialogue

manager, so they allow for a quick development cycle, with little effort spent

compared to the effort needed for any new complexities in a Gemini logical

form.

One characteristic of the Nuance slots which can severely limit their

utility for certain kinds of discussions is that they permit only one instance of

a slot to be filled per sentence. If there are multiple items of the same kind in

the same utterance, Nuance natural language rules must provide separate slots

for each item so that all of them can be interpreted individually. Without this

provision, the information in the slot would be overwritten by each new

phrase that matched the Nuance rule, and the only slot information provided

to the dialogue manager would be that of the final eligible phrase. We en-

countered this situation with boundaries, and we defined slots for the usual

number of up to four boundaries within an utterance to account for it. But we

do at times run into problems with actions, since usually there is only one per

utterance, and if there are two, the later one will overwrite the information

from the earlier one. Another area where Nuance’s behavior of overwriting

later slots gives us trouble is when students issue commands with conjunc-

tions, such as Set fire and smoke boundaries, Fight fire in compartments 1-

174-01-L and 3-116-1-T, or Set flooding boundaries and electrically and me-

chanically isolate compartment 3-310-2-L. Students rarely use conjunctions,

so this is not a frequent problem, but it has happened at times. The main

place students use conjunctions is for pairs of related boundaries, such as

both primary boundaries or the above and below decks for vertical bounda-

ries, and our robust interpretation treats these conjunctions the same as the

list of boundaries we expect.

The two layers of interpretation for robustness and confidence, i.e.,

Gemini first, then Nuance, have served our system fairly well. In recent error

analysis, we have considered the possible utility of an additional layer of less

reliable Nuance slots, so that a complete Gemini LF would be preferred, then

the Nuance slot-values which seem fairly reliable, then if there are none of

these, we could use the less reliable Nuance slots to start a clarification dia-

logue with the user, rather than simply asking the user to repeat the utterance.

Our current model of interpreting Nuance slots requires an “action”

slot to be filled, indicating what kind of command is intended, and allows the

parameters to be filled in later. However, if a set of parameters slots are

filled, but the action is not, we might consider clarifying with the user if a

particular action was intended. One reason for our current requirement of an

“action” slot is that many parameters can involve numbers as values, and

many numbers are short words (e.g. two or eight) which can result from mis-

recognitions. Thus it is very easy to have a misrecognized sentence which

93

appears to have parameter values of short numbers, when this is not actually

the case. If we had less reliable, back-off Nuance slots, we might have those

slots only filled by numbers with identifiers such as frame number, pump

number, etc., as opposed to the numbers which occur in a more standard, full

command.

The perspective of what the dialogue manager will do with an inter-

pretation is important to keep in mind. If the dialogue manager requires an

“action” slot to be able to clarify a partially understood command, it is par-

ticularly important to make the interpretation rules yielding action slots ro-

bust, such as making sure they work if there are filled pauses in likely places,

or other possible word variations.

Our Gemini grammar currently includes 183 grammar rules, 949 one-

word lexical entries, and 2991 multi-word lexical entries. The vocabulary

includes 51 action verbs (some synonymous), 36 lexical items for ship per-

sonnel, 396 compartment names, 2152 frame numbers (for compartments,

bulkheads, valves, etc.), and 23 synonyms for yes. In earlier versions of our

system, we compiled the Gemini grammar into a language model for Nuance

speech recognition (Moore 1998). This kept our coverage for speech recog-

nition and natural language understanding tightly synchronized, and allowed

development for the natural language understanding to automatically produce

speech recognition results; however, as our system coverage grew, we ex-

perienced various problems which led us to abandon this approach. Specifi-

cally, compiling the Gemini grammar into a Nuance grammar took a long

time, as long as a day, which made it difficult to address bugs or test out al-

ternate options rapidly. Also, as the grammar grew more complex, speech

recognition began to get significantly slower than real time, which made it

less practical for a dialogue system. Finally, certain Gemini grammars would

produce Nuance grammar files that would fail either at Nuance compile time

or Nuance run time without explanation.

Currently, we train a trigram model on a corpus of utterances from

our past experiments, using Nuance’s standard tools to create a probabilistic

finite state grammar. The entire process is much faster, and can be completed

in under 15 minutes, so we have a more responsive development cycle. Us-

ing trigram recognition has improved our speech performance by making us

more robust to unanticipated phrasings and out of vocabulary words. We

currently train a DC-Train language model on a corpus with 11,551 utter-

ances, containing 390 unique words, and a SCoT language model on a corpus

with 19,123 utterances, containing 1780 unique words. The SCoT corpus has

more unique words than the DCT corpus because in addition to the words for

the basic commands to the simulator, SCoT involves discussion of why to

take certain actions, definitions for terms, and discussion of which kinds of

compartments should be prioritized over others.

94

3.2 Tools to Support Grammar Development

In order to support grammar development, as well as speech recogni-

tion language model development, we have developed a number of tools.

Our most powerful tool is our Nuance Batchrec Analysis Tool, batchdb.
1

Batchdb reads in results of a Nuance batch recognition run, calculates per-

formance metrics (such as word error rate), and stores the results in a MySQL

database. With batchdb, we can use SQL queries to compare data from batch

runs with different language models or different Nuance parameter settings.

We look to optimize for the lowest word error rate, the most accurate seman-

tic slots, and recognition run-time under real time.

Batchdb enters various different views of the data automatically into

the database, so that it is easy to work with the exact representation needed

for the task at hand. For example, our transcriptions include annotations

within square brackets such as [annoyed] or [pause]. For some data analysis,

we are interested in those annotations; for others, we only want to see the

transcribed words. Similarly, in some data views we use expletives tran-

scribed as they were spoken, but when we use data with expletives in the lan-

guage model we sanitized them all into the single word expletive, which we

give all its various possible pronunciations, so that users of the system will

not see any actual expletives on the system display, though our capability to

recognize them helps us deal with the full range of military speech!

Batchdb also automatically standardizes the spelling in the transcrip-

tions. We have set forth policies on how transcribers are to enter words, but

we have found that it can be hard for transcribers to keep them in mind, so it

is good to have automatic processing to eliminate spurious distinctions such

as ok vs. okay, and versions of Navy words with the individual letters treated

as distinct words, e.g. d. c. c. o. (for Damage Control Console Operator), vs.

our preferred treatment of them as a single word, e.g. dcco.

Batchdb also pre-processes the data before running the sclite speech

recognition scoring program. Sclite allows variant words to be scored as

equivalent. We have instances of homophones which are sometimes able to

be disambiguated by sentence context and other times not. For example, two

four is right, while two fore is wrong, but fore vs. four in an isolated utterance

are equivalent. We keep the versions of the word distinct in our transcript,

where the dialogue context can distinguish them, but when we score our

speech recognition using a single language model for all contexts, we are able

to penalize errors that the language model could detect while overlooking

cases of homophone mismatch that speech recognition has no capability to

deal with. (Our dialogue manager can automatically correct for these cases.)

1
 Available to the public under the GPL open-source license at

http://sourceforge.net/projects/nuance-batchrec .

95

Other tools we use to support our development are a Transcriber

Wavefile Preparation Tool, a perl script which takes individual wavefiles

from a dialogue and creates a session wavefile and transcript file for Tran-

scriber software (Barras et al. 2000). We use a Transcript Tracker web appli-

cation to manage transcription file status and coordinate between transcribers,

so that they do not duplicate effort, and to provide us a means for automati-

cally standardizing variants or calling the transcriber’s attention to items that

should be fixed before the transcription is complete.

Figure 6: Transcript Tracker

We also use a Transcript Preparation Tool, which combines the

automatically logged system transcript with transcriptions from Transcriber

.trs files for html viewing, to help us review system performance at a dia-

logue level. Figure 7 shows an example of the XML-based transcripts pro-

duced.

96

Figure 7: XML Transcript of Session

We use a Transcript Search application, based on our Transcript In-

dexing Tool, which allows a user to search our XML transcripts for instances

of words or regular expressions, in modes which include or exclude items

such as square-bracketed annotations, word fragments, and punctuation. The

search results are displayed as an index web page with links to the dialogues

containing the item searched for, as shown in Figure 8. Searching transcripts

this way is useful for examining dialogue performance for particular ques-

tions, for example.

97

Figure 8: Transcript Search Tool Result Page

4 Interpretation Challenges for Grammar Engi-

neering

4.1 Issues in Training

Because VE-DCT and SCoT are intended to train students, the spo-

ken interfaces need to permit student mistakes. For VE-DCT, the system

needs to understand nonexistent compartments and boundary locations,

which the student might construct by using the standard format for these

items, because simply not recognizing or not understanding the utterance

would not help the student realize that the compartment did not exist; rather,

it would look like a general system failure. For SCoT, the tutor needs to un-

derstand likely wrong answers as well as the correct, expected answer.

Another aspect of training people with a spoken system is how they

relate to the tutor or spoken system, and how much they treat it as a person

(Nass & Brave 2005, Reeves & Nass 1996). In using our system in a class-

room setting at the U.S. Naval Academy, students produced all of the specific

examples of uncooperative speech shown in Figure 9, and many other exam-

ples besides these. Students who produced uncooperative utterances did not

98

have significantly different DC-Train performance, overall test scores, or

learning gains. At the time of our experiment, our tutor did not understand

these utterances, and treated them identically to a student utterance of I don’t

know, and moved on. Providing grammar coverage and suitable interpreta-

tions or categorizations of this kind of utterance would be a significant addi-

tional task for the grammar engineer; however, in a training system used in

the real world, this may be a concern worth addressing.

Polite Complaint I can't see what compartment

you're talking about

Swearing F--- you

Insult (to the system) I hate you

Threat (to the system) I ought to pulverize your guts out

Mocking There you go it only took you four

times

Inappropriate Response Have a beer

Reaction to Reprimand I bet you couldn't do any better man

Intentionally Using Another Lan-

guage

Siete

Generally Antagonistic or Unre-

sponsive

This is dumb

4.2 Issues with Military Domain

Another challenge for grammar engineering for a system that in-

volves a simulation of a situation the student may be familiar with in reality is

that the student may use more domain knowledge than the simulator supports.

For example, the student may not only give a desmoke command, which our

system would support, but then go on to specify that box fans should be used

for desmoking, which is beyond the scope of the simulator. Another area

where students familiar with actual ships might use their real world knowl-

edge in ways that make grammar engineering more difficult is to use syno-

nyms in complex compartment names, such as berthing for living space or

Chief for CPO. Dialogue context might also make it natural to omit certain

parts of complex compartment names, such as numerical or directional identi-

fiers, like number one, forward, aft, port, or starboard. The same compart-

ment might be called CPO Berthing, Chief’s Berthing or CPO Living Space

Number One.

Another issue in a training system is how to support standard vs. non-

standard terminology and phrasing. For example, a hyphen written between

numbers in compartment identifiers is pronounced as tac, but a student less

Figure 9. Types of Uncooperativity Encountered by SCoT

99

familiar with military terms might pronounce it as dash, or omit it. Similarly,

letters used in compartment names are pronounced according to the Navy’s

phonetic alphabet, e.g. Charlie, whereas someone unfamiliar with the con-

vention might just pronounce the letter c. Another Navy pronunciation con-

vention is to spell out each digit of a number individually, to minimize

misunderstandings such as fifty vs. fifteen. Thus, the standard pronunciation

of 220 would be two two zero, not two hundred twenty. For a compartment

number such as 1-126-0-C, in addition to the standard pronunciation of one

tac one two six tac zero tac charlie, there are many possible non-standard

pronunciations, such as one dash one hundred twenty six dash oh dash c, one

tac one twenty six tac zero tac c, and so on. We give users an introduction to

our system which explains how to pronounce these items, and military users

are familiar with these conventions, so most users will produce the standard

pronunciations. However, sometimes they will produce the non-standard

pronunciations. The challenge is to recognize those times correctly, while

not having the non-standard options overwhelm the correct ones, and lead to

misrecognitions. Another challenge is the degree to which to represent the

non-standard choices in the interpretation, as material for the tutor or coach to

comment on.

A similar issue in interpretation in a training dialogue system is how

much to assume from the student’s wording, how much to clarify, and how to

convey to the student that a wording is not ideal. For certain commands, the

correct method of delivering them is to include specifications of exactly the

relevant areas the commands apply to, or the precise type of action they

mean. For example, in the context of the DC-Train simulator, students

should be giving the command electrically and mechanically isolate, not just

the command isolate. Similarly, they should give one of the commands Set

fire boundaries, Set smoke boundaries, or Set flooding boundaries, not the

command Set boundaries without specifying which kind. Again, it becomes

a question of how much to support the non-standard variants, which do occur,

without biasing the system to accept them too much, and how to let the stu-

dent know not to use them. The simple answer of having the system not un-

derstand non-standard variants generally just leads to frustration and the

perception of the system as failing, rather than calling attention to the fine

points of difference in the student’s answer.

Another area of interaction of requiring the student to give a proper

full specification and what might in reality be identifiable from dialogue con-

text is the military doctrine that commands should identify the addressee and

speaker, or communications system to be used for the addressee. Thus, a

proper, full command with the addressee repair three and speaker DCA

would be Repair three, DCA, investigate compartment two tac two two zero

tac oh one tac lima. A proper full command instructing a phone talker

(communications assistant in damage control central) to use the Net-80 com-

munications system, which broadcasts throughout the ship, rather than a lim-

100

ited radio address only to the specific addressee (in this case the CO, or ship’s

captain), would be Net eighty to CO, all stations manned and ready, zebra is

set.

A rich domain can also produce a wide range of possible answers if

questions are open-ended. In our experiments at Stanford, USNA, and

SWOS, we asked students to provide definitions of terms and to explain why

certain actions should be taken. Fortunately for us, the answers students gave

ended up being reasonably tractable for interpretation. In the Stanford confi-

dence-sensitivity experiment (2004) and the USNA experiment (2005), the

mean utterance length for the 725 answers to open-ended questions was 5.17

words.

4.3 Issues with Spoken Dialogue Context

Because VE-DCT and SCoT involve a system using natural language

for its interactions with the student, specifically, speaking to the student in a

synthesized voice (Festival for VE-DCT, Taylor et al. 1998, and FestVox

limited domain voice for SCoT, Black and Lenzo 2003), grammar develop-

ment has to account for the possibility that the student is likely to use vocabu-

lary or phrases used by the system. Development of system output must be

coordinated with development of the speech recognition language model and

the interpretation grammar.

In a system with various numerical parameters, and a series of com-

mands and spoken interactions that create a dialogue context, it becomes

natural for the student to use numbers without modifiers or units. The repre-

sentation of the meaning of these numbers has to allow for their ultimate in-

terpretation by the dialogue manager as specifying the correct kind of item,

and not specifying something incorrect. When our system involves the dia-

logue context of the system issuing an “interrogative” request to the user for

missing parameters, we have interpreted the numbers as filling the specific

parameters we need, and have ignored the possibility of their filling other

parameters. The grammar produces multiple interpretations for bare num-

bers, such as two, which can be interpreted as a pump number, a repair party

identifier, a frame number or a deck number. The dialogue manager decides

which type of number is likely, and interprets the number accordingly. An

alternate method of this would be to have distinct grammars which the system

switches between based on dialogue context. In either approach, the dialogue

manager must control the interpretation, either by choosing a narrower

grammar or by choosing from information provided by the grammar. The

complex logical form constructed by Gemini lends itself more naturally to the

approach where the dialogue manager chooses the grammar in advance, or an

approach where the grammar provides an underspecified number which the

dialogue manager adds type information to. The Nuance slot approach can

give an underspecified number, but it can also give a series of unrelated slots,

101

which provide more information than can possibly all be true at the same

time. This approach allows the grammar to use any constraints from wording

that might be possible to give the dialogue manager an exact set of possible

ways to interpret the underspecified utterance. Our Gemini grammar cur-

rently gives a set of different interpretations, of which only one is provided to

the dialogue manager. If that one does not match the kind of information ex-

pected in the dialogue context, the dialogue manager checks the Nuance in-

terpretation for a slot matching the information it expected. It ignores all

slots present that are not what it is looking for. The Nuance interpretations

involve several different slots, and the dialogue manager adds in several pos-

sible slots through reasoning.

4.4 Issues with Speech Input
Our speech recognition word error rate has tended to be around 8% in

most of our experiments, though it varies by speaker. Our rejection rate, i.e.

the percentage of sentences which our recognizer cannot produce a hypothe-

sized string of words it is sufficiently confident in, is around 4%.

Spoken input can lead to a number of challenges for a grammar, as

long as the recognition possibilities are more than what is covered by the

grammar. If the utterances involve disfluencies or out of vocabulary items,

the recognized string will be an unsuccessful attempt to match what the

speaker actually said, so the various places where the grammar backs off to

acoustically similar items might produce unexpected results. Acoustic simi-

larity between words can also produce unanticipated strings for the grammar

writer to capture, such as blue being misrecognized for below in our data, as

well as other confusion pairs such as l and alpha, or set and send. Thus, in-

terpretation rules are more robust when they allow for these.

A general issue for all grammar coverage is dealing with unexpected

phrases, though in spoken input the fact that the phrases pass through a

speech recognizer first may introduce additional problems if the resulting

string does not match what the speaker says.

A disfluency involving repeated words or filled pauses (um, uh)

might present difficulties for a grammar expecting particular phrases with

particular constituents without interruptions. Incomplete sentences present

another variant of this problem, when a student either is cut off by the speech

recognizer endpointer by pausing too long, or the student actually stops

speaking part-way through a command. For example, 8% of utterances in the

USNA corpus that involve a student beginning to give a compartment num-

ber are broken off before the compartment number is complete, and 13% of

utterances with a repair party identified break off before giving the repair

team their command. It would be desirable to interpret the material actually

said, but the phrases will not be complete. Noting where the student breaks

off may also help model that this kind of information may be difficult for the

student to figure out (Jones, Bratt & Schultz 2007).

102

Another area in which the spoken input interacts with the grammar

interpretation is when setting the word transition weight parameter for the

speech recognizer. This parameter can be set so that the speech recognizer is

discouraged from hypothesizing short words to match the acoustics of the

speech signal in favor of interpreting the same material as part of existing

words. This can interact with grammar interpretation of variant formulations

of utterances. In our 2006 data collection at SWOS, a student said to the sys-

tem Repair repair five send investigators to engine room number two, which

we recognized as Repair five investigate niner two engine room number two.

Our grammar covered investigate, but not send investigators to, so we were

fortunate that the speech recognition chose a hypothesis that caught the main

word and not the more verbose variant form of the command.

Another point about spoken input is that the speech channel allows

the user to provide more information than just the straight content of the

words (Pon-Barry et al. 2006), as they would if they were choosing a com-

mand or an item from a menu. Locations of pauses before items (Jones,

Bratt, & Schultz 2007), or the fact that nonstandard vocabulary has been

used, can signal additional information that a tutoring system can use to bet-

ter model what the student knows well and what the student may be strug-

gling with. The interpretation of an utterance given by a grammar can either

contain this kind of information, e.g. for nonstandard phrasing, or provide a

representation which helps support information from separate processing, as

in pause detection.

5 Conclusions

Data from users of VE-DCT and SCoT over the course of multiple

experiments provide us with challenges for grammar engineering in various

of the complex aspects of our training system: training, representing a com-

plex military domain, recognizing speech, and interpreting speech in dialogue

context. Our system architecture provides a preference for canonical input

that can be given a complete, structured interpretation, but allows a fallback

to robust interpretation of phrases providing partial information. Various sys-

tem development tools help us detect problems and gauge the success of the

solutions we implement.

Acknowledgements

This work is supported by the Department of the Navy under re-

search grant N000140010660, a multidisciplinary university research initia-

tive on natural language interaction with intelligent tutoring systems and

research grant N000140510144, on Spoken Language Coaching During Dy-

103

namic Problem Solving. We are grateful to Perry McDowell of the Naval

Postgraduate School, and Lt. Jonathan Hopkins and Lt. Tyson Young of the

Surface Warfare Officers School for providing valuable information about

the language of the damage control domain. We are responsible for any er-

rors in our use of their information.

References

Barras, Claude, Geoffrois, Edouard, Wu, Zhibiao, and Liberman, Mark. 2000.

Transcriber: development and use of a tool for assisting speech cor-

pora production. Speech Communication special issue on Speech

Annotation and Corpus Tools, Vol 33, No 1-2, January 2000.

Black, Alan W. and Lenzo, Kevin A. 2003. Building Synthetic Voices for

FestVox 2.0 Edition. Available at http://www.festvox.org/bsv/

Bulitko, Vadim V., & Wilkins., David C. 1999. Automated instructor assis-

tant for ship damage control. In Proceedings of AAAI-99.

Dowding, John., Gawron, Jean Mark, Appelt, Doug, Cherny, Lynn, Moore,

Robert and Moran, Doug. 1993. Gemini: A Natural Language System

for Spoken Language Understanding. In the Proceedings of the 31
st

Annual Meeting of the Association for Computational Linguistics,

Columbus, OH.

Jones, Bevan, Bratt, Elizabeth Owen, and Schultz, Karl. 2007. The Prosody

of Uncertainty for Spoken Dialogue Intelligent Tutoring Systems.

Manuscript in preparation.

Lemon, Oliver, Anne Bracy, Alexander Gruenstein, and Stanley Peters. 2001.

The WITAS Multi-Modal Dialogue System I. In Proceedings of Eu-

roSpeech 2001.

Moore, Robert. 1998. Using natural language knowledge sources in speech

recognition. In Proceedings of the NATO Advanced Studies Institute.

Nass, Clifford. and Brave, Scott. 2005. Wired for speech: How voice acti-

vates and advances the human-computer relationship. Cambridge,

MA: MIT Press.

Pon-Barry, Heather, Schultz, Karl, Bratt, Elizabeth Owen, Clark, Brady, and

Peters, Stanley. 2006. Responding to Student Uncertainty in Spoken

Tutorial Dialogue Systems. In International Journal of Artificial In-

telligence in Education (IJAIED) Volume 16, 171-194. Special Issue

"Best of ITS 2004" (editors James Lester, Rosa Maria Vicari and

Fabio Paraguaçu).

Reeves, Byron. and Nass, Clifford. 1996. The media equation: How people

treat computers, televeision, and new media like real people and

places. New York: Cambridge University Press/CSLI.

Schultz, Karl, Bratt, Elizabeth Owen, Clark, Brady; Peters, Stanley, Pon-

Barry, Heather, and Treeratpituk, Pucktada. 2003. A Scalable, Reus-

104

able Spoken Conversational Tutor: SCoT. In AIED 2003 Supplemen-

tary Proceedings, University of Sydney. 367-377.

Taylor, Paul A., Black, Alan, and Richard Caley. 1998. The architecture of

the Festival speech synthesis system. In The Third ESCA Workshop

in Speech Synthesis, pages 147-151, Jenolan Caves, Australia.

U.S. Navy Guide to the phonetic alphabet.

http://www.history.navy.mil/faqs/faq101-1.htm

105

The Penn Lambda Calculator: Pedagogical Software for
Natural Language Semantics

Lucas Champollion, Joshua Tauberer and Maribel Romero

University of Pennsylvania

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

106

Abstract

This paper describes a novel pedagogical software program that can be
seen as an online companion to one of the standard textbooks of formal nat-
ural language semantics, Heim and Kratzer (1998). The Penn Lambda Cal-
culator is a multifunctional application designed for use in standard graduate
and undergraduate introductions to formal semantics: Teachers can use the
application to demonstrate complex semantic derivations in the classroom
and modify them interactively, and students can use it to work on problem
sets provided by the teacher. The program supports demonstrations and ex-
ercises in two main areas: (1) performing beta reduction in the simply typed
lambda calculus; (2) application of the bottom-up algorithm for computing
the compositional semantics of natural language syntax trees. The program
is able to represent the full range of phenomena covered in the Heim and
Kratzer textbook by function application, predicate modification, and lambda
abstraction. This includes phenomena such as intersective adjectives, rela-
tive clauses and quantifier raising. In the student use case, emphasis has been
placed on providing “live” feedback for incorrect answers. Heuristics are
used to detect the most frequent student errors and to return specific, interac-
tive suggestions.

1 Introduction

1.1 Background

For almost ten years now, the textbook by Heim and Kratzer (1998) (henceforth
HK) has enjoyed a remarkable success as the textbook of choice for many intro-
ductory courses in natural language formal semantics. The semantic framework it
presents can be seen as a standardization of Montague-style semantics (Montague,
1974) when applied to Generative Grammar syntax, with lexical items correspond-
ing to simply typed lambda calculus expressions and with a very small number of
composition rules. This framework has become a de facto standard in which much
formal semantic work has been expressed over the last decade.

Teaching formal semantics can be a challenging classroom experience both to
instructors and to students. Anyone who has ever taught a course on formal se-
mantics will be familiar with the problem of drawing ever larger derivations, and
changing them on the fly as the class goes on. A sentence of just ten words can eas-
ily fill an entire blackboard and take half an hour to draw (see Figure 4 below for an
example). As for students, once they have left the classroom, they are often on their

†We would like to thank Patrick Blackburn, Chris Potts and the audiences of several demon-
stration sessions during the 2007 Stanford Linguistic Institute of the Linguistic Society of America
(LSA) for helpful comments and suggestions. We are grateful to Yuval Masory for programming ad-
vice. We also thank the participants of the Spring and Summer 2007 introductory semantics classes
at the University of Pennsylvania and at LSA respectively for their valuable feedback, as well as the
participants of our usability tests. This work has been supported by a University of Pennsylvania
SAS technology grant.

107

own with their homework exercises. In our experience, however, early feedback is
crucial for student performance on lambda calculus and HK derivations.

For both these problems, the use of educational software suggested itself to
us. Experiences with linguistic learning environments such as the Trees program
(Kroch and Crist, 2002) in syntax courses at the University of Pennsylvania have
been positive throughout (Anthony Kroch, p.c.) However, we were surprised to
find that there does not seem to exist any educational software suited for our task.
While some semantics- or logic-oriented educational programs exist (see Section
4), they are geared towards different (though related) applications, and not specific
to the HK framework. Looking beyond natural language semantics, there appears
to exist (apart from software geared towards students with a programming back-
ground) no training software for the more general field of the lambda calculus.

The present work describes our attempt at filling this much needed gap.

1.2 What It Does

The Penn Lambda Calculator is a multifunctional tool, designed for supporting
both the instructor and the student in a variety of scenarios. The application is
available as a “teacher edition” and a “student edition”. The main difference is that
the student edition is limited so that it does not provide automatic answers to the
exercises the student is working on.

The following functionality is available in both editions of the application:

• Interactive exercise solving. Typically, the instructor will prepare exercises
ahead of time in the form of a file, though the application also contains a
graphical interface (“Scratch Pad”) that allows users to input problem state-
ments of their own. In each case, the program reads in the problem statement,
internally generates a solution as applicable, displays the exercise and waits
for student input. As the student progresses through the exercise, his or her
answers are checked for correctness and the program gives appropriate feed-
back. The application currently supports the following kinds of exercises:
type checking, reduction of lambda terms and bottom-up semantic deriva-
tions. Section 2 discusses them in further detail.

In addition, the teacher edition provides the following functions:

• Visual presentation of semantic derivations. This mode is intended to be
used with a digital projector in class. The instructor provides the program
with the tree and the lexical entries of the terminal nodes. The applica-
tion then computes the denotations of nonterminal nodes automatically in
a bottom-up fashion. At any point in time, the instructor can interrupt or
rewind the derivation and/or modify any of the lexical entries involved. See
section 3.1 for details.

108

• Automatic scoring and grade management. Students submit their com-
pleted work to their instructors electronically. Section 3.3 describes the tools
the program provides to instructors to inspect and grade submitted work.

1.3 What We Aimed For

In the development of this program, we have adopted a few specific goals that go
beyond best practices in software development.

• We view the textual feedback as a central component of the functionality of
the application. Accordingly, we have made extended efforts to keep this
feedback informative without constraining the range of admissible inputs
more than absolutely necessary.

• The program has been designed so that it can be used by students with min-
imal outside instruction beyond the semantics that is needed to complete the
exercises. Unlike related software (Barwise and Etchemendy, 1999; Larson
et al., 1997), we do not presuppose that students read program documenta-
tion. We have performed extensive usability testing to ensure that the student
interface is easy and intuitive to use for students at the introductory level of
formal semantics with little background in computer usage.

1.4 How to Get It

The Penn Lambda Calculator is a stand-alone application available as a platform-
independent Java Jar file, which is directly executable on Mac OS X and on most
Unix systems. It is also available as a Microsoft Windows executable. All files
are downloadable from the project’s website. The student edition of the program
is open source, licensed with the common GNU GPL license (Stallman, 2007),
and the source code is linked from the website. In addition, the “engine” of the
program, a fine-grained object-oriented model of simply typed lambda calculus
expressions, is also downloadable as a separate library. The special edition for
instructors is not provided on our website and is not open source, as this would
make cheating very easy — see section 6.2. Instructors should contact the authors
for a copy via the project website. The project website is http://www.ling.
upenn.edu/lambda

2 Kinds of Exercises

As mentioned in the previous section, the application supports three kinds of exer-
cises to be completed by the student. These three exercise kinds — type checking,
reduction of lambda terms, and semantic derivations — are first presented by way
of a walkthrough to the program. Later on we return to them in greater detail.

109

2.1 Walkthrough

This section is a detailed walkthrough that allows you to start working with the
program and get an idea of its functionality as it presents itself to the student.

Here and in the following, we refer to version 1.0.5, the current version at the
time of writing. We assume that you have the student edition available. If not, you
can download the appropriate version from http://www.ling.upenn.edu/
lambda, together with the sample exercise files on this website (right-click and
save in most browsers). Even if you do not have access to the application, you can
follow this section and refer to the figures to get an idea of how it works.

Double-click the program to start it and select “Interactive Exercise Solver”.
Click on File in the menu, then Open. Select the file example1.txt and click
Open.

The first exercise is displayed as in Figure 1.1 It consists of the term λx.[P (x)∧
Q(x)], of which you are asked to enter the type, based on the typing conventions
displayed in the lower left hand corner of the window. Specifically, here P and Q
are one-place predicate constants, and x is a variable of type e. The correct answer
is therefore 〈e, t〉. Type this in and press Return to confirm, and again to move on
to the next exercise.

The program now goes to a second type of exercise: reduction of lambda terms.
It displays the term λx.[P (x) ∧ Q(x)] (a), which you are asked to simplify by
lambda conversion. Click Paste to copy the term into your answer box, then mod-
ify it, or start writing the reduced term from scratch if you prefer. To enter special
characters like λ and ∧, refer to the instructions in the middle left hand box. You
can try various incorrect responses such as [P (x) ∧ Q(x)] (a) to observe the pro-
gram’s responses.

When you are done (or bored) with the exercises in this file, open the next
file example2.txt (see Figure 2). This third kind of exercise is very different.
What you see is a syntax tree with some of the lexical entries already supplied.
As explained in the instructions at the top of the main area of the window, your
task consists in adding a lexical entry to the terminal α that is lacking one. As the
text points out, the author of the exercise has used α to represent a reflexivizing
morpheme.

To do this, click on that terminal α, then click into the text field below the tree
and enter a lambda expression, conforming to the typing conventions displayed in
the lower left hand corner. For example, to enter a variable of type 〈e, 〈e, t〉〉, use
the letter R.

Confirm your choice of a lexical entry (the correct answer, in this case, is
λR.λx.R(x)(x)) by hitting Return. It should now appear in the tree, under the
terminal α. The tree is now ready to be semantically computed. Click on the VP
node. You are now presented with a choice of three composition rules taken from

1These screenshots have been taken within the Mac OS X operating system. The corresponding
windows look slightly different on other operating systems.

110

Fi
gu

re
1:

Ty
pe

id
en

tifi
ca

tio
n

an
d

la
m

bd
a-

co
nv

er
si

on
ex

er
ci

se
s.

111

Fi
gu

re
2:

A
na

tu
ra

ll
an

gu
ag

e
de

riv
at

io
n

ex
er

ci
se

.

112

HK: function application, predicate modification, and lambda abstraction. Select
the correct rule. The VP denotation will now change to the unreduced term

λR.λx.[R(x)(x)] (λx.λy.[shaves(y, x)]). (1)

At this point, you are asked to reduce this lambda term. This corresponds to the
second kind of exercise described above, and the program reacts to your input by
feedback and error messages in exactly the same way as before. After three steps,
this expression reduces to λx.shaves(x)(x), and you are asked to click on another
node to continue. Click on the IP node and repeat the operation. You should end up
with the formula shaves(c, c) at the root. You are now free to go back and reassign
lexical entries to terminal nodes or to select another exercise.

This completes our first overview of the Penn Lambda Calculator as it presents
itself to the student. This walkthrough has not touched at all on several important
features of the program, in particular the teacher-oriented functions. All of these
will be described below. We begin by turning to a more systematic discussion of
the kinds of exercises that the program supports.

2.2 Type Checking

The first kind of exercise, expected only to be used for a short time at the start of
introductory semantics courses, asks the user to identify the semantic type (e, 〈e, t〉,
〈〈e, t〉, 〈e, t〉〉, etc.) of expressions. The instructor provides a list of expressions for
the student. The instructor does not need to provide the program with the answers,
i.e. the type of each expression — this is computed by the program automatically
based on typing conventions for constants and variables (either default conventions
or ones provided by the instructor).

Some example problems are:

Problem Answer
P (x) ∧ ∀y[Q(y)] t
λx.P (x) ∧ ∀y[R(x, y)] 〈e, t〉
λx.λy.λz.P (x) (c) 〈e, 〈e, t〉〉
λx.λw.sleeps(x,w) 〈e, 〈s, t〉〉

When the user provides an answer, the program first checks that the answer is
a syntactically well-formed description of a type. For instance, 〈ett〉 is not well-
formed. While the program does accept two common shortcuts (both et and 〈et〉
are acceptable), it is otherwise fairly strict with respect to how to enter semantic
types. User answers that could not be understood as types are returned with a
hopefully helpful diagnosis as to the problem. In the case of 〈ett〉, for which the
user probably meant 〈e, 〈tt〉〉 or 〈〈et〉, t〉, the program suggests that the user add
brackets.

113

2.3 Reduction of Lambda Terms

Reduction of lambda terms (or lambda conversion as called in the program, i.e.
β-reduction together with α-conversion) is one of the primary kinds of exercises
in the program. For these exercises, the user is presented with a lambda expres-
sion and is asked to simplify it by performing lambda conversions one at a time.
The centerpiece of the program is its informative feedback provided to students
when incorrect answers are provided, and this is explained below. Special key-
board shortcuts are available to enter logical symbols. As with the type checking
exercises, the instructor provides the program ahead of time with the problem, a
lambda expression, but the program will compute the answer and any intermedi-
ate steps automatically. Intermediate steps may be necessary both because of the
presence of multiple lambdas in the expression and because of the need to create
an alphabetical variant:

Problem Expected Answer
λx.[P (x) ∧ ∀x[Q(x)]] (a) P (a) ∧ ∀x[Q(x)]
λx.λy.R(x, y) (a) (b) Step 1: λy.R(a, y) (b)

Step 2: R(a, b)
λx.∀y[R(x, y)] (y) Step 1 (e.g.): λx.∀y′[R(x, y′)] (y)

Step 2: ∀y′[R(y, y′)]

Student inputs are first checked for whether they are syntactically well-formed
lambda expressions. If they are not, feedback is provided as to the nature of the
problem. For instance, the expression λ.P (x) is returned with feedback indicating
that a lambda must be followed by a variable. The expression P (a)∧Q(a)∨P (b)
is returned indicating that the expression is ambiguous and requires parentheses.
(Issues that arose in parsing and providing feedback for lambda expressions are
described in section 6.1.)

If the student input has passed the test of syntactic well-formedness, it is then
checked for well-typedness according to the typing conventions in place. For in-
stance, assume that x is associated with type e and Q is associated with a type other
than e. A user response of λx.P (x) (Q) will be returned to the user explaining that
λx.P (x) denotes a function whose range is over expressions of type e, but it cannot
be applied to Q because Q is of another type.

If the student input is well-typed but incorrect, the program checks it to see if
the student fell into a number of common pitfalls. These pitfalls are captured by
about a dozen abstract triggers applied to the answer roughly in order of decreasing
specificity. They represent the most common student errors as observed in a decade
of teaching introductory semantics courses.

If a known pitfall is encountered, appropriate feedback is provided. Whenever
possible, we generate constructive hints which do not give away the answer but
suggest to the student how to proceed with the reduction. If the student input is
detected to be wrong but none of the triggers are activated, a generic error message
informs the student about this limitation (“I’m afraid I can’t help you here.”).

114

The response that is displayed to the student is a collection of diagnoses and
hints that may be produced by different triggers. Experience has shown that stu-
dents confronted with a list of error messages tend to read only the first. For this
reason, the diagnoses and hints are rendered as a single paragraph in an attempt to
obscure their origin as separate entities. If more than one diagnosis is displayed,
they are ordered with the most specific diagnosis first, and joined by discourse
connectives such as “also”.

Some of the possible feedback responses are given below, preceded by an in-
correct attempt at lambda conversion that would activate the corresponding trigger.

PROBLEM: λx.P (x) (a)
EXPECTED ANSWER: P (a)
STUDENT INPUT: P (a) (a)
PROGRAM RESPONSE: “After each λ-conversion, exactly one argument should

be gone on the right hand side. Also, note that your expression also has a problem
with types: P (a) cannot be applied as a function to what looks like an argument to
its right (a) because P (a) is of type t according to the typing conventions in effect
and therefore is not a function.”

PROBLEM: λx.λy.R(x, y) (a) (b)
EXPECTED ANSWER: Step 1: λy.R(a, y) (b) Step 2: R(a, b)
STUDENT INPUT: λx.R(x, a) (b)
PROGRAM RESPONSE: “When doing λ-conversion, start with the outermost

λ. Remember, the leftmost λ-slot corresponds to the leftmost argument to be λ-
converted.”

PROBLEM: λx.∀x[P (x)] (a)
EXPECTED ANSWER: ∀x[P (x)]
STUDENT INPUT: ∀x[P (a)]
PROGRAM RESPONSE: “Remember to substitute the argument for all in-

stances of the λ variable that are free in the body of the λ expression, and for
nothing else. That is, make sure that you substituted into all and only the variable
slots that were bound by the λ.”

PROBLEM: λx.∀y[R(x, y)] (y)
EXPECTED ANSWER: Step 1: λx.∀y′[R(x, y′)] (y) Step 2: ∀y′[R(y, y′)]
STUDENT INPUT: ∀y[R(y, y)]
PROGRAM RESPONSE: “Your answer changed the truth conditions of the

expression because a free variable in the argument was accidentally bound during
substitution. Go back and try to make an alphabetical variant.”

PROBLEM: as in the previous example
EXPECTED ANSWER: as in the previous example
STUDENT INPUT: λx.∀y[R(x, y)] (y′)

115

PROGRAM RESPONSE: “This is an incorrect alphabetical variant. Only bound
variables can be rewritten as other variables while preserving truth conditions. Try
making another alphabetical variant.”

2.4 Semantic Derivations

Semantic derivations are another important part of our program. In this kind of
exercise, a Logical Form syntax tree is presented to the user, who is expected to
provide lexical entries for terminal nodes, choose the applicable composition rule
at each nonterminal (function application, predicate modification, or lambda ab-
straction), and evaluate and simplify the nonterminal nodes in a bottom-up fashion.
(Top-down evaluation is planned for future work.) The program displays the tree
visually, with the user-provided denotations of each node displayed at each node in
the tree. The user enters lexical entries and denotations at the bottom of the screen.
A blue box shows which node is to be acted on next, and this box can be moved
through the tree by clicking a node with the mouse (see Figure 2).

Lambda expressions are parsed and checked for well-typedness as described
above for lambda conversion exercises. During the simplification of the denotation
of a nonterminal node, the same lambda conversion pitfalls as in those exercises
are detected and reported as feedback. Additionally, the choice of an incorrect
composition rule, such as the choice of function application on two nodes typed
〈e, t〉 each, is reported.

Currently, instructors do not provide the correct solutions for lexical entry ques-
tions. The mistake of the student providing the wrong lexical entry for a terminal
node is expected to be found by the user on his or her own once either 1) the user
gets stuck at a nonterminal node that cannot be evaluated because, for instance,
the types of the children do not allow for any composition rule, or 2) the tree is
fully evaluated, but the student realizes the denotation arrived at for the root node
is incorrect. In either case, the user can go back and revise the incorrect lexical
entry, and then re-evaluate the affected part of the tree.

One common student error in providing lexical entries is the confusion of the
Predicate Logic two-place predicate R, as in R(x, y), and the predicate R denoting
a Schönfinkelized (or Curried) function from individuals to functions from indi-
viduals to truth values, as in R(x)(y). (Only the latter term is of type 〈e, 〈e, t〉〉.)
For instance, the student may be required to provide a function from a predicate
of the latter type to a truth value and may incorrectly submit λR.R(x, x). In this
case, the application recognizes the type mismatch and gives the feedback “R is a
function that takes (first) a single e-type argument alone, but you provided more
than one argument. Rewrite your expression so that R is Schönfinkelized (i.e. each
argument to R is surrounded by a separate pair of brackets).”

The following section describes the “teacher edition”, which can be used for
performing semantic derivations in class.

116

3 Instructor Tools

3.1 Class Presentation Mode for Tree Derivations

The “teacher edition” of the Penn Lambda Calculator enhances the bottom-up
derivation exercises (see previous section) with on-screen buttons to evaluate nodes
in the tree automatically, rather than requiring the user to enter the denotation of
each node and simplify it manually. Moreover, the type of each node is displayed
in addition to its denotation. This mode is designed for in-class presentations as an
alternative to the instructor writing out each step on a blackboard. It can also be
used by the instructor to debug exercises he or she is writing for the students. The
program can step forward and backward through simplification steps:

[[VP]]g ([[Carlos]]g) ↔ λx.shaves(x, x) (c) ↔ shaves(c, c) (2)

and can fill in entire subtrees with their denotations in one step to move quickly
through the derivation.

To prepare to use the presentation mode for tree derivations, the instructor cre-
ates a file containing the syntactic tree in labeled bracket notation, typing conven-
tions for terms used in denotations, and any lexical entries that the instructor wants
available ahead of time. (Additional lexical entries can be added while the program
is running as well.) Because the program has the ability to simplify and combine
lambda expressions, the instructor need not prepare the denotations of nonterminal
nodes ahead of time. The appropriate composition rule at each step (e.g. function
application versus predicate modification) is also chosen by the program based on
the evaluated types of the daughter expressions, following the HK algorithm.

The program is able to represent the full range of phenomena covered in the
HK textbook by function application, predicate modification, and lambda abstrac-
tion. This includes phenomena such as intersective adjectives, relative clauses and
quantifier raising. As an example, derivations that illustrate different issues arising
in connection with quantifiers are displayed in Figure 3. Figure 4 displays a com-
plex noun phrase with two relative clauses of the kind that could easily take half
an hour to draw on a blackboard. The simplification history of each node can be
displayed in another box in the program (not shown in the figure).

3.2 Creating Exercise Files

Exercises are provided by instructors to students in file form (e.g. via email or a
webpage). Currently, exercise files are plain text files in which the instructor writes
the title of the assignment, instructions, and each exercise one per line. Point values
can be assigned to each problem in order to allow the program to compute grades
automatically in the teacher review tool described in the next section. Plain text
files can be created using any simple text editor (or word processor). The format
of exercise files is documented on the website, which also provides samples.

Although a plain text file format was chosen for exercise files for simplicity for
the instructor, one drawback is that once sent to the students, the contents of these

117

(a) A QNP that works in subject position . . . (b) . . . does not work as an object unless . . .

(c) . . . you use quantifier raising or . . . (d) . . . flexible types, i.e. another lexical entry.

Figure 3: Displaying various treatments of quantifiers using the teacher edition

118

Fi
gu

re
4:

A
co

m
pl

et
ed

de
riv

at
io

n
fo

rt
he

no
un

ph
ra

se
th

e
w

om
an

w
ho

1
t 1

in
tr

od
uc

ed
he

r 1
ni

ec
e

to
th

e
ro

ck
st

ar
w

hi
ch

3
sh

e 1
lik

ed
t 3

119

files can be viewed by the students as well. For this reason, the instructor must be
careful not to put the answers or any other such information in the file.

3.3 Homework and Teacher Review Tool

Students using the application for homework assignments can submit their work to
their instructor by saving their progress to a file, which can then be e-mailed to the
instructor. When saving, the program asks the student for his or her name, which is
written into the saved-work file, along with the student’s answers to the questions.
This makes it easy for instructors to keep track of students’ performance.

As with any submitted homework, there is, of course, no guarantee that a saved-
work file actually represents any particular student’s efforts. It was not a goal of
the project to anticipate all of the many ways one might cheat using the program.
The exercise files sent to students by instructors are plain-text files, as explained in
the previous section. However, saved-work files are in binary format to make it at
least non-trivial for students to modify a saved-work file once it has been created
by the program, such as to put a different student’s name in the file.

Saved-work files received by the instructor can be reviewed using the appli-
cation. The review component of the program, called “Teacher Tool”, displays
detailed information on the student’s answers to each individual exercise. A score
is computed for those exercises whose answer can be automatically checked for
correctness (all but the bottom-up derivations where the student needs to define a
new lexical entry) and for which the exercise file has specified a score value. The
application can also collect the scoring information of all the students and present
it in a table along with mean and standard deviation for the final scores. The tool
shows each student’s final response to each of the questions in the homework, as
well as the percentage of students who answered each problem correctly, and it
allows the instructor to enter comments into the saved-work file for his or her own
reference later. This table of student scores can be copied and imported into other
programs such as spreadsheet applications for further processing.

4 Related Work

We were not able to find any software that would work as a companion to the HK
textbook the same way as ours. However, some applications exist that do resemble
ours, be it because they are also written for the linguistics classroom or because
they support formal natural language semantics as well. In this section, we review
and compare some of them to the Penn Lambda Calculator.2

2Space prevents us from doing justice to a number of additional related programs, such as CURT
(Clever Use of Reasoning Tools), a collection of tools for first-order inference and translation from
natural language that accompanies a textbook (Blackburn and Bos, 2005); and CLEARS (Konrad
et al., 1996), an “interactive graphical environment for computational semantics” that supports vari-
ous semantic formalisms such as Discourse Representation Theory (DRT) and situation semantics.

120

4.1 Semantica

Semantica (Larson et al., 1997) is perhaps the closest relative of the Penn Lambda
Calculator. Like our program, it is an interactive, graphics-oriented application
designed for assisting the student in learning to use a truth-conditional semantic
derivation system. The original release of Semantica ran on the now defunct oper-
ating system NeXTstep, but its authors have since then re-released it for Windows.

The most important difference between the two programs is a difference in the
underlying semantic theories. The HK framework, on which our program is based
and which it faithfully reproduces, stands in the tradition of type-driven translation.
This concept, introduced by Klein and Sag (1985) and Jacobson (1982) (see also
(Dowty, 2006, p. 10)), denotes a semantic translation system in which the types of
the expressions on the daughters of a syntactic tree node determine which semantic
composition rule applies at that node. This allows one to decouple semantic rules
from the syntax and to have only very few semantic rules. A pithier term for this
idea, which Klein and Sag credit to Emmon Bach, is shake’n’bake semantics.

By contrast, many semantic translation systems have taken the grammar to
include a set of rule pairs consisting of a phrase structure rule and a semantic
composition rule. The best known example of this style of system is likely to
be classical Montague semantics (Montague, 1974). Klein and Sag contrast this
idea, termed rule-to-rule hypothesis by Bach (1976), to type-driven translation.

This dichotomy is also at the core of the main difference between the Penn
Lambda Calculator and Semantica. Only the latter allows (and requires) the user
to specify a different semantic composition rule for each syntactic phrase structure
rule.3 In contrast, the Penn Lambda Calculator implements a system that is only
equipped with a small collection of composition rules. Due to the type-driven
nature of the HK computation system, these rules are sufficient to model a wide
range of semantic phenomena in English.4

Both programs complement each other by offering important functions that the
other one lacks:

• On the one hand, Semantica not only converts a syntactic tree to a logical for-
mula, it also has the ability to evaluate that formula against a model, which
consists of one or several worlds connected by modal and temporal relations.
Each world is populated with individual objects of different kinds that stand
in spatial relations to one another. The program contains an editor that al-
lows the user to create and edit these models. This editor is quite easy to
use. It is similar to and was modeled on the logic teaching program Tarski’s
World (see next section). Semantica can thus act as a simple theorem prover.
The Penn Lambda Calculator is not able to do any of this.

3In practice, the Semantica user may load a file that contains a number of predefined rule-to-rule
mappings of this kind.

4It is currently not possible for the user to add rules to this collection.

121

• On the other hand, Semantica’s emphasis on pedagogical issues and class-
room management is not as strong. The program does not display the indi-
vidual steps of the computation of a sentence’s truth conditions, nor does it
require the student to enter these steps. When the computation fails, only
a generic error message is displayed that does not indicate the origin of the
failure. (“Recheck rules and input tree.”) Support for grading homework
files in the style of our teacher tool is absent in Semantica. Perhaps for these
reasons, using Semantica in the classroom has been reported to result in a
“heavy initial burden” for the students and to require “considerably heav-
ier time commitment than a traditional lecture-based course, both in terms
of preparation and support” (Larson, 1997). Our experience with the Penn
Lambda Calculator has been more encouraging (see Section 5).

Finally, a central difference is that Semantica’s underlying formalism does not
make use of types nor of the lambda calculus, while the core functionality of the
Penn Lambda Calculator consists in assisting students learning how to assign types
to lambda terms and to reduce them.

4.2 Tarski’s World

Tarski’s World (released for Windows and Mac OS) is a pedagogical software pro-
gram that helps students become fluent in first-order predicate logic. It displays
logical formulae alongside graphical depictions of worlds (models) and asks the
student to indicate whether any given formula is true in the world. Alternatively,
the student could also be directed to build a world from scratch that makes a for-
mula or collection of formulae true. Unlike Semantica, this program does not al-
low for models of modal or temporal logics, i.e. models in which several possible
worlds are connected to each other by modal or temporal accessibility relations.

Tarski’s World is similar to the Penn Lambda Calculator in that it focuses on
providing helpful feedback to the student and on classroom management functions.
It provides automatic grading via a central server, the Grade Grinder, to which
students can electronically submit their files. However, this is where the similarities
end: Tarski’s World does not touch on natural language syntax or semantics.

4.3 Nessie

To conclude this section, we mention the Nessie project (Blackburn and Hinderer,
2007) as a recent example of an application created in the context of natural lan-
guage formal semantics. Unlike the other programs presented here, Nessie’s ap-
proach is not pedagogical, and it is neither graphics-based nor interactive. The
novelty of this project consists in its attempt at providing a generic framework for
large-scale natural language semantic computation, based on the TYn family of
logics, which has been suggested as a uniform framework for virtually any kind
of semantic analysis (Muskens, 1996). TYn is based on the simply typed lambda

122

calculus and is therefore very similar to the logic underlying HK and our sys-
tem. Furthermore, TYn provides flexible support for any number of basic kinds of
entities such as ordinary individuals, belief states, times, and situations. Nessie, a
platform-independent application, fully implements TYn and is developed with the
aim of providing “a systematic way of combining the insights from many different
approaches, ranging from DRT through situation semantics and classical possible
world semantics, to event based semantics” (Blackburn and Hinderer, 2007, p. 5).

5 Field Experience

An early version of this program has been field-tested in the Spring 2007 graduate
student introductory course to formal semantics at the University of Pennsylvania
and has later undergone extensive usability testing in order to improve its user in-
terface. In its current form (the result of about 400 man-hours of work), it has been
deployed for the first time in the introductory course to semantics at the Linguistic
Society of America Summer Institute 2007, at Stanford. Both courses have been
taught by one of us (Romero). We have offered an internet forum in order to col-
lect feedback from the students and to provide technical support. We expected to
have to make changes to the program and to redeploy it several times as the course
proceeded, but this turned out not to be necessary. Students used the same version
of the application throughout the course. The forum was used primarily to clar-
ify questions in the exercises rather than to ask questions about the program itself.
Numerous minor improvements to the application were suggested and bugs were
collected. As a result, we expect its basic design to remain stable in the near future.

The teacher edition’s ability to demonstrate a derivation on the screen turned
out extremely helpful in the classroom. Even if one does it slowly enough so that
the students have time to assimilate what is on the screen, it looks cleaner and saves
time compared to writing the same derivation on the blackboard. A derivation that
used to take us 30 minutes on the blackboard takes about 5-10 minutes using the
application, depending on how much explanation is needed.

6 Issues in Program Development

6.1 Robust Parsing of a Formal Language

The syntax of the lambda calculus is usually given as a collection of CFG or BNF
rules or as a recursive definition to that effect, together with the statement that
when the formulae are presented to a human reader, parentheses can be dropped for
convenience. To parse typed lambda calculus expressions entered by students and
teachers, we needed to implement a “robust” syntax, able to handle these omitted
parentheses and similar pitfalls. (We soon discovered that it was not advisable to
force users to disambiguate every formula with parentheses, since this soon led to
frustration, and it distracted users from the task at hand.)

123

Informally, parentheses may be dropped just in case the resulting expression
appears unambiguous to the human reader. The exact conditions for this, as well
as the rules that disambiguate these expressions, turned out surprisingly difficult to
determine. Even our own experience with the typed lambda calculus did not allow
us to define the rules we seemed to have unconsciously mastered, and so we had to
discover them empirically.5 We discuss a few examples here.

The most striking phenomenon was the significance of spaces in expressions
of function application. For instance, when the type of M was not specified, the
expression λx.M(x) (a) was most likely to be interpreted as intending λx.M(x)
to be applied to the argument a. However, the expression λx.M(x)(a) was under-
stood as having a as the second argument of M itself (where M is now understood
as a Schönfinkelized two-argument function). The difference is one of scope, with
(a) in the first case having wide scope relative to the lambda, and in the second
case narrow scope. Apparently, though, these structural preferences can be over-
ridden: in our experience, most people would be reluctant to interpret the first x to
be bound and the second x to be free in the expression λx.M(x) (x), regardless
of the presence of space.

In some cases, we are able to use the fact that parentheses are regularly omitted
because there is only one well-typed bracketing. λx.T (x)(a) ∧ U(b) is an exam-
ple of this. Without knowing the types of T and U , the program will reject this
expression on the grounds that it is ambiguous. However, if T is known to be of
type 〈e, t〉, the program will give the user the benefit of the doubt and understand
the expression as [(λx.T (x)) (a)] ∧ U(b). If T is instead entered as 〈e, 〈e, t〉〉, the
expression will be treated as λx.(T (x)(a) ∧ U(b)).

6.2 Issues in Distribution

In designing this application, we made the decision early on to make as much func-
tionality available for free under a GPL-like license (Stallman, 2007), including the
source code. At the same time, some of the functionality cannot be distributed to
students. In this section, we discuss some issues that arise from this conflict. At
the time of writing, these are open and serious problems for us, and we are grateful
for any suggestions.

As mentioned above, we are currently only offering the student edition of the
application on the project website. The reason for this is that the teacher edition has
capabilities that would easily allow students to solve any exercise with almost no
effort at all. Therefore we feel its distribution must be restricted. We are currently
exploring different ways to manage this restriction:

• One option we are considering is making the teacher edition available as a re-
stricted download. Only individuals who can document to us their affiliation
as university faculty would be given access to the program. While this will
create a certain delay in distribution, we anticipate that the added work for us

5The parallel to natural language syntax has not escaped our attention.

124

will be manageable and the delay short. However, this has the problem that a
single instructor who, for whatever reason, makes the teacher edition avail-
able to some student might result in both versions being effectively freely
available to all students.

• Another option, which avoids this problem, would consist in making the
teacher edition available only as a password-protected web-based applica-
tion. However, this would require that the instructor have Internet access
during class sessions.

• A related issue concerns the extent to which we can release the source code.
While we would like the full program to be available to be modified and
reused by others, providing the full source code would allow others to com-
pile and make the teacher edition available to students. We prefer to err on
the side of caution and are currently making the source code available only
partially. We will be happy to release the full source code to those that we
would provide the teacher edition to.

7 Future Work

The Penn Lambda Calculator is usable in its current state; however, improvements
are planned in several areas. Lambda expressions understood by the program will
continue to be extended and refined to accommodate nonstandard ways of entering
lambda expressions and to address pedagogical concerns. We will allow the pro-
gram to accept expressions containing mathematical, set, and modal operators not
yet considered, and situation variables as superscripts on interpretation functions.
The set of semantic computation rules, which is hard-coded into the program at the
moment, could be made user-extensible. We also plan to add support for top-down
HK derivations.

A drawback of the rigid distinction between “teacher” and “student” editions of
the application is that it is impossible for the instructor to allow the students to step
through derivations at their own pace, unless he or she wants to give students access
to the “teacher” edition. Currently, students can only watch the derivations as the
instructor steps through them in class. If they try to replicate them in the “student”
edition, they have to re-enter by hand all the lambda conversions involved in the
derivation. This problem has emerged in the classroom and was not foreseen by
us. We plan to address it by providing the instructor with a means to selectively
unlock the student edition’s features for certain derivations only.

Finally, we intend to improve the integration of our program with related soft-
ware. In particular, we plan to add the ability to exchange syntactic trees between
the Penn Lambda Calculator and the Trees program, a learning environment for
syntactic theory (Kroch and Crist, 2002), as well as the LATEX tree-drawing pack-
age qtree. We may also link up the program with Tarski’s World and/or Semantica

125

(see section 4) in order to provide students with a way to check the truth of their
sentences in a self-constructed model.

References

Bach, Emmon. 1976. An extension of classical transformational grammar. In Prob-
lems in Linguistic Metatheory, Proceedings of the 1976 Conference at Michigan
State University.

Barwise, Jon and Etchemendy, John. 1999. Language, Proof, and Logic. CSLI
Publications, Stanford.

Blackburn, Patrick and Bos, Johan. 2005. Representation and Inference for Natu-
ral Language. A First Course in Computational Semantics. CSLI Publications,
Stanford.

Blackburn, Patrick and Hinderer, Sébastien. 2007. From TYn to DRT: an imple-
mentation. In Proceedings of the 3rd International Language & Technology Con-
ference (L&TC’07), pages 384–388.

Dowty, David R. 2006. Compositionality as an empirical problem, unpublished
manuscript, online 2007-10-14:
http://www.ling.ohio-state.edu/∼dowty/context-free-semantics.pdf.

Heim, Irene and Kratzer, Angelika. 1998. Semantics in Generative Grammar. Ox-
ford: Blackwell.

Jacobson, Pauline. 1982. Visser Revisited. In Kevin Tuite, Robinson Schneider
and Robert Chametsky (eds.), Papers from the 18th Regional Meeting, Chicago
Linguistic Society, April 15-16, 1982, volume 18, pages 218–243.

Klein, Ewan and Sag, Ivan A. 1985. Type-driven translation. Linguistics and Phi-
losophy 8(2), 163–201.

Konrad, Karsten, Maier, Holger and Pinkal, Manfred. 1996. CLEARS - an ed-
ucation and research tool for computational semantics. In Proceedings of the
16th International Conference on Computational Linguistics (COLING), Copen-
hagen.

Kroch, Anthony and Crist, Sean. 2002. Trees 3 for Windows. Pedagogical soft-
ware. Online 2007-10-14: http://www.ling.upenn.edu/∼kroch/Trees.html.

Larson, Richard K. 1997. The Grammar as Science project. Day 2 (Semantica).
Presentation at the Linguistic Society of America Summer Institute, Workshop
on Linguistics and the Language Sciences: New Computer-based Methods and
Materials for Undergraduate Education, Cornell University, Ithaca, NY. Online
2007-10-08: http://semlab5.sbs.sunysb.edu/∼rlarson/day2.pdf.

126

Larson, Richard K., Warren, D.S., de Lima e Silva, J. Freire, Gomez, P. and Sago-
nas, K. 1997. Semantica. MIT Press, Cambridge.

Montague, Richard. 1974. Formal Philosophy: Selected Papers of Richard Mon-
tague. Edited and with an introduction by R. H. Thomason. Yale University
Press, New Haven.

Muskens, Reinhard. 1996. Meaning and Partiality. Studies in Logic, Language and
Information, CSLI Publications, Stanford.

Stallman, Richard. 2007. GNU General Public License.

127

Regression Testing For Grammar-Based Systems

Nikos Chatzichrisafis , Dick Crouch , Tracy Holloway King ,
Rowan Nairn , Manny Rayner , Marianne Santaholma

(1) University of Geneva, TIM/ISSCO
(2) Palo Alto Research Center

(3) Powerset, Inc.

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

128

Abstract

In complex grammars, even small changes may have an unforeseeable
impact on overall system performance. As grammar based systems are in-
creasingly deployed for industrial and other large-scale applications, it is im-
perative to have systematic regression testing in place. Systematic testing in
grammar-based systems serves several purposes. It helps developers to track
progress, and to recognize and correct shortcomings in linguistics rules sets.
It is also an essential tool for assessing overall system status in terms of task
and runtime performance.

This paper describes best practices in two closely related regression test-
ing frameworks used in grammar-based systems: MedSLT, a spoken language
translation system based on the Regulus platform, and a search and question
answering system based on PARC’s XLE syntax-semantics parser.

1 Introduction

Regression testing is an important part of all software development, including large-
scale, application-oriented grammars. Similar to regression testing in other sys-
tems, regression testing in the context of grammar development ascertains the cor-
rectness of the code and its output alongside important systems issues such as how
quickly the grammar and system run. This helps to ensure systematic development
both of the grammar and the system using the grammar.

In the context of grammar engineering, this applies in particular to linguistic
rule-sets and the compilers and interpreters used to process them. Systematic test-
ing identifies problems so that they can be fixed before they affect system perfor-
mance. Furthermore, fixing such problems also requires accurate information about
system coverage over time, on a per-component level, so that grammar writers can
effectively track down and correct any loss of coverage, as well as identify areas
for further development.

Here we focus on two closely related regression systems used in grammar-based
systems: one developed at Geneva University for a multi-lingual medical spoken
translation system based on the Regulus platform (Rayner et al., 2006), and one for
a search and question-answering system that uses the XLE LFG parser and ordered-
rewriting system (Crouch et al., 2007). Given the usefulness of these tools for two
disparate systems at whose cores are heavily engineered deep grammars, we hope
that the techniques described here will be useful to the grammar engineering com-
munity regardless of framework, especially since these grammars are increasingly
used as central system components. Although many aspects of the regression test-
ing we describe here can be attributed to common sense, the paper pulls together
lessons learned in the development and active use of the systems. This includes the
fact that ease of use and a well-designed user interface are of great help, even for
experienced system developers.

Regression testing for grammar-based systems involves two phases. The first
includes systematic testing of the grammar during its development. This is the part

129

of regression testing that grammar engineers are generally most familiar with. The
second phase involves the deployment of the grammar in a system and the regres-
sion testing of the grammar as a part of the whole system. This allows the grammar
engineer to see whether grammar changes have any effect on the system, positive
or negative. In addition, the results of regression testing in the system allow a level
of abstraction away from the details of the grammar output, which can ease main-
tenance of the regression test suites so that the developers do not need to change the
gold standard annotation every time an intermediate level of representation changes.

In the following we first describe in more detail how the regression tests are used
in grammar development (Section 2), and then how they are used for the grammars
within a larger system and application environment (Section 3), drawing examples
from two systems using complex grammars.

2 Regression Testing During Grammar Development

Most large-scale grammar development efforts use regression testing for the output
of their grammars. Many complex systems have separate tests for different levels
of output, e.g. syntactic and semantic. The test suites are often defined by the gram-
mar writer, perhaps in conjunction with some corpus, and they aim for coverage of
(specific) linguistic and lexical data (see Lehmann et al. (1996) on test suite design
for NLP). Here we do not explore the development of these test suites, including
tools to assist in the creation of appropriate “gold” standard analyses to compare
against (Oepen et al., 1998; Rosén et al., 2005). Instead, we focus on the regression
system a grammar developer would need to maximally benefit from the test suites
that they have.

The basic idea is extremely simple. Having constructed the regression corpora
with annotations as to what the correct outputs are, the system must run the gram-
mar against each test suite and notify the developers how things have changed. The
details of how the regression testing system is run and how results are presented are
crucial. If the regression testing tools are badly designed, the testing will be time
consuming and laborious to the point that it is not performed on a regular basis. If
the details are right, it makes a huge difference in ease of grammar development
and in overall application maintenance. As we will see, these feature requirements
are similar to those of regression testing of the system as a whole.

In addition to the ability to run the tests manually after each change, the regres-
sion system should run automatically on a regular schedule, generally overnight so
that the results are ready for the developer to review each morning. These results
need to be posted in such a way that they can easily be perused by the grammar
writer. For example, a result summary might be mailed to the developer, along with
a link to a web page with detailed results of the regression run.

A second important feature is a method to compare the results of different test
runs. Most regression sets do not yield perfect results, so the grammar developer
needs some way to determine whether the incorrect results indicate something that

130

was recently broken, as opposed, for example, to something that has not been im-
plemented yet. Furthermore, when an example gives a wrong result, it is necessary
for the regression system to report if the grammar ever gave the right result, what it
was, and when that result was last produced. Hence it is necessary to have tools that
enable the grammar engineer to compare the latest results against the immediately
previous ones, as well as against the best ever result and the gold standard result for
a given example. Examples of displays are shown in the next section.

3 Regression Testing the Grammar in the System

As anyone who has worked as a grammar engineer is painfully aware, linguistic
formats change over time. Sometimes these are minor changes, such as the sys-
tematic renaming of features, while other changes may involve significant linguis-
tic reanalysis. Annotation schemes that rely on internal representations (parse trees,
semantic forms, etc.) run into the problem that the annotations themselves degrade
as the representations change. As such, it is not easy to know whether mismatches
occurring during regression runs reflect a real problem or just a case of a change in
internal representation.1 For this reason, it is good to have test suites whose annota-
tions do not refer to internal forms; these suites can supplement the more traditional
grammar-based test suites discussed briefly in the previous section.

For example, in a dialog system, the annotation can state whether or not Y is a
good response to X in a given context. This scheme has been implemented in the
Clarissa dialog manager (Rayner and Hockey, 2004). In the Clarissa system, re-
gression testing is performed by performing dialog moves on input states, produc-
ing a specific output state and a set of required actions. A context-independent test
suite can be built by recording the desired output state and accompanying actions for
corresponding input states. In a translation system, annotations can state whether
or not a Y is a good translation of X, instead of testing the syntactic representations
used internally to perform the translation. In a question answering system, they can
state whether passage X should match query Y. In most applications, there can be
multiple correct responses, e.g. an MT system can produce multiple good transla-
tions. As such, the regression testing must allow for this possibility (see section
3.1.2). These considerations lead us to the conclusion that it is often easiest to per-
form regression testing of a grammar in the context of a larger system that uses the
grammar to perform some concrete task (Spark-Jones and Galliers, 1996).

In this section we describe the Regulus-based medical speech translation system
MedSLT and the XLE-based search and question answering systems.

1Several annotation systems focus on this problem, providing tools, such as discriminant features,
that can be used to quickly bootstrap a new regression suite off of a previous version (Oepen et al.,
2002; Rosén et al., 2005).

131

3.1 Regression Testing Regulus Grammars in MedSLT

3.1.1 The Regulus Toolkit

Regulus is a comprehensive Open Source toolkit for developing grammar-based
speech-enabled systems that can be run on the commercially available Nuance speech
recognition environment. The platform has been developed by an Open Source con-
sortium, whose main partners have been NASA Ames Research Center (ARC) and
Geneva University, and is freely available for download from the project’s Source-
Forge website. The platform supplies a framework which supports development of
grammars, compilation of grammars into parsers, generators and recognisers, and
use of these compiled resources to build speech translation and spoken dialog appli-
cations. It has been used to build several large systems, including NASA’s Clarissa
procedure browser, and is described at length in Rayner et al. (2006).

The Regulus development model is based on reusable grammars. Developers
use general domain-independent unification grammars, which are tailored to the do-
main at hand by grammar specialization using explanation-based learning (EBL).
Grammar specialization is conducted using a small training corpus, domain specific
lexica, and a set of instructions (“operationality criteria”) describing how to perform
the specialization (see Figure 1).

Figure 1: The Regulus processing path

3.1.2 The MedSLT System

Geneva University’s MedSLT is a large Regulus-based project, which focuses on
automatic interactive translation of spoken doctor/patient examination dialogs (for
a screenshot, see Figure 2).

132

Figure 2: MedSLT application window

As of 2007, there are versions of the system for approximately twenty differ-
ent language pairs and four subdomains. The subdomains covered are headaches,
chest pain, abdominal pain and pharyngitis. Languages handled include English,
French, Japanese, Spanish, Catalan and Arabic. Vocabulary size varies depending
on the input language, being determined mainly by the number of inflected forms
of verbs and adjectives. It ranges from 400 for Japanese to 1100 for French.
The overall system is stable, and has been tested on medical students in simulated
patient-examination situations with good results (Chatzichrisafis et al., 2006).

Typically the Regulus grammar for each MedSLT language is used for several
system components, including speech recognition, analysis, and generation of trans-
lated sentences. Maintenance and active extension of these different components
for the many different language-pair and domain combinations led the MedSLT de-
velopers to build an elaborate set of regression testing tools. Each language and do-
main have regression corpora in text form. Additionally each language has recorded
speech corpora for selected domains. The regression testing produces results at four
different levels: individual utterances, individual corpus runs, sets of runs for a lan-
guage, and the complete set.

During regression testing, each utterance is passed through all stages of process-
ing in order to determine how the system as a whole is performing. For MedSLT,
a spoken dialog translation system, speech is an important aspect, and is thus thor-
oughly tested using offline speech recognition with the Nuance batchrec utility.
Automated tests provide the developers objective runtime performance figures, and
enable the team to tune grammars and recognition parameters to match the target
platform. Speech recognition regression tests report for each test suite semantic er-
ror rates, word error rates, and run-time performance of the test suite in terms of
CPU time.

The next processing steps cover source language analysis, ellipsis resolution,
translation to interlingua, translation from interlingua, and target language genera-

133

Wavfile: c:/corpora/2004-11-01/USEnglish/13:34:41/utt19.wav
Source: does your pain appear in the morning

+avez-vous mal des deux cotes
Recognised: does your pain appear in the morning
Target: la douleur survient-elle le matin
*** PREVIOUS OK: "avez-vous mal le matin" ***
Source rep: [[possessive,[[[pronoun,you]]]],

[prep,in_time], [secondary_symptom,pain],
[state,appear], [tense,present],
[time,morning], [utterance_type,ynq],
[voice,active]]

Resolved rep: [[prep,in_time], [symptom,pain],
[pronoun,you], [state,have_symptom],
[tense,present], [time,morning],
[utterance_type,ynq], [voice,active]]

Resolution: trivial
Interlingua: [[prep,in_time], [pronoun,you],

[state,have_symptom], [symptom,pain],
[tense,present], [time,morning],
[utterance_type,ynq], [voice,active]]

Target rep: [[state,survenir], [symptom,douleur],
[temporal,matin], [tense,present],
[utterance_type,sentence], [voice,active]]

Judgment: ?

Figure 3: Result record for individual utterance (slightly simplified). The lines
show, in order: the name of the recorded speech file; a transcription of the source ut-
terance with preceding context; the recognised result; the translation; a previously
produced correct translation; various internal representations; and the quality judg-
ment (currently unknown ‘?’).

tion. Performance on these steps is summarized by showing the quality of the trans-
lated corpus and the number of sentences that did not produce a result. To summa-
rize translation quality of the corpus, translations are judged as being Good, OK
(acceptable but not perfect) and Bad.2 A database of all previous results is stored,
so that Bad results can show when the example most recently produced a correct
result and what that correct result was. To help keep judgments up to date, the re-
gression testing scripts rebuild the judgment databases, and any sentences without
a matching judgment are flagged with ‘?’. Developers are able to click on the cor-
responding corpus and start annotating these flagged sentence pairs as Good, OK
or Bad.

2Judgments are based on both syntactic and semantic criteria. Sentences with good syntax and
semantics are judged as Good. In case the semantics is correct, but the syntax could be improved, the
sentence would be categorized as OK, otherwise as Bad.

134

A typical result record for an utterance is shown in Figure 3. In this particular
run, a new translation was produced (la douleur survient-elle le matin) presumably
due to a change in the translation rules, and no stored judgment was available. The
system flags this (‘?’) and shows the user a known OK translation previously pro-
duced (avez-vous mal le matin).

3.1.3 How the Regression Testing Tools Drive the Debugging Process

This section presents an illustrative example, showing how the regression testing
tools are used in the normal MedSLT development cycle. The grammar engineer
starts by examining the top-level webpage for the nightly corpus run. This dis-
plays a formatted table, with one line for each corpus; tables for individual lan-
guages are grouped on different tabs. Figure 4 shows the set of tables for Japanese
input. Each line summarizes the judged quality of translations (Good, OK, Bad),
how many translation have not been judged yet (Unknown), and for how many sen-
tences no translation is produced (NoResult). Furthermore, the columns NewBad,
NewUnknown, and NewNoResult show how the results have changed from the pre-
vious run. The number of processed sentences (Processed) and time used (Time) are
printed in the last two columns.

Figure 4: Part of display summarising the results of a nightly MedSLT test run. El-
lipsis processing for Japanese is not yet well developed; speech recognition is in
contrast very good.

Looking at the tables it is immediately apparent that performance on Japanese
to Spanish has slipped badly (11.6% in “New No Result”). On the other hand, al-
though performance on the ellipsis corpus is not good, little appears to have broken;
the poor result is due to the fact that most of the Japanese ellipsis processing rules

135

have not yet been implemented. The developer’s next step is thus to examine the
detailed trace for the main Japanese to Spanish corpus.

Having clicked to get the corpus trace, the developer now searches down the file
for occurrences of the string “PREVIOUS”. As mentioned above, examples which
used to work and now give different results are flagged in this way. In the present
example, a minute or so of searching is enough to show that most or all examples
involving the common Japanese word tsuzuku ‘continue/last’ are failing to produce
translations; a target language representation is created, but surface generation fails,
as in the example shown in Figure 5. This is a detailed enough analysis to permit
direct debugging of the problem in the Regulus development environment.

Source: issyuukan ijou tsuzuki masu ka
Target: generation_failed
*** NO TRANSLATION ***
*** PREVIOUS OK: "el dolor dura mas de una semana" ***

Source rep: [[number,1], [numerical_comparative,ijou],
[state,tsuzuku], [tense,present],
[unit,syuukan], [utterance_type,sentence]]

Resolved rep: [[utterance_type,sentence], [number,1],
[unit,syuukan], [numerical_comparative,
ijou], [tense,present], [state,tsuzuku]]

Resolution: trivial
Interlingua: [[prep,duration], [spec,[more_than,1]],

[state,last], [symptom,pain],
[tense,present], [timeunit,week],
[utterance_type,ynq], [voice,active]]

Target rep: [[comparative,mas_de], [number,1],
[state,durar], [symptom,dolor],
[tense,present], [timeunit,semana],
[utterance_type,sentence], [voice,active]]

Judgment: error

Figure 5: Result record for an individual utterance (slightly simplified) showing an
example of a Japanese to Spanish translation problem. The input sentence could
be glossed as “One-week more continue POLITE Q” (“Has [the pain] continued
for more than one week?”). The meanings of the other fields are described in the
caption to Figure 3.

In general, it is extremely useful to be able to descend rapidly in this way from
the top-level display, which shows figures for over twenty different language pairs,
to the low-level task of debugging a single representative test suite example. The
point to note here is that good organization of the trace information has allowed the
language engineer to be fairly sure, after only a few minutes, that this is indeed one
of the most important outstanding problems. Having a reliable testing framework
of this kind makes it possible to focus developer effort effectively, and facilitates
overall project management.

136

3.2 Regression Testing in the XLE QA System

The goal of the XLE search and question answering (QA) system (Bobrow et al.,
2007; Crouch and King, 2006) is to find matches between passages and queries,
where a “match” is defined, depending on the application, as anything from strict
entailment (strict QA) to relevancy (search). The system batch processes texts, map-
ping them into deep semantic representations, and stores these in a semantically-
indexed database. For retrieval or question answering, the query is mapped through
a related set of rules, and the query representation is used to retrieve relevant pas-
sages from the index. These are then ranked as to relevance (search) or run through
a set of entailment and contradiction detection rules (question answering).

In order to run regression testing on this system, passage and query pairs with
answers are created and run through the syntax to the semantic representations. A
light inference procedure is applied to detect entailments or contradictions between
the final representations of passages and queries. The resulting answer is compared
against the gold standard answer.3 The basic system architecture as used by the re-
gression testing system is shown in Figure 6.

input string
Finite-State Machines

textbreaking
tokenization

Finite-State Machines
morphological analysis

XLE LFG parser
syntactic analysis

XLE rewrite system
semantics

XLE rewrite system
query reformulation passage expansion

XLE rewrite system
match inference

answer

Figure 6: XLE Search and QA System Processing Pipeline

The regression system is set up to provide feedback to the rule writers maintain-
ing both the semantic production system and the inference mechanism. In contrast
to the MedSLT application, the XLE Search and QA System only involves one lan-
guage. Nonetheless, there are several grammar engineers working on the different
semantics levels, the inference rules, and the lexical resources used by the system.
In addition, the tokenization, morphology, and syntax preprocessing (Kaplan et al.,

3This regression platform does not currently test the indexing mechanism. This capability is in
the process of being added.

137

2004) slowly change over time and updates to these components can affect down-
stream processing in terms of the quality of the answers and of system efficiency.

3.2.1 Regression Testing Question Answering

Entailment and contradiction detection between passages and queries is a task well
suited to regression testing. There are generally only two or three possible answers
given a passage and a query: entails, contradicts or neither (or in the looser case:
relevant or irrelevant).4 Given an application of use, it is rarely ambiguous what
the answer should be. In contrast, one input to a translation system can have many
possible outputs of varying correctness that are hard to enumerate. The upshot for
QA systems is that regression runs are simpler and easier to interpret once the test
suites have been constructed.

Regression test suites in the XLE QA system are separated into three groups:
sanity sets, phenomenon sets, and real-world sets.

Sanity sets The entailment and contradiction detection part of the system is tested
in isolation by matching queries against themselves (e.g. a passage John walks. is
tested against a query John walks.); note that queries in this system do not have
to be syntactically interrogative. The sanity check test suites are largely composed
of simple, hand-crafted examples of all the syntactic and semantic patterns that the
system is known to cover. This minimal check ensures that at least identical repre-
sentations trigger an entailment. These tests are run nightly.

Phenomena sets Real-world sentences require analyses of multiple interacting
phenomena. Naturally, longer sentences tend to have more diverse sets of phenom-
ena and hence a higher chance of containing a construction that the system does
not deal with well. This can lead to frustration for system engineers trying to track
progress; fixing a major piece of the system can have little or no effect on a small
sample of real-world examples. To alleviate this frustration we have sets of hand-
crafted test examples that are focused as much as possible on single phenomena, e.g.
anaphora, aliases, deverbals, implicatives. These include externally developed test
suites such as the FraCaS (Cooper et al., 1996) and HP test suites (Nerbonne et al.,
1988). These focused test suites are also good for quickly diagnosing problems. If
all broken examples are in the deverbal test set, for example, it gives system engi-
neers a good idea of where to start looking for bugs. These are the most important
tests and are run nightly.

4Wh-questions receive a yes answer if an alignment is found between the wh-word in the query and
an appropriate part of the representation; in this case, the proposed alignment is returned as well as
the yes answer. This is particularly important for who and what questions where more than one entity
in the passage might align with the wh-word. However, currently not all of the test suites include gold
standards for this alignment.

138

Real-world sets The ultimate goal of the system is to work on real-world exam-
ples; so tests of those are important for assessing progress on naturally occurring
data. These test suites are created by extracting sentences from corpora expected to
be used in the run-time system, e.g. newspaper text or the Wikipedia. Queries are
then created by hand for these sentences. Once the system is being used by non-
developers, queries posed by those users can be used to ensure that the real-world
sets use an appropriate range of queries. Currently, the XLE systems use a com-
bination of hand-crafted queries and queries from the RTE data which were hand-
crafted, but not by the XLE QA system developers. These tests are run once a week.

3.2.2 Comparing with Previous Regression Results

The point of regression testing is to compare system outputs over time. The XLE
regression system automates this task as much as possible. Performance on indi-
vidual test suites is graphed over time. Each test suite can be viewed individually
in this way. An example is seen in Figure 7 in which a sharp dip in performance is
seen for August 19 but coverage climbs after that, with a plateau in early September.

Figure 7: XLE Regression System: Performance over time

In addition, a view of each test suite is available in which the broken and fixed
examples are placed at the top of the page, directly under the result summary for
that test suite. This is shown in Figure 8. Below those, all the incorrect pairs are
shown, then the correct ones, then a full system log.

Diffs of output, including debugging information and representations, between
different versions of the system can be easily generated. The query-passage pair is

139

Figure 8: XLE Regression System: Detailed presentation of test suite results

run with light-weight debugging on in two versions of the system and resulting dif-
ferences in the rule application and the representations are highlighted. This makes
it easy for the developers to see the types of representations that were produced by
previous versions of the system in comparison with the current version. In addition,
the diffs of the rules triggered by each run allow the developer to see more precisely
where any divergences occur. The most frequently used diff is between the current
system and the previous day’s. Part of a sample diff is shown in Figure 9 in which
the previous day’s run, shown on the left, has more possible analyses, as indicated
by the larger choice space. However, images of previous days’ systems are stored
for rapid comparison, and for comparisons further back in time, system versions are
retrieved from the svn repository.

Each time the regression testing completes a run (nightly for most test suites), an
email message is sent to the developers with a summary of who committed changes

140

Figure 9: XLE Regression System: Sample Diff for the sentence It is a fact that
John slept.

and how many examples were fixed and broken. In addition, a link is provided to
a web server with the current graphs and diffs, as well as with links to previous
results. The combination of automatic nightly regression runs with the graphical
presentation of results has proven vital for the maintenance and development of the
QA system.

4 Conclusions

As deep grammars are increasingly used as components of larger systems, reliable,
accurate, and easy-to-use regression testing is crucial. Here, we have described re-
gression testing techniques used to maintain large-scale grammars in two applica-
tions. The regression testing runs automatically each night and reports to the gram-
mar developers how the performance of the system has changed. The reports in-
clude summary information as well as which examples changed, how they changed,
and when they last worked correctly. It is our hope that other grammar engineer-
ing efforts can benefit from our experiences in order to more rapidly and effectively
maintain and develop their grammars for applications.

141

References

Bobrow, Danny, Cheslow, Bob, Condoravdi, Cleo, Karttunen, Lauri, King,
Tracy Holloway, Nairn, Rowan, de Paiva, Valeria and Zaenen, Annie. 2007.
Linguistically-based Textual Inference. In Tracy Holloway King and Emily M.
Bender (eds.), Proceedings of the GEAF 2007 Workshop, CSLI Publications.

Chatzichrisafis, Nikos, Bouillon, Pierrette, Rayner, Manny, Santaholma, Marianne,
Starlander, Marianne and Hockey, Beth Ann. 2006. Evaluating Task Performance
for a Unidirectional Controlled Language Medical Speech Translation System. In
Proceedings of the HLT-NAACL Workshop on Medical Speech Translation.

Cooper, Robin, Crouch, Dick, van Eijck, Jan, Fox, Chris, van Genabith, Josef, Jas-
pars, Jan, Kamp, Hans, Milward, David, Pinkal, Manfred, Poesio, Massimo and
Pulman, Steve. 1996. Using the Framework, fraCas: A Framework for Compu-
tational Semantics (LRE 62-051).

Crouch, Dick, Dalrymple, Mary, Kaplan, Ron, King, Tracy Holloway, Maxwell,
John and Newman, Paula. 2007. XLE Documentation, on-line documentation.

Crouch, Dick and King, Tracy Holloway. 2006. Semantics via F-Structure Rewrit-
ing. In Proceedings of LFG06, pages 145–165, CSLI Publications.

Kaplan, Ron, Riezler, Stefan, King, Tracy Holloway, Maxwell, John T., Vasser-
man, Alex and Crouch, Richard. 2004. Speed and Accuracy in Shallow and Deep
Stochastic Parsing. In Proceedings of HLT-NAACL’04.

Lehmann, Sabine, Oepen, Stephan, Regnier-Prost, Sylvie, Netter, Klaus, Lux,
Veronika, Klein, Judith, Falkedal, Kirsten, Fouvry, Frederik, Estival, Dominique,
Dauphin, Eva, Compagnion, Hervé, Baur, Judith, Balkan, Lorna and Arnold,
Doug. 1996. TSNLP — Test Suites for Natural Language Processing. In Proceed-
ings of COLING 1996.

Nerbonne, John, Flickinger, Dan and Wasow, Tom. 1988. The HP Labs Natural
Language Evaluation Tool. In Proceedings of the Workshop on Evaluation of
Natural Language Processing Systems.

Oepen, Stephan, Flickinger, Dan, Toutanova, Kristina and Manning, Chris D. 2002.
LinGO Redwoods. A Rich and Dynamic Treebank for HPSG. In Proceedings of
The First Workshop on Treebanks and Linguistic Theories.

Oepen, Stephan, Netter, Klaus and Klein, Judith. 1998. TSNLP — Test Suites for
Natural Language Processing. In John Nerbonne (ed.), Linguistic Databases,
CSLI.

Rayner, Manny and Hockey, Beth Ann. 2004. Side Effect Free Dialogue Manage-
ment in a Voice Enabled Procedure Browser. In Proceedings of the 8th Interna-
tional Conference on Spoken Language Processing (ICSLP), Jeju Island, Korea.

142

Rayner, Manny, Hockey, Beth Ann and Bouillon, Pierrette. 2006. Putting Linguis-
tics into Speech Recognition: The Regulus Grammar Compiler. CSLI.

Rosén, Victoria, de Smedt, Koenraad, Dyvik, Helge and Meurer, Paul. 2005.
TREPIL: Developing Methods and Tools for Multilevel Treebank Construction.
In Proceedings of The Fourth Workshop on Treebanks and Linguistic Theories.

Spark-Jones, Karen and Galliers, Julia Rose. 1996. Evaluating Natural Language
Processing Systems. Springer Verlag.

143

An LFG Chinese Grammar for Machine Use

Ji Fang and Tracy Holloway King
PARC

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

144

Abstract

This paper describes the Chinese grammar developed at PARC, including
its three basic components: the tokenizer and tagger, lexicon and syntactic
rules. Some of the challenges and issues that we have encountered in the
process of development are discussed. In addition, we present our methods
of handling these issues. We also illustrate how we evaluate our grammar,
providing the evaluation results and some error analyses.

1 Background Introduction

This paper describes a Chinese grammar developed at the Palo Alto Research Cen-
ter (PARC). This grammar is designed for machine use and is implemented in the
framework of Lexical Functional Grammar (LFG) (Kaplan and Bresnan, 1982;
Dalrymple, 2001; Bresnan, 2001).

LFG is characterized by its two parallel levels of syntactic representation: Con-
stituent Structure (c-structure) and Functional Structure (f-structure). C-structure
encodes information about phrasal structure and linear word order. F-structure
encodes information about ‘the various functional relations between parts of sen-
tences, information like what is the subject and what is the predicate’ (Sells, 1985).
Both c-structure information and f-structure information are carried in syntactic
rules such as (1).

(1) S –> NP: (ˆ SUBJ) = !;
VP: ˆ = !.

The ˆ refers to the f-structure of the mother node and the ! refers to the f-structure
of the node itself. (ˆSUBJ) = ! means that the SUBJ part of the mother’s f-structure
(the f-structure of the S in (1)) is the f-structure of the node itself (the f-structure of
the NP in (1)). ˆ= ! means that the f-structure of the node itself (the VP in (1)) goes
into the f-structure of its mother node (the S in (1)); that is, VP is the functional
head of S.

(2) shows two additional phrase structure rules. Together with the rules in (1),
these will derive the c-structure and f-structure in (4) and (5) for example (3).

(2) NP –> N: ˆ = !;
VP –> V: ˆ = !.

†Fuji Xerox funded the initial research on the Chinese grammar described in this paper, and we
are especially grateful to the support we have received from Tomoko Ohkuma and Hiroshi Masuichi
of Fuji Xerox throughout the development. Professor Bing Swen and Professor Shiwen Yu of Beijing
University have provided substantial support for the tokenizer and tagger used in this grammar. We
also appreciate the feedback they provided during our conversations regarding ways to improve the
tokenizer and tagger. We would also like to thank Yuqing Guo from DCU for her work in developing
the gold analyses for the 200 gold sentences against which we evaluate our grammar. We also owe
our thanks to Emily M. Bender for her helpful feedback and comments on this paper.

145

(3) David left.

(4) c-structure of (3)

(5) f-structure of (3)

PRED ′leave<SUBJ>′

SUBJ
[
PRED ′DAVID′

]
′leave <SUBJ>′ in (5) means that the lexical item ‘leave’ subcategorizes for a
SUBJ. This information comes from the lexicon portion of the grammar.

PARC has been involved in the Parallel Grammar (ParGram) project, which
is a world-wide collaborative effort that aims to produce robust and large scale
grammars for a wide variety of languages, such as English, German, Japanese,
Turkish and Arabic (Butt et al., 1999, 2002). All of these grammars are written
within the LFG framework and are implemented on the XLE system (Crouch et al.,
2006; Maxwell and Kaplan, 1996) developed by PARC. The Chinese grammar
described in this paper is part of the ParGram project.

2 The Chinese Grammar Developed at PARC

Like other grammars in the ParGram project, PARC’s Chinese grammar is devel-
oped on the XLE system. To parse a sentence, the system minimally requires three
types of linguistic specifications: a tokenizer/morphology, a lexicon and syntactic
rules. This section describes these three parts of the Chinese grammar.

2.1 Morphology: Segmentation and Tagging

For languages that have morphological inflection such as number, gender, case etc,
the morphology processing component of the grammar normally includes a mor-

146

phological analyzer and a tokenizer.1 The morphological analyzer also provides
part of speech (POS) information for words: therefore, it also functions as a tagger.

In contrast, Chinese is an isolating language, which does not have morpholog-
ical inflections. Therefore, our grammar does not have a morphological analyzer.
Instead, PARC’s Chinese grammar uses the tokenizer and tagger developed by Bei-
jing University.2 The tokenizer and tagger is plugged into the system as a library
transducer (Crouch et al., 2006). For an input string such as (6a), the output from
the tokenizer and tagger is (6b), which is in turn fed to the XLE system as the input
string for syntactic analysis. In order to construct a tree for each lexical item from
this type of tagged string, we specify sub-lexical rules such as (7).

(6) a. 窗户开了。
chuāng hu kāi le

b. 窗户/n 开/v 了/y 。/w
chuānghu kāi le
window open ASP 3 .
‘The window is open.’

(7) N –> Nbase
POS
NSFX.

Following (7) and combining information from the lexicon entries for ‘窗户’, ‘/’
and ‘n’ (as illustrated in (8)), XLE can build a tree and an f-structure for the lexical
item“窗户” as shown in (9).

(8) 窗户 Nbase * @ (NON-ANIM-NOUN窗户).
/ POS * .
n NSFX * (ˆ CHECK4 NSFX)= + .

(9)

1Many languages use finite state morphologies (Beesley and Karttunen, 2003) as part of their
XLE grammars (Kaplan et al., 2004a).

2http://www.icl.pku.edu.cn/icl res/
3ASP stands for aspect marker.
4The CHECK feature is a feature used throughout the ParGram to indicate features that are nec-

essary for internal processing, but not necessary for applications. Applications built on top of the
ParGram grammars can delete the CHECK features in their initial processing.

147

As is broadly acknowledged, Chinese segmentation and tagging are notoriously
difficult problems. This is because Chinese does not have morphological inflection,
and furthermore, spaces are not inserted between words in written text. For exam-
ple, the string“有意见” can be segmented as (10a) or (10b), depending on the
context.

(10) a. 有 意见

yǒu yı̀jian
have disagreement

b. 有意 见

yǒuyı̀ jiàn
have the intention meet

The contrast shown in (11) illustrates that even a string that is not ambiguous
in terms of segmentation can still be ambiguous in terms of tagging.

(11) a. 白/a 花/n
bái huā
white flower

b. 白/d 花/v
bái huā
in vain spend
‘spend (money, time, energy etc.) in vain’

Not surprisingly, the performance of the tokenizer and tagger presents some
serious challenges to our grammar as described below.

Challenge #1: Low accuracy of segmentation and tagging Although the to-
kenizer and tagger developed by Beijing University is state-of-the-art, it achieves
about 93% accuracy in segmenting and tagging sentences from the Chinese Tree-
bank5.1 according to our measurements. This level of performance means that
each segmented and tagged Chinese sentence of more than 10 words would typi-
cally have at least one mistake. Obviously, segmentation and tagging errors directly
cause incorrect syntactic analysis and even complete parsing failures.

Challenge #2: Too many verbs In addition to the general accuracy problem,
our grammar also suffers from some specific linguistic decisions adopted by the
tokenizer and tagger. One such case is illustrated below.

148

(12) a. 检查/v 病人/n
jiǎnchá bı̀ngren
examine patient

b. 做/v 个/q 检查/v
zuò ge jiǎnchá
do CL examination

In (12), the word检查 jiǎnchá corresponds to a verb meaning ‘examine’ in English
in (12a), and it corresponds to a noun meaning ‘examination’ in (12b). Neverthe-
less, both meanings share the same written form. Zhu (1982, 1985) and Yu (2003)
argue that the same word can appear in different syntactic positions and have dif-
ferent grammatical functions; however, that word does not belong to different word
categories and should be assigned just one POS tag. Adopting this theory, the tag-
ger developed by Beijing University tags both检查 jiǎnchá in (12) as a verb. This
decision might not be an issue for other tasks or other systems; however, it turns
out to be problematic for our grammar.

First, this decision can cause parsing failures. For example, our grammar re-
stricts the category following a classifier in Chinese to be a Noun Phrase (NP),
which we believe to be a correct generalization. Following this rule, (12b) will
be rejected by the parser because the classifier 个 ge is followed by a verb 检查
jiǎnchá.

This decision also poses an efficiency problem for our grammar. In Chinese, a
majority of the verbs have at least two subcategorization possibilities: intransitive
and transitive. In the LFG framework, each verb has to satisfy its subcategoriza-
tion requirements in order to successfully unify. Therefore, putting intransitive and
transitive verb entries for everything that is tagged as a verb produces many extra
edges in the chart as those verbs try to combine with the words around them as sub-
jects and objects. Consequently, verbs are computationally expensive, and tagging
many words as verbs can significantly slow down the parser.

Because our goal is to parse Chinese written text that is not manually seg-
mented or tagged, our grammar implicitly inherits all of the challenges for Chinese
segmentation and tagging as well.

Our initial explorations in this area are two-fold. First, we improved the tok-
enizer and tagger by directly modifying the existing lexical entries and by adding
new lexical entries to the dictionary that the tokenizer and tagger use. At the same
time, we improve the final segmentation and tagging results by using finite state
(FST) rules to post-process the original output from the tokenizer and tagger. For
example, a FST rule such as (13) can change an output string from the tokenizer
and tagger such as (12b) (repeated below as (14)) to be (15).

(13) v ->n || q“TB” CHARˆ {1,2}“/” ;

(14) 做/v 个/q 检查/v
zuò ge jiǎnchá
do CL examination

149

(15) 做/v 个/q 检查/n

What (13) specifies is that if a ‘v’ appears after a ‘/’ following one or two charac-
ters, which in turn appear(s) after a ‘q’ followed by a token boundary (TB), change
that ‘v’ into ‘n’. (15) is derived by applying (13) to (14).

In this approach, more information is available in the output string from the
tokenizer and tagger compared to the original raw string; by taking into account
this additional information, the final segmentation and tagging results are more ac-
curate. For example, compared to the original raw string 做个检查, the output
string from the tokenizer and tagger做/v个/q检查/v contains additional informa-
tion indicating that the string检查 is preceded by a classifier. With this additional
information available, we can safely and accurately change the POS tag of 检查
in this case to be a noun without impacting the tagging of 检查 in other circum-
stances.

It is also noteworthy that XLE allows non-deterministic segmentation and tag-
ging. In other words, in cases where it is hard to resolve the ambiguity of segmenta-
tion or tagging locally, the XLE parser accepts a string with multiple segmentation
possibilities and a token with multiple possible tags. For example, the word选举
xuǎnjǔ ‘elect/election’ is equally frequently used as a verb and as a noun. In this
case, the best solution is to allow both the ‘v’ and the ‘n’ tag and hand off the res-
olution of that ambiguity to the syntactic processor. Similarly, when the ambiguity
of segmentation is hard to resolve locally, multiple segmentation results for a string
are allowed, and the XLE parser will try all of these different results as input to the
grammar.

Based on our initial observations, the system has been improving with the FST
rules integrated. However, more work still needs to be done in this area. As part
of this process, we plan to evaluate how much the FST rules improve the tokenizer
and tagger against grammar performance on real world data.

To summarize, this section describes the tokenizer and tagger that we integrate
into our grammar, the challenges that our grammar has to face in this regard and our
approach to improve the tokenizer and tagger. The following sections describe the
other two important components of the grammar, namely the lexicon and syntactic
rules.

2.2 Lexicon

The lexicon component of the grammar contains lexical entries specifying infor-
mation particular to different lexical items. For example, (16) is the lexical entry
for the noun猫māo ‘cat’, and (17) is the lexical entry for the verb加入 jiārù ‘join’
in the Chinese grammar.

(16) 猫 Nbase * @ (ANIM-NOUN猫).

150

(17) 加入 Vbase * { @(V-SUBJ加入)
(ˆ SUBJ CHECK SUBJ-TYPE)=c np

|@(V-SUBJ-OBJ加入)
(ˆ SUBJ CHECK SUBJ-TYPE)=c np}.

(16) specifies that the category of the lexical item猫māo is Nbase. Combining this
entry with information from lexical entries for POS tags produced by the tagger (as
shown in (18)) and sub-lexical rules such as (7) (repeated below as (19)), XLE can
build a c-structure such as (20) for猫 māo.

(18) / POS * .
n NSFX * (ˆ CHECK NSFX)= +.

(19) N –> Nbase
POS
NSFX.

(20) c-structure of猫

(16) also invokes a template ANIM-NOUN (shown in (21)), which defines
features and values for all animate nouns in Chinese.

(21) ANIM-NOUN(P) =
(ˆ PRED)=′ P′

(ˆ PERS)=3
(ˆ ANIM)=+
(ˆ NTYPE NSYN)=common
(ˆ CHECK NPTYPE)=NPnon-nominalized
(ˆ CHECK NPSUBTYPE)=NPcommon

Combining this information, XLE can build an f-structure for猫, as illustrated
in (22).

(22) f-structure of猫

151

Similarly, (16) defines加入 jiārù ‘join’ as a verb that can be used either intran-
sitively or transitively. It also specifies that the subject of加入 must be a NP.

Currently, the lexicon component of the Chinese grammar has several hundred
manually coded lexical entries, including closed class items such as punctuation.
We handle words that do not have a listed lexical entry through a “guesser” lexical
entry exemplified in (23).

(23) -unknown Nbase * @(PROPER-ANIM-NOUN %stem)
(ˆ CHECK NAME)=c +.

(23) specifies that if a lexical item does not have a lexical entry elsewhere, it can
be posited as an Nbase; if it has a feature ‘CHECK NAME’ whose value is ‘+’,
then it is an animate proper noun. The value ‘+’ of ‘CHECK NAME’ is derived
from the POS tag produced by the tokenizer and tagger: the tagger tags a person’s
name as ‘nr’, and we assign ‘(ˆ CHECK NAME) = +’ in the lexical entry of ‘nr’,
as shown in (24).

(24) nr NSFX * (ˆ CHECK NAME)= +.

Combining information from (23), (24) and the template of PROPER-ANIM-
NOUN, the c-structure and f-structure of a person’s name such as张强 zhāngqiáng
‘Zhang, Qiang’ are illustrated in (25).

(25)

In addition to names, our guesser postulates locative, time and common nouns,
as well as adjectives, adverbs, numbers, classifiers, conjuncts, prepositions and
verbs in a similar way: we first write a lexical entry for each tag, such as (24) for the
‘nr’ tag; we also assign a value to a feature for each tag, for instance, ‘(ˆ CHECK
NAME)= +’ is assigned for the tag ‘nr’ (as in (23)), and ‘(ˆ CHECK VSFX)=

+’ is assigned for the tag ‘v’. The guesser then posits the category of the unknown
item based on the ability to form a particular c-structure category via the sublexical
rules and on the value of particular features. This process is quite efficient in part
because XLE first builds the c-structure, before any unification occurs, and hence
many possible entries are eliminated early in the parsing process. For example,
if the f-structure of the unknown item contains a feature ‘(ˆ CHECK VSFX)’
whose value is ‘+’, that item must be associated with a tag ‘v’, thus the guesser

152

can postulate the unknown item as a verb. Note that because the tags and the ‘/’
do not have PREDs, their features and values are projected to the mother node’s
f-structure, which is identical to the f-structure of the unknown lexical item.

Verbs pose the biggest challenge to the guesser. In LFG, subcategorization
information is required for verbs. However, this information is not encoded in the
‘v’ tag of verbs returned by the tagger, and we have not found any suitable resource
from which we can extract the subcategorization requirements for verbs in Chinese.
We have manually coded the entries for some high frequency verbs.5 These verbs
do not go through the -unknown entry. For all other verbs, our compromise solution
is to postulate each unknown verb to be either intransitive or transitive. The guesser
also allows a verb to subcategorize for a XCOMP, if the PRED form of the XCOMP
is the PRED form of one of the verbs, such as为wéi ‘be’.6

Nevertheless, the lack of reliable and complete subcategorization information
for Chinese verbs poses challenges for our grammar, as discussed in the evaluation
section of this paper. Possible enhancements are discussed in section 4.

2.3 Syntactic Rules

The third part of the grammar involves the Chinese syntactic rules. Currently the
grammar has 114 rules with 2203 states and 4301 arcs.7 This means that the
grammar has 114 left-hand side categories (such as the X in ‘X -> Y Z’) in its
phrase-structure rules, and these 114 rules compile into a collection of finite-state
machines with 2203 states and 4301 arcs (Butt et al., 2002). The grammar covers
common phrasal constructions such as NPs, VPs, ADJPs, PPs and ADVPs. The
grammar also covers all four clause types in Chinese: declarative, interrogative,
exclamatory and imperative.

Due in part to the lack of morphology, Chinese tends to present many ambi-
guities at both the c-structure and f-structure level. For example, for a NP such as
(26), the internal NP structure can be very ambiguous (5 trees), as shown in (27).

(26) 国民 生产 总值

guómı́n shēngchǎn zǒngzhı́
people produce total value
‘GDP’

5Currently the grammar has manually encoded entries for the 20 most frequent verbs, and our
goal is to expand the lexicon to contain entries for the 100 most frequent verbs in Chinese.

6Verbs such as为 wéi ‘be’ are frequently used as the补语 bǔyǔ (‘complement’ in conventional
Chinese linguistic terminology) in a动补结构 dòng bǔ jiégòu ‘verb-complement construction’ such
as变为 biàn wéi ‘change to be’. 补语 bǔyǔ in the动补结构 dòng bǔ jiégòu is treated as XCOMP
in our grammar.

Some common XCOMP verbs are 完wán ‘complete’, 尽jı̀n ‘complete’, 成chéng ‘succeed’, 上
来shànglai ‘go up (towards the speaker)’ , 上去shàngqu ‘go up (away from the speaker)’, 下
来xiàlai ‘go down (towards the speaker)’, 下去xiàqu ‘go up (away from the speaker)’, 起来qı̌lai
‘get up/begin’,起qı̌ ‘get up/begin’,去qù ‘go’,来lái ‘come’,出来chūlai ‘come out’,出去chūqu ‘go
out’ and回来huı́lai ‘come back’.

7XLE compiles the grammar into a finite-state machine.

153

(27)

The corresponding f-structures of these c-structures are also different: while (27c)
and (27d) involve coordination, the others not.

The ambiguity issue is one of the contributing factors to the current grammar’s
efficiency issues. The following section describes this problem in a greater detail.

3 Evaluation and Error Analysis

To evaluate the coverage and accuracy of the grammar (Crouch et al., 2002; Kaplan
et al., 2004b), we use a set of 200 sentences from the CTB5 (Xue et al., 2002, 2005)
chosen by Dublin City University (DCU) as gold standard sentences for evaluating
Chinese deep grammars. These 200 sentences are 10–20 words long. 50.5% of the
sentences are chosen from the Xinhua sources, 3.5% are from HKSAR and 46%
are from Sinorama. The topics of the gold standard sentences cover economics,
politics, culture, sports and entertainment. The writing style of the Xinhua and
HKSAR sentences is formal, whereas the writing style of the Sinorama sentences

154

are mixed: some are formal, and some are colloquial. All 200 sentences were
unseen to the grammar prior to the evaluation.

We also use DCU’s gold analysis as a basis for evaluating the accuracy of the
grammar. However, PARC’s analysis is based on the segmentation and tagging
results from the integrated tokenizer and tagger, which are different from the seg-
mentation and tagging in CTB5 on which the DCU gold standard analysis is based.
Therefore, some of the errors in the results shown below are caused by the different
segmentation and tagging standards adopted by CTB5 and the tokenizer and tagger
developed by Beijing University. The reason why we did not evaluate our grammar
based on gold segmented and tagged sentences is because we want to know how
good the results would be over novel, untokenized text.

Parsing the 200 gold standard sentences with PARC’s Chinese grammar (as of
March, 2007), 188 sentences had full parses, 7 sentences had fragmented parses,
4 sentences ran out of storage (the maximum storage is set as 1500 MB in this
grammar), and 1 sentence had 0 parse, as shown in Table 1. Fragmentation Rate is
3.5%.

Table 1: Coverage Results

Total Full Parses Fragmented Ran Out No Parse
Parses of Storage

200 188 7 4 1

To evaluate the accuracy, we adopt the same algorithm described in Crouch
et al. (2002). The results are shown in Table 2.

Table 2: Accuracy Results

TOTAL: precision=73.1 recall=72.4 f-score=72.7

DEPENDENCY PRECISION RECALL FSCORE
adjunct 939/1228 = 76 939/1267 = 74 75
comp 15/22 = 68 15/25 = 60 64
conj 182/271 = 67 182/278 = 65 66
obj 330/452 = 73 330/449 = 73 73
obl ag 9/9 = 100 9/9 = 100 100
passive 9/9 = 100 9/9 = 100 100
subj 318/478 = 67 318/455 = 70 68
topic 0/0 = 0 0/1 = 0 0
xcomp 42/53 = 79 42/55 = 76 78

The Chinese gold standard has only predicate argument/adjunct structure (that is,
everything with a PRED and the path into it). There are no ‘easy’ features like

155

CLAUSE-TYPE, V-TYPE, PERS, which tend to be correct if the core structure is
correct. Therefore, the f-score would likely be higher if the Chinese gold standard
did contain those features.

As mentioned above, some of the mismatches between the analyses produced
by PARC’s Chinese grammar and DCU’s gold analyses are caused by the different
segmentation and tagging standards adopted by CTB5 and the tokenizer and tagger
that our grammar uses. For example, CTB5 treats第 dı̀ ‘ordinal marker’ + number
as one word, whereas the tokenizer used in our grammar treats it as two separate
words.

The tagging standard between the two systems is also different. For exam-
ple, for the same string in (28), (29a) is the tagging results from the tagger in our
grammar, and (29b) is the tagging result from CTB5.

(28) 证券 市场 健康 发展 的

zhèngquàn shı̀chǎng jiànkāng fāzhǎn de
stock market healthily/ develop/ MM8

health development
重大 举措

zhòngdà jǔcuò
important measure

(29) a. 证券/n市场/n健康/a发展/v的/u重大/a举措/n

b. 证券 NN市场 NN健康 JJ发展 NN的 DEG重大 JJ举措 NN

The major difference between (29a) and (29b) is that in (29a), the word发展 fā-
zhǎn is tagged as a verb, meaning ‘develop’, while in (29b), it is tagged as a noun,
meaning ‘development’. At first glance, (29b) seems to yield a reading of ‘the im-
portant measure regarding the healthy development of the stock market’, which is
very parallel to the English structure. However, (29b) cannot yield such a read-
ing: this is because if 发展 fāzhǎn is a noun, and its adjunct is 健康 jiànkāng,
we should be able to insert a 的 de, which introduces a head NP, rather than a
地 de, which introduces a head VP, between them. However, 健康的发展 jiàn-
kāngdefāzhǎn only entails ‘the development of health’ in Chinese; in contrast,健
康地发展 jiànkāngdefāzhǎn can entail ‘healthy development (the nominalization
of ‘develop healthily’)’. Therefore, while (29a) would yield a reading of ‘the im-
portant measure (which assures that) the stock market develops healthily’ or ‘the
important measure (which assures) the healthy development of the stock market’,
(29b) would mean ‘the important measure regarding the development of the stock
market’s health’. Such a difference would yield very different analyses. Based on
(29a),证券市场 zhèngquàn shı̀chǎng ‘stock market’ is the subject of发展 fāzhǎn
‘develop’; while based on (29b),证券市场 zhèngquàn shı̀chǎng ‘stock market’ is
an adjunct.

8MM stands for modifier marker.

156

In addition to this mismatch, another significant source of errors is our incom-
plete lexicon resources. In the 200 gold sentences, 17 sentences receive incorrect
analyses for this reason. Among the 17 sentences, five fail due to the lack of proper
subcategorization information for verbs, while the remaining 12 fail due to missing
lexical entries for other lexical items.

Chinese tends to be ambiguous in both the c-structure and f-structure levels as
described above. One way to control ambiguity is to use a special optimality (OT)
mark (Frank et al., 2001) called a STOPPOINT provided by the XLE system. In
XLE, if an analysis contains an OT mark that is ranked behind the STOPPOINT,
that analysis is not tried unless everything else fails. Therefore STOPPOINT is
useful for eliminating rare and incorrect analyses when correct analyses are present
and for speeding up the parser in those cases.

Ironically, although Chinese has been recognized as a topic prominent language
(Li and Thompson, 1981), we place the topic analysis before the STOPPOINT,
because we have observed that allowing the topic analysis significantly slows down
the parsing while not greatly increasing accuracy. The following three reasons are
likely to be responsible for the inefficiency caused by including the topic analysis
in the grammar. First, the position of topics in Chinese is flexible. A topic can
occur in the first or second NP position, and a sentence can have more than one
topic, as demonstrated in (30).

(30) a. 苹果 我 喜欢。
pı́ngguǒ wǒ xı̌huān
apple I like
‘Apples, I like.’

b. 大 城市 北京 我 最 熟悉。
dà chéngshı̀ běijı̄ng wǒ zuı̀ shúxı̄
big city Beijing I most familiar
‘Among big cities, I am most familiar with Beijing.’

(30a) has one topic, which is 苹果 pı́ngguǒ ‘apple’ that appears in the first NP
position; (30b) has two topics. While the external topic大城市 dà chéngshı̀ ‘big
cities’ occurs in the first NP position, the internal topic北京 běijı̄ng ‘Beijing’ oc-
curs in the second NP position. Second, unlike the topic in English, which must
be linked to another grammatical function, the topic in Chinese is not necessarily
linked to any another grammatical function. For example, while the topic in (30a)
is linked to the grammatical function of object, the topics in (30b) are not linked to
any other grammatical function. Third, topics generally occur in a ‘NP1 NP2’ se-
quence at the sentence-initial position; however, it is very common to analyze NP1
as the adjunct, possessor or conjunct of NP2 in a ‘NP1 NP2’ sequence. Therefore,
allowing topic analyses significantly increases the level of ambiguity for sentence
initial ‘NP1 NP2’ sequences, which are extremely common in Chinese sentences
according to our observation.

157

At the same time, the topic function often overlaps with other grammatical
functions such as adjunct in Chinese. For example, in (31),他 tā ‘he’ can both be
understood as the topic of the entire sentence or the adjunct of肚子 dùzi ‘stomach’.
Therefore, it does not seem to be a significant drawback if the topic analysis is
blocked unless it is the only possible analysis.

(31) 他 肚子 饿。
tā dùzi è
he stomach hungry
‘He is hungry.’

By placing the topic analyses behind the STOPPOINT, the grammar’s effi-
ciency is improved. However, occasionally, the intended topic analysis will be
suboptimal and hence not available. In the 200 gold sentences, one sentence should
have a topic analysis that is incorrectly suppressed by our system as shown in the
accuracy results above.

Another method that we adopt to control ambiguity is to use OT marks more
generally to rank preferences for different analyses. Through this method, the less
common analyses can be suppressed as suboptimal analyses. All of the OT marks
in the Chinese grammar are manually coded, and it is noteworthy that a significant
number (24 out of the 200 sentences) of correct analyses are incorrectly suppressed
as suboptimal analysis by the OT marks specified in the grammar. The suppressed
suboptimal analyses cannot be picked to compare against the gold standard, which
implies that the OT marks in the Chinese grammar need to be better tuned in order
to improve the grammar’s performance.

4 Summary and Future Work

This paper describes the Chinese grammar developed at PARC, including its three
basic components, namely, the morphology, lexicon and syntactic rules. We also
describe the challenges and issues that we have encountered in the process of de-
velopment, as well as our methods of handling these issues. In addition, we illus-
trate how we evaluate our grammar, including the evaluation results and some error
analysis.

The three major challenges currently confronted by our grammar are (1) the
tokenizer and tagger; (2) lexicon resources such as subcategorization requirements
of verbs; and (3) ambiguity control.

As far as the tokenizer and tagger is concerned, the initial results of improve-
ments to segmentation and tagging accuracy by using FST patch rules to post-
process the original results returned by the tokenizer and tagger are encouraging.
We will continue our investigations in this direction and plan to investigate inte-
grating machine learning algorithms in this process.

Because the subcategorization information of verbs is critical to our system,
we are looking for suitable resources from which we can automatically extract this

158

information. Resources such as Chinese Word Net or electronic verb dictionaries
can be useful. We are also considering learning the subcategorization information
from the Chinese Treebank.

C-structure pruning (Crouch et al., 2006) has proven to be very effective in
terms of reducing ambiguity and accelerating the parser for the English gram-
mar developed at PARC and the German grammar developed at the University
of Stuttgart. We expect that this technique can help mitigate the ambiguity issue of
our Chinese grammar as well.

Despite all of the challenges, the Chinese grammar described in this paper has
reached a relatively stable stage, and we are planning to use it as a base to produce
Chinese core semantics parallel to that developed for English (Crouch and King,
2006). We also plan to use this grammar to start initial exploration on Chinese-
English and English-Chinese machine translation.

References

Beesley, Kenneth R. and Karttunen, Lauri. 2003. Finite State Morphology. CSLI
Publications.

Bresnan, Joan. 2001. Lexical-Functional Syntax. Blackwell Publishers.

Butt, Miriam, Dyvik, Helge, King, Tracy Holloway, Masuichi, Hiroshi and Rohrer,
Christian. 2002. The Parallel Grammar Project. In Proceedings of COLING-
2002 Workshop on Grammar Engineering and Evaluation, pages 1–7.

Butt, Miriam, King, Tracy Holloway, Niño, Marı́a-Eugenia and Segond,
Frédérique. 1999. A Grammar Writer’s Cookbook. CSLI Publications.

Crouch, Dick, Dalrymple, Mary, Kaplan, Ron, King, Tracy Holloway,
Maxwell, John and Newman, Paula. 2006. XLE documentation,
http://www2.parc.com/isl/groups/nltt/xle/doc/.

Crouch, Dick and King, Tracy Holloway. 2006. Semantics via F-Structure Rewrit-
ing. In Proceedings of LFG06, CSLI On-line publications, pp. 145-165..

Crouch, Richard S., abd Tracy Holloway King, Ronald Kaplan and Riezler, Ste-
fan. 2002. A comparison of evaluation metrics for a broad coverage parser. In
Beyond PARSEVAL – Towards Improved Evaluation Measures for Parsing Sys-
tems: LREC 2002 Workshop.

Dalrymple, Mary. 2001. Syntax and Semantics. Volume 34: Lexical Functional
Grammar. Academic Press.

Frank, Anette, King, Tracy Holloway, Kuhn, Jonas and Maxwell, John T. 2001.
Optimality Theory Style Constraint Ranking in Large-scale LFG Grammars. In
Peter Sells (ed.), Formal and Empirical Issues in Optimality Theoretic Syntax,
pages 367–397, CSLI Publications.

159

Kaplan, Ron, Maxwell, John T., King, Tracy Holloway and Crouch, Richard.
2004a. Integrating Finite-state Technology with Deep LFG Grammars. In Pro-
ceedings of the Workshop on Combining Shallow and Deep Processing for NLP
(ESSLLI).

Kaplan, Ron, Riezler, Stefan, King, Tracy Holloway, Maxwell, John T., Vasser-
man, Alex and Crouch, Richard. 2004b. Speed and Accuracy in Shallow and
Deep Stochastic Parsing. In Proceedings of HLT-NAACL’04.

Kaplan, Ronald. M and Bresnan, Joan. 1982. Lexical-Functional Grammar: A for-
mal system for grammatical representation. In Joan Bresnan (ed.), The Mental
Representation of Grammatical Relations, pages 173–281, The MIT Press.

Li, Charles N. and Thompson, Sandra A. 1981. Mandarin Chinese: A Functional
Reference Grammar. University of California Press.

Maxwell, John and Kaplan, Ron. 1996. An Efficient Parser for LFG. In Proceed-
ings of the First LFG Conference, CSLI Publications.

Sells, Peter. 1985. Lectures on Contemporary Syntactic Theories. CSLI Publica-
tions.

Xue, Nianwen, Chiou, Fu-Dong and Palmer, Martha. 2002. Building a Large-Scale
Annotated Chinese Corpus. In Proceedings of the 19th. International Confer-
ence on Computational Linguistics.

Xue, Nianwen, Xia, Fei, Chiou, Fu-Dong and Palmer, Martha. 2005. The Penn
Chinese TreeBank: Phrase Structure Annotation of a Large Corpus. Natural
Language Engineering pages 207–238.

Yu, Shiwen et al. 2003. The Grammatical Knowledge-base of Contemporary Chi-
nese — A Complete Specification. Qinghua University Press.

Zhu, Dexi. 1982. Yufa Jiangyi (Lectures on Grammar). Shangwu Yinshuguan.

Zhu, Dexi. 1985. Yufa Dawen (Questions and Answers Regarding Chinese Gram-
mar). Shangwu Yinshuguan.

160

On 'Deep Evaluation' for Individual
Computational Grammars and for

Cross-Framework Comparison

Lars Hellan

Norwegian University of Technology,
 Trondheim

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender
(Editors)

CSLI Studies in Computational Linguistics

ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

161

Abstract

A rather difficult point in grammar engineering evaluation is how to test

and compare for analytic adequacy. A test design for 'deep' grammars is here
proposed, where a parse is considered valid only if the assignment of
syntactic and semantic structures that it displays obey certain conditions. The
set of grammatical sentences in the test suite is construed as leaf types in a
construction ontology, where the top types introduce the discriminants
according to which constructions are categorized. These discriminants
conform to notions shared across linguistic frameworks, and the validity
conditions are defined within a well-known space of analytic parameters.
One may envisage that with such a design, a meeting point can emerge for
comparing frameworks with regard to agreed-upon aspects of linguistic
content, and individual grammars with regard to their analytic aims and
actual achievements relative to the aims.

In Phillip Pullman's His dark materials,
humans in one of the worlds have their
soul partly realized as a little animal
always accompanying them, sharing
their thinking and emotions, but still
behaving partly as independent agents;
they are called daemons.

1 Introduction
One way in which to improve quality and coverage of a grammar is to
systematize its test suites by assembling construction types according to a
fixed set of theoretically grounded parameters. Once the parameters are
decided upon, such a systematicization can provide one dimension of
desirable independence from the actual day-to-day development and testing.
To be presented here is the composition of a test suite for verb constructions,
developed in connection with the Norwegian HPSG-based computational
grammar NorSource. The composition of the test suite reflects parameters of
verb construction analysis which the grammar aims at implementing.

In this approach, consistency and perspicuity of the test suite is induced
by the construction of a formal ontology of construction types, whose
classifying properties match those reflected in the composition of the test

162

suite. Moreover, the ontology is defined in terms of attributes and values,
which makes it possible to assign to any one (grammatical) sentence in the
test suite a feature structure reflecting those properties held to distinguish the
construction type represented by the sentence in question from other
construction types. An example of such a feature structure, reflecting the
grammatical concerns of NorSource but distinct from the feature structure
NorSource itself produces for the sentence, is discussed below. In its
capacity as a small system in its own right, we call the ontology, with the test
sentences as its leaf types, a Test Daemon. 1

A further perspective on such a system is the following:
For computational grammars aiming at exposing the principles of

morpho-syntactic and semantic composition of a language, one would
welcome a mechanism which at least semi-automatically could allow one to
test for the adequacy of the parses produced.2

Analytic adequacy is not an absolute measure. Linguistic frameworks
differ as to what they recognize as adequate analyses, both for construction
types and for over-all analytic design, and such diversities are reflected in
computational grammars, reflecting the assumptions of the linguistic
framework of which they are part, and within each framework, and even for
the same constructions in the same language, differing in their analyses. So,
if we want to develop a mechanism of adequacy testing, it cannot be a
mechanism of judgement, but rather one where each grammar makes (i) a
declaration of what it wants to achieve, and (ii) a way of displaying, for any
parse, how that parse lives up to the ambitions of the grammar. Let us call
these the declaration part and the fulfillment part of the mechanism,

1 NorSource is an LKB-based grammar of Norwegian, currently developed by L.
Hellan, B. Waldron and D. Beermann at NTNU, Trondheim
(http://www.ling.hf.ntnu.no/forskning/norsource/). It was initiated in 2002, in the
EU-project DeepThought, and is by now rather large; one of its features is a fairly
detailed semantics (cf. Hellan and Beermann 2005). NorSource is part of the
DELPH-IN consortium (http://www.delph-in.net/).

This work started in the TROLL project in the late '80s, as a construction
inventory enterprise, much prior to the construction of a parsing grammar. (Both
then and now, the notion construction is used in its standard meaning, and not
necessarily adopting criteria of the Construction Grammar framework (Goldberg
1995).)

 The Daemon version described here is still in its infancy. For comments on
many aspects of the work I thank Dorothee Beermann, and for the design of the Ga
system, also Mary Esther Kropp Dakubu and Felix Ameka. The system itself can
most easily be obtained from the author at lars.hellan@hf.ntnu.no.

2 We take for granted the availability of standard test suites and the apparatus
developed in each framework based on whether sentences parse at all or not.

163

respectively. The test suite design described above - the Test Daemon -
would be one form of a declaration part of such a system. We now comment
on these parts.

2 The declaration part
The declaration part will require that the analytic specifications employed
are perspicuous, and that their space of notions and distinctions is
predictable. In the present connection, the latter means that the factors dealt
with are those that the linguistic community at large may expect to be
considered in connection with verbal constructions, such as aspect, tense,
grammatical functions, thematic roles and their linking, and control patterns.
Perspicuity will mean that the terms used are sufficiently rooted in at least
one tradition of research to allow the identification of equivalents or
correspondents in other frameworks. Below is an example of a type display
aimed at meeting these requirements:

[]

e je c t tr

A K T A R T D Y N A M IC

R O L E a g e n t
A C T 1 0

T Y P E in d iv id u a l
A C T A N T S

R O L E a ffe c te d m o v e r
A C T 2 1

T Y P E in d iv id u a l

P O S n
S U B J C T

IN D X 0

P O S n
D O B J C T

IN D X 1

− 
 
 
 +
 
   

< > =   
   

  −   < > =      


 
  < > 

  
  < >  










Fig. 1. The type eject-tr, as exemplified by She throws the ball

This feature structure displays grammatical functions by (slightly

abbreviated) labels generally understood, and their linking to semantic
'participants' through perspicuous reentrancy. Thematic roles and ontological
type are indicated by recognized labels, and the partial Aktionart
specification is also standard. Such a feature structure, thus, illustrates what
one might want as a perspicuous display of the factors mentioned. (In effect,
it is also what one of the systems mentioned below provides.)

Intellectually, as said, the declarations part, or the Test Daemon, may
have to live slightly outside of the grammar itself, since it must attain a level
of intelligibility and perhaps quality which the parses produced by the
grammar cannot always be expected to provide. If the test Daemon sits
outside the grammar, then its most trivial materialization would be as a
hand-provided recipe accompanying each sentence token in the test suite. A

164

more interesting design is to organize the set of grammatical sentences as
leaf types in a construction ontology, where salient specifications are
induced through inheritance, and the top types introduce the discriminants
according to which constructions are categorized. These discriminants
conform to notions shared across linguistic frameworks. The choice of
ontology is in principle open, and the Test Daemons should be developed for
all kinds of constructions.

The present design has been implemented at NTNU for two
computational grammars, the Norwegian medium-size grammar NorSource,
as mentioned above, and the much smaller grammar Ga-gramm for Ga (a
language spoken in the Volta Basin area of West Africa), for both only in the
verbal domain. Currently, for NorSource, there are two such Daemons, one
representing syntactic valence and control/coreference properties, and the
other in addition covering thematic roles and aspectual/Aktionsart properties
(such as illustrated in fig. 1). The richer one comprises about 230
construction types, the leaner one about 170. Both inventories subsume only
'basic' patterns, that is, not passive constructions, and productive syntactic
patterns of modification, wh-movement, subject-verb inversion and more are
also abstracted away from. (In this respect, the construction inventory
therefore has a straightforward connection to the verb lexicon, as this is
standardly conceived in an HPSG or LFG grammar.) For Ga, only a set of 40
construction types has so far been encoded, based on the richer structure of
the larger NorSource Daemon.

Each construction type is, apart from its type notion in the ontology,
represented by one example sentence, serving as a leaf type in the ontology.
The present ontology is stated in an LKB hierarchy (cf. Copestake 2002), as
this system readily lends itself to the kinds of attribute paths often preferred
by linguists.

This LKB hierarchy has been modelled as a small LKB-grammar,
consisting of only one type of constructs, namely sentences formally
modelled as multi-word lexical items. These sentences are identical to those
entered as leaf types in the ontology. In this way, one is able to 'parse' the
construction token, as a mock-sentence, or really, as a single constructional
item. For example, for the sentence she throws the ball (now exemplifying
with English), which is entered as a token of the type ejct-tr (cf. fig. 1), the
'construction entry' will have an identifier such as 'she_throws_the_ball', and
in the orthographic specification, the string '<"she", "throws", "the", "ball">';
this string, thus, is defined as if it were a multi-word lexical item, from an
LKB point of view. The Test Daemon can then, as a one-lexical-item parse,
produce that string, with a feature structure being exactly the syntactic-
semantic structure defined by the ontology for that type. Using the interface
possibilities of an LKB grammar, one can thereby obtain a view of the
properties of a given construction type as identified by its construction name

165

(through 'View Expanded Type') and through the feature structure exposed
by the parse for the example sentence.

3 The fulfillment part
Technically the fulfillment part can be done in three ways. Common to all is
that one defines a test suite for the parse grammar identical to (or
overlapping with) the test suite designed for the Daemon.

Mode 1) Independent mode:
For each sentence, one verifies that the parse grammar and the Daemon
separately produce feature structures (FSs) that correspond to each other in
the respects focussed on. (Essentially, the Daemon FS will be a subpart of
the FS produced by the parse grammar.)

Mode 2) Gently dependent mode:
The Daemon is integrated in the parse grammar, so that for each sentence
parsed in the standard way, a parse is also displayed of the sentence-qua-
construction, in the manner produced by the Daemon. (Thus, they can be
viewed in parallel, in the same 'parse-forest'.)

For each sentence, one still needs to verify by hand that the systems
separately produce feature structures that match in the respects focussed on.

Mode 3) Strongly dependent mode:
Again, the Daemon is integrated in the parse grammar, so that for each
sentence parsed in the standard way, a parse is also displayed of the
sentence-qua-construction, in the manner produced by the Daemon.
However, in the FS produced by the parse grammar, the Daemon FS is
replicated, with explicit declarations of how the information provided in the
Daemon FS is reflected in the FS of the parse grammar.

We illustrate this mode with an edited excerpt from an FS of the parse
grammar for Ga:

166

[]
[]

[]

...

SUBJECT 2 LOCAL | CONT | HOOK | INDEX 4
SYNSEM | LOCAL | CAT | QVAL

DOBJECT 3 LOCAL | CONT | HOOK | INDEX 5

...

eject tr
AKTART DYNAMIC

ROLE agent
ACT1 0

TYPE individual
ACTNTS

ROLE affected mover
ACT2 1

DAEMON

 < > < >
 

< > < >  

−

+

 
< >=  

 
−

< >=
TYPE individual

POS n
SUBJCT 6

INDX 0

POS n
DOBJCT 7

INDX 1

PARSE GF 2 PARSE GF 3
SAME GF ,

DAEM GF 6 DAEM GF 7

PARSE ACT 4 PARSE ACT 5
SAME ACT ,

DAEM ACT 0 DA

 
 
 
       

 
< >  < > 

 
< >  < > 

− < > − < >   
−    − < > − < >   

− < > − < > 
−  − < >  EM ACT 1

...

 
 
 
 
 
 
 
 
        − < >   
 
 

Fig.2 A view of a Mode 3 integration of a Daemon specification inside of a
parse-grammar feature structure.

Its general feature architecture (derived from the HPSG Grammar Matrix,

cf. Bender et al. 2002) includes the feature path
SYNSEM|LOCAL|CONT|HOOK|INDEX, and in addition exposes some
grammatical functions with dedicated attributes such as SUBJECT and
DOBJECT, introduced by a feature QVAL. The counterparts of these features
in the Daemon are INDX, SUBJCT, and DOBJCT; as attribute names in
LKB can only be introduced with one unique type, and the types employed
in the Daemon involve much less feature structure than those in a Matrix
LKB grammar, both types and attributes must be distinct between the two
systems. Hence the correspondences that one aims to expose can only be
stated as relations, not by reentrancy, and these correspondences are given in
the lists SAME-GFs and SAME-ACTs ('Same Grammatical Functions' and
'Same Actants', respectively).

The Norwegian LKB grammar so far uses only mode 1; the grammar for
Ga is smaller, and thus allows more easily for the excercise, but its
architecture of a mode 3 integration can in principle be generalized to all
Matrix-based grammars. A technical desription of the integration between
the parse grammar and the Daemon, combining general features and some
specifics about the grammars employed, is given in the Appendix.

167

How the modes 2 and 3 might be implemented in other frameworks, or
with other platforms, has so far not been explored.

In the next section we describe how the mode 3 version can be put to use
as a plug-in-like mechanism in an LKB grammar, and after that we return to
the structure of the Daemon and issues that presuppose no more than mode 1
of integration.

4 A plug-in possibility derived from mode 3
From the apparatus used in mode 3, a certain plug-in effect for, e.g.,
semantic specification can be derived. One can make the specification in the
Daemon richer than the specification in the parse grammar, in such a way
that when including the Daemon in the parse grammar, through unification,
it makes the extra specification from the Daemon also part of the parse
grammar FS. An example is the following: In the Ga grammar, the attribute
INDEX|SORT is unspecified for value. In the integration file, the value of
INDX from the Daemon specification, which is declared for ROLE and
TYPE, can be reentrant with the value of SORT in the parse grammar.
Thereby also the INDEX|SORT specification of the parse grammar will
provide semantic ROLE and TYPE information. Fig. 3 illustrates the effect,
superimposed on the constellation already shown in fig. 2, with the plug-in
effect shown in the SORT values on the uppermost lines:

168

[]

[]

[]

...

LOCAL | CONT | HOOK |
SUBJECT 2

INDEX 4 SORT 0
SYNSEM | LOCAL | CAT | QVAL

LOCAL | CONT | HOOK |
DOBJECT 3

INDEX 5 SORT 1

...

eject tr
AKTART DYNAM IC

ROLE agent
ACT1 0

TYPE indiv
ACTNTS

DAEM ON

  
< >  < > < >  

   < >   < > < >  

−

+

 
< >= 

 
ROLE affected mover

ACT 2 1
TYPE indiv

POS n
SUBJCT 6

INDX 0

POS n
DOBJCT 7

INDX 1

PARSE GF 2 PARSE GF 3
SAM E GF ,

DAEM GF 6 DAEM GF 7

PARSE ACT 4
SAM E ACT

DAEM ACT 0

 
 
 
 −  < >=     

 
< >  < > 

 
< >  < > 

− < > − < >   
−    − < > − < >   

− < >
−

− <
PARSE ACT 5

,
DAEM ACT 1

...

 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  − < >          > − < >     
  

Fig.3 A view of a Mode 3 + plug-in integration of a Daemon specification

inside of a parse-grammar feature structure, with the plug-in effect shown in the
SORT values on the uppermost lines.

This way of inducing a richer semantic specification may be compared

with, e.g., rewriting MRS representations, or connecting MRS
representations with semantic ontologies. It is to be noted that this is a
configuration the grammar writer can create solely inside the LKB, with no
need for external components. (The exact steps needed are described in the
Appendix.)

5 Properties of the Daemon

5.1 Attributes for grammatical functions

For the Norwegian Daemon, the following syntactic attributes representing
grammatical functions are used:

SUBJCT - headed by a nominal constituent or consisting of a clause, and

with either argument or non-argument status relative to the verb (see
below)

169

DOBJCT ['direct object'] - headed by a nominal constituent or
 consisting of a clause, and with either argument or non-
 argument status relative to the verb

IOBJCT ['indirect object'] - headed by a nominal constituent, and
 with argument status relative to the verb

OBLIQUE - either headed by a pre- or postposition, or marked by a
relevant NP-case, and with argument status relative to the verb;
moreover, the governee of the adposition/case can in some cases be
seen as having an indirect argument relation to the verb.

SECPRED ['predicative', in Jespersen's sense] - a 'secondary
 predicative' constituent, headed by any open class part of speech

EPON ['extraposition'] - a so-called 'extraposed' clause
IDENT ['identity term'] - the second argument in an identity

 predication
PRESENTED - the NP 'presented' in a presentational construction
PARTIKEL - an adverb- or particle-like element

The functions SUBJCT and DOBJCT are unrestricted in their values in

the following ways: a) Their value can have either argument status relative
to the verb they are functionally related to, or to another item; the latter
applies to 'raised' subjects and objects, and is marked by the specification
'SUBJCT nonarg'/'DOBJCT nonarg'; this corresponds to the situation where
in an LFG f-structure, an item is entered outside the angled brackets of a
PRED value (as in PRED = 'seem < XCOMP > SUBJ') (cf., e.g., Butt et al.).
Otherwise the specification is 'SUBJCT arg'/'DOBJCT arg'. b) Their value
can be either a 'full' item or an expletive noun, represented, resp., as
'SUBJCT full'/'DOBJCT full' or 'SUBJCT expletive'/'DOBJCT expletive'.

These dimensions cross-classify, in that a nonarg ('raised') item may be
either full or expletive; specifying a position as 'expletive' in turn entails that
this position does not carry a semantic role, but it does not entail 'nonarg',
since it is not given that it has an argument role relative to another item. (The
notion 'expletive' actually covers three cases, all encoded: expl-pres is the
item introducing a presentational construction, expl-epon is the item
correlated with an 'extraposed' clause, and expl-absolute is the item
introducing an impersonal.)

For cases where the function OBLIQUE introduces a PP whose NP
constituent has a specific relation to the verb or other constituents, the NP is
exposed by the feature D-ARG (for 'dependent argument') and D-POS ('part-
of-speech of dependent argument'); moreover, the NP is exposed in the
semantic specification by the attribute ARG-OF-OBL, linked to the D-ARG
of the functional feature (since the INDX of OBLIQUE is then not linked,
this means that the PP as such is not a semantic argument, only its contained

170

NP). For those cases where the oblique PP has its whole specification
contributing as an argument (as in the type presentational-loc, exemplified
by det sitter en katt i trappen 'there sits a cat in the stairs'), the semantic
argument role contributed by the full PP i trappen is represented as LOC, and
linked to INDX of OBLIQUE; the construction at the same time illustrates
the feature PRESENTED (see fig4, a and b):3

 Fig 4a Fig 4b

The grammatical function SECPRED (for constituents carrying the

predicational content in a secondary predication construction) is illustrated
here by a construction with a causative semantic structure, bøtta regner full
'the bucket rains full' (= 'it rains (a situational ACT1) such that the bucket
gets full (a situational ACT2)'), where the constituent full is the secondary
predicate, and the reentrancy of '1' reflects the 'raising' structure of this
construction:

3 In the literature on Norwegian presentationals, the NP 'presented' is not
uncommonly analyzed as a direct object, since its occupies a position much like that
of direct objects (e.g., following the indirect object); due to its logical status, it is
often also counted as a subject. Using the attribute PRESENTED is for descriptive
convenience, and a freedom allowed by the Daemon purpose. A similar expedient is
the use of the attribute EPON - that of 'extraposed' clauses and infinitives.

[]
obl int r reg

ACT1 0 TYPE indiv
ACTNTS

ARG OF OBL 1

POS n
SUBJCT

INDX 0

POS prep
INDX semarg

OBLIQUE
D POS n
D ARG 1

− − 
 

 < >= 
  − − < >  

  
  < >  
        −   − < >  

presentational loc

ROLE agent
ARG1 0

ACTNTS TYPE indiv
LOC 1

exp l pres
SUBJCT

POS n

POS n
PRESENTED

INDX 0

POS prep
OBLIQUE

INDX 1

− 
 

   < >=      
 < >  

 −  
    

  
  < >  
    < >   

171

[]

[]

non arg subj int r result sec pr adj

AKTART DYNAM IC

ROLE cause
ACT1

TYPE zero sit
ACTNTS

ROLE result
ACT 2 0

TYPE sit PRTCPNTS | ACT1 1

POS n
SUBJCT non arg full

INDX 1

POS adj
SECPRED

INDX 0

− − − −

+

  
  −  
   < >=  < >   

 
−  < > 


< >

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

 Fig. 5

This brief survey of some of the attributes used illustrates the following:
i) The analytic reasoning behind the inventory and value assignment in

the FSs of a Daemon is no different from what applies in the building of a
normal parse grammar.

ii) Attributes are not necessarily universal, but on the contrary can
sometimes highlight properties particular to a language or family of
languages; for instance, the use of SECPRED and PRESENTED reflect
properties typical of Germanic languages.

iii) As a Daemon of NorSource, the attributes used do not necessarily
match, attribute by attribute, those used in NorSource. For instance, although
PREDIC in the NorSource grammar is equivalent to SECPRED as used in
the Daemon, the feature PRESENTED corresponds to the specification
 ...QVAL|DOBJECT|LOCAL|CAT|HEAD|PRESENTED +
 in NorSource. With the 'mode 3' of linking described in the previous
section, such relationships are quite explicit, whereas with the modes 1 and
2, they have to be known. Still, in the latter case, the correspondences are not
very many.

5.2 Principles of labelling construction types
A constructional type label should reflect the composition of the
construction in as much detail as can conveniently be perceived when
reading the label, and recalled when writing it. The more consistent and
systematic the composition of the labels, the easier it is to reflect more
content in them. In the three Daemons created so far - the syntactic and the
syntactic-semantic Daemons for Norwegian, and the syntactic-semantic
Daemon for Ga, the strategy of labelling differs among the three.

First, the syntactic labels for the first Norwegian Daemon are exemplified
by the following samples: first in the label, intr or tr indicates degree of

172

transitivity, and it is then indicated if subject or object lacks argument status;
then the presence of further constituents such as obliques or secondary
predicates is signalled, and in the latter case its head category; and if the
subject or object or the governee of a preposition is anything other than a
regular NP, the category is indicated (like obl-decl meaning that the
governee of a preposition is a declarative clause, or tr-absinf-n meaning that
the subject is an absolute (arbitrary control) infinitive (and the object a
normal NP), or tr-raistoobj-bareinf meaning that the object is 'raised' out of
a succeding bare infinitive); all these pieces of information are connected by
hyphens, and the resulting system is presumably within the limits of user-
friendliness:

intr-n gutten sover
 'the boy sleeps'
intr-obl-decl de snakker om at det er for sent
 'they talk about that it is too late'
intr-nonargsubj-secpr-adj kjelen koker varm
 'the kettle boils hot'
tr-n-n Kari sparker ballen
 'Kari kicks the ball'
tr-equi-inf Kari prøver å komme
 'Kari tries to come'
tr-absinf-n Å bygge høyhus interesserer Kari
 'to build highrises interests Kari'
tr-raistoobj-bareinf jeg hørte ham synge
 'I heard him sing'
tr-nonargsubj-secpr-adj han synes meg syk
 'he seems me sick'
tr-nonargobj-secpr-adv han sang sorgene bort
 'he sang the sorrows away'
tr-epon-decl det bekymrer meg at han kommer
 'it worries me that he comes'

 Table 1. Some labels for syntactically identified construction types in
 Norwegian

If one wants to mark semantic information in addition to syntactic

specifications, the maneuvering space gets more strained. One has to choose
whether to use 'global' labels to indicate something like situation type, paired
with the same syntactic specification as before, or role indicators tied to each
constituent (and possible aspectual specification in addition). In the
Norwegian system, global situation labels are used, but with much
inconsistency as to how much syntactic information is also supplied, and in
which order syntactic and semantic information is given; the assembly below
is representative (in parenthesis behind the construction label is given a

173

situation type label, reflecting the semantic type intersecting with the
syntactic type - cf. next sub-section):

nonargsubj-intr-result-secpr-adj (zerocause-event-causation)
 koppen renner full - 'the cup runs full' - "the cup fills up"
raistosubj-intr-ascrpt-secpr-adj (unary-sit-ascription)
 gutten virker syk - 'the boy seems sick'
path-endpnt-tr (path-endpnt)
 stien når toppen - 'the path reaches the top'
weight-tr (weight-sit)
 stenen veier 5 kg - 'the stone weighs 5 kg'
tr-exp-raistosubj-inf (sit-exper-sit)
 han synes meg å komme - 'he seems me to come'

Table 2. Some labels for syntactically and semantically identified
 construction types in Norwegian

In the Ga system, more consistency is achieved, as is seen below; here

global syntactic information comes first, then role specification with the
roles in the order of the constituents, and then with capital letters a global
semantic characterization. While the latter might seem redundant given the
role specifications, for some readers they may be informative, since the
compositionality in many of the Ga constructions is not what most directly
comes to mind from a European language perspective. The syntactic
specification includes information as to whether the 'logical' actant is
embedded in a postpositional NP, a counterpart to 'oblique', and possible
identity with other constituents; unifobj stands for 'inherent complement' of
the type discussed in Essegbey 1999. The last example is a serial verb
construction, indicated by sv-, and by a succession of two verbal
constructions, initiated as vtr- and vditr-, respectively, each having its
internal roles indicated; the * attached to a role means that the role-bearing
actant is repeated in the second VP, either just understood, or as a
pronominal prefix, specified as *PRONPREF. (In the feature structures for
these constructions, some specifications will be particular to West African
languages, as some of those discussed in 5.1 are to Germanic languages.)
Here are some examples:

v-intr-postpsubj-locus-PROPTY NsŒ lŒ mli j
 sea the inside cool-HAB
 'The sea is cool'
v-tr-mover_endpt-MOTION Kofi ba biŒ
 Kofi came here

174

v-tr-partwhlsubj_idobj-locth_exper-SENS
 o-he j bo
 your-self rest you
 'you are at ease, relaxed'
v-ditr-unifobj2-agsens_locus_materialzr-PERCPT
 w-bo lŒ toi
 we-listen him ear
 'we listened to him'
sv-vtr_ag*PRONPREF_th*-vditr_endpnt-PLACEMENT
 w-tsi amŒ w-gbee shi
 we-push them we-fell [them] down

Table 3. Some labels for syntactically and semantically identified
 construction type in Ga

On layout consistency grounds, the first (for syntactic annotation) and

third system seem preferable. Which one to choose among these of course
depends on what kind of information the parse grammar in question exposes
(or is made to expose).

 Although the matter of labelling may seem theoretically insignificant, for
the building of a test suite, an instructive label system is quite helpful, and
far easier to relate to than feature structures of the types illustrated earlier.

Such a labelling design may also be helpful in the building of a
construction inventory not (yet) linked to a computational grammar, both by
its potential for enhancing clarity of organization, and for linking up to
feature structures of the type provided by the Daemon. Before a consolidated
system of labelling can be considered, the usefulness of candidate systems
outside of the domain of grammar engineering test suites would thus also be
important.

5.3 Structure of the ontology
The ontology is organized into one syntactic and one semantic part, with
construction types inheriting from both sides. Below is an example of how a
syntactic and a semantic specification are joined to define a constructional
type, for nonargsubj-intr-result-secpr-adj, illustrated by bøtta regner full 'the
bucket rains full' (= 'it rains such that the bucket gets full', cf. fig. 5 above):

175

 []

zerocause event causation

AKTART DYNAMIC

ROLEcause
ARG1

TYPEzero sit
ACTNTS

ROLEresult
ARG2

TYPEsit

− − 
 
 
 +
 
   
   −   
           

 []
[]

int r non arg subj sec pr
SUBJCT non arg POS n

SECPRED POS adj

 − −
 
 
 
 

[]

[]

non arg subj int r result sec pr adj

AKTART DYNAMIC

ROLE cause
ACT1

TYPE zero sit
ACTNTS

ROLE result
ACT2 0

TYPE sit PRTCPNTS | ARG1 1

POS n
SUBJCT

INDX 1

POS adj
SECPRED

INDX 0

− − − −


 +

   

  −  
   < >=  < >   
 
 < > 
 
 < > 








 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 6 Example of constructional type inheritance

In the same vein, the following is an approximate view of some of the top

level syntactic types in the Norwegian system, and some of the semantic
ones, with one example of the stitching together of the syntactic and the
semantic side:

176

 avm

 sit

 zero-sit
[ACTNTS zero-rel] v-constr

 [SUBJCT nonrestr]
 unary-sit
[ACTNTS arg1-rel]

 intr
 binary-sit
 [ACTNTS arg12-rel]

 trans
 [DOBJCT nonrestr]

 reg-subj-link
[ACTNTS|ACT1 #1,
 SUBJCT|INDX #1]

 reg-obj-link
 [ACTNTS|ACT2 #2,
 DOBJCT|INDX #2]

ag-intr
[ACTNTS|ACT1|ROLE agent]

 Fig. 7 Partial view of constructional type inheritance

With the ontology populated by more languages, the syntactic part of the

system would most likely have to grow, while the semantic part (apart from
improvements of the system as such) in principle might remain constant. The
design might then make it possible to view, for any identified situation type,
which construction types in various languages embody that situation type,
and likewise for going in from a given syntactic specification to see
construction types across languages supplying different situation types.

In order for a construction ontology of this kind to be implemented for
grammar engineering frameworks less likely to employ an LKB system, it
will be an interesting question to see to what extent the present ontology can
be ported, e.g., to OWL.

177

6 Summary
In order to expose the content of grammars for evaluation across
frameworks, very much of their formalism and terminology has to be
abstracted away from, in order to attain a common ground of comparison. A
requirement on such a common ground is that it is still identifiably sound
according to both theoretical and empirical criteria of linguistics. If such a
ground can be found, in turn, it is helpful not only for the construction of
grammars and the evaluation and development of the various frameworks,
but it may also help mediate the contribution of computational grammars to
a wider linguistic community.

In the system presented above, the concern of designing a common
ground has been combined with a strategy of creating systematic test suites
for use in individual grammars. This strategy, in turn, tries to improve
classification of construction types in a way that may be useful for linguists
outside the computational community, not the least for purposes of grammar
documentation.

An attempt is made to embed the system in an actual mechanism, which
on the one hand exposes an ontology of verbal constructions, and on the
other can be integrated in a computational grammar so as to 'witness' how
the specifications produced by a parse relate to declared aims phrased in
terms of a 'common ground' analytic language. The mechanism is light-
weight, and is only a means by which one can start becoming more
systematic about evaluation in analytic respects. As the mechanism is built
on the LKB platform, it - especially in the latter respect - is confined mainly
to HPSG-based grammars. However, these two functions can clearly be split,
and hopefully the present system may serve as a partial starting point for the
construction of systems based on different platforms.

Appendix
Below is a sketch of the structure of the Daemon as realized by an LKB
system. It consists of the directory 'constructions', which, in addition to the
lkb folder and roots.tdl, has the following files, here displayed so as to
reflect which files depend on which:

178

 general.types.tdl
 / \
 semantic.types.tdl syntactic.types.tdl
 | / \
 construction.types.tdl \
 / \ \
 ga-construction.types.tdl lex.constr.no.tdl lex.synt.no.tdl
 | | |
 lex.constr.ga.tdl test-constr.no test-syn.no
 |
 test-constr.ga

Purely syntactic aspects of the construction specifications are defined in

syntactic.types.tdl, purely semantic aspects in semantic.types.tdl, and
combined constructional specifications (combining types from the former
two) are defined in construction.types.tdl. In addition, general.types.tdl states
over-arching general types. For Ga, there is also a type file ga-
construction.types.tdl deriving new types from construction.types.tdl.

In the lexical files, each 'lexical item' is a full sentence, corresponding to
the items in the test files. For Norwegian there are two test files,
corresponding to the lexicon files lex.synt.no.tdl and lex.constr.no.tdl: the
former has types reflecting only the syntactic specification, the latter has
types reflecting a full constructional specification. For Ga, there is only one
test file, representing full constructional specification.

To view the full construction hierarchy, enter 'sign' in the LKB Top View
window. To view either the syntactic part of the construction hierarchy
exclusively, or the situation hierarchy exclusively, comment out
construction.types.tdl (and ga-construction.types.tdl) in the script file (in this
case, also comment out lex.constr.no.tdl and lex.constr.ga.tdl), and then, to
view the syntactic construction hierarchy, enter 'syncons' in the View
window, and to view the situation hierarchy, enter 'sit' in the View window.
Whichever type hierarchy is displayed, to see the feature specification of the
type, do normal leftclick on the type label and view 'Expanded type'.

Exemplifying sentences can also be viewed. From any of the test-files,
any sentence can be selected and entered in the LKB Top parse window (or
'(do-parse-tty "...'')' in the commonlisp buffer), and a minimal parse tree
emerges, rooted by 'constr' (or '?').4 When clicking for 'Enlarged tree' and
then 'Feature structure', one sees the type and feature structure specification
(the latter being the same as what one sees for that type on the previous

4 When, for Norwegian, a given sentence appears in both lexicons, two parses are
displayed, the upper one rendering the full construction specification, the lower one
the syntactic part of that specification.

179

view).

To create the 'fulfillment' effects described in section 3:
Mode 1 requires no further steps than the creation of a common test suite.
Mode 2 is realized in the following way:
 a. In the parse grammar, define a subdirectory 'constructions',

 populated by the type files and the relevant lexicon(s) of the
 language chosen, except the file general.types.tdl, since its
 definitions are already covered in the parse grammar.
 b. To secure that each attribute is introduced with a unique type,
 the attribute names in the Daemon will be largely distinct

 from those used in the parse grammar, since in the Daemon,
 information is much less complex than in the parse grammar.

 c. Two root values are defined in the parse grammar, one being
 the root category of the parse grammar, and one the root
 category of the Daemon.

Mode 3 requires the same steps as mode 2, and in addition:
 d. In the type declaration for 'sign', add a feature 'DAEMON'

 with value 'sign-min', which will take as value the Daemon
 FSs plus correspondence declarations.

 e. In the parse grammar, for those verb lexeme types for which
 one wants to display the Daemon correspondence, introduce a
 type file defining subtypes of these types which (i) provide a
 slot for the Daemon FS, and (ii) state exactly which feature
 paths in the parse FS provide counterparts of the relevant
 values in the Daemon FS.

 f. Corresponding to these 'Daemon'-related lexeme types,
 introduce a lexicon file with the verbs used in the shared test
 file, now defined as items of the 'Daemon'-related types.

Mode 3 has been realized for a small parse grammar for Ga, based on the

HPSG Grammar Matrix. Here, step e. is implemented through the file 'ga-
daem.tdl', and step f. through the file 'lexicon-ga.tdl'. Thus, in the 'Ga
grammar/lkb/script' file, the following lines are active on mode 3,

 (lkb-pathname (parent-directory) "ga-daem.tdl")
 (lkb-pathname (parent-directory) "constructions/syntactic.types.tdl")
 (lkb-pathname (parent-directory) "constructions/semantic.types.tdl")
 (lkb-pathname (parent-directory) "constructions/construction.types.tdl")
 (lkb-pathname (parent-directory) "constructions/ga-construction.types.tdl")

 (lkb-pathname (parent-directory) "lexicon-daem.tdl")
 (lkb-pathname (parent-directory) "constructions/lex.constr.ga.tdl")

180

and are commented out to return the grammar to its mode 1 operation (then
also deleting the extra 'Daemon' line in roots.tdl). To go from mode 3 to
mode 2, only ga-daem.tdl and lexicon-ga.tdl are commented out (leaving
roots.tdl with both root definitions).

References

Bender, Emily M., Dan Flickinger, and Stephan Oepen. 2002. The Grammar
Matrix: An open-source starterkit for the rapid development of cross-
linguistically consistent broad-coverage precision grammars. In
Proceedings of the Workshop on Grammar Engineering and Evaluation,
Coling 2002, Taipei.

Butt, Miriam, Tracy Holloway King, Maria-Eugenia Nini and Frederique
Segond. 1999. A Grammar-writer's Cookbook. Stanford: CSLI
Publications.

Copestake, Ann. 2002. Implementing Typed Feature Structure Grammars.
CSLI Publications, Stanford.

Dakubu, Mary Esther Kropp, 2004: Ga clauses without syntactic subjects.
Journal of African Languages and Linguistics 25.1: 1-40.

Essegbey, James. 1999. Inherent Complement Verbs Revisited. MPI Series
in Psycholinguistics, Nijmegen.

Goldberg, Anne. Constructions. A Construction Grammar Approach to
Argument Structure. Chicago University Press, Chicago.

Hellan, Lars., Lars Johnsen and Anneliese Pitz. 1989. The TROLL Lexicon.
Ms, NTNU.

Hellan, Lars and Dorothee Beermann. 2005. Classification of Prepositional
Senses for Deep Grammar Applications. In Kordoni, Valia and Aline
Villavicencio (eds) Proceedings of the Second ACL-SIGSEM Workshop
on The Linguistic Dimensions of Prepositions and their Use in
Computational Linguistics Formalisms and Applications. University of
Essex.

Sag, Ivan A., Thomas Wasow and Emily Bender. 2003. Syntactic Theory. A
Formal Introduction. CSLI Publications, Stanford.

181

Overlay Mechanisms for Multi-level Deep Processing
Applications

Tracy Holloway King and John T. Maxwell III
PARC

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

182

Abstract

Deep grammars that include tokenization, morphology, syntax, and se-
mantic layers have obtained broad coverage in conjunction with high effi-
ciency. This allows them to play a crucial role in applications. However,
these grammars are often developed as a general purpose grammar, expect-
ing “standard” input, and have to be specialized for the application domain.
This paper discusses some engineering tools that are used in the XLE gram-
mar development platform to allow for domain specialization. It provides ex-
amples of techniques used to allow specialization via overlay grammars at the
level of tokenization, morphology, syntax, the lexicon, and semantics. As an
example, the paper focuses on the use of the broad coverage, general purpose
ParGram English grammar and semantics in the context of an Intelligent Doc-
ument Security Solutions (IDSS) system. Within this system, the grammar is
used to automatically identify sensitive entities and relations among entities,
which can then be redacted to protect the content.

1 Introduction

Deep grammars that include tokenization, morphology, syntax, and semantic lay-
ers have obtained broad coverage in conjunction with high efficiency (e.g., Kaplan
et al., 2004b). This allows them to play a crucial role in applications. Sometimes
grammars are developed exclusively for a given application in a given domain. How-
ever, a grammar is often developed as a general purpose grammar, expecting “stan-
dard” input, and has to be specialized for the application domain. This is done, for
example, in MedSLT which is a speech translation system built on top of the Reg-
ulus platform (Rayner et al., 2006; Chatzichrisafis et al., 2006).

This paper discusses engineering tools that are used in the XLE grammar devel-
opment platform (Maxwell and Kaplan, 1996; Crouch et al., 2007) to allow for the
domain specialization necessary for applications. Some of the techniques used are
similar to those developed for building parallel cross-linguistic grammars (Bender
et al., 2002; Butt et al., 2002) but many of them are more fine-grained and involve
components that are unlikely to be shared across languages. The focus of this pa-
per is not on how to determine which components to specialize, but instead on what
tools have proven useful in allowing the specializations required by the grammar
engineers. As an example, the paper focuses on the use of the broad coverage, gen-
eral purpose ParGram English grammar and semantics in the context of an Intelli-
gent Document Security Solutions (IDSS) system. Within this system, the gram-
mar is used to automatically identify sensitive entities and relations among entities,
which can then be redacted via mechanisms such as encryption in order to protect
the content.

The IDSS portions of this work were supported in part by Xerox Corporation. We thank the au-
dience of GEAF2007 for comments on the presented version of this paper, and Eric Bier and Jessica
Staddon for input on the IDSS application description.

183

1.1 The IDSS Application

The IDSS application takes document collections, helps a knowledge worker find
sensitive entities and relations among entities, and then provides the user to choose
mechanisms to protect these entities, including encrypting them so that these sensi-
tive items are only available to those with appropriate keys. The application can be
used, for example, to redact documents with sensitive material in them. The doc-
uments can simply be printed or produced as a pdf file with the redacted material
“black boxed”. However, the availability of fine-grained encryption in conjunction
with detailed entity and relation analysis allows for documents to be created where
each entity type is tied to a particular encryption key. Different end users will have
different keys and hence be able to view different parts of the same redacted docu-
ment. For example, with mortgage documents, some users could see phone number,
name, and address information, while others might have access to social security
numbers and financial information.

A deep grammar is used to provide an initial list of entities and of relations
among entities that the knowledge worker might be interested in. This component
is discussed in detail in this paper. There are two other major system components.
One is a user interface called Entity Workspace (Bier et al., 2006) which is used to
manipulate the document collection and the entities and relations, including adding
sensitive entities and relations that were missed by the initial automatic extraction.
This component also allows the specification of how much to redact: entities can be
redacted at the entity level, the sentence level (any sentence with a sensitive entity is
redacted), or the paragraph level (and paragraph with a sensitive entity is redacted).

The second major component is the encryption system that is used to redact en-
tities and relations. This system not only provides the encryption of the sensitive
entities, but also allows for fine-grained specification of who can decrypt which sec-
tions of the document. This ability to do selective encryption/decription is impor-
tant in an increasingly electronic workplace where documents are passed from user
to user without being printed and where different users of the same document may
have much different information needs and rights.

To return to the automatic extraction of entities and relations, as an example, a
sentence like (1a) or (1b) would yield the list of facts in (2a) or (2b). These facts
are identical except for some byte position information and the word facts for work
and employ. Each fact is designated as being an entity, a relation between entities,
or a content word. Entities and relations are typed (e.g. person, location, works-
for). Entities can occur with lists of alternative realizations or aliases (e.g. [Robin,
Abramov, Robin Abramov] in (2a)). Content words can occur with a list of syn-
onyms (e.g. [hire, use] in (2b)). Facts are associated with sentence numbers within
the document and with byte position of the entity within the sentence.

(1) a. Robin Abramov works for International Business Machines.

b. Robin Abramov is employed by International Business Machines.

184

(2) a. ENTITY(Abramov, person, sent num(1), byte position(7), [Robin,
Abramov, Robin Abramov])

ENTITY(International Business Machines, company, sent num(1),
byte position(25), [International Business Machines, IBM])

ENTITY-REL(cooccuring(1), [International Business Machines,
Abramov])

ENTITY-REL(works-for, Abramov, International Business Machines)
WORD(Abramov, sent num(1), byte position(7), [male])
WORD(International Business Machines, sent num(1), byte position(25),

[company])
WORD(work, sent num(1), byte position(15), [work, influence, make,
cultivate, shape, bring, function, knead, exploit, solve, ferment, sour,

exercise])
sentence num(1)

b. ENTITY(Abramov, person, sent num(1), byte position(7), [Robin, Abramov,
Robin Abramov])

ENTITY(International Business Machines, company, sent num(1),
byte position(27), [International Business Machines, IBM])

ENTITY-REL(cooccuring(1), [International Business Machines,
Abramov])

ENTITY-REL(works-for, Abramov, International Business Machines)
WORD(Abramov, sent num(1), byte position(7), [male])
WORD(International Business Machines, sent num(1), byte position(27),

[company])
WORD(employ, sent num(1), byte position(15), [hire, use])
sentence num(1)

The details of these representations and how they are produced in the IDSS appli-
cation are discussed in more detail later in the paper.

1.2 The IDSS Natural Language Component

The general XLE parsing pipeline used in the IDSS system is shown in (3).1

1There is a Makefile which produces a run-time version of the entire pipeline. This depends on
XLE’s release-grammar mechanisms that allow a single-directory version to be created and frozen for
export into the run-time application. In addition to putting the grammar files in a single directory, the
release version can include version number information and encrypts the lexicon files (the grammar
files themselves are not encrypted).

185

(3) XLE Grammar Processing
input text

text breaker (FST)
sentences

tokenizer (FST)
tokens

morphologies (FST)
stems + morphological tags

syntax (LFG)
constituent-structure (tree)
functional-structure (dependencies)

semantics (ORDERED REWRITING)
IDSS: entities/relations

This paper focusses on how application-specific extensions were made to the core
pipeline, which is used in several different applications and research projects.

Extensions to the finite-state morphologies were needed to allow for additional
entities, to the lexicon for Arabic and Russian names, and to the grammar for un-
usual punctuation and lists. The semantics was extended to pick up the additional
entities, to find entities and entity relations, and to delete all other semantic facts.
In all cases, we want to ensure that upgrades to the base system can be included in
the IDSS application without losing any of the application-specific specialization.
We achieve this by allowing for overlay systems at each level. The tools for these
overlays, along with examples of how they are applied, are described in this paper.

2 Tokenizers and Morphologies

In the XLE grammars, there is a configuration file for the text breaker, tokenizers,
and morphologies. The file specifies which text breaker, tokenizer, and morphology
are used by the grammar. When there is more than one tokenizer or morphology, the
configuration file specifies how they are combined, e.g., the morphology for recog-
nizing phone numbers may take precendence over the general English morphology
which in turn takes precedence over the guesser. The morphology configuration file,
called the morphconfig, is called by the syntactic grammar. The XLE ParGram En-
glish grammar uses finite-state (FST) text breakers, tokenizers, and morphologies
(Kaplan et al., 2004a; Beesley and Karttunen, 2003); these are described in this sec-
tion.

The input string is first run through the text breaker. The text breaker determin-
istically breaks the text into sentences. It is a high-precision text breaker: if it is un-
sure whether something represents a sentence boundary, it will put in a mark (+SB)
instead of forcing a sentence break. This way the grammar can be used to provide
further information in complex cases. Such cases can occur, for example, when the
string Dr. appears followed by a form that could be either a common or a proper
noun (e.g. Dr. Bush); in such cases the text breaker cannot determine whether the

186

Dr. is a sentence final abbreviation for Drive or a sentence internal abbreviation for
the title Doctor. If this uncertainty is marked and passed through to the syntax, syn-
tactic knowledge can be used to determine whether there should be one sentence or
two.

After textbreaking, the tokenizer non-deterministically breaks the string into to-
kens.2 The tokenized string is run through an industrial morphology produced by
Inxight which in the parsing direction converts inflected forms into lemmas and a
set of morphological tags (4a). This morphology covers many proper names, (4b,
c), as well as the inflected forms of common nouns, verbs, adjectives, etc.

(4) a. hunts hunt +Noun +Pl hunt +Verb +3sg

b. Robin Robin +Prop +Giv +Fem +Sg Robin +Prop +Giv +Masc +Sg

c. Detroit Detroit +Prop +Place +City

In addition, the tokens are run through a set of specialized FSTs to recognise
times and dates (5a) and to convert spelled out numbers into digits (5b).

(5) a. April 23rd month(4) day(23)

b. twenty-four 24

Items unrecognized by the morphology or one of the specialized FSTs are run
through a guesser that uses clues such as capitalization or string ending (e.g. ing, s)
to posit part of speech and other morphological tags. The guesser is currently quite
simplistic. An example is shown in (6).

(6) fooing foo +Noun +VProg +Sg +Guessed
+Verb +Prog +Guessed
+Adj +VProg +Guessed

Applications often require special entity recognizers to either supplement or
override the morphology. The morphconfig file allows additional FST machines
to be called either in an override (USEFIRST) or a supplemental (USEALL) capac-
ity. The override is used when only the analyses in that FST are to be used. For
example, the FST that recognizes phone numbers could override any analyses that
would recognize the same string as a range of numbers. The supplemental version
is used to add in additional analyses. For example, the FST that recognizes years as
dates (e.g., They left in 2000.) is used in a supplemental capacity in order to allow
the analysis of these digits as regular numbers (e.g., They bought 2000 boxes.).

2The IDSS application did not involve extensions to the tokenizer since the texts parsed followed
standard written English punctuation conventions. Other overlays, such as the header/title grammar
for parsing technical manuals and web pages, where much of the input has initial upper case or all
upper case letters, do use different tokenizer versions.

187

For IDSS, an FST was added to recognize phone numbers, addresses, and so-
cial security numbers. These are provided with unique tags (i.e., +PhoneNumber,
+Address, +SSNumber); the syntax and semantics were then extended to recognize
these tags and form nouns based on the forms with the tags. An example of the
output of the stages of the system for a phone number are shown in (7). The +Pho-
neNumber tag provides the NE-TYPE phone feature in the syntax which in turn pro-
vides the ENTITY(, phone,) feature in the semantics. These all key off of the
specialized output of the IDSS FST.

(7) a. Input: They called 123-4567.

b. Tokenizer/morphology: 123-4567 +PhoneNumber +Sg +PreferMorph

c. Syntax:

PRED 123-4567

NTYPE NSYN common

NE-TYPE phone

NUM sg

PERS 3

d. Semantics:
ENTITY(123-4567, phone, sent num(1), byte position(13))
WORD(123-4567, sent num(1), byte position(13), [entity])

The IDSS entity FST was given priority over other FSTs so that only the special
named entity analyses would surface. An additional guesser was created to hypoth-
esize certain common person names for nationalities that the standard morphology
did not have lists for, namely Arabic and Russian last names; as will be seen in the
next section, the grammar was also supplemented with lexicons for the more com-
mon of these names. The lexical entries for names provide additional information
such as gender and are given higher confidence ratings relative to purely guessed
names.

Since the morphology configuration calls both the FSTs for the base grammar
and those for the IDSS grammar, any improvements to the base grammar FSTs (e.g.,
a new time-date FST) can be incorporated into the system by a version update to
those files. The morphology configuration allows relative path names so that the
FSTs do not need to be copied into the IDSS grammar directory but instead can
automatically reference the current version of the base grammar FSTs.

Although not used in the IDSS overlay, XLE also has a command that allows
tokenizers to be pushed onto the front of the transducer stack (or popped off of it).
That is, the grammar is loaded with the tokenizers specified in the grammar mor-
phconfig, but then an additional tokenizer is run before the ones in the grammar.

188

This can be used, for example, to have a FST that does spelling correction or named
entity markup apply before the regular grammar.3

3 Syntax

The output of the tokenizers and morphologies serves as input to the syntax, form-
ing the leaves of a syntactic tree structure. The output of the syntax is a pairing of
trees (referred to as c(onstituent)-structures) and dependencies in an attribute value
matrix (referred to as f(unctional)-structures). The structures for the sentence in
(8a) are shown in (8b,c). The c-structure and f-structure categories are relatively
detailed in comparison to most theoretical LFG descriptions (Dalrymple, 2001).
XLE’s computational approach to syntax and semantics manages ambiguity by com-
bining alternative interpretations into a single packed structure that can be further
processed without the typically exponential cost of unpacking (e.g., Robin as a man’s
name and as a woman’s). The XLE syntax and semantics use the same packing
mechanism (Maxwell and Kaplan, 1991; Crouch, 2005b).4

3If there is only one grammar being used by the system, then modifying the tokenizer FST via an
overlay morphology configuration can be done. However, if multiple versions of the grammar are
being run (e.g., one for headers and one for regular text), then using the pop/push facility can save
space compared to having two grammars loaded.

4There are, in fact, two c-structures for (8a) which differ at the sublexical level due to the two
analyses for Robin related to the two morphological analyses shown in (4b). Since the display in
(8c) does not show the sublexical structure, the difference between the trees is not visible. The two
different sublexical trees are shown in (i).

(i) a.

CS 1: NAME

NAME_BASE

Robin

PROP_SFX_BASE

+Prop

NAMETYPE_SFX_BASE

+Giv

GEND_SFX_BASE

+Masc

NNUM_SFX_BASE

+Sg

b.

CS 2: NAME

NAME_BASE

Robin

PROP_SFX_BASE

+Prop

NAMETYPE_SFX_BASE

+Giv

GEND_SFX_BASE

+Fem

NNUM_SFX_BASE

+Sg

189

(8) a. Robin Abramov is employed by International Business Machines.

b.

c.

CS 1: ROOT

Sadj[fin]

S[fin]

NP

NPadj

NPzero

N

Robin

N

Abramov

VPall[fin]

VP[pass,fin]

AUX[pass,fin]

is

VPv[pass]

V[pass]

employed

PPcase

P

by

NP

NPadj

NPzero

N

International Business Machines

PERIOD

.

The syntax comprises a configuration file, lexicons, and LFG annotated phrase

190

structure rules. The lexicons and phrase structure rules can call grammar-defined
templates. The configuration file, in conjunction with complex lexicon edit entries
(Kaplan and Newman, 1997), is what allows for overlay grammars (Kaplan et al.,
2002). The configuration file states which lexicon, rule, template, and system pa-
rameter files are used by the grammar. It also states the priority order of these so
that application-specific changes take precedence over the more general rules. In
addition, a configuration file can state that it is identical to another configuration file
except for any stated changes. Such inheritances can be deeply nested, although in
practice for this application they only go three levels deep with the standard English
grammar as the ultimate base, as is described below for IDSS.

The IDSS syntax overlay is relatively simple; more complex overlays are re-
quired for applications used with “non-standard” English, including unedited En-
glish or the English used in emails. The IDSS English calls the Aquaint grammar
(Bobrow et al., 2005, 2007) which the semantics generally assumes as its input; the
Aquaint grammar in turn calls the standard English grammar configuration as its
base.5 In addition, the IDSS grammar calls:

two lexicon files (one for 1900 Arabic names and one for 2300 Russian
names)

the morphology configuration as described in the previous section

a rule file with two sublexical rules for the phone and address entities and a
modified version of the sentence final punctuation rule

The configuration file also calls a system parameter file which uses OT mark rank-
ings to effectively remove some unused rules in the standard grammar for efficiency
and coverage reasons (e.g., topicalization, initial vocatives) and to set time, mem-
ory, and processing limitations for the IDSS system.6 The IDSS configuration file
is shown in (9).

(9) AQUAINT ENGLISH CONFIG (1.0)

BASECONFIGFILE ../english-aquaint.lfg
PERFORMANCEVARSFILE

+idss-performance-vars.txt.
MORPHOLOGY (IDSS ENGLISH).
RULES (STANDARD ENGLISH)

(AQUAINT ENGLISH)
(IDSS ENGLISH).

5Over time, more general solutions are integrated into the standard grammar. Currently, the main
overlay in the Aquaint grammar is for certain types of coreference markup used in anaphora resolu-
tion.

6These could be defined via XLE commands when the system is loaded. However, by including
them in the grammar, it is easier to ensure that they are always loaded and always set to the same
values. These values can be overridden on the XLE command line to allow for experimentation.

191

FILES +eng-lex-arabic-names.lfg
+eng-lex-russian-names.lfg
+english-idss-morphconfig.lfg
+english-idss-rules.lfg

3.1 Overlay Rules

The relative simplicity of the IDSS overlay grammar is due both to the design of
the configuration file which allows inheritance and fine-grained modification and
to the design of the syntax rules which are divided into subrules to allow for sub-
stitution in overlay grammars. The sublexical rules, e.g., the rules used to compose
verbs and nouns from combinations of stems and morphological tags (Kaplan et al.,
2004a), and the root level rules are particularly finely divided because most appli-
cations have required some overlay to these rules. For example, corpora for differ-
ent applications differ widely as to the type of punctuation allowed sentence finally.
As such, there is a rule ROOT-DECL-PUNCT which states the punction options for
matrix (root) declarative clauses. In the IDSS grammar, this is redefined to allow
colons and, dispreferedly, nothing (as represented in (10) by e), in addition to the
usual period and exclamation point.

(10) ROOT-DECL-PUNCT –
PERIOD
EXCL-POINT
COLON
e: @(OT-MARK NoFinalPunct)

.

This situation highlights the fact that having the proper system tools for overlay
grammars is not enough: the grammar developer must design the grammar itself in
anticipation of its modification for applications. Fortunately, any changes in modu-
larity to the base grammar benefit all overlay grammars and future applications, and
often such changes, such as increased subdivision of rules, are simple to implement.
At this point, such subdivisions rarely have to be made; when the standard grammar
was first used with overlays, approximately twenty rules were refactored.

3.2 Lexicons

The IDSS grammar calls two lexicon files (one for 1900 Arabic names and one
for 2300 Russian names). These provide information that the forms are person
names and indicate whether they are family or given names. When the given name
is known as a woman’s or a man’s name, this information is also included (cf. the
discussion of the morphology associated with the English name Robin in (4)).

Overlay lexicons can be more complicated. New entries can be added for any
part of speech. In addition, entries that exist in the standard grammar can be: (1)

192

removed, (2) replaced, or (3) altered. This is controlled not just at the level of the
stem but also the part of speech and even the possible entries associated with each of
these. For example, if the standard grammar had the entry for push as in (11a), the
overlay grammar could have an enty as in (11b) which would produce the effective
entry as in (11c) where the two entries have been merged.

(11) a. push V XLE @(V-SUBJ-OBJ push); ETC.

b. push +V XLE @(V-SUBJ push); ETC.

c. push V XLE @(V-SUBJ-OBJ push) @(V-SUBJ push) ; ETC.

The mechanism for lexical edit entries is introduced in Kaplan and Newman (1997)
and the current state is described in the XLE documentation (Crouch et al., 2007).

3.3 Performance Variables

The IDSS grammar configuration also calls a system parameter file which effec-
tively removes some unused rules in the standard grammar for efficiency and cover-
age reasons and sets time, memory, and processing limitations for the IDSS system
to allow for effective parsing of large document collections.

The ability to remove and rerank rules takes advantage of the Optimality The-
ory (OT) mechanism in the XLE system (Frank et al., 2001). The XLE OT system
is inspired by theoretical OT (Prince and Smolensky, 1993) but differs from it in
crucial respects: in XLE, rules do not need to be ranked, preference as well as dis-
preference marks are available, and special status marks exist for allowing multiple
pass grammars and for declaring rules NOGOOD. Parts of the grammar and lexicon
associated with NOGOOD marks are removed from the compiled system.7 The abil-
ity to declare a given OT mark NOGOOD is extremely useful in overlay grammars
because both whole rules and specific disjuncts within them can be removed from
the grammar in this way. Consider the made-up simple rule in (12).

(12) S – (NP: (ˆ TOPIC)=!
(ˆ TOPIC)=(ˆ XCOMP* OBJ)
@(OT-MARK TopicMark))

NP: (ˆ SUBJ)=!
VP: ˆ =!

The rule states that an S can consist of an optional NP which will be the topic which
also serves as the object somewhere in the structure (e.g. Bagels, I like., Grammars,
I want to write.), an obligatory NP subject, and a VP that heads the S. The NP topic
annotations an OT mark called TopicMark. In the standard grammar, this mark is
dispreferred, and so topics will surface only when no more preferrable analysis is

7This contrasts with theoretical OT in which constraints can be very lowly ranked but are always
violable. NOGOODs could be thought of as inviolable constraints.

193

possible. However, in many overlay grammars used in applications including IDSS,
this mark is declared NOGOOD via the statement in (13) in the overlay performance
variables file.

(13) set-OT-rank TopicMark NOGOOD

This effectively creates the rule in (14) without having had to alter the one in (12)
in the standard grammar.

(14) S – NP: (ˆ SUBJ)=!
VP: ˆ =!

The OT marks can similarly be used in the template space to alter the effec-
tive behavior of the template. This is often used to control how dispreferred mis-
matched subject-verb agreement is. In the standard grammar, the OT mark NoVAgr
is heavily dispreferred because the grammar expects edited standard written En-
glish. However, when used in less formal domains, such as emails, this mark is only
slightly dispreferred. This reranking is done in the performance variables file and
hence the templates and rules themselves do not need to be altered or have explicit
overlay versions.

4 Semantics

The semantics for the ParGram English grammar is written using XLE’s ordered
rewrite system, referred to as XFR. It takes the f-structure output of the syntax and
converts it to a flattened, normalized, skolemized form (Crouch and King, 2006).
The output of the semantics is ideal for applications like IDSS because it abstracts
away from idiosyncracies of the syntax such as whether the verb was used in the
active or the passive.8 In addition, the semantics provides a mapping to WordNet
synsets while also retaining the stemmed word forms from the output of the mor-
phology and syntax. The full semantic structure produced for (15a) is shown in
(15b), where the numbers represent WordNet synonym sets (synsets). The output
produced from the overlay rules is shown in (15c). In (15c), only relevant entities
and relations are kept from the semantics, and the information in these have been
rearranged for the application (e.g., the overt marking of sentence and byte position
information, the deletion of context information).

(15) a. Robin Abramov is employed by International Business Machines.

b. alias(Abramov:n(7, 1), [Robin, Abramov, Robin Abramov])
alias(International Business Machines:n(30, 1), [International Business

8The semantics is a level of linguistic semantics. For greater abstraction, the system can further
map into Abstract Knowledge Representation (Crouch, 2005a; Bobrow et al., 2005, 2007). However,
this component is not yet as stable and well-developed.

194

Machines, IBM])
context head(t, employ:n(18, 1))
in context(t, pres(employ:n(18, 1)))
in context(t, cardinality(Abramov:n(7, 1), sg))
in context(t, cardinality(International Business Machines:n(30, 1), sg))
in context(t, proper name(Abramov:n(7, 1), name, Abramov))
in context(t, proper name(International Business Machines:n(30, 1),

company, International Business Machines))
in context(t, role(Agent, employ:n(18, 1), International Business

Machines:n(30, 1)))
in context(t, role(Patient, employ:n(18, 1), Abramov:n(7, 1)))
lex class(employ:n(18, 1), vnclass(unknown))
lex class(employ:n(18, 1), wnclass(1147708, verb(consumption)))
sortal restriction(Abramov:n(7, 1), Thing, employ)
sortal restriction(International Business Machines:n(30, 1), Thing,

employ)
word(Abramov:n(7, 1), Abramov, noun, 1, 7, t, [[9487097, 7626, 4576,

4359, 3122, 7127, 1930, 1740]])
word(International Business Machines:n(30, 1), International Business

Machines, noun, 1, 30, t, [[7948427, 7943952, 7899136, 7842951,
29714, 2236, 2119, 1740]])

word(employ:n(18, 1), employ, verb, 1, 18, t, [[1147708], [2385846]])

c. ENTITY(Abramov, person, sent num(1), byte position(7), [Robin, Abramov,
Robin Abramov])

ENTITY(International Business Machines, company, sent num(1),
byte position(27), [International Business Machines, IBM])

ENTITY-REL(cooccuring(1), [International Business Machines,
Abramov])

ENTITY-REL(works-for, Abramov, International Business Machines)
WORD(Abramov, sent num(1), byte position(7), [male])
WORD(International Business Machines, sent num(1), byte position(27),

[company])
WORD(employ, sent num(1), byte position(15), [hire, use])
sentence num(1)

Since the semantics is run on an ordered rewrite system, the overlays take the
form of additional rule sets which occur in the stack of ordered semantics rules. To
do this effectively, the rules have to be factored so that new rule sets can be inter-
woven in the stack without having to alter the base files. If the base files have to be
altered, then whenever a new version of the base semantics is released, the changes
for the overlay will be lost and have to be hand added. In order to overlay the se-
mantics, XLE provides a way to call the new, overlayed stack and to implement
application specific commands.

195

The semantics rules used in IDSS and as the base semantics for the ParGram
English grammar are divided into two main sets: semantic rewrites and anaphora
resolution. The semantic rewrites are further divided into six sets, including core
semantic rules, sense lookup rules, and cleanup rules. For IDSS, two additional rule
sets are added before the semantic rules and after the anaphora rules. For other ap-
plications, such as consumer search, different sense lookup rules may be overlayed.
The basic semantic XFR rule stack used in IDSS is shown in (16). Details of the
pre- and post-semantic rules are discussed in this section.

(16) Semantic XFR Rule Stack
Input: syntactic f- and c-structure

Pre-semantics

Semantic rules
core rules
sense lookup rules
cleanup rules

Anaphora rules

Post-semantic Rules
entity detection rules
relation detection rules
cleanup rules

Output: Entities and Relations

4.1 Pre-semantic Rewrite Rules

The IDSS pre-semantic rules are very simple (three calls to the same template) and
are used to pick up the special entities provided by the IDSS morphology, e.g., the
addresses, phone numbers. These convert the entities into a format that resembles
that of proper names and other aliased items and hence is recognized by the seman-
tics.

4.2 Post-semantic Rewrite Rules

The post-semantics/anaphora rule set is more complex. These rules operate on the
output of the semantics to extract the entities and entity relations needed for IDSS:
they identify entities such as proper nouns, time expressions, phone numbers, nouns
in certain classes (e.g., currencies and explosives); they identify relations such as
who works where, who lives where, and who knows whom; they provide informa-
tion such as synonyms of each content word.

196

The entity detection rules are relatively straightforward. They take a subset of
the word facts already present in the semantics and rewrite them to contain the infor-
mation needed in the IDSS application. For example, all proper nouns are marked
as entities and are included with information as to their type and location in the sen-
tence, as shown in (17).

(17) a. ENTITY(Detroit, location, sent num(1), byte position(24), [Detroit])

b. ENTITY(Smith, person, sent num(1), byte position(10), [John, Smith,
Mister Smith, Mister John Smith])

At the level of the semantics, no lexicon is needed to determine which entities to
mark. Instead, it is features from the syntactic f-structure such as the PROPER-TYPE

which provide the trigger for the rule.
The rules also allow for words with certain meanings to be extracted. This is

done by determining what WordNet (Fellbaum, 1998) synset describes the class of
interest and then creating entity facts for any words with this synset somewhere in
the hypernyms of the word’s semantics. For example, in certain application do-
mains, explosives and weapons may be of interest and hence should be recognized
as entities, which can then be highlighted or redacted as appropriate. If this is the
case, the extracted entities for a sentence like (18a) will include an entity fact as in
(18b) since WordNet knows that dynamite is a type of explosive.

(18) a. The dynamite arrived on Friday.

b. ENTITY(dynamite, explosive, sent num(1), byte position(1))

After the entities are identified, relations among them are posited. By identify-
ing the entities first, more general relation rules can be written that look for relations
between entities of a particular type, e.g. certain relations hold between person en-
tities and company entities but not between persons and other persons.

The rules to extract relations among entities are more complicated than the en-
tity detection rules. In general, the relations of interest are specific for a given IDSS
application. For example, some application domains have rules to extract informa-
tion as to which people work for which company. Detecting these relations at the
semantic level is simpler than at the text string or the syntactic f-structure level. For
example, all of the forms in (19) will have the same basic role relations in the se-
mantics.

(19) a. IBM employs Robin Abramov.

b. Robin Abramov is employed by IBM.

c. IBM’s employee, Robin Abramov,

d. IBM’s employment of Robin Abramov

197

e. Robin Abramov is an employee of IBM.

f. Robin Abramov’s employer is IBM.

These role relations are then used to extract an ENTITY-REL fact as in (15c). How-
ever, even at this highly normalized level, several rules can be required to extract
a given relation. In the works-for relation example in (15), the same relation ex-
pressed by the corresponding work for phrases have slightly different roles assigned
to them by the semantics. As such, for high value relations, there may be several
rules to extract the relevant relation facts.

There is a default rule for relation extraction that marks all entities in a sentence
as occuring together. This information could be reconstructed from the entity facts
because the sentence number is recorded as part of the fact. However, by combin-
ing them into a single fact, applications can immediately see co-occurrences. An
example is shown in (20).

(20) a. Mary left and John arrived.

b. ENTITY(John, person, sent num(1), byte position(15), [John])
ENTITY(Mary, person, sent num(1), byte position(1), [Mary])
ENTITY-REL(cooccuring(1), [Mary, John])

Once the entities and relations are identified, the rest of the semantic facts are
deleted, leaving just the IDSS specific information, as shown in (15c).

Since the rules operate after all the base semantic rules, improvements to the
semantics can be automatically incorporated by updating to the newest version of
the base semantics. If there is a change in analysis to the semantics, it may be nec-
essary to change the IDSS rules to be sensitive to these changes. The rules which
define the feature space of the base semantics, as well as the svn version control sys-
tem and the regular use of regression testing whenever changes are incorporated
(Chatzichrisafis et al., 2007), make such changes in the base semantics relatively
easy to track.

4.3 Flags

The rewrite system also allows flags to be set that can be used to trigger or block
rules. The rules check for the setting of the flags and then trigger (or not) based on
the setting for the run-time system. These flags are set when loading the rules to
produce the desired behavior.

Even in non-overlay grammars, a flag of this type is used to trigger feature check-
ing rules when used in debugging mode. Consider the feature checking rule in (21).
The flag debug(%%) is set to 1 when the system is being run in debug mode. If it
is, then the rule in (21) fires whenever there is a two argument predicate that is not
listed as a licensed feature.

198

(21) getp(debug(1)) ,
qp(%Feat, [%Arg1, %Arg2]), licensed feature(%Feat,2)
==
NOT LICENSED FEAT(qp(%Feat, [%Arg1, %Arg2])).

In the run-time system, this flag is turned off by setting debug(%%) to 0 in order to
avoid the insertion of warning messages in the output structures. The use of flags
in the current IDSS overlay system is kept to a minimum, being largely restricted to
debugging, but it does offer a feature similar to the syntactic OT marks for remov-
ing or inserting (but not ranking) rules without altering the XFR semantic rule files
themselves.

5 System Issues and Conclusions

System Issues All the above components are kept under an svn version control
system and undergo regular regression testing (Oepen et al., 1998, 2002; Chatzichrisafis
et al., 2007). The versioning allows easy access to previous versions of the system.
This is useful not only for backing out of changes that turned out not to be improve-
ments, but also for allowing the use of previous versions of the grammar and the se-
mantics until the overlay grammars can catch up to the changes made. In addition,
svn makes it possible for multiple developers to work on the system at the same
time, helping to merge changes made by different people. The regular regression
testing highlights changes, whether improvements or not, to each component and to
the system as a whole. Sometimes changes to a given component will have no ef-
fect on a specific application while at other times even small changes to components
can significantly alter the behavior of the system.

Conclusions Adapting a complex deep processing system to an application re-
quires changes to all levels of the processing pipeline. As such, it is important that
easy-to-use overlay mechanisms are provided at each level and that the levels are
modular. The form of these mechanisms may vary depending on the type of system
component (e.g., overlaying a unification-based grammar requires different tech-
niques than overlaying an ordered rewrite system). Having such mechanisms al-
lows the application to seamlessly incorporate improvements to the base system
over time, while maintaining the specialization features. This is particularly im-
portant when base components of the system are still undergoing rapid development
(e.g., with the semantics in the IDSS application described here), but even relatively
stable components will improve over time and applications need to take advantage
of these improvements without a major system overhaul.

This paper has outlined a series of tools that are used in XLE to overlay all levels
of analysis from tokenization to semantics, using the IDSS application as an exam-
ple. The XLE overlay mechanisms have been refined over time based on experi-
ences with a number of specialized domains and applications. Even with the over-
lay mechanisms in place, the base rules of each component have to be designed to

199

allow overlays through appropriate rule factoring and modularization of rule sets
and system components.

References

Beesley, Kenneth and Karttunen, Lauri. 2003. Finite State Morphology. CSLI Pub-
lications.

Bender, Emily, Flickinger, Dan and Oepen, Stephan. 2002. The Grammar Matrix:
An Open-Source Starter-Kit for the Rapid Development of Cross-linguistically
Consistent Broad-Coverage Precision Grammars. In COLING Workshop on
Grammar Engineering and Evaluation.

Bier, Eric, Ishak, Eddie and Chi, Ed. 2006. Entity Workspace: an evidence file that
aids memory, inference, and reading. In IEEE International Conference on Intel-
ligence and Security Informatics (ISI 2006), pages 466–472, Springer Verlag.

Bobrow, Daniel G., Cheslow, Bob, Condoravdi, Cleo, Karttunen, Lauri, King,
Tracy Holloway, Nairn, Rowan, de Paiva, Valeria, Price, Charlotte and Zaenen,
Annie. 2007. PARC’s Bridge and Question Answering System. In Proceedings
of the Grammar Engineering Across Frameworks 2007 Workshop, CSLI On-line
Publications.

Bobrow, Daniel G. Condoravdi, Cleo, Crouch, Richard, Kaplan, Ron, Karttunen,
Lauri, King, Tracy Holloway, de Paiva, Valeria and Zaenen, Annie. 2005. A Ba-
sic Logic for Textual Inference. In AAAI Workshop on Inference for Textual Ques-
tion Answering.

Butt, Miriam, Dyvik, Helge, King, Tracy Holloway, Masuichi, Hiroshi and Rohrer,
Christian. 2002. The Parallel Grammar Project. In COLING Workshop on Gram-
mar Engineering and Evaluation.

Chatzichrisafis, Nikos, Bouillon, Pierrette, Rayner, Manny, Santaholma, Marianne,
Starlander, Marianne and Hockey, Beth Ann. 2006. Evaluating Task Performance
for a Unidirectional Controlled Language Medical Speech Translation System. In
Proceedings of the HLT-NAACL Workshop on Medical Speech Translation.

Chatzichrisafis, Nikos, Crouch, Dick, King, Tracy Holloway, Nairn, Rowan,
Rayner, Manny and Santaholma, Marianne. 2007. Regression Testing For
Grammar-Based Systems. In Proceedings of the Grammar Engineering Across
Frameworks 2007 Workshop, CSLI On-line Publications.

Crouch, Dick. 2005a. Packed Rewriting for Mapping Semantics to KR. In Interna-
tional Workshop on Computational Semantics.

Crouch, Dick, Dalrymple, Mary, Kaplan, Ron, King, Tracy Holloway, Maxwell,
John T. and Newman, Paula. 2007. XLE Documentation, on-line documentation.

200

Crouch, Dick and King, Tracy Holloway. 2006. Semantics via F-structure Rewrit-
ing. In Proceedings of LFG06.

Crouch, Richard. 2005b. Packed Rewriting for Mapping Semantics to KR. In Pro-
ceedings Sixth International Workshop on Computational Semantics, Tilburg,
The Netherlands.

Dalrymple, Mary. 2001. Lexical Functional Grammar. Academic Press.

Fellbaum, Christiane (ed.). 1998. WordNet: An Electronic Lexical Database. The
MIT Press.

Frank, Anette, King, Tracy Holloway, Kuhn, Jonas and Maxwell, John T. 2001.
Optimality Theory Style Constraint Ranking in Large-scale LFG Grammars. In
Peter Sells (ed.), Formal and Empirical Issues in Optimality Theoretic Syntax,
pages 367–397, CSLI Publications.

Kaplan, Ron, King, Tracy Holloway and Maxwell, John T. 2002. Adapting Existing
Grammars: The XLE Experience. In COLING Workshop on Grammar Engineer-
ing and Evaluation.

Kaplan, Ron, Maxwell, John T., King, Tracy Holloway and Crouch, Richard.
2004a. Integrating Finite-state Technology with Deep LFG Grammars. In Pro-
ceedings of the Workshop on Combining Shallow and Deep Processing for NLP
(ESSLLI).

Kaplan, Ron and Newman, Paula. 1997. Lexical Resource Concilation in the Xerox
Linguistic Environment. In ACL Workshop on Computational Environments for
Grammar Development and Engineering.

Kaplan, Ron, Riezler, Stefan, King, Tracy Holloway, Maxwell, John T., Vasserman,
Alex and Crouch, Richard. 2004b. Speed and Accuracy in Shallow and Deep
Stochastic Parsing. In Proceedings of HLT-NAACL’04.

Maxwell, John and Kaplan, Ron. 1991. A Method for Disjunctive Constraint Sat-
isfaction. Current Issues in Parsing Technologies .

Maxwell, John and Kaplan, Ron. 1996. An Efficient Parser for LFG. In Proceedings
of the First LFG Conference, CSLI Publications.

Oepen, Stephan, Flickinger, Dan, Toutanova, Kristina and Manning, Chris. 2002.
LinGO Redwoods. A Rich and Dynamic Treebank for HPSG. In First Workshop
on Treebanks and Linguistic Theories.

Oepen, Stephan, Netter, Klaus and Klein, J.1̇998. TSNLP — Test Suites for Natural
Language Processing. In John Nerbonne (ed.), Linguistic Databases, CSLI.

201

Prince, Alan and Smolensky, Paul. 1993. Optimality Theory: Constraint Interac-
tion in Generative Grammar, ruCSS Technical Report #2, Center for Cognitive
Science, Rutgers University.

Rayner, Manny, Hockey, Beth Ann and Bouillon, Pierrette. 2006. Putting Linguis-
tics into Speech Recognition: The Regulus Grammar Compiler. CSLI.

202

Towards a Generic Multilingual Dependency Grammar
for Text Generation

François Lareau and Leo Wanner
Pompeu Fabra University Pompeu Fabra University

and ICREA

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

203

Abstract

For practical multilingual text generation, efficient development and rep-
resentation of large scale grammatical and lexical resources are crucial. One
way to ensure efficiency is to share resources as much as possible between
languages. We present some preliminary work on shared grammatical re-
source development within the framework of the Meaning-Text Theory, em-
phasizing the lexicalist point of view. We show that rich dictionaries allow
for more generic grammar rules which can be used for several languages, so
that the number of language-specific rules is kept low. We also discuss the
benefits of shifting the workload to the dictionaries from the viewpoint of
extension and consistency control as well as the impact it has on the organ-
ization of work. Furthermore, we address evaluation methodologies for the
shared grammatical resources we develop.

1 Introduction

Practical multilingual natural language generation (MNLG) cannot be achieved
without large scale grammatical and lexical resources. For an efficient development
of multilingual broad coverage grammatical resources, two different strategies have
been applied: grammar porting (Alshawi, 1992; Kim et al., 2003) and grammar
sharing (Avgustinova and Uszkoreit, 2000; Bender et al., 2002; Bateman et al.,
2005; Santaholma, 2007). In this article, we present some preliminary work on
the development of shared grammatical MNLG resources in the framework of the
dependency-based Meaning-Text Theory, MTT (Mel’čuk, 1988). MTT has tradi-
tionally been popular in text generation due to its multi-stratal linguistic model,
which allows us, on the one hand, to select for the input structure a degree of ab-
straction that suits best the application in question, and, on the other hand, to keep
the generation resources as modular and as simple as possible.

According to MTT, sentence generation is viewed as a sequence of transduc-
tions between structures of adjacent strata. Depending on the required degree
of abstraction, generators may start from the conceptual, semantic, or syntactic
structure (see also below). Each transduction is realized by a separate language-
dependent grammar such that grammar developers are faced with the task of de-
veloping n× (m− 1) grammars for each application (with n being the number of
languages covered and m the number of strata involved in the generation process).
The need for efficient sharing of grammatical resources across languages is thus
obvious.

†The work described in this paper has been funded by the European Commission in the framework
of the eContent Programme under the contract number EDC-11258. We would like to thank all
colleagues who have contributed to the development of the resources presented here: Margarita
Alonso Ramos, Bernd Bohnet, Kim Gerdes, Simon Mille, Christophe Onambele Manga, Patrycja
Przewoźnik, and Vanesa Vidal. Special thanks go to Bernd Bohnet, who acted as firefighter whenever
MATE was not behaving as the grammarians expected. Many thanks also to Emily Bender and Tracy
Holloway King for suggestions that significantly improved the final version of the paper.

204

In our current application, we cover six languages (Catalan, English, French,
Polish, Portuguese, and Spanish) for the domain of air quality, using as develop-
ment framework and generator the graph grammar-based workbench MATE (Bo-
hnet et al., 2000; Bohnet, 2006). It turned out that the effect of resource sharing
even across languages that belong to different families (Romance, Germanic, and
Slavic) is considerable. In what follows, we present our experience.

The remainder of the article is structured as follows. In Section 2, we give a
short introduction to MTT. Section 3 describes the formalism used for the diction-
aries and grammars in MATE. Section 4 contains the general principles that under-
lie our grammatical resource architecture. In Section 5, we assess the benefits of
this architecture for efficient grammar development, before presenting in Section 6
an evaluation of the resources thus obtained. Section 7, finally, summarizes the
central aspects of our approach and offers some conclusions.

2 Overview of MTT

As already mentioned above, MTT is based on a multi-stratal linguistic model.
In total, seven different strata are distinguished, of which five are immediately
relevant to written language generation: (i) the semantic stratum, (ii) the deep-
syntactic stratum, (iii) the surface-syntactic stratum, (iv) the deep-morphological
stratum,1 and (v) the surface-morphological stratum. For generation applications
that start from a non-linguistic content representation or even from numerical data
series (as we do), an additional conceptual stratum is added.

Each stratum has its own alphabet over which structures for that stratum are
defined, and its own interpretation for those structures. Thus, conceptual structures
(ConS) are conceptual graphs in the sense of Sowa (2000). Semantic structures
(SemS) are predicate-argument graphs with nodes labeled by semantemes and arcs
labeled by the ordinal numbers of the argument relations (ordered in ascending
degree of obliqueness). Deep-syntactic structures (DSyntS) are dependency trees
with nodes labeled by “deep” lexical units (LUs)2 and arcs labeled by universal
syntactic relations: argument (I, II, III, . . .), attributive (ATTR), and coordinative
(COORD). Surface-syntactic structures (SSyntS) are dependency trees with nodes
labeled by any kind of lexeme (including closed class lexemes) and arcs labeled by
grammatical functions (subject, direct object, . . .); SSyntS is thus equivalent to the
f-structure in LFG. Deep-morphological structures (DMorphS) are chains of lem-
mas annotated with all relevant morpho-syntactic features. Surface-morphological
structures (SMorphS) are similar to DMorphS except that contractions, elisions,

1In the MTT literature, the deep-morphological stratum has recently also been referred to as
“Topological Stratum” (Gerdes and Kahane, 2007).

2The set of deep LUs of a language L contains all LUs of L—with some specific additions and
exclusions. Added are two types of “artificial” LUs: (i) symbols of lexical functions (LFs), which are
used to encode lexico-semantic derivation and lexical co-occurrence (Mel’čuk, 1996); (ii) fictitious
lexemes, which represent idiosyncratic syntactic constructions of L. Excluded are: (i) structural
words, (ii) substitute pronouns and values of LFs.

205

con:AQ_index
type:index

con: AQ_eval
type: evaluationOBJ

VAL RSLT

con: 6
type: number

con: very_poor
type: mark

MEAN

THIS1 FUNC2

QUALITY POOR

MAGNAIR

I II

I II

I ATTR

quality

air

1
poor2

1

Magn

quality:2
1

1

air:2

index
2

"6"

1 2
mean

QUALITY
compound

AIRTHE

determinative

VERY

POOR
modificative

BE
subjective copulative

THAT
conj copulative

THIS1

MEAN
d_objectivesubjective

2. Semantic Structure

4. Surface!Syntactic Structure

this<PRO.SUB>

very b poor b "."

b
the b air<SG> b quality<SG>
b

N S
INTERPRETATION

1. Conceptual Structure

3. Deep!Syntactic Structure

be<V.IND.PRES.SG.3> b

thatmean<V.IND.PRES.SG.3> b
b

5. Deep!Morphological Structure

Figure 1: Sample structures at different strata of an MTT model

epenthesis and morph amalgamation have been performed. Figure 1 illustrates the
first five types of structures for the sentence This means that the air quality is very
poor; the SMorphS is obvious and does not need explicit illustration.

For each pair of adjacent strata Si and Si+1, a separate grammar module Gi
i+1

is defined such that any well-formed structure Sij of Si can be mapped by Gi
i+1

onto a well-formed structure Si+1k
of Si+1, with Sij and Si+1k

being equivalent
with respect to their meaning. For convenience, we introduce a further grammar
module to map a SMorphS onto a text string. As a rule, the mapping requires access
to dictionaries containing information concerning the units of Sij and Si+1k

.

3 Formal Framework: MATE

The MATE workbench consists of a number of support modules for the develop-
ment of dictionaries and grammars and a transduction-based generator that maps

206

any automatically derived or manually specified input structure Sij of the stratum
Si onto its equivalent structure Si+1k

of the stratum Si+1 by applying the corres-
ponding grammar module Gi

i+1 to Sij under the use of dictionaries.

3.1 Dictionary Encoding in MATE

Dictionaries contain two types of information: (i) information concerning the ele-
ments of the different node alphabets (the vocabulary) and (ii) information con-
cerning the correspondence between elements of node alphabets of adjacent strata.
Therefore, three main dictionaries are available: a conceptual dictionary, a se-
mantic dictionary and a lexical dictionary. All are organized in terms of recursive
feature structures.

The conceptual dictionary is used, first of all, to encode concept-semanteme
mapping information; cf. a simplified entry for the concept CONCENTRATION:3

concentration: property_attribute {
sem = ‘concentration’
MATR = {relation = 1 target=referent}
VAL = {relation = 2 target=referent}
ATTR = {relation = 1 source=referent}}

The concept CONCENTRATION has two argument slots: something which
has a concentration (referred to as MATR in accordance with Sowa (2000)), and
a value (referred to as VAL), i.e., an absolute concentration figure. The concept
may also be modified by a qualitative characterization of the concentration (“high”,
“low”, etc.), referred to as ATTR. The corresponding semanteme ‘concentration’
takes MATR as its first semantic argument (indicated by the “relation=1” para-
meter embedded in MATR’s value) and VAL as its second. The attributes “tar-
get=referent” and “source=referent” indicate the direction of the semantic rela-
tion (for MATR and VAL, the semantic predicate is ‘concentration’, which takes
MATR’s and VAL’s corresponding semantemes as its arguments, while ATTR’s
semantic correspondent is a predicate taking ‘concentration’ as its argument).

The semantic dictionary gives, for every semanteme described, all its possible
lexicalisations. For instance, the meaning ‘cause’ would be mapped to the LUs
CAUSE[V], CAUSE[N], RESULT[V], RESULT[N], DUE, BECAUSE, CONSEQUENCE,
etc. Note that we do not consider at this stage the valency of the LUs. Thus, it
does not matter that X causes Y means that Y results from X; what interests us
here is only that these two lexemes can both be used to denote the same situation,
regardless of the communicative orientation. Cf., for illustration, the entry for the
semanteme ‘concentration’ as specified in the semantic dictionary:

concentration {
label = parameter
lex = concentration }

3More information can be added to this basic entry, but we leave it aside in this paper.

207

The semantic type of a semanteme can be specified in the semantic dictionary
(cf. “label=parameter”). It is also possible to specify the semantic type of the argu-
ments of a predicate. For instance, adding the attribute “1=substance” here would
force the first semantic argument of ‘concentration’ to be of type “substance”.

The lexical dictionary contains, for each LU, at least information on its part
of speech and minimal sub-categorization information. For more elaborate gener-
ation, the whole variety of sub-categorization patterns and lexical co-occurrence
(i.e., collocation) information should also be captured. As already mentioned
above (see footnote 2), the latter is specified in terms of lexical functions (LFs). A
lexical co-occurrence LF is a directed lexico-semantic relation that holds between
two LUs that form a lexically restricted expression (e.g. heavy smoker, make a
statement, etc.) (Mel’čuk, 1996). When applied as a function to the semantic head
of the expression, such an LF provides the second element.4 There is a specific
(simple or complex) LF for each recurrent co-occurrence pattern in language. LFs
are shown to be language- and domain-independent. But note that LF instances are
by nature language- and even domain-specific. Consider, for illustration, the entry
for CONCENTRATION:

concentration {
// Grammatical characteristics:
dpos = N // deep part of speech is N(oun)
spos = common_noun // surface part of speech is common noun
// Government pattern (subcategorization):
gp = {

// Sem-DSynt valency projection (1⇒I, 2⇒II):
1 = I // first semantic actant is first deep-syntactic actant
2 = II // second semantic actant is second deep-syntactic actant
// First syntactic actant can be realized as "ozone concentration":
I = {

dpos=N // actant is a noun
rel=compound // linked with compound relation
det=no // takes no determiner

}
// First syntactic actant can be realized as "concentration of ozone":
I = {
dpos=N // actant is a noun
rel=noun_completive // linked with noun_completive relation
prep=of // takes preposition "of"
det=no // takes no determiner

}
// Second syntactic actant can be realized as "concentration of 180 µg/m3":
II = {

dpos=Num // actant is a number
rel=noun_completive // linked with noun_completive relation

4An LF may provide as second element several alternative LUs; cf. give|deliver|make| a speech.
LFs are thus maps rather than functions. However, for convenience, LFs are usually referred to as
functions in the literature.

208

prep=of // takes preposition "of"
}

}
// Lexical functions:
Magn = high
AntiMagn = low
Adv1 = in // "(we found) ozone in a concentration (of 180 µg/m3)"
Func2 = be // "the concentration (of ozone) is 180 µg/m3"
Oper1 = have // "ozone has a concentration (of 180 µg/m3)"
IncepFunc2 = reach // "the concentration (of ozone) reached 180 µg/m3"
IncepOper1 = reach // "ozone will reach a concentration (of 180 µg/m3)"

}

We use two levels of granularity for the part of speech, referred to as deep and
surface part of speech (resp. dpos and spos). This allows for quick reference to a
whole family of parts of speech in grammar rules (for example, “N” refers to any
proper noun, common noun, or pronoun). All specific grammatical characteristics
of an LU would be described here as a feature-value pair (for example, its gender
or its ability to take or not plural, definiteness, a certain tense, etc.).

The sub-categorization must contain the projection of the semantic to the syn-
tactic valency and all possible ways of syntactically connecting the LU with its
dependents. Governed prepositions must be indicated here, as well as case assign-
ment if it exists in the language being described. One can optionally restrict the
part of speech of the dependents (for instance, the first actant of CONCENTRATION

must be a noun, while its second must be a number).
As mentioned above, lexical functions are an efficient way of referring to recur-

rent semantic and syntactic patterns of restricted lexical co-occurrence. In the ex-
ample above, Magn points to an LU which is a syntactic modifier and has a mean-
ing of intensification (AntiMagn is its antonym). The function Func2 refers to
a semantically emptied verb that takes the keyword (CONCENTRATION) as its sub-
ject and the keyword’s second semantic actant as its object. IncepOper1 points to
a verb meaning roughly ‘start’ which takes the keyword as its object and the first
actant of the keyword as its subject. The more information on restricted lexical
co-occurrence the lexical dictionary contains, the more natural and idiomatic the
generated text will feel.

MATE lets the user define as many dictionaries as necessary. We have presen-
ted the three main ones we have in our resources, but there can be more. For
instance, it is possible to use a full-form dictionary instead of a proper morpholo-
gical model, or a hybrid model as we implemented in our system. We also had a
pseudo-dictionary for each language where we stored information such as the name
of the language, the branch/family it belongs to, its being a “pro-drop language”
or not, etc. This information forces or blocks the application of specific rules. For
example, marking a language as “pro-drop” blocks the rules of SSynt⇒ DMorph
that realize pronominal subjects.5

5We still need the pronoun in the surface syntactic structure in order to perform agreement, which

209

3.2 Grammar Encoding in MATE

A grammar Gi
i+1 consists of a set of minimal grammar rules of the following gen-

eral format (see (Bohnet, 2006, 39ff) for details):

leftside (ls): <gi >
rightside (rs): <gi+1 >
rightcontext (rc): <g′

i+1 >
conditions (cd): <Boolean expr. over Dconc ∪Dsem ∪Dlex ∪Si ∪Si+1 >
correspondences (cr): {nij ⇔ ni+1k

}

with gi being a graph defined over the node and arc alphabets of Si, gi+1 and g′
i+1

being defined over the node and arc alphabets of Si+1; Dconc, Dsem, Dlex being
the conceptual, semantic and lexical dictionaries; and nij ∈ gi, ni+1k

∈ gi+1.
The application of a rule consists in the identification of an isomorphic image of
gi in a given source structure Sij and subsequent introduction of an isomorphic
image of gi+1 in the target structure Si+1k

which is under construction. The state-
ment ‘nij ⇔ ni+1k

’ establishes a link between corresponding nodes in Sij and
Si+1k

in order to ensure that (i)information can be propagated from node to node
across strata, (ii) the isolated fragments of the target structure as introduced by
the individual rules can be unified to a connected well-formed structure. A rule is
applicable if the specified conditions are fulfilled. As indicated, conditions may
be defined over all dictionaries and both strata.6 The rules in Gi

i+1 are minimal
in the sense that the left-hand side of each rule is maximally elementary from the
linguistic perspective: its gi consists either of an elementary meaningful graph
defined over the alphabets of Si or a graph that is transduced to an elementary
meaningful graph defined over the alphabets of Si+1. As a rule, an elementary
meaningful graph consists either of a single node (a name) or a single arc (a lin-
guistic relation)—although sometimes bigger structures are required.

In the remainder of this section, we illustrate the system with sample rules for
the first four types of transduction involved in MTT-based generation.7

Rule 1 (Sample Con⇒ Sem rule)

ls: ?Xcon{PTIM->?T{con="tomorrow"}}
rc: ?Xsem{tense=FUT}
cr: ?Xcon ⇔ ?Xsem

Rule 1 maps the conceptual time relation between the concept denoted by the
variable ‘?Xcon’ and the “universal”8 concept TOMORROW onto the tense feature

takes place in the SSynt ⇒ DMorph transduction.
6As a matter of fact, the conditions may also draw on the context, the discourse structure, the user

model, etc. However, for simplicity’s sake, we neglect this issue here.
7The rules of the DMorph ⇒ SMorph and SMorph ⇒ Text transductions are less interesting

since they simply spell out morphological features of the words and pass the strings to an external
morphological model.

8It is not absolutely true that all concepts are universal; some could be said “culture-specific”. For
instance, periods of the day vary considerably from one culture to another. In Spain, for example,

210

“FUT” of the semanteme denoted by the variable ‘?Xsem’. Note that ‘?Xsem’ is
specified in the right context slot—which means that the corresponding semanteme
is assumed to have been already introduced into the target structure by another rule.

Rule 2 (Sample Sem⇒ DSynt rule)

ls: ?Xsem{?r->?Ysem}
rs: ?Xds{I->?Yds}
rc: ?Xds
cr: ?Xsem ⇔ ?Xds

?Ysem ⇔ ?Yds
cd: lexicon::(?Xds.lex).(gp).(?r)=I

Rule 2 maps any semantic relation (denoted by the variable ‘?r’) of the se-
manteme denoted by ‘?Xsem’ onto the first deep syntactic actant of the corres-
ponding LU (denoted by ‘?Xds’). The node ‘?Xds’ being also in the right context
slot, must be already present in the target structure. This rule has a condition that
accesses a dictionary called “lexicon” (which is the lexical dictionary introduced in
Section 3.1). It searches for the entry that corresponds to the lexicalisation on the
node ‘?Xds’ and browses its attributes to verify that the projection of the semantic
to the syntactic valency of the LU is such that the semantic relation ‘?r’ is mapped
to the deep-syntactic relation ‘I’. For instance, this rule would apply to the first
semantic argument of ‘concentration’ (cf. the sub-categorization for CONCENTRA-
TION in Section 3.1). This rule can be further refined to handle any deep-syntactic
actantial relation and to retrieve more information from the dictionary, such as
grammatical features imposed on the actant by its governor (part of speech, mood,
definiteness, etc.). For the sake of clarity, we shall consider only this simplified
version.

Rule 3 (Sample DSynt⇒ SSynt rule)

ls: ?Xds{dpos=V; finiteness=FIN; mood=IND; tense=FUT}
rs: ?Yss{slex=will

dpos=lexicon::(will).dpos
spos=lexicon::(will).spos
tense=PRES
finiteness=?Xds.finiteness; mood=?Xds.mood
aux_completive->?Xss{finiteness=INF}

rc: ?Xss
cr: ?Xds ⇔ ?Yss

?Xds ⇔ ?Xss
cd: language::(id).(iso)=ENG

Rule 3 introduces for an English verbal LU (referred to by ‘?Xds’) that carries
in the DSyntS the grammemes FIN, IND, and FUT the auxiliary WILL. WILL

the afternoon does not start before 3PM, while in Germany it starts as early as 12:00. We leave this
problem aside as it is beyond the scope of this paper.

211

inherits from ?Xds the grammemes of finiteness and mood, but not of tense—which
is for WILL PRES(ent) since the auxiliary itself has the present form (though it does
express a future tense). Note that in this case, one deep-syntactic node corresponds
to two surface-syntactic nodes.

Rule 4 (Sample SSynt⇒ Top rule)

ls: ?Xss{dpos=V
subj-> ?Yss
?r-> ?Zss}

rc: ?Ytp{b-> rc:?Ztp}
cr: ?Ytp ⇔ ?Yss

?Ztp ⇔ ?Zss
cd: not ?r=circumstantial

Rule 4 defines the relative ordering between the subject (‘?Yss’) of a verbal
lexeme (‘?Xss’) and any other dependent of the verb (‘?Zss’): the subject goes
before. The circumstantials (roughly speaking, the adjuncts) are excluded since
they may come before the subject.

4 Principles of Grammatical Resource Development

The sample rules cited above for illustration already give a hint that writing and
maintaining comprehensive MTT-based generation grammar modules is a complex
and very costly task—in particular, if the generation is to be multilingual.

To achieve the maximal efficiency possible, we adopt the following guidelines
when organizing the grammatical resources:

(a) extracting recurrent core rule patterns across languages and factorizing them
out into a “meta-grammar”,

(b) modularizing language-specific rules,

(c) shifting the bulk of the grammarian’s work to the lexicon,

(d) generalizing recurrent lexical patterns and introducing an inheritance mech-
anism.

Let us discuss the application of each of these guidelines in practice.

4.1 Sharing Core Grammar Components Across Languages

When developing grammatical resources for several languages in parallel, one
quickly finds that many of the rules are the same in more than one language—to the
point that some are identical for all languages under consideration. For instance,
Rule 2 mentioned in Section 3.2 would apply no matter whether the language is

212

Catalan, English, French, Polish, Portuguese or Spanish. It makes no reference
to any specific LU, nor does it refer to any language-specific relation (semantic
and deep-syntactic relations being universal by definition). In that sense, it is a
“universal” rule in our system. However, we do not claim that our resources con-
tain even one single rule that could be applied in any possible language. Although
Rule 2 seems a good candidate to universality (since it merely activates lexical in-
formation), consider for instance Rule 4 in Section 3.2. This rule also applies to
all the languages we considered in our application (even supposedly “free-order”
Polish looked better when the subject came first for the texts we had to generate).
However, it is clear that it cannot apply to all known languages.9

In contrast with these two generic rules, Rule 3 given in Section 3.2 is only
valid for English. It refers to a specific lexeme (WILL) and it even explicitly re-
quires that the ISO identification code of the language being currently processed
be “ENG” (see the note on the pseudo-dictionary for languages in Section 3.1).

Between these two extremes, it is possible to have rules that apply to a family
(or any arbitrary set) of languages. For example, consider noun-determiner agree-
ment. It does not exist in English nor in Polish. However, it is functionally the same
in all Romance languages under consideration (the determiner agrees in gender and
number with its governing noun). It is therefore possible to have only one rule for
all those languages (cf. Rule 5).

Rule 5 (An SSynt⇒ DMorph agreement rule for Romance languages)

ls: ?Xss{dpos=N
det->?Yss}

rc: ?Ytp{gender=?Xss.gender
number=?Xss.number}

cr: ?Xtp ⇔ ?Xss
?Ytp ⇔ ?Yss

cd: language::(id).(family)=romance

The general principle is to minimize the number of language-specific rules
(such as Rule 3) and maximize the number of generic rules. The degree of gen-
eralization one can achieve for a module depends on the language and the strata
involved. Languages that have agreement or a lot of lexical markers for gram-
matical meanings (articles, auxiliaries, etc.) require more language-specific rules.
Table 1 shows, for each module in our system, the number of generic and language-
specific rules we have and the percentage (in parentheses) of language-specific
rules for each language within each module. The last row shows the percentage of
language-specific rules for the individual languages over all modules.

As one can observe from Figure 2, the deeper the strata, the more generic a
module tends to be. The Con ⇒ Sem module is entirely language-independent,
as it relies on a more or less ad-hoc dictionary where a lot of information is hard-
coded. It is however highly domain-specific. We do not consider it as part of the

9Cf., e.g., the word order in relative clauses in German.

213

Table 1: Number of generic and specific rules per module and language

Module Core CT EN ES FR PL PT
Con⇒ Sem 50 0 0 0 0 0 0
Sem⇒ DSynt 59 8 8 7 7 11 6

(12%) (12%) (11%) (11%) (16%) (9%)
DSynt⇒ SSynt 64 13 16 11 16 7 12

(17%) (20%) (15%) (20%) (10%) (16%)
SSynt⇒ DMorph 70 13 3 12 19 8 14

(16%) (4%) (15%) (21%) (10%) (17%)
DMorph⇒ SMorph 7 8 5 6 10 10 6

(53%) (42%) (46%) (59%) (59%) (46%)
SMorph⇒ Text 12 1 1 1 1 1 1

(8%) (8%) (8%) (8%) (8%) (8%)
Language-specific rules (%) 14% 11% 12% 17% 12% 13%

linguistic model as such, since it has to be rewritten for each application,10 while
the other modules are intended to be as domain-independent as possible.

The Sem ⇒ DSynt module has, on average, 12% of language-specific rules
(with figures ranging from 9% for Portuguese to 16% for Polish). Language spe-
cific rules at this level are essentially for handling deep anaphora and some idio-
matic expressions that cannot be captured by standard lexical functions, such as
in the afternoon in a sentence like In the afternoon, the ozone concentration was
<will be> high, which can be used only if the afternoon in question is already in
the past or has not come yet (but not if it is present). The rest of the rules are
generic and handle deep lexicalisation, syntactic tree building, support verbs de-
scribed via standard lexical functions, quantification, etc. For example, Rule 2 in
Section 3.2 activates the projection of the semantic to the syntactic valency found
in the dictionary for any LU of any language.

The DSynt⇒ SSynt module has an average of a little more than 16% language-
specific rules. This ratio varies considerably from one language to another (from
10% for Polish to 20% for English and French). This is because auxiliaries, art-
icles and all other grammatical words are handled at this level. Thus, languages
with more lexical markers for grammatical meanings will require more specific
rules in this module than languages that tend to express these meanings morpho-
logically. For the treatment of verbal tense and aspect, we have a separate rule for
each possible auxiliary combination (will do, will be doing, will have done, will
have been doing, etc.). It would certainly have been possible to write only one rule
for each auxiliary, with conditions handling the correct composition when more
than one auxiliary is used. As a matter of fact, this would have better followed our
general guidelines for grammar development (we tend to generalize the rules as

10We are investigating ways of automating this task.

214

0%

20%

40%

60%

80%

100%

Con-Sem Sem-
DSynt

DSynt-
SSynt

SSynt-
DMorph

DMorph-
SMorph

SMorph-
Text

Specific Generic

Figure 2: Average generic / language-specific rule ratio by module

much as we can, in order to keep a high maintainability of the resources). Doing
so would have reduced the number of rules necessary for the auxiliaries from 12
to 4 for English. However, it would also have made those four rules significantly
more complex. We preferred keeping a higher number of simpler rules, so that
grammarians with less experience in formal linguistics would easily understand,
maintain and port them to other languages.

The SSynt ⇒ DMorph rules model two main phenomena: word-order and
agreement. Both phenomena vary greatly from one language to another. It is
therefore a little surprising that we have less than 14% language-specific rules on
average here. We believe that this is something of a statistical anomaly in that most
of the time, the best word-order for the texts we had to generate was more or less
the same for all languages considered in this application, including Polish. Obvi-
ously, if we had to generate other kinds of texts or in other languages, we would
certainly see the number of language-specific rules go up for this module. How-
ever, the good news is that word-order rules are among the simplest, so writing and
maintaining them is easy.

The DMorph ⇒ SMorph module shows the highest ratio of language-specific
rules: almost 51% on average (ranging from about 42% for English to nearly 59%
for French and Polish). However, this module contains very few rules (only 12 to
17 rules depending on the language, of which 7 are generic). It prepares the strings
that will be passed to the morphological module (or the full-form dictionary), with
all grammatical features in the correct order (so that an English finite verb, for
instance, would look like “reach<V><IND><PRES><SG><3>”). Basically, most
language-specific rules of this module only recopy the attributes found on the nodes
at previous levels as explicit codes in the chain that labels the node. It is a purely

215

technical process that has little linguistic relevance, but the number of language-
specific rules still has a strong correlation with the nature of the language: the more
complex the morphology of the language is, the higher the number of language
specific rules will be. It is also in this module that operations such as elision (Fr. le
homme→ l’homme), contraction (Eng. does not → doesn’t) and epenthesis (Pl. w
wjezdzie→ we wjezdzie) are computed.

The number of language-specific rules in the SMorph⇒ Text module11 is quite
low (8% for all languages). However, this figure does not reflect any interesting
linguistic fact. This module only manages the final realization of wordforms; it
handles spelling out, capitalization, and so on. The number of rules in this module
is very low (13 only for any language, of which 12 are generic). The only rule
that is language-specific simply calls the appropriate two-level morphology model
or full-form dictionary for the language in question, passing on the string that was
built by the previous module.

Given that in each module we need some language-specific rules, the rules are
sensitive to the language that is being processed. While most can always apply,
some are marked in order to apply (or not to apply) for a given language (or set
of languages). In fact, what we have is a set of rules from which the grammar of
a specific language is a subset. From the point of view of the developer, it can be
seen as a pool of shared rules to which one can “subscribe" for the language he
wants to describe.

4.2 Rule packaging

The rules inside each module are further organized into packages. A package is
a set of rules that work together, or on the contrary, are in competition; it handles
one specific linguistic phenomenon. For example, in the DSynt⇒ SSynt module,
there are separate packages for idioms, coordination, auxiliaries, etc. Formally, a
package is defined by an abstract rule from which other rules depend. An abstract
rule is always empty, but it may have conditions associated to it, which are inherited
by all the rules that depend on it. A package can be composed of sub-packages. It
is notably the case of the language packages. Language-specific rules are grouped
into a separate package for each language, which consists of a number of sub-
packages for various language-specific phenomena (see Section 4.1 for a list of
such phenomena by module).

In each module, there is a so-called “core” package that contains all essential
rules that are needed for processing any input structure. For instance, the SSynt
⇒ DMorph module’s core rules handle lexicalisation, actantial relations and the
ATTR-relation (for modifiers), without which nothing can be done. Also in this
module are packages for lexical co-occurrence (in particular support verbs), quan-
tification, circumstantials, voice, and language-specific packages (mainly for deep
anaphors). Phenomena that span over more than one module, such as coordination,

11Recall that we use an additional transduction from the SMorphS to text not foreseen in MTT.

216

have a corresponding package in each module involved.
With this design it is possible to assign different packages to different de-

velopers who are specialists of a specific domain and who need not worry about
the problems outside of their sandbox. It is also easier to modify the grammar to
meet specific needs by choosing the desired modules or by adding in new ones.

So far, we have limited the package-based design to grammars only. Eventu-
ally, we will also adopt the same architecture for the dictionaries. The lexical core
of each language should constitute the main package, while additional packages
could be developed by qualified lexicographers for specific domains (air quality,
traffic information, healthcare, etc.).

4.3 Rich Hierarchical Dictionaries

As is customary in many modern grammar theories (among others, HPSG, SFG,
Word Grammar, etc.) and their implementations, we use inheritance in the lexical
resources, factorizing all possible lexical information into abstract entries from
which the LUs depend. Consider, for illustration, a fragment of the verbal hierarchy
predicate→ verb→ direct transitive verb.

The predicate node provides the default projection of the semantic valency to
the syntactic valency of a predicative unit. We assume that a predicate possesses
at most six actants, with the ith semantic actant (denoted by an Arabic numeral)
usually corresponding to the ith syntactic actant (denoted by a Roman numeral):

"predicate" {
gp={ 1=I; 2=II; 3=III; 4=IV; 5=V; 6=VI } }

A verbal lexeme is a predicate (i.e., inherits, if not overridden, all features
defined for the predicate unit). Furthermore, its surface and deep part of speech
are respectively ‘V’ and ‘verb’ and, by default, its first syntactic actant is realized
as a grammatical subject, usually a noun (this can of course be overwritten for any
given verb):

"verb" : "predicate" {
dpos=V; spos=verb
gp={ I= {dpos=N; rel=subj} }

}

Note that such abstract entries are not necessarily universal. For each language,
we keep a separate hierarchy since the parts of speech and the morpho-syntactic
behavior of their members can vary cross-linguistically. For example, Polish verbs
usually assign the nominative case to their subject, unless otherwise specified, so
this information would be added to the abstract verb entry for Polish. One could
prefer having a polish_verb entry that would inherit from the verb entry above
(or even from a more generic one that would not specify the nature of the subject,
for instance) and refine it. However, it is not possible in the current version of the

217

system to have an entry shared by several languages. All that can be done is to
copy the verb entry into the respective dictionary of each language. Since it was
not possible to have the information written once for all languages, and since the
differences between the parts of speech of the languages we had to deal with were
not great, we did not seek a more refined hierarchy.

English direct transitive verbs inherit from the verb class. Furthermore, they
realize their second syntactic actant as a direct object, and it is by default a noun:

"verb_dt" : "verb" {
gp={ II= {dpos=N; rel=dobj} }

}

Now, adding a direct transitive verb to the lexicon is just a matter of ex-
pressing its membership in the verb_dt class. Consider, for illustration, the entry
for the verb EXCEED below, where we have added information on its lexical co-
occurrence:

exceed : "verb_dt" {
Magn = "by far"
AntiMagn = "a little"

}

All information about the projection of the semantic to the syntactic valency,
part of speech and surface realization of the actants has been inherited. Of course
this information can be overridden, simply by overwriting it. For example, the verb
EXPECT has two possible sub-categorization patterns, none of which corresponds
to the default pattern for verbs:

expect : "verb" {
gp={ II={dpos=V; finiteness=FIN; mood=IND; prep=that} }
gp={ II={dpos=V; finiteness=INF; prep=to; rel=iobj}

raise={ II={rel=dobj} } }
}

The first pattern corresponds to We [=I] expect that the ozone concentration will
increase [=II]. The second pattern points to a subject-raising construction where the
subject of actant II is raised to become the direct object of EXPECT, downgrading
actant II to an indirect object position, as in We [=I] expect the ozone concentra-
tion [=raised subject] to increase [=II].

5 Benefits of the Proposed Grammar Design

The principles outlined above and followed in our work ensure that

(i) no parts of resources are repeated,

(ii) the resources are linguistically sound, and

218

(iii) the acquisition and maintenance (i.e., evaluation, correction and extension)
of the resources can be carried out easily by grammarians without an extens-
ive training in the linguistic theory underlying the generator.

To be underlined in particular are the extensibility to new languages and the
extension towards the coverage of new linguistic constructions. Thus, this design
allows for quick addition of new languages to the generator. Few changes need to
be made to the grammar rules, since most of the language-dependent information
is in the dictionaries. Rules that take care of articles, auxiliaries and other lexical
markers of grammatical meanings, as well as agreement and word-order rules do
need to be modified, but they are usually very simple. Hence, the task of adding
a new language basically boils down to describing the LUs of the language in
question.

Similarly, adapting the generator to a new domain is even more simple. Many
of the existing dictionary entries can be reused, and one only needs to describe
the new lexemes found in the vocabulary of the new domain. As a matter of fact,
while the grammar described here was first used for a project in the domain of air
quality, we have successfully reused the surface modules (from SSynt⇒ DMorph)
in another project for a totally different domain (patents on optical recording tech-
nology) with very little modifications to the rules.

A benefit that is not to be underestimated for the design described here is the
ease of development that follows from it in terms of work organization. Broad
coverage grammars, especially in a multilingual context, require a relatively large
team. It is then unrealistic to hope for a homogeneously qualified team who can
work on any aspect of the problem, in particular within a lesser-taught framework
such as MTT. Fine-grained modularity allows for efficient task separation. The
number of language-specific grammar rules being kept as low as possible, most of
the work for adding a new language lies in writing the dictionaries for it.

One could argue that all we have done was just to shift the workload from
the grammar to the dictionary. It is true to some extent, but the formalism used
for grammar rules is much more complex than the one used for dictionaries. We
have shown here simplified rules, but a serious grammar cannot consist only of
such simple rules. They can get rather complex, enough to scare away a potential
contributor who is not necessarily very comfortable with formal languages. Dic-
tionaries, however, are written in a very simple formalism that can be mastered
quickly. Indeed, our experience showed that it was much easier for people to learn
how to write dictionaries than how to write grammar rules. Hence, by shifting the
workload to the dictionary, we simplify the process of describing new languages
as resources become more easily maintainable and extensible. By adopting this
architecture, we are able to have a (more or less) permanent core team that has
enough experience with the grammar formalism to work on the generic rules, and
short-term collaborators who can join for a specific project to develop resources
for a new language without having to learn in detail the formalism used for the
codification of grammar rules.

219

6 Evaluation

In accordance with the evaluation principles in software engineering, we use a
twofold evaluation procedure: what we may call micro-testing and macro-testing.
We also built a tool to verify the consistency of our dictionaries.

6.1 Micro-testing

Micro-testing refers to the evaluation of single rules. For each rule, a set of test
structures has been set up. These structures must be as simple as possible, in order
to avoid noise, but still designed to cover all the phenomena the rule has to be
able to cope with. In most cases, a single rule cannot be tested in isolation; its
application depends on the application of some core rules. For instance, it is not
possible to test only the construction of a given syntactic relation without also
applying the rules that create the nodes linked by the relation. Therefore, it is
necessary for evaluation to keep track of rule dependencies. Hence, not only do
we associate a set of test structures with each rule, but we also associate each test
structure with the set of rules it activates. When a rule is modified, all executed
test routines that involved it are reset and run again.12 Micro-testing thus verifies
elementary components separately.

By the very nature of micro-testing, it is difficult to have language-independent
test structures. For example, even if one wants to test a generic DSynt ⇒ SSynt
rule, the input test structure will have to be a DSynt structure, which by definition
contains LUs of a specific language. Therefore, only the rules of the Con ⇒ Sem
module can be micro-tested with language-independent test structures (since our
conceptual structures are the same for all languages). However, it is often safe
to assume that generic rules tested in one language will work just as well in other
languages, though of course prudence must be used. Figure 3 shows a DSynt struc-
ture that we used for testing the rules that handle subject-raising verbs. Though this
structure uses information from the English dictionary, it tests rules that are gen-
eric.

I II
EXPECT

US INCREASE

CONCENTRATION

I

Figure 3: A sample DSynt structure for testing subject-raising

12Of course, this process can be automated if we have, for all test structures, the expected result
structures (be they manually created from scratch, or result from previous test runs that have been
validated by a human).

220

Phenomena that are described by language-specific rules obviously require
language-specific structures for micro-testing. For instance, rules that handle Eng-
lish auxiliaries were tested with a set of nearly identical structures containing only
a verb with a subject and an object, where the sole difference was the tense and
aspectual information. One structure was created for each possible combination of
tense and aspect.

6.2 Macro-testing

Macro-testing refers to a more global evaluation procedure. Its aim is to assess
the coverage of the linguistic resources for a more or less specific purpose. The
structures used for this task are designed to cover the largest possible range of
situations the generation system must be able to handle. The goal here is not to
test specific rules, but to make sure that the system can handle the expected input
we are going to provide it with. Macro-testing is best applied after micro-testing,
as it verifies the interaction between the various components of the grammar. For
example, Figure 4 shows a structure that was used for macro-testing.13 The system
is required to produce all expected ways to express this meaning:

Between 8 AM and 11 AM, the concentration of sulfur dioxide remained
stable at 3.
Between 8 AM and 11 AM, the sulfur dioxide concentration was stable at 3.
. . .

2

3

between
1

"8AM"

"11AM"

"X"

2
time

1

stable

1

Specifier

main

main

Rheme

Theme

1 2

"3"

concentration

"sulfurdioxide"

Figure 4: A sample semantic structure for macro-testing

6.3 Dictionary consistency testing

In addition to micro- and macro-testing, it was necessary to make sure that all
concepts that might appear in the input structures could be expressed in any lan-

13We show here an English semantic structure, though the real input structure is a conceptual
structure. The corresponding conceptual structure takes too much space and would be difficult to
read, so for the sake of clarity we show only this semantic representation.

221

guage. Concepts are mapped by the conceptual dictionaries to language-specific
semantemes, which in turn are mapped to LUs. These LUs point to prepositions in
their sub-categorization patterns, and to other LUs through lexical functions. All
these links form a complex network where errors are hard to spot for a human,
so we created a small MATE grammar that consisted essentially of simplified lex-
icalisation rules. This grammar takes as input a list of structures containing one
concept each (one structure for every concept expected in the input of the system)
and produces structures representing the lexical links encoded by the dictionar-
ies. Then, a set of consistency-check rules is applied to make sure that there is
no pointer to non-existent entries, and that each entry contains all the necessary
information (for example, that French nouns have a gender, that every LU has a
part of speech, that syntactic relation names are specified in the sub-categorization
patterns, etc.). If an error is found, an appropriate message is added to the output in
the form of extra nodes and relations, as illustrated in Figure 5, where IN is marked
as missing in the lexical dictionary. MATE’s graphs being encoded as text files, it
is easy to scan the output structures for error messages (or have a script do it).

concentration concentration

concentration

ofof high

low

in

be

have reach

reach

sem
lex III Magn

AntiMagn
Adv1

Func2

Oper1 IncepFunc2

IncepOper1

** MISSING in lexical dictionary **

Figure 5: A sample output structure from the lexical consistency check grammar

7 Conclusion

We presented an efficient organization of grammatical resources in an MTT mul-
tilingual generation system. This organization follows the principles of sharing,
modularization, and inheritance and adopts a strongly lexicalist perspective on the
grammatical resources. The implementation of resources for six languages that
belong to three different families and their practical use have proven that these
principles are valid and allow for the development of large scale grammars.

As part of future work, we plan to extend the resources with respect to both the
coverage of linguistic constructions and further languages.

References

Alshawi, Hiyan. 1992. The Core Language Engine. Cambridge, MA: The MIT
Press.

222

Avgustinova, Tania and Uszkoreit, Hans. 2000. An ontology of systemic relations
for a shared grammar of Slavic. In Proceedings of the 18th International Con-
ference on Computational Linguistics, COLING, pages 28–34.

Bateman, John, Kruijff-Korbayova, Ivana and Kruijff, Geert-Jan. 2005. Multilin-
gual resource sharing across both related an unrelated languages: An implemen-
ted, open-source framework for practical natural language generation. Journal
for Research on Language and Computation 3(2), 191–219.

Bender, Emily M., Flickinger, Dan and Oepen, Stephan. 2002. The Grammar
Matrix: An Open-Source Starter-Kit for the Rapid Development of Cross-
Linguistically Consistent Broad-Coverage Precision Grammars. In John Carroll,
Nelleke Oostdijk and Richard Sutcliffe (eds.), Proceedings of the Workshop on
Grammar Engineering and Evaluation at the 19th International Conference on
Computational Linguistics, COLING, pages 8–14, Taipei, Taiwan.

Bohnet, Bernd. 2006. Textgenerierung durch Transduktion linguistischer Struk-
turen. Berlin: Akademische Verlagsgesellschaft, DISKI Series.

Bohnet, Bernd, Langjahr, Andreas and Wanner, Leo. 2000. A Development Envir-
onment for MTT-Based Sentence Generators. In Proceedings of the XVI SEPLN
Conference, Vigo, Spain.

Gerdes, Kim and Kahane, Sylvain. 2007. Phrasing It Differently. In L. Wanner
(ed.), Selected Lexical and Grammatical Issues in the Meaning-Text Theory.
In honour of Igor Mel’čuk, pages 297–335, Amsterdam: Benjamins Academic
Publishers.

Kim, Roger, Dalrymple, Mary, Kaplan, Ronald M., Holloway King, Tracy, Masui-
chi, Hiroshi and Ohkuma, Tomoko. 2003. Multilingual Grammar Development
via Grammar Porting. In ESSLLI 2003 Workshop on Ideas and Strategies for
Multilingual Grammar Development.

Mel’čuk, Igor. 1988. Dependency Syntax: Theory and Practice. Albany, NY:
SUNY Press.

Mel’čuk, Igor. 1996. Lexical Functions: A Tool for the Description of Lexical
Relations in a Lexicon. In L. Wanner (ed.), Lexical Functions in Lexicography
and Natural Language Processing, pages 37–102, Amsterdam: Benjamins Aca-
demic Publishers.

Santaholma, Marianne. 2007. Grammar Sharing Techniques for Rule-Based Mul-
tilingual NLP Systems. In Proceedings of NODALIDA 2007, pages 253–260.

Sowa, John. 2000. Knowledge Representation: Logical, Philosophical, and Com-
putational Foundations. Pacific Grove: Brooks Cole Publishing Company.

223

Test-suite Constru
tion for a Spanish GrammarMontserrat Marimon, N�uria Bel and Natalia SeghezziInstitut Universitari de Ling�u��sti
a Apli
adaUniversitat Pompeu Fabra
Pro
eedings of the GEAF 2007 WorkshopTra
y Holloway King and Emily M. Bender (Editors)CSLI Studies in Computational Linguisti
s ONLINEAnn Copestake (Series Editor)2007CSLI Publi
ationshttp://
sli-publi
ations.stanford.edu/

224

Abstra
tThis paper des
ribes the testing
omponent we use for the devel-opment and maintenan
e of the Spanish Resour
e Grammar, an open-sour
e multi-purpose broad-
overage HPSG grammar for Spanish im-plemented within the LKB system. Following a brief des
ription ofthe main features of the grammar, we des
ribe the set of test suites wehave manually
onstru
ted and the way we have extended them withpubli
ly available data with the aim of produ
ing better resour
es fortesting our grammar.1 Introdu
tionNatural language is a system of rather
omplex intera
tions. Grammarwriting, thus, requires broad and systemati
 testing to be su

essful in bothresear
h and industrial
ontexts.This paper des
ribes work on the development and maintenan
e of thetesting
omponent for a multi-purpose broad-
overage pre
ise grammar forSpanish implemented within the LKB system, the Spanish Resour
e Gram-mar. On the one hand, for the development of a multi-purpose grammar,the linguisti
 phenomena in
luded in the testing
omponent should be ab-stra
ted away from any parti
ular appli
ation.1 On the other hand, broad-
overage grammar writing requires testing material whi
h not only in
ludesall variations of a parti
ular phenomenon, but also re
e
ts the real worldlanguage
omplexity; thus, in addition to traditional
ontrolled test items,test data should in
lude examples that present
ombinations of di�erentphenomena.We see the development and maintenan
e of the testing module as part ofthe pro
ess of grammar writing. The idea behind evaluation is to determineits usability for di�erent appli
ations. The grammar
an also be evaluatedin terms of re
all (i.e.
overage) and pre
ision (i.e. overgeneration) withlarge natural language
orpora.The rest of the paper is organized as follows. Se
tion 2 presents themain features of the grammar. Then, se
tion 3 des
ribes the set of testsuites we have manually
onstru
ted. In se
tion 4 we explain the way wehave extended them with publi
ly available data with the aim of produ
ingbetter resour
es for testing our grammar.2yThis resear
h was suported by the Spanish Ministerio de Edu
a
i�on y Cien
ia underthe programmes Ram�on y Cajal and Juan de la Cierva.1In previous experien
e in grammar writing { in the Advan
ed Linguisti
 EngineeringPlatform platform { during the European proje
ts LS-GRAM (LRE-61029), MELISSA(ESPRIT-22252) and IMAGINE (IST-2000-29490), the test data we used to de�ne (andre�ne) the
overage of the grammar was designed a

ording to the user need analysis;
onsequently, breath and depth of grammar
overage was de�ned by the appli
ations.2The test data we des
ribe may be downloaded from:http://www.upf.edu/pdi/iula/montserrat.marimon/
225

2 The Spanish Resour
e GrammarThe Spanish Resour
e Grammar (SRG) is an open-sour
e3 multi-purposelarge-
overage grammar for Spanish.The grammar is grounded in the theoreti
al framework of HPSG (Head-driven Phrase Stru
ture Grammar (Pollard and Sag, 1987, 1994)). HPSGis a
onstraint-based, lexi
alist approa
h to grammati
al theory where alllinguisti
 obje
ts are represented as typed-feature stru
tures. The gram-mar uses Minimal Re
ursion Semanti
s (MRS) for the semanti
 representa-tion. MRS is a
at approa
h to semanti
 representation for large-
overagelinguisti
ally-motivated
omputational grammars of natural language that
an be used for both parsing and generation (Copestake et al., 2006). TheSRG is implemented within the Linguisti
 Knowledge Builder (LKB) system(Copestake, 2002), based on the basi

omponents of the grammar Matrix,4an open-sour
e starter-kit for the development of HPSG grammars devel-oped as part of the LinGO
onsortium's multilingual grammar engineering(Bender et al., 2002; Bender and Fli
kinger, 2005).The SRG has a full
overage lexi
on of
losed word
lasses (pronouns,determiners, prepositions and
onjun
tions) and it
ontains about 50,000lexi
al entries for open
lasses (6,600 verbs, 28,000 nouns, 11,200 adje
tivesand 4,000 adverbs). These lexi
al entries are organized into a type hierar-
hy of about 400 leaf types (de�ned by a type hierar
hy of around 5,500types). The grammar also has 50 lexi
al rules to perform valen
e
hangingoperations on lexi
al items (e.g. movement and removal of
omplements),and 150 phrase stru
ture rules to
ombine words and phrases into larger
onstituents and to
ompositionally build up the semanti
 representation.The range of linguisti
 phenomena that the grammar handles in
ludes:all types of sub
ategorization stru
tures, surfa
e word order variation andvalen
e alternations, subordinate
lauses, raising and
ontrol, determination,null-subje
ts and impersonal
onstru
tions,
ompound tenses, modi�
ation,passive
onstru
tions,
omparatives and superlatives,
liti
ization, relativeand interrogative
lauses, sentential adjun
ts, negation, and
oordinationamong others. Appendix A in
ludes a more detailed (though not
omplete)list of the phenomena
overed by the grammar.Following previous experiments within the Advan
ed Linguisti
 Engi-neering Platform (ALEP) platform (Marimon, 2002), we have integrated ashallow pro
essing tool, the FreeLing tool, as a prepro
essing module of thegrammar with the aim of improving both
overage and robustness. TheFreeLing tool is an open-sour
e5 language analysis tool suite performingshallow pro
essing fun
tionalities whi
h in
lude: text tokenization (in
lud-3The Spanish Resour
e Grammar may be downloaded from:http://www.upf.edu/pdi/iula/montserrat.marimon/4http://www.delph-in.net/matrix/5The FreeLing tool may be downloaded from http://www.lsi.up
.edu/nlp/freeling
226

ing MWU and
ontra
tion splitting), senten
e splitting, morpho-synta
ti
analysis and disambiguation, proper name dete
tion and
lassi�
ation, date/ number /
urren
y / ratios / physi
al magnitude (speed, weight, tempera-ture, density, et
.) re
ognition,
hart-based shallow parsing, WordNet-basedsense annotation and dependen
y parsing6 (Atserias et al., 2006). The in-tegration of FreeLing allows us to release the parser from
ertain tasks (i.e.morphologi
al analysis and re
ognition and
lassi�
ation of spe
ial text ex-pressions, e.g. numbers, dates, per
entages,
urren
ies, proper names, et
.)that may be reliably dealt with by shallow external
omponents. Our hybridar
hite
ture also permits the implementation of default lexi
al entry tem-plates for unknown words for virtually unlimited lexi
al
overage (Marimonet al., 2007).We are also investigating Ma
hine Learning (ML) methods applied tothe a
quisition of the information
ontained in the lexi
on of the SRG (Belet al., 2007; Marimon et al., 2007). The automati
 a
quisition of lexi
alinformation is a very a
tive area of resear
h. It is spe
ially important fordeep linguisti
 analysis due to the
entral role that lexi
al information has inlexi
alized grammars and the
ost of hand-
rafting them (Korhonen, 2002;Carroll and Fang, 2004; Baldwin, 2005; Blunsom and Baldwin, 2006; Zhangand Kordoni, 2006). The most su

essful systems of lexi
al a
quisition arebased on the linguisti
 idea that the
ontexts where words o

ur are in-di
ative of the parti
ular types of words. Although the methods used aredi�erent, most of the systems work upon the synta
ti
 information of wordsas
olle
ted from a
orpus, and they develop di�erent te
hniques to de-
ide whether this information is relevant for type assignment or whetherit is noise. In the LKB system, lexi
al types are de�ned as a
ombinationof grammati
al features. For our resear
h, we have worked with morpho-synta
ti
ally motivated features. Thus, words are assigned a number of fea-tures, the
ombination of whi
h will help in de�ning the parti
ular lexi
altype the word belongs to.The SRG is part of the DELPH-IN open-sour
e repository of linguis-ti
 resour
es and tools for writing (the LKB system), testing and ben
h-marking (the [in
r tsbd()℄
ompeten
e and performan
e pro�ler (Oepen andCarroll, 2000)) and eÆ
iently pro
essing HPSG grammars (the PET sys-tem (Callmeier, 2000)), as well as an ar
hite
ture for integrating deep andshallow natural language pro
essing
omponents to in
rease robustness ofHPSG grammars (the Heart of Gold (S
h�afer, 2007)). Further linguisti
resour
es that are available in the DELPH-IN repository in
lude broad-
overage grammars for English, German and Japanese as well as smaller6FreeLing also in
ludes a guesser to deal with words whi
h are not found in the lexi
onby
omputing the probability of ea
h possible PoS tag given the longest observed termi-nation string for that word. Smoothing using probabilities of shorter termination stringsis also performed. Details
an be found in (Brants, 2000; Samuelsson, 1993).
227

grammars for Fren
h, Korean, modern Greek, Norwegian and Portuguese.73 Hand-built Test SuitesTogether with the linguisti
 resour
es (grammar and lexi
on) the SRG in-
ludes a set of test suites. A test suite is a hand-
onstru
ted
olle
tion oftest
ases, e.g. senten
es, that exemplify the grammati
al { and related un-grammati
al {
onstru
tions that the grammar should parse, or not, in the
ase of the ungrammati
al ones.The
onstru
tion and maintenan
e of the test suites plays a major rolein the development of the SRG.8 Test suites provide a �ne-grained diag-nosis of the grammar behaviour in terms of
overage, overgeneration andeÆ
ien
y when we
hange and/or extend the grammar
omponents. To de-termine that the output produ
ed is
orre
t we have to inspe
t it manually.Test suites also allow us to
ompare the SRG with other DELPH-IN gram-mars. Comparison with other DELPH-IN grammars, e.g. English Resour
eGrammar and La Grenouille (i.e. the Fren
h Resour
e Grammar), is doneby produ
ing parallel test data (i.e. data that
overs the same phenomena)and
omparing the outputs at the MRS level.In building the test suites, we followed the guidelines for test suite
on-stru
tion and maintenan
e of the TSNLP proje
t (LRE-62-089) to meetthe demands for systemati
ity and exhaustivity (i.e. systemati
 in
reasein depth of
overage), and
ontrol over data (i.e.
ontrol of intera
tion ofphenomena and ambiguity). Thus,� We test linguisti
 phenomena in isolation or in
ontrolled intera
tions.Most of our test
ases in
lude a single grammati
al phenomenon inea
h test senten
e.� Starting from simple test items and in
reasing their
omplexity pro-gressively (e.g. in (1), where we show the positive test items we have
reated to test the non-universal quanti�er/adje
tive po
o (few)), weprovide test
ases whi
h show systemati
 and exhaustive variationsover ea
h phenomenon, in
luding infrequent phenomena and varia-tions re
ognized as linguisti
ally interesting but whi
h do not o

ur
ommonly in
orpora.7See http://www.delph-in.net/8Note that there are no standard general purpose test suites publi
ly available forSpanish { like the Hewlett Pa
kard (HP) test suite for English (Fli
kinger et al., 1987),the DITO test suite for German (Nerbonne et al., 1991), or the TSNLP for English, Fren
hand German (Lehmann et al., 1996; Oepen et al., 1997) { we
ould use. Our test suites havebeen primarily aimed at the SRG, in that some of the test data has been designed to testits linguisti
 modules. Nevertheless, most test data re
e
t
entral language phenomena,and this makes them adequate and reusable in other parsing systems. It is hoped that theavailability of this testing material will be of value to the NLP
ommunity.
228

(1)a. Po
os mu
ha
hos lloran. (A few boys
ry.)b. Otros po
os mu
ha
hos lloran. (Other few boys
ry.)
. Po
os otros mu
ha
hos lloran. (Few other boys
ry.)d. Los po
os mu
ha
hos lloran. (The few boys
ry.)e. Los po
os otros mu
ha
hos lloran. (The few other boys
ry.)f. Todos los po
os otros mu
ha
hos lloran. (All the few otherboys
ry.)g. Casi todos los po
os otros mu
ha
hos lloran. (Almost all thefew other boys
ry.)h. Muy po
os otros mu
ha
hos lloran. (Very few other boys
ry.)� We avoid irrelevant variation (i.e. di�erent instan
es of the same lex-i
al type or same synta
ti
 stru
ture) and both stru
tural and lexi
alambiguity. Note that even the simplest senten
es may turn to be am-biguous as the grammar
overage in
reases. For example, when testingthe Spanish de�nite arti
les, a senten
e like (2.a) be
omes ambiguouswhen dealing with ellipti
al
onstru
tions, as we show in (2.b) and(2.
).(2)a. Los
hi
os lloran.b. DET NOUN VERB (The boys
ry.)
. DET ADJ VERB (The small (ones)
ry.)� We in
lude negative or ungrammati
al data to
he
k both overgener-ation and
overage. Following the TSNLP, negative
ases are derivedfrom well-formed ones by one of the following operations:{ repla
ement, e.g.
hange of agreement features (*ambos mu
ha-
ho lloran (both boys
ry)),
hange of mood (*quiero que vienes((I) want that (you)
ome)),
hange of marking preposition (*elmu
ha
ho desert�o desde su regimiento (the boy deserted fromhis regiment)),
hange of
opular verb (*los mu
ha
hos son
on-tentos (the boys are happy)).{ addition, e.g. of subje
t in impersonal
onstru
tions (*el
ielollueve (the sky rains)).{ deletion, e.g. of an obligatory
omplement (*los mu
ha
hos fabri-
an 0 (the boys produ
e)), of an obligatory
omplementizer (*lasmu
ha
has intentaron 0 los mu
ha
hos lloraran (the girls triedthe boys
ried)).
229

{ permutation, e.g. inversion of word order (*tres unos mu
ha
hoslloran (three about boys
ry), *los todos mu
ha
hos lloran (theall boys
ry)).Test
ases have been divided by linguisti
 phenomena. We
urrently use16 �les testing linguisti
 stru
tures plus one �le for spe
ial text
onstru
tions.Test
ases in
lude a short annotation des
ribing the phenomenon that we area
tually testing and the number of expe
ted results when ambiguity
annotbe avoided (e.g. when we test optionality). Note that even ungrammati
alitymay be due to di�erent reasons, for example the ungrammati
al senten
e in(3) may be derived by removing the de�nite arti
le under the reading wheretodo (all) is a de�nite quanti�er, or by
hanging the agrement features underthe reading where todo is an inde�nite quanti�er, in whi
h
ase it
o-o

urswith singular nouns.(3) *todos mu
ha
hos lloran. (all boys
ry.)Table 1 shows the set of test suites of the grammar with the number oftest items that ea
h
ontains.Test suites Phenomenon Numberof itemst01 basi
 sub
at basi
 sub
ategorization stru
tures for 99verbs, nouns (and pronouns) andadje
tivest02 null subj pro-drop and impersonal verbs 6t03 det determiners/quanti�ers 32t04 val alt surfa
e word order variation 10and valen
e alternationst05
l
omp �nite/non-�nite
ompletive
lauses 77and indire
t questionst06 rais
ntrl raising and
ontrol 26t07 aux
ompound tenses 7t08 pass passive
onstru
tions 7t09 mod basi
 modi�ers 58t10
ompar
omparatives and superlatives 13t11 sent mod sentential adjun
ts 3t12 rel
l relative
lauses 77t13 ques interrogative
lauses 30t15 se
onstr impersonal and passive
onstru
tions 20with set16
liti
s
liti
s 71t17
oord
oordination 60txx messy details spe
ial text
onstru
tions 53Table 1: Hand-built test suites for the SRG.
230

4 Extending the Test SuitesTest suites have traditionally been used to test linguisti
ally-motivated
om-putational grammars.9 Though simple, test
ases in
luded in hand-built testsuites are
ru
ial to determine progress in grammar development.Controlled hand-built test suites are
ertainly ne
essary for in
rementalgrammar maintenan
e and development to dete
t unintended intera
tionsof extensions and/or
hanges in the linguisti
 resour
es that
ause the treat-ment of some phenomena already
overed to deteriorate. However, from thepoint of view of building a large-
overage grammar, test data that showsthe real world language
omplexity is also ne
essary. Therefore, test
asesthat present
ombination of di�erent phenomena should also be in
luded inthe testing module.Combining all di�erent phenomena
ould lead to a
ombinatorial explo-tion; besides, not every
ombination of phenomena produ
es grammati
alsenten
es or shows interesting
ases. Instead, we have re-used available datare
e
ting natural
ombination of phenomena.As the
overage of our grammar in
reased, hand-
onstru
ted senten
eswere
omplemented by real
orpus
ases we took from:a. the Spanish questions from the Question Answering tra
k at CLEF(CLEF-2003, CLEF-2004, CLEF-2005 and CLEF-2006). We built up atest suite with 619 test items we took from the 800 available senten
es.We only removed those senten
es whi
h only di�ered in a proper name.b. the general sub-
orpus of the Corpus T�e
ni
 de l'IULA (IULA's Te
h-ni
al Corpus; (Cabr�e and Ba
h, 2004)); this sub-
orpus in
ludes news-paper arti
les and it has been set up for
ontrastive studies. We builtup a test suite with some of the arti
les that we
hose randomly.CLEF
ases in
lude short queries, senten
es and a few NPs showing noneor very little
ombination of phenomena, and an average of 9.2 words. Mostof these test
ases in
lude
ore linguisti
 phenomena, e.g. verbs with onlyone
omplement (DO, attribute), passives with ser and estar, impersonal
onstru
tions,
omparatives and superlatives, and basi
 nominal and verbalmodi�ers (i.e. APs, PPs, temporal NPs), and we �nd just a few examples ofmore
omplex stru
tures su
h as relatives
lauses,
oordination or ellipsis.Very rarely more than two or three di�erent phenomena appear in the samesenten
e.Newspaper arti
les in
lude more interesting and
hallenging linguisti
stru
tures showing a high level of synta
ti

omplexity due to the
ombina-tion of several phenomena in a senten
e. Senten
es are longer, ranging upto 35 words.9Other testing me
hanisms are brie
y des
ribed in (Butt and King, 2003).
231

The parsing of this new data displayed unanti
ipated analyses showingerrors/de�
ien
ies not only in our linguisti
 modules (grammar rules andlexi
al entries were not restri
tive enough to ex
lude some ungrammati
alexamples whi
h had not been
onsidered), but also in the FreeLing tool (and,for example, we realized that the FreeLing tool allowed en
liti
s to appearon all verbal forms; in Spanish,
liti
s
an only be atta
hed to imperatives,gerunds and in�nitives).We are
urrently shifting to mu
h more varied
orpus data, and we areextending the test suites with more spe
ialized tests (these have also been
hosen randomly) from the Corpus T�e
ni
 de l'IULA. This in
ludes spe
ial-ized
orpora of written text in the areas of
omputer s
ien
e, environment,law, medi
ine and e
onomi
s,
olle
ted from several sour
es, su
h as legaltexts, textbooks, resear
h reports, user manuals, et
. In these texts senten
elength may range up to 100 words. In addition, this
orpus
ontains highlyspe
ialized words whi
h must be added to the lexi
on.5 Con
lusionsWe have presented the set of test suites we have manually
onstru
ted forthe development and maintenan
e of an open-sour
e multi-purpose broad-
overage HPSG grammar for Spanish, and the way we have extended themwith publi
ly available data with the aim of produ
ing better resour
es fortesting our grammar. Even tough our test suites have been primarily aimedat the SRG, most test data re
e
t
entral language phenomena, and thismakes them adequate and reusable in other parsing systems. It is hopedthat the availability of this testing material will be of value to the NLP
ommunity.A Grammar CoverageList of linguisti
 phenomena that the SRG handles. Note that we have notin
luded all variants of the phenomena.� main
lauses with
anoni
al word order, i.e. SVO.� sub
ategorization stru
tures: una

usative verbs (na
ieron ((they)were born), viven en la
iudad ((they) live in the town)), intransi-tive verbs (
laudi
aron ((they) gave in), desert�o del regimiento ((s/he)deserted from the regiment), me gusta el mu
ha
ho (I like the boy)),transitive verbs (fabri
an juguetes ((they) make toys), abaste
ieron la
iudad de v��veres ((they) provided the town with provisions),
olgaronlos
uadros en el sal�on ((they) hang the paintings in the living-room)),a
er
�o la sal a la mu
ha
ha ((s/he) brought over the salt to the girl)),quantifying nouns (el grupo de los mu
ha
hos (the group of boys)),
232

argument taking nouns (el padre de la mu
ha
ha (the father of thegirl), el apoyo de los mu
ha
hos a la mu
ha
ha (the boys' support ofthe girl)), transitive adje
tves (es atento
on los mu
ha
hos ((s/he) iskind to the boys)).� null-subje
ts: pro-drop (lloraremos ((we) will
ry)) and impersonalverbs (llueve ((it) rains), hay mu
hos mu
ha
hos (there are a lot ofboys)).� determination: def/indef. arti
les (el/un mu
ha
ho llora (the/a boy
ries)), demonstratives (estos mu
ha
hos lloran (these boys
ry)), pos-sessives (mis mu
ha
hos lloran (my boys
ry)), quanti�ers (todos los/algunos/mu
hos mu
ha
hos lloran (all of the/some/many boys
ry)).� surfa
e word order variation: subje
t-predi
ate inversion (en ese par-que anidan p�ajaros (in this park nest birds)),
omplement permutation(el mu
ha
ho a
er
�o a la mu
ha
ha la sal (the boy brought the girlthe salt)).� subordinate
lauses (�nite and non-�nite), e.g. quieren que lloren((they) want that (they)
ry), la ventaja de
laudi
ar/que
laudi
aran(the advantage of giving in/that (they) gave in), est�a segura de quelloraron ((she) is sure that (they)
ried)).� indire
t questions (�nite and non-�nite), e.g. pregunt�o
�omo ir/que
u�ando
laudi
aron ((s/he) asked how to go/when (they) gave in),la in
�ognita de si
laudi
ar�an (the question of whether (they) willgive in), est�a seguro de d�onde fue/ir ((he) is sure about where (s/he)went/to go).� raising and
ontrol verbs (subj-
ontrol (intentaremos
laudi
ar ((we)will try giving in)), obj-
ontrol (me gusta llorar (I like
rying)), subj-to-subj raising (deber��an
laudi
ar ((they) should give in)), per
eption(vieron a la mu
ha
ha llorar ((they) saw the girl
rying))), and adje
-tives (subj-
ontrol (es
apaz de
laudi
ar ((s/he) is able to give in)),subj-rasing (es libre de
laudi
ar ((s/he) is free to give in)), and obj-raising (el es f�a
il de querer ((s/he) is easy to love))).�
ompound tenses, e.g. hemos llorado ((we) have
ried), estamos llo-rando ((we) are
rying), hemos estado llorando ((we) have been
ry-ing), fue invadido ((it) was invaded), ha sido invadido ((it) has beeninvaded), est�a siendo invadido ((it) is been invaded), ha estado siendoinvadido ((it) has been being invaded).� passive
onstru
tions: with ser, with and without optional PPpor (i.e.by-agent) (see example above); and with estar (el pa��s est�a invadido(the
ountry is invaded)).
233

�
onstru
tions with se: impersonal
onstru
tions (se invadi�o el pa��s(the
ountry has been invaded)), passive
onstru
tions (los pa��ses seinvaden (the
ountries are invaded)) and una

usative
onstru
tions(el tren se abre (the train opens)).� modi�
ation{ verbal modi�ers: PPs (
orri�o desde el parque/ah�� ((s/he) ran fromthe park/there)), adverbs (quiz�as
laudi
ar�an (maybe (they) willgive in),
laudi
ar�an pronto ((they) will give in soon)), temponalNPs (
orrer�a el lunes, ((s/he) will run on Monday)).{ nominal modi�ers: APs (el mu
ha
ho alto muri�o (the tall boydied)), PPs (el mu
ha
ho de ah�� llora (the boy from there
ries)),parti
iples (el pa��s invadido (the invaded
ountry)), proper names(mi amigo Juan llora (my friend Juan
ries)), adverbs (fabri
ans�olo juguetes ((they) make only toys)).{ adje
tival modi�ers: adverbs (es muy guapo ((he) is very pretty),PPs (�el hasta la muerte (loyal to death)).{ adverbial modi�ers: adverbs (
orre s�olo muy raramente ((s/he)runs only very o

asionaly)).{ prepositional modi�ers: adverbs (
orri�o s�olo por el parque ((s/he)ran only along the park)), PPs (llor�o desde el aeropuerto hastala
iudad ((s/he)
ried from the airport to the town)).�
omparatives, e.g. es mejor ((s/he) is better), es m�as listo ((he) is
leverer), tiene tantos libros
omo revistas ((s/he) has as many booksas journals); and superlatives, e.g. es el mejor mu
ha
ho ((he) is thebest boy).�
liti
s:
omplement
liti
ization (los abri�o ((s/he) opened them)),
liti
 doubling (a �el le gusta el mu
ha
ho (he likes the boy)),
liti

limbing (los ha
omido ((s/he) has eaten them)).� relative
lauses: restri
tive RC (el hombre que
laudi
�o llora (the manthat gave away is
rying)), non-restri
tive RC (el
hi
o,
on
uyospadres
uento,
laudi
ar�a (the boy, whose parents I
ount on, will givein)), free RC (yo vivo donde t�u vives (I live where you live)), semi-freeRC (el que
laudi
a
laudi
a (who gives in gives in)).� interrogative
lauses: polar-questions (Quieres libros? (do you wantbooks?)), wh-questions (
on qui�en
uentas? (whom do you
ountwith?), qui�en tiene qu�e? (who has what?)).� sentential adjun
ts, e.g. las mu
ha
has lloraron porque los mu
ha
hos
laudi
aron (the girls
ried be
ause the boys gave in), el mu
ha
ho
orri�o hasta morir (the boy run to die).
234

� negation, e.g. los mu
ha
hos no
laudi
aron (the boys didn't give in).�
oordination of all major
ategories: binary (fabri
a
o
hes y juguetes((s/he) makes
ars and toys), es guapo y listo ((he) is pretty and
lever)), multiple (es guapo, guapo y guapo ((he) is pretty, prettyand pretty)), doubled
onjun
tions (no s�olo guapo sino listo (not onlypretty, but also
lever)), unlike
ategories (habl�o alta y
laramente((s/he) talked loud and
learly), habl�o
laramente y sin parar ((s/he)talked
learly and without stopping)).Referen
esAtserias, Jordi, Casas, Bernardino, Comelles, Elisabet, Gonz�alez, Meritxell,Padr�o, Llu��s and Padr�o, Muntsa. 2006. FreeLing 1.3: Synta
ti
 and seman-ti
 servi
es in an open-sour
e NLP library. In Pro
eedings of the 5th In-ternational Conferen
e on Language Resour
es and Evaluation LREC'06 ,Genoa, Italy.Baldwin, Timothy. 2005. Bootstrapping Deep Lexi
al Resour
es: Resour
esfor Courses. In Pro
eedings of Workshop on Deep Lexi
al A
quisition,ACL-SIGLEX 2005 , Ann Arbor, Mi
higan, USA.Bel, N�uria, Espeja, Sergio and Marimon, Montserrat. 2007. Automati
 A
-quisition of Grammati
al Types for Nouns. In Pro
eedings of HumanLanguage Te
hnologies: The Annual Conferen
e of the North Ameri
anChapter of the Asso
iation for Computational Linguisti
s, Ro
hester, NY,USA.Bender, Emily M. and Fli
kinger, Dan. 2005. Rapid Prototyping of S
al-able Grammars: Towards Modularity in Extensions to a Language-Independent Core. In Pro
eedings of the 2nd International Joint Confer-en
e on Natural Language Pro
essing IJCNLP-05 (Posters/Demos), JejuIsland, Korea.Bender, Emily M., Fli
kinger, Dan and Oepen, Stephan. 2002. The grammarMatrix. An open-sour
e starter-kit for the rapid development of
ross-linguisti
ally
onsistent broad-
overage pre
ision grammars. In Pro
eed-ings of the Workshop on Grammar Engineering and Evaluation at the19th International Conferen
e on Computational Linguisti
s COLING-02 , Tapei, Taiwan.Blunsom, Phil and Baldwin, Timothy. 2006. Multilingual deep lexi
al a
-quisition for HPSGs via supertagging. In Pro
eedings of Conferen
e onEmpiri
al Methods in Natural Language Pro
essing , Sydney, Australia.
235

Brants, Thorsten. 2000. TnT: A statisti
al part-of-spee
h tagger. In Pro-
eedings of the 6th Conferen
e on Applied Natural Language Pro
essing ,Seattle, USA.Butt, Miriam and King, Tra
y H. 2003. Grammar Writing, Testing, andEvaluation. In A. Farghaly (ed.), Handbook for Language Engineers, pages129{179, CSLI Publi
ations.Cabr�e, Teresa and Ba
h, Carme. 2004. El
orpus t�e
ni
 del IULA:
orpustextual espe
ializado pluriling�ue. Pana
ea, V. 16 pages 173{176.Callmeier, Ulri
h. 2000. Pet a platform for experimentation with eÆ
ientHPSG pro
essing. In D. Fli
kinger, S. Oepen, J. Tsujii and H. Uszkor-eit (eds.), Natural Language Engineering (6)1 |Spe
ial Issue: EÆ
ien
yPro
essing with HPSG: Methods, Systems, Evaluation, pages 99{108,Cambridge University Press.Carroll, John and Fang, Alex C. 2004. The automati
 a
quisition of verb sub-
ategorisations and their impa
t on the performan
e of an HPSG parser.In Pro
eedings of the 1st International Joint Conferen
e on Natural Lan-guage Pro
essing IJCNLP-04 , Sanya City, China.Copestake, Ann. 2002. Implementing Typed Feature Stru
ture Grammars.Chi
ago: CSLI Publi
ations, CSLI le
ture notes, number 110.Copestake, Ann, Fli
kinger, Dan, Pollard, Carl J. and Sag, Ivan A. 2006.Minimal Re
ursion Semanti
s: an Introdu
tion. Resear
h on Languageand Computation 3(4), 281{332.Fli
kinger, Dan, Nerbonne, John, Sag, Ivan A. and Wassow, Thomas. 1987.Toward evaluation of NLP systems. In Te
hni
al Report, Hewlett-Pa
kardLaboratories. Distributed at the 24th Annual Meeting of the Asso
iationfor Computational Linguisti
s ACL-87 , Stanford, USA.Korhonen, Anna. 2002. Sub
ategorization a
quisition. A Te
hni
al ReportUCAM-CL-TR-530 . UK: University of Cambridge.Lehmann, Sabine, Oepen, Stephan, Regnier-Prost, Sylvie, Netter, Klaus,Lux, Veronika, Klein, Judith, Falkedal, Kirsten, Fouvry, Frederik, Estival,Dominique, Dauphin, Eva, Compagnion, Herve, Baur, Judith, Balkan,Lorna and Arnold, Doug. 1996. TSNLP: test suites for natural languagepro
essing. In Pro
eedings of the 16th International Conferen
e on Com-putational Linguisti
s COLING-96 , Copenhagen, Denmark.Marimon, Montserrat. 2002. Integrating shallow linguisti
 pro
essing intoa uni�
ation-based Spanish grammar. In Pro
eedings of the 19th Inter-national Conferen
e on Computational Linguisti
s COLING-02 , Taipei,Taiwan.
236

Marimon, Montserrat, Bel, N�uria, Espeja, Sergio and Seghezzi, Natalia.2007. The Spanish Resour
e Grammar: Pre-pro
essing Strategy and Lex-i
al A
quisition. In Pro
eedings of the Workshop on Deep Linguisti
 Pro-
essing, ACL-2007 , Prague, Cze
h Republi
.Nerbonne, John, Netter, Klaus, Diagne, Abdel K., Di
kmann, Ludwig andKlein, Judith. 1991. A Diagnosti
 Tool for German Syntax. In J. G. Nealand S. M. Walter (eds.), Natural Language Pro
essing Systems Workshop:Final Te
hni
al Report RL-TR-91-362 , New York: Rome Laboratory.Oepen, Stephan and Carroll, John. 2000. Performan
e Pro�ling for ParserEngineering. In D. Fli
kinger, S. Oepen, J. Tsujii and H. Uszkoreit (eds.),Natural Language Engineering (6)1 |Spe
ial Issue: EÆ
ien
y Pro
ess-ing with HPSG: Methods, Systems, Evaluation, pages 81{97, CambridgeUniversity Press.Oepen, Stephan, Netter, Klaus and Klein, Judith. 1997. TSNLP: testsuites for natural language pro
essing. In J. Nerbonne (ed.), Linguisti
Databases, CSLI Publi
ations, CSLI le
ture notes.Pollard, Carl J. and Sag, Ivan A. 1987. Information-Based Syntax and Se-manti
s. Volume 1: Fundamentals. Stanford: CSLI Publi
ations.Pollard, Carl J. and Sag, Ivan A. 1994. Head-driven Phrase Stru
ture Gram-mar . Chi
ago: The University of Chi
ago Press and CSLI Publi
ations.Samuelsson, Christer. 1993. Morphologi
al tagging based entirely onBayesian inferen
e. In Pro
eedings of 9th Nordi
 Conferen
e on Compu-tational Linguisti
s, Sto
kholm, Sweden.S
h�afer, Ulri
h. 2007. Integrating Deep and Shallow Natural LanguagePro
essing Components { Representations and Hybrid Ar
hite
tures.Ph.D.thesis, Fa
ulty of Mathemati
s and Computer S
ien
e, SaarlandUniversity, Saarbr�u
ken, Germany.Zhang, Yi and Kordoni, Valia. 2006. Automated deep lexi
al a
quisition forrobust open text pro
essing. In Pro
eedings of the 5th International Con-feren
e on Language Resour
es and Evaluation LREC'06 , Genoa, Italy.
237

Towards Framework-Independent Evaluation of Deep
Linguistic Parsers

Yusuke Miyao1 Kenji Sagae1 Jun’ichi Tsujii1,2,3
1Department of Computer Science

University of Tokyo
2School of Computer Science

University of Manchester
3National Center for Text Mining

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

238

Abstract

This paper describes practical issues in the framework-independent eval-
uation of deep and shallow parsers. We focus on the use of two dependency-
based syntactic representation formats in parser evaluation, namely, Carroll
et al. (1998)’sGrammatical Relationsand de Marneffe et al. (2006)’sStan-
ford Dependencyscheme. Our approach is to convert the output of parsers
into these two formats, and measure the accuracy of the resulting converted
output. Through the evaluation of an HPSG parser and Penn Treebank phrase
structure parsers, we found that mapping between different representation
schemes is a non-trivial task that results in lossy conversions that may ob-
scure important differences between different parsing approaches. We dis-
cuss sources of disagreements in the representation of syntactic structures
in the two dependency-based formats, indicating possible directions for im-
proved framework-independent parser evaluation.

1 Introduction

Despite the rapid progress made in recent years on deep linguistic parsing (Cahill
et al., 2002; Hockenmaier, 2003; Kaplan et al., 2004; Burke et al., 2004b; Clark
and Curran, 2004; Malouf and van Noord, 2004; Oepen et al., 2004; Toutanova
et al., 2004; Miyao and Tsujii, 2005), shallow phrase-structure parsers (Collins,
1997; Charniak and Johnson, 2005) are still often chosen over linguistically richer
approaches in natural language processing (NLP) research and applications where
syntactic analysis is needed. This is due in part to the perception that deep parsing
is not robust and efficient enough for handling practical tasks, and that its accu-
racy is below that of shallow parsing approaches. In addition, the advantages of
deep syntactic analysis over shallow phrase-structures, although clear to those in
the deep parsing community, has not been demonstrated convincingly to the gen-
eral NLP community. While shallow parsers may in fact be better suited for some
NLP tasks, an informed decision on that regard requires a fair comparison be-
tween different kinds of parsers, especially when they deal with different ways of
representing syntactic information. However, comparison of different parsing ap-
proaches is challenging even among deep parsers, since accuracy measurements
used in different systems are largely incompatible, making it difficult to determine
the advantages of specific deep parsing approaches. Meanwhile, the most widely
used evaluation metric in current parsing research, precision and recall of labeled
brackets, follows a view of syntax that is simplistic and at the same time quite
specific to one particular type of syntactic representation. While the use of brack-
eting precision and recall in simplified trees from the Penn Treebank (Marcus et al.,
1994) fueled much of the development of current wide-coverage data-driven pars-
ing by providing a way to evaluate parsers on a common test set, it is now too
†We thank John Carroll for providing the gold-standard GR data, and for numerous insightful dis-

cussions and comments. This work was partially supported by Grant-in-Aid for Specially Promoted
Research (MEXT, Japan) and Grant-in-Aid for Young Scientists (MEXT, Japan).

239

limited to deal with recent developments that go beyond what is represented in that
test set1. Hence, framework-independent parser evaluation is necessary not only
for informed development of NLP applications, where different types of parsers
may be more or less suited for certain NLP tasks (Clegg and Shepherd, 2007), but
also for progress in parsing research itself, where it would allow for a more direct
comparison between different parsing approaches (Clark and Curran, 2007).

This paper discusses several challenges and practical issues in framework-
independent evaluation of syntactic parsers. Specifically, we focus on two exist-
ing proposals for representing syntactic relationships between words, and exam-
ine practical issues through the evaluation of parsing accuracy of a deep parser
based on Head-Driven Phrase Structure Grammar (HPSG),Enju (Miyao and Tsu-
jii, 2005). The first representation scheme we consider isGrammatical Relations
(GR) (Carroll et al., 1998; Carroll and Briscoe, 2004; Briscoe, 2006), which aims
to provide a better parser evaluation framework than PARSEVAL measures (Black
et al., 1991) of constituent bracketing precision and recall. This scheme has been
adopted for the evaluation of RASP (Briscoe and Carroll, 2006; Briscoe et al.,
2006), shallow parsers derived from Penn Treebank (PTB) (Preiss, 2003), and re-
cently, a deep parser based on Combinatory Categorial Grammar (CCG) (Clark and
Curran, 2007). The other is theStanford Dependencyscheme (SD) (de Marneffe
et al., 2006), which was proposed for providing NLP applications with more use-
ful syntactic representations than phrase structures. Although gold standard data is
not available, a program attached to the Stanford parser (Klein and Manning, 2003)
automatically converts PTB-style phrase structures into this format. This conver-
sion is only approximate, making SD-based evaluation problematic. In addition,
the lack of detailed documentation on the specific syntactic representation choices
highlights that this format was not originally intended for parser evaluation. How-
ever, because of its recent use in the evaluation of shallow PTB-style parsers in
the biomedical domain (Clegg and Shepherd, 2007; Pyysalo et al., 2007a), and the
availability of a conversion tool that uses shallow PTB-style trees2 as input, we in-
vestigate the use of SD as a scheme for framework-independent parser evaluation.

Our basic strategy for the evaluation of Enju is to establish a program for con-
verting Enju’s output into these two formats, and measure accuracy of converted
output. We also develop a conversion program from SD to GR, which allows for
GR-based evaluation of PTB-style parsers (Collins, 1997; Charniak, 2000), since a
conversion tool from shallow PTB-style output to SD is available. We can therefore
compare the performances of Enju and shallow PTB parsers directly, in addition
to previously reported results for RASP (Briscoe and Carroll, 2006; Briscoe et al.,
2006) and the C&C CCG parser (Clark and Curran, 2007).

One might expect that format conversion is straightforward among GR, SD,

1By “test set” we refer to the set of shallow brackets extracted from the Penn Treebank data.
While the original treebank data includes richer syntactic analyses, information such as long-distance
dependencies, ellipsis, and functional tags are removed in the extraction of shallow brackets.

2We use “shallow PTB-style trees” to refer to the Penn Treebank trees with empty-nodes and
function-tags removed.

240

and Enju’s output, because they all represent labeled dependencies between words
and are similar in concept. In fact, however, our experiments revealed that format
conversion is not trivial. We had to implement complex mapping rules for Enju-
to-GR/SD and SD-to-GR conversion, and there remain a lot of disagreements for
which resolution is unlikely and which may obscure not just differences in perfor-
mance among individual parsers, but also differences in the strengths of general
parsing approaches.

The idea of parser evaluation across frameworks is not new, and its difficulty
has been reported repeatedly in the literature (Carroll et al., 1998; Kaplan et al.,
2004; Burke et al., 2004a; Clark and Curran, 2007). The results in this paper add
to this discussion by focusing on actual challenges in format conversion, providing
in-depth analyses of sources of format disagreements. It is our hope that such work
will provide the direction for the development of a better scheme for framework-
independent evaluation of deep and shallow parsers.

Section 2 presents an overview of the two schemes for parser evaluation. Sec-
tion 3 describes methods for conversion from Enju’s output to GR/SD, and from
SD to GR. Section 4 shows experimental results on the accuracy evaluation of Enju,
PTB parsers, RASP, and a CCG parser. Section 5 discusses sources of difficulties
in format conversion.

2 Parser Evaluation Schemes

In the context of wide-coverage deep parsing, the de facto standard metric for pars-
ing accuracy is precision/recall of labeled dependency relations such as predicate
argument dependencies (Kaplan et al., 2004; Clark and Curran, 2004; Miyao and
Tsujii, 2005). However, dependency relations used to evaluate different parsers are
based on each parser’s formalism and resources. For example, the PARC 700 De-
pendency Bank (King et al., 2003) was used for the evaluation of LFG parsers (Ka-
plan et al., 2004; Burke et al., 2004a), a CCG treebank (CCGBank) (Hockenmaier
and Steedman, 2002) was used for the evaluation of CCG parsing models (Hock-
enmaier, 2003; Clark and Curran, 2004), and HPSG treebanks, which were created
manually (Oepen et al., 2004) or derived from PTB data (Miyao et al., 2005), were
used for the evaluation of HPSG parsers (Toutanova et al., 2004; Miyao and Tsujii,
2005; Ninomiya et al., 2007; Sagae et al., 2007). Direct relationships among dif-
ferent dependency schemes are unclear, and we have no way for fair comparison
of these parsers.

One issue that must be considered in parser evaluation is that an evaluation
scheme must represent information needed by applications and cover real-world
texts, because the goal of parser development is usability in NLP applications. An-
other important issue is that the evaluation framework should account for syntactic
structures that are not tied specifically to any single formalism. For example, an
evaluation scheme should be sensitive to grammatical phenomena such as con-
trol/raising and long-distance dependencies, even though such structures are not

241

(ncsubj market They _)
(iobj market on)
(dobj market cable-TV)
(dobj on opportunities)
(det opportunities the)
(ncmod _ opportunities grazing)
(cmod _ opportunities seeks)
(ncsubj seeks CNN _)
(ncsubj discourage CNN _)
(dobj discourage opportunities)
(xcomp to seeks discourage)
(ncmod _ opportunities very)

Figure 1: GR annotation forThey market cable-TV on the very grazing opportuni-
ties CNN seeks to discourage.

accounted for in shallow PTB parsers. At the same time, the inclusion of such syn-
tactic phenomena must not make it unnecessarily difficult to evaluate parsers that
output shallow brackets.

Considering these issues, we focus on two dependency-based schemes,Gram-
matical Relations(GR) (Carroll et al., 1998; Carroll and Briscoe, 2004; Briscoe,
2006) and theStanford Dependency(SD) scheme (de Marneffe et al., 2006), which
were proposed outside the deep parsing community, while aiming to represent not
only surface syntactic structures but also deep structures such as long distance de-
pendencies. In what follows, we describe these schemes and compare them briefly.

2.1 Grammatical Relations (GR)

The Grammatical Relationscheme (GR) was proposed aiming at a framework-
independent metric for parsing accuracy (Carroll et al., 1998). A set of 700 sen-
tences extracted from Section 23 of the Penn Treebank (the same set as the PARC
700 Dependency Bank) was manually annotated and made publicly available as
gold standard data (Briscoe and Carroll, 2006), in addition to an older set of 500
sentences from the SUSANNE corpus3. While this evaluation scheme is not as
widely used as PARSEVAL, it has recently gained some traction as a more framework-
independent alternative, and has been used in the evaluation of parsers including
RASP (Carroll and Briscoe, 2004; Briscoe and Carroll, 2006; Briscoe et al., 2006)
and the C&C CCG parser (Clark and Curran, 2007). Preiss (2003) reported GR-
based evaluation of PTB parsers including the Collins parser (Collins, 1997) and
the Charniak parser (Charniak, 2000), although the SUSANNE-based gold data
was used, and the results are not directly comparable to the results in this paper,
where we use the data based on the PARC 700 selection of Penn Treebank sen-
tences.

3http://www.informatics.sussex.ac.uk/research/groups/nlp/carroll/greval.html.

242

Figure 1 shows an example of GR annotation. GR represents labeled syntactic
dependencies between words. For example,ncsubj means a non-clausal subject
(e.g. (ncsubj market They)), dobj indicates a direct object (e.g.(dobj

market cable-TV)), andncmod expresses a non-clausal modifier (e.g.(ncmod

opportunities grazing)). Most relations are binary, while a few relation
types have additional slots that represent subtypes of the relations. For example,
(xcomp to seeks discourage) means thatdiscourageis a to-infinitival com-
plement ofseeks. Refer to Briscoe (2006) for the definition of these relation types.

GR annotations are almost purelysyntacticand therefore lack the means to
evaluate the true potential of deep linguistic parsers that compute relationships
based on semantics. However, it should be noted that GR represents non-local
dependencies such as control/raising and movement. In this example,(ncsubj

discourage CNN) indicates a control relation,(dobj discourage oppor-

tunities) expresses a moved object ofdiscourage, and(cmod opportuni-

ties seeks) means a relation between a relative clause and its antecedent. Since
these relations are not explicitly represented by PTB parsers, this scheme may serve
as a starting point in the identification of the added benefits of deep parsing and the
discussion of problems in framework-independent evaluation. On the other hand,
identifying most of the relationships in the GR scheme in the output of shallow
phrase structure parsers requires matching of tree patterns, which makes it chal-
lenging to evaluate those parsers.

Relation types in the GR scheme are arranged in a hierarchy. Upper types rep-
resent more generalized and coarse-grained relations. This hierarchy is used for
partial matching of relation types, which is intended for reducing disagreements
involving relation types. For example, when a parser outputs(ncmod market

on) , where the gold standard relation is(iobj market on) , this output is re-
garded as incorrect at the leaf level, but judged as correct at upper levels,arg mod

anddependent . This matching in the hierarchy is considered in scoring as de-
scribed below.

Standard metrics for the GR scheme aremicroaveragedandmacroaveraged
scores. Microaveraged scores are similar to standard precision/recall/f-score, but
take accuracy of non-leaf relation types into consideration. For example,ncmod

is a subtype ofmod, arg mod, anddependent . A singlencmod dependency is
regarded as expressing these four relations, and correctness of each of these rela-
tions is counted. Hence, as indicated above, disagreements of relation types are
discounted, because higher level types are easier to identify. In general, microav-
eraged scores are higher than the accuracy of leaf relation types. A macroaveraged
score is an average of the accuracy for each relation type, and frequencies of re-
lation types are ignored. Hence, infrequent relation types affect macroaveraged
scores. A program for computing microaveraged/macroaveraged scores is publicly
available4. We also report the overall accuracy of leaf relation types only, which is
the same metric used in our evaluation using SD.

4http://www.informatics.sussex.ac.uk/research/groups/nlp/carroll/greval.html

243

nsubj(market-2, They-1)
dobj(market-2, cable-3)
det(opportunities-8, the-5)
amod(opportunities-8, very-6)
nn(opportunities-8, grazing-7)
prep_on(market-2, opportunities-8)
nsubj(seeks-10, CNN-9)
rcmod(opportunities-8, seeks-10)
aux(discourage-12, to-11)
xcomp(seeks-10, discourage-12)

Figure 2: SD annotation forThey market cable-TV on the very grazing opportuni-
ties CNN seeks to discourage.

2.2 Stanford Dependency (SD) scheme

TheStanford Dependency(SD) scheme was originally proposed for providing de-
pendency relations that are more useful for applications than phrase structures
(de Marneffe et al., 2006). This scheme was designed based on Carroll et al.
(1998)’s grammatical relations and King et al. (2003)’s dependency bank, and
modified to represent more fine-grained and semantically valuable relations such
as apposition and temporal modification, while at the same time leaving out certain
relations that are particularly problematic for the parsers it was intended to work
with. Although no hand-annotated data is available, a program to convert PTB-
style phrase structures into SD relations is available as part of the Stanford Parser5.
That is, in principle, any PTB-style treebank can be converted into SD gold stan-
dard data. In practice, however, the conversion from phrase structure trees to SD
is only approximate, and converting gold standard phrase structure trees results in
only partially correct SD annotations. Unfortunately, the accuracy of these anno-
tations is unknown. This scheme was recently used for the evaluation of shallow
PTB-style parsers in the biomedical domain (Clegg and Shepherd, 2007; Pyysalo
et al., 2007a), using GENIA (Kim et al., 2003) and BioInfer (Pyysalo et al., 2007b)
as sources of gold standard PTB-style data.

Figure 2 shows an example of SD annotation for the same sentence as Figure 1.
SD looks very similar to GR, and represents many equivalent relations such as
nsubj(market-2, They-1) , dobj(market-2, cable-3) , andnn(oppor-

tunities-8, grazing-7) . The example also includes long-distance depen-
dencies, but they are not as explicit as in GR, and often not as reliable. Here,
xcomp(seeks-10, discourage-12) indicates a control relation betweenseeks
anddiscourage, andrcmod(opportunities-8, seeks-10) expresses a rela-
tion between a relative clause and its antecedent. However, relations indicating
thatCNN is the subject ofdiscourageandopportunitiesis the direct object ofdis-
courageare not represented. Refer to de Marneffe et al. (2006) for details of these

5http://nlp.stanford.edu/software/lex-parser.shtml

244

(ncsubj ordered Regulators _)
(ncsubj stop CenTrust _)
(ncsubj buying CenTrust _)
(ncmod _ ordered also)
(xcomp to ordered stop)
(xcomp _ stop buying)
(dobj buying stock)
(det stock the)
(passive preferred)
(ncsubj preferred stock obj)
(ncmod _ stock preferred)
(ncmod prt buying back)
(dobj ordered CenTrust)

nsubj(ordered-3, Regulators-1)
advmod(ordered-3, also-2)
dobj(ordered-3, CenTrust-4)
aux(stop-6, to-5)
xcomp(ordered-3, stop-6)
partmod(stop-6, buying-7)
prt(buying-7, back-8)
det(stock-11, the-9)
amod(stock-11, preferred-10)
dobj(buying-7, stock-11)

Figure 3: GR (left) and SD (right) forRegulators also ordered CenTrust to stop
buying back the preferred stock.

relation types, and note that while some of these relations are described as part of
the SD scheme, they are not implemented in the provided conversion software.

Although SD relation types are also organized in a hierarchy, it is intended for
convenience in use by applications, and they are not aimed at parser evaluation
purposes. Hence, we use standard precision, recall, and f-score as metrics for SD-
based evaluation.

2.3 Comparison of the two schemes

As noted above, and illustrated in Figure 3, the GR and SD schemes are very sim-
ilar in concept, and they represent equivalent dependencies in many cases. In this
example, they share subject/object relations such as(ordered, Regulators), clausal
complements such as(ordered, stop), and modifiers such as(ordered, also). How-
ever, disagreements can also be found; for example,preferred is recognized as
a past-participle modifier in GR (which is indicated as(ncsubj preferred

stock obj)), while it is an adjectival modifier in SD (which is represented as
amod(stock-11, preferred-10)). This comes from a difference in the part-
of-speed (POS) ofpreferred. Representations of long-distance dependencies are
also different, as previously mentioned. In this example, the subject ofstopand
buying is expressed in GR, while not in SD. Finally, we once again note that SD
data converted from gold standard PTB data includes errors: in figure 3buyingis
incorrectly recognized as a participial modifier tostop.

An advantage of GR is the availability of hand-annotated data, although the
data size is relatively small. Another advantage is that partial matching of relation
types may reduce the labor of format conversion. An advantage of SD is that we
can use any data annotated with the more common PTB annotation policy. In ad-
dition, evaluation of PTB parsers (Collins, 1997; Charniak and Johnson, 2005) is
convenient because software for format conversion is already available. However,

245

conversion errors make the evaluation only approximate, and the lack of a detailed
definition of relation types is an obstacle to further development of conversion
rules. This leads to a greater problem in framework-independent evaluation, since
many of the same conversion errors are present in the SD data converted from gold
standard PTB data and the converted output of shallow PTB-style parsers. For ex-
ample, the SD data used in experiments includes many relations assigned “dep”,
which is the most underspecified relation type. This relation is chosen as output
when the conversion program could not determine a relation type properly. In fact,
more than 5% of relations are assigned “dep”, meaning that the actual upper bound
for PTB-to-SD conversion is below 95%. Because these errors are undocumented,
in practice they result in inflated accuracy figures for shallow PTB parsers when
compared to the accuracy of parsers that use other formats that must be converted
with different software (and may contain a number of different conversion errors).
In other words, the accuracy of parsers that use PTB-like output is overestimated,
and the accuracy of parsers that use other output formats is likely to be underesti-
mated.

3 Format Conversion

Our strategy for format conversion is based on post-processing. That is, we convert
the output of parsers without changing the original parsers. During the develop-
ment of conversion programs, we validate our progress using a development set
of gold standard data in the format used by each parser, i.e., we run the conver-
sion on parts of the HPSG treebank (Miyao et al., 2005) and the Penn Treebank.
Automatic parsing results are used in the final evaluation. This is because accu-
racy obtained by converting gold standard data indicates the quality of conversion,
and we can separate issues of format conversion from actual parsing errors. Accu-
racy figures from converted gold standard are also meaningful as upper-bounds of
scores obtained with these evaluation schemes.

3.1 From Enju’s XML format to GR/SD

We implemented conversion rules for the Enju XML format (Miyao, 2007). This
format represents constituent structures and predicate argument structures in an
XML format. To start with, we mapped predicate argument relations into GR/SD.
Figure 4 shows an example of the XML format of Enju, and its mapping to GR.
Arguments oforderedandstopcan be mapped into GR in a fairly straightforward
manner. Relation types are determined depending on argument labels (e.g.ARG1

andARG2), categories and POS tags of predicate words (e.g.VBD), and syntactic
categories of argument constituents (e.g.NPandVP).

However, this simple method produced poor accuracy, mainly because of non-
trivial disagreements between the formats. Hence, we had to implement heuristic
conversion rules to fix these disagreements.

246

Figure 4: Enju XML format and mapping to GR

Figure 5: Conversion of lexical heads

Figure 6: Conversion of coordination

It is often the case that certain types of relations are expressed in one format,
but not in the other. For example, GR has “text adjunct” as a distinct relation, while
Enju (and SD) does not distinguish such a relation type from others. Text adjunct is
a text region delimited by some punctuation (Briscoe, 2006). Our conversion pro-
gram outputs parentheses and appositive relative clauses as text adjuncts, but does
not identify other text adjuncts. Another example is that GR does not represent in-
ternal structures of named entities, while Enju does. Hence, we detect text regions
of named entities using simple patterns on POS tags, and remove dependencies
inside named entity regions.

A major source of format disagreements was differences of lexical heads. Fig-
ure 5 shows an example of a temporal modifier. In Enju’s output (left), the lexical
head often years agois ago, while in the GR scheme (right), it isyears. Hence,
our conversion rule changes lexical heads of such temporal modifiers. Similar con-
version is applied to such constructions as number expressions.

Coordination was another major source of disagreements. Figure 6 shows an
example of VP coordination. Enju outputs subject relations of conjunct VPs sep-

247

arately (left), while in GR the head of coordinated phrase is a coordinator and it
has a subject relation (right). We therefore reduce two subject relations in Enju’s
output into one.

We also found systematic disagreements in specific constructions including
relative clauses, quotations, copulas, and small clauses. For example, GR and SS
represent a syntactic relation between the head verb of a relative clause and its
antecedent. However, Enju does not output such relations explicitly, and instead,
expresses a relation between a relativizer and its antecedent. We therefore devel-
oped conversion rules specialized to these constructions.

3.2 From SD to GR

Although the typed dependencies in the Stanford Dependency scheme are superfi-
cially similar to those in the Grammatical Relations scheme, conversion from SD
to GR is problematic for many of the same reasons cited above in our discussion
on conversion from Enju’s XML format. However, a more serious problem with
the use of SD (and SD to GR conversion) for parser evaluation is the lack of a gold-
standard SD corpus. In our experiments, SD annotations are obtained from shallow
PTB-style phrase-structure trees (which correspond to PTB trees with empty-node
and function-tag information removed), using a conversion program included in
the Stanford Parser. As can be expected, given our present discussion about parser
format conversion, the PTB to SD conversion program is far from perfect. In addi-
tion to noticeable errors in the output of the conversion program, more than 5% of
the dependencies are left completely underspecified, labeled only with the general
dep type (which does not correspond to a specific grammatical relation, indicating
only a head-dependent relation between two words). However, the accuracy of this
conversion is not known, and cannot be easily computed without a gold-standard
corpus for SD.

Conversion from SD to GR followed a similar pattern than the one described
above for conversion from Enju XML to GR. First, a simple mapping between cor-
responding relations was attempted. As was the case with Enju, the resulting con-
version was poor for all but the simplest relations (det andaux). A telling example
is the conversion of SD’snsubj to GR’sncsubj . Although the two relations ap-
pear very similar, a number of undocumented differences make the conversion less
straightforward than a simple mapping. For example, sentences involving the cop-
ula are treated differently by the two schemes, with GR attaching the subject as a
dependent of the verb, and SD attaching the verb as a dependent of the predicate
nominal. While some additional information required by GR’sncsubj (such as
whether the subject position is inverted, or the initial relation of the subject) can
be determined reliably by looking at aspects of the SD structure that go beyond
the nsubj dependency, some information (such as subjects in control structures)
simply cannot be determined from SD structures. Although de Marneffe et al.’s
description of the SD scheme seems to indicate that enough information for such a
conversion should be available, the actual implementation of the SD scheme in the

248

Stanford Parser lacks information relating to, for example, control structures and
long-distance dependencies. This is understandable, given the difficulty in pro-
ducing such information from shallow PTB-style trees. However, undocumented
differences between the description and implementation of SD make the conver-
sion even more difficult. A reasonably accurate conversion to GR’sncsubj was
finally obtained with the use of development data, by inspecting specific examples
annotated in each format. However, the efficacy of this approach varied in other
types of relations, especially since the amount of development data available was
limited.

One of the most problematic aspects of SD to GR conversion is the distinction
of complements from adjunct, especially in prepositional phrases. SD does not
assign a grammatical function to PPs, making it difficult to determine the correct
relation in the GR scheme. As a result, the identification of indirect objects (iobj)
has low accuracy compared to other relations. Of course, this also affects the accu-
racy of non-clausal modifiers. Another source of conversion errors is coordination,
which is annotated in such a way in SD that its scope cannot be determined. As
with Enju XML, recognizing the text adjunct (ta) relation is challenging, since it is
not represented in the SD scheme. Although issues relating to headedness were less
problematic in SD to GR conversion than in Enju XML to SD/GR, there were still
differences, probably related to the use of an automatic conversion from the orig-
inal PTB data to SD, compared to the manual annotation of the GR gold-standard
data.

Finally, we reiterate that the conversion errors in our conversion from SD to
GR are added on top of the PTB to SD conversion errors made by the Stanford
parser implementation when a complete PTB to GR conversion is performed. For
this reason, the GR results we obtain from parsers that produce PTB-style output
do not do these parsers justice. While it is possible that a one-step conversion,
from shallow PTB-style trees directly to GR, could produce more accurate results,
an attempt by Preiss (2003) shows that this is not guaranteed to be much more
successful, or at least is far from trivial. While our PTB to GR conversion does
not provide completely fair grounds for comparison between shallow PTB-style
parsers and Enju, a deep parser, it does serve to highlight some of the challenges
in attempting such a comparison.

4 Experiments

Table 1 shows the sizes of the data sets used in experiments. For the development
of conversion rules, we used 140 sentences extracted from the GR-annotated ver-
sion of the PARC 700 Dependency Bank and the same set of sentences annotated
automatically with SD (by running the Stanford Parser’s automatic conversion on
the corresponding Penn Treebank gold standard trees). For the final test, we used
560 sentences of the GR data and the same set of SD-annotated sentences. The
GR data for the final test is the same set as previous works on GR-based evaluation

249

Table 1: Statistics of test data

scheme # sent. # rels. # avg. rels/sent. # rel. types
GR 560 10386 18.55 18
SD 560 9343 16.68 40

(Briscoe and Carroll, 2006; Briscoe et al., 2006; Clark and Curran, 2007).
The parsers we evaluate are Enju 2.26, Charniak and Johnson (2005)’s rerank-

ing parser (C&J parser), Charniak (2000)’s parser, and the Stanford parser (Klein
and Manning, 2003). We also show previously reported microaveraged and macroav-
eraged scores for the GR evaluation of RASP (Briscoe and Carroll, 2006; Briscoe
et al., 2006) and the C&C CCG parser (C&C parser) (Clark and Curran, 2007).
Enju 2.2 includes a feature forest model (Miyao and Tsujii, 2005) and an extremely
lexicalized model (Ninomiya et al., 2007), while excluding more advanced tech-
nologies such as deterministic parsing (Matsuzaki et al., 2007) and combination
with shallow dependency parsing (Sagae et al., 2007).

Tables 2 and 3 show the accuracy of Enju and the PTB-style parsers obtained
after the format conversion. In these tables, “auto” denotes figures obtained from
automatic parsing results, while “gold” indicates accuracy figures obtained by con-
verting gold standard data (establishing upper-bounds for the corresponding “auto”
figures). In the case of Enju, “gold” figures are obtained by converting the HPSG
treebank, and indicate the upper bound in accuracy in these evaluation schemes.
Because the HPSG treebank lacks several sentences due to failures in the PTB-
to-HPSG conversion (Miyao et al., 2005) that created the HPSG treebank, we ex-
cluded missing sentences from the evaluation of “gold”. The evaluation of “auto”
includes all sentences in the test data. For the evaluation of PTB parsers on GR,
we applied our SD-to-GR conversion program to the output of the existing PTB-
to-SD conversion software. In this case, “gold” indicates the accuracy obtained in
the two-step conversion from PTB to GR. The “gold” accuracy for SD is 100%,
because in SD evaluations we take the output of the Stanford Parser’s PTB-to-SD
conversion to be correct. Although we know the conversion is in fact not 100% cor-
rect, in our SD-based evaluation we do take the conversion of gold standard PTB
trees to be our gold standard SD corpus, since a manually curated gold standard
corpus is not available.

First, we note that these results show that the accuracy levels obtained by con-
verting gold standard data are fairly low when format conversion is needed. This
means that format conversion is far from perfect. For both GR and SD evaluation of
Enju, “gold” accuracy figures are slightly higher than 80%, indicating that nearly
20% of dependencies cannot be converted properly. This is discouraging because
reported accuracy levels of shallow and deep parsing are around 90%. However,

6Available athttp://www-tsujii.is.s.u-tokyo.ac.jp/enju/

250

Table 2: Accuracy for GR

gold auto
precision recall f-score precision recall f-score

Enju 84.27 83.67 83.97 80.60 78.74 79.66
C&J parser 78.60 68.51 73.21 75.86 62.92 68.79
Charniak parser 78.60 68.51 73.21 75.18 62.97 68.53
Stanford parser 78.60 68.51 73.21 70.88 60.24 65.13

this is an indication that previously reported accuracy figures might be inflated.
The accuracy of “gold” PTB conversion to GR is even worse, since in this case
we do suffer from the errors in PTB-to-SD conversion, and the errors in the subse-
quent SD-to-GR conversion. As we have described, these schemes are superficially
similar, but this result reveals the difficulty of format conversion even between SD
and GR. A possible reason is that a significant portion of GR dependencies could
not be produced accurately from shallow phrase structures, which resulted in lower
recall.

Results for “auto” reveal that Enju outperforms PTB parsers significantly in our
GR evaluation, which is, as previously noted, unfair to the PTB parsers that suffer
a double penalty in conversion. In our SD evaluation, which in turn heavily favors
the PTB parsers and penalizes Enju, as previously discussed, the PTB parsers do
have higher accuracy than Enju. It is then obvious that these contradictory results
are heavily affected by the quality of format conversion, and this highlights how
challenging (and even misleading) cross-framework evaluations can be. If we fo-
cus on an argument on the neutral nature of the GR scheme, we might be able to
say that Enju is better in recognizing deeper dependency relations. However, this
result relies on SD-to-GR conversion after PTB-to-SD conversion for PTB parsers,
and it is likely that the figures for PTB parsers may be improved by directly con-
verting their PTB-style to GR. However, it should be noted that our results for PTB
parsers are better than the results reported by Preiss (2003) that implemented direct
conversion from PTB to GR, although actual figures are not comparable because
the test data is different, and the test set used by Preiss was in a different domain.

Tables 4 and 5 show microaveraged and macroaveraged scores for GR, respec-
tively. We also show previously reported results for RASP (Briscoe and Carroll,
2006; Briscoe et al., 2006) and the C&C parser (Clark and Curran, 2007), which
used the same evaluation scheme. Table 6 shows the accuracy of Enju for each
relation type. As described in Section 2, microaveraged scores are higher than the
accuracy in Table 2, which means that disagreements of relation types are reduced
to some extent. However, nearly 13% of relations still cannot be produced. Sim-
ilar results were also reported for the CCG parser, and this suggests that format
disagreements may not be a simple matter of relation type mismatch.

Although the problem of format conversion remains, and we do not claim to

251

Table 3: Accuracy for SS

gold auto
precision recall f-score precision recall f-score

Enju 83.43 81.44 82.42 77.38 74.54 75.93
C&J parser 100.00 100.00 100.00 88.36 88.45 88.40
Charniak parser 100.00 100.00 100.00 87.05 87.10 87.07
Stanford parser 100.00 100.00 100.00 85.36 83.16 84.25

Table 4: Microaveraged scores for GR

gold auto
precision recall f-score precision recall f-score

Enju 87.49 86.79 87.14 83.57 81.73 82.64
C&J parser 80.84 69.16 74.54 79.08 67.46 72.81
Charniak parser 80.84 69.16 74.54 78.41 67.68 72.65
Stanford parser 80.84 69.16 74.54 74.76 64.83 69.44
RASP — — — 77.66 74.98 76.29
C&C parser 86.86 82.75 84.76 82.44 81.28 81.86

Table 5: Macroaveraged scores for GR

gold auto
precision recall f-score precision recall f-score

Enju 81.19 75.70 78.35 77.87 71.10 74.33
C&J parser 62.64 49.30 55.17 60.20 47.97 53.39
Charniak parser 62.64 49.30 55.17 59.39 48.08 53.14
Stanford parser 62.64 49.30 55.17 57.93 46.81 51.78
RASP — — — 62.12 63.77 62.94
C&C parser 71.73 65.85 68.67 65.61 63.28 64.43

have achieved the best possible results with the PTB parsers, Tables 4 and 5 show
that the accuracy of Enju is significantly higher than those of other parsers eval-
uated using the same test set, including PTB parsers, RASP, and the C&C parser.
In particular, Enju achieved impressively higher macroaveraged scores, indicating
that Enju is able to recognize infrequent relation types accurately.

252

Table 6: Relation type-wise accuracy

gold auto
precision recall f-score precision recall f-score

ncmod 77.01 85.17 80.88 72.82 79.42 75.98
xmod 60.48 61.21 60.84 51.83 55.62 53.66
cmod 75.44 55.48 63.94 66.67 52.38 58.67
pmod 0.00 0.00 0.00 0.00 0.00 0.00
det 96.35 97.85 97.09 94.24 94.49 94.37
ncsubj 88.39 86.46 87.41 83.23 81.02 82.11
xsubj 100.00 57.14 72.73 75.00 42.86 54.55
csubj 75.00 100.00 85.71 100.00 100.00 100.00
dobj 91.80 93.53 92.66 88.35 89.36 88.85
obj2 56.52 68.42 61.90 61.90 65.00 63.41
iobj 82.24 60.08 69.43 82.25 58.33 68.26
xcomp 82.48 78.22 80.29 80.90 71.13 75.70
ccomp 87.39 79.39 83.20 81.92 73.45 77.45
pcomp 100.00 63.64 77.78 94.12 66.67 78.05
aux 95.88 95.36 95.62 94.66 92.77 93.70
conj 89.93 84.74 87.26 81.17 73.31 77.04
ta 61.54 25.91 36.47 59.46 22.68 32.84

5 Analysis of Format Disagreements

In what follows, we discuss sources of disagreements we found through our ex-
periments. Figure 7 shows classification of dependency mismatches between the
converted HPSG treebank and GR gold standard. That is, these come from format
disagreements, and do not include parsing errors.

Text adjunct As described in Section 3, GR has a relation type calledtext ad-
junct, which is not explicitly identified by Enju. Although our conversion program
tries to produce such relations, Table 7 shows that a significant number of text
adjuncts were not recognized correctly.

Argument/modifier distinction It is widely recognized that a clear distinction
between arguments and modifiers is difficult even for humans. In fact, there are
no formal criteria for argument/modifier distinction in GR/SD annotation, and they
are different even between GR and SD. Our conversion program approximately
reproduces their intended distinctions, but a significant portion of them remain
mismatched. One reason is that Enju outputs most prepositional phrases as modi-
fiers. However, we found many other cases such as a distinction between adverbial
clauses and clausal complements.

253

Table 7: Classification of dependency disagreements

Remaining disagreements 107
text adjunct 35
argument/modifier distinction 34
lexical head 25
POS 7
attachment 6

Conversion errors 36
named entity 15
number expression 6
coordination 6
others 9

Limitation of the HPSG treebank 14
noun phrase structure 10
others 4

Errors in the gold standard 13

Lexical head Although headedness is considered an agreed upon notion of syn-
tactic structures, it is not obvious for a certain portion of syntactic constructions.
For example, the head of “30.5 million” is “30.5” in GR and SD, while it is “mil-
lion” in Enju. This example is rather simple and could be converted easily, but the
important implication here is that there is a potential disagreement in headedness
in many different types of constructions such as this one. This is critical because
dependency-based evaluation heavily relies on the identification of lexical heads,
and disagreements on heads may unfairly decrease apparent accuracy.

A similar problem is the necessary portion of arbitrary annotation policies that
is inherent in this type of exercise. A typical example is the dependency structure
of “more than 2%”. In GR, “more” is the head of this phrase, and “than 2%”
is a modifier of “more”. However, in SD and Enju, “more than 2” constitutes a
quantifier phrase, and “more” modifies “%”. Either of these is acceptable, and we
should regard this as a difference of annotation policies.

Part of Speech (POS) While the POS tags of some words are legitimately am-
biguous, their differences significantly hurt accuracy because different relation
types are assigned to words with different POS tags. For example, in Figure 3,
GR recognizes “preferred” as a past participle, while SD (and Enju) treats it as an
adjective, which results in assigning different relation types.

Conversion errors Our conversion rules for named entities, number expressions,
coordination, and others did not work properly in some cases, and conversion errors

254

remained. We expect that these errors can be reduced with further improvement of
our conversion rules, although this complicates the process of format conversion.

Limitations of the HPSG treebank The HPSG treebank does not represent
some syntactic structures correctly. An example is internal structures of noun
phrases. In the HPSG treebank, most noun phrases are annotated as right-branching
trees, which are not necessarily correct. This is because the HPSG treebank was
translated from the Penn Treebank, in which the internal structure of noun phrases
is not annotated.

Errors in the gold standard We found a few cases that we simply disagreed or
did not understand the intention of the GR gold standard annotation. Clearly, this
type of problem is much more serious in our SD evaluation, because the SD eval-
uation sets are automatically converted from PTB, and they contain unjustifiable
relations caused by imperfect conversion.

6 Summary and Future Directions

In this paper, we described an attempt to perform framework-independent parser
evaluation. We focused on two dependency-based schemes for parser evaluation,
namely, GR and SD, and evaluated the accuracy of an HPSG parser and shallow
PTB-style parsers by converting their output into the dependency formats in these
two schemes. In a series of experiments, we found that non-trivial conversion of
parser output format was required. Experimental results showed that nearly 20%
of dependency relations are problematic even when we converted a gold-standard
HPSG treebank, demonstrating the difficulty of format conversion. In practice, it is
difficult to have reliable conversion between different dependency representations,
even between GR and SD, which are superficially similar. While we identified
several of the major problems in our format conversion programs, their solution is
unclear and would likely require a more complex conversion process. These re-
maining problems may obscure the results of parser evaluation. In fact, the results
we obtain using the two evaluation schemes do not agree, confirming previous find-
ings that framework-independent evaluation remains a challenge. Our experience
suggests that GR evaluation is a step in the right direction, but a more accurate
conversion procedure from PTB-style output to GR format is necessary.

From these observations, we conclude that a possible direction for improved
parser evaluation includes machinery for dealing with multiple valid heads and de-
pendency types in gold standard data. Following the discussion in Section 5, it is
important to reduce the disagreements in relation types and lexical heads. While
GR provides a partial solution to the former through its hierarchy of relations, a
significant portion of remaining problems are relation type mismatches caused by
the argument/modifier distinction, text adjuncts, and ambiguity of POS tags. For

255

the latter, a possible solution would be to annotate multiple candidate dependen-
cies, any of which may be matched to parser output. It may also be desirable to
determine the relative importance of relations in the evaluation. For example, in
current schemes, the attachment of prepositional phrases is weighted identically to
the attachment of determiners. While this is addressed in GR evaluation by hav-
ing separate figures for precision and recall of each relation, complex results that
include several dimensions can be difficult to interpret. Another example involves
dependencies concerning idiomatic expressions, which may need to be excluded
from the evaluation, since their structures vary significantly in different frame-
works.

While this paper focused on parser evaluation at an intermediate representation,
another direction is evaluation in end-to-end applications, such as information ex-
traction and machine translation. In application-oriented, or task-based evaluation,
some differences between parsers might be obscured because many other compo-
nents contribute to overall system performance. However, this type of evaluation
is indispensable for further understanding of how the characteristics of specific
parsers make them more suitable in certain situations, and even to validate the
results of more straightforward synthetic evaluations using gold-standard parsed
data.

References

Black, E., Abney, S., Flickinger, D., Gdaniec, C., Grishman, R., Harrison, P., Hin-
dle, D., Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos,
S., Santorini, B. and Strzalkowski, T. 1991. A procedure for quantitatively com-
paring the syntactic coverage of English grammars. InProc. DARPA Speech and
Natural Language Workshop, pages 306–311.

Briscoe, T. 2006. An introduction to tag sequence grammars and the RASP system
parser. Computer Laboratory Technical Report 662, University of Cambridge.

Briscoe, T. and Carroll, J. 2006. Evaluating the accuracy of an unlexicalized statis-
tical parser on the PARC DepBank. InProc. COLING/ACL 2006 Poster Session.

Briscoe, T., Carroll, J. and Watson, R. 2006. The second release of the RASP
system. InProc. COLING/ACL-06 Demo Session.

Burke, M., Cahill, A., O’Donovan, R., van Genabith, J. and Way, A. 2004a. Eval-
uation of an automatic annotation algorithm against the PARC 700 Dependency
Bank. InProc. 9th International Conference on LFG, pages 101–121.

Burke, M., Cahill, A., O’Donovan, R., van Genabith, J. and Way, A. 2004b.
Treebank-based acquisition of wide-coverage, probabilistic LFG resources:
project overview, results and evaluation. InProc. “Beyond Shallow Analyses”
workshop at IJCNLP-04.

256

Cahill, A., McCarthy, M., van Genabith, J. and Way, A. 2002. Parsing text with a
PCFG derived from Penn-II with an automatic F-structure annotation procedure.
In Proc. 7th International Conference on LFG, pages 76–95.

Carroll, J. and Briscoe, T. 2004. High precision extraction of grammatical rela-
tions. In H. Bunt, J. Carroll and G. Satta (eds.),New Developments in Parsing
Technology, Kluwer Academic.

Carroll, J., Briscoe, T. and Sanfilippo, A. 1998. Parser evaluation: a survey and a
new proposal. InProc. LREC 1998, pages 447–454.

Charniak, E. 2000. A maximum-entropy-inspired parser. InProc. NAACL 2000,
pages 132–139.

Charniak, E. and Johnson, M. 2005. Coarse-to-fine n-best parsing and MaxEnt
discriminative reranking. InProc. ACL 2005.

Clark, S. and Curran, J. 2007. Formalism-independent parser evaluation with CCG
and DepBank. InProc. ACL 2007.

Clark, S. and Curran, J. R. 2004. Parsing the WSJ using CCG and log-linear mod-
els. InProc. 42th ACL.

Clegg, A. B. and Shepherd, A. 2007. Benchmarking natural-language parsers for
biological applications using dependency graphs.BMC Bioinformatics8(1), 24.

Collins, M. 1997. Three generative, lexicalised models for statistical parsing. In
Proc. 35th ACL.

de Marneffe, M.-C., MacCartney, B. and Manning, C. D. 2006. Generating typed
dependency parses from phrase structure parses. InProc. LREC 2006.

Hockenmaier, J. 2003. Parsing with generative models of predicate-argument struc-
ture. InProc. 41st ACL, pages 359–366.

Hockenmaier, J. and Steedman, M. 2002. Acquiring compact lexicalized grammars
from a cleaner treebank. InProc LREC-2002, Las Palmas, Spain.

Kaplan, R. M., Riezler, S., King, T. H., Maxwell, J. T. and Vasserman, A.
2004. Speed and accuracy in shallow and deep stochastic parsing. InProc.
HLT/NAACL’04.

Kim, J. D., Ohta, T., Tateisi, Y. and Tsujii, J. 2003. GENIA corpus — a semanti-
cally annotated corpus for bio-textmining.Bioinformatics19, i180–182.

King, T. H., Crouch, R., Riezler, S., Dalrymple, M. and Kaplan, R. M. 2003. The
PARC 700 Dependency Bank. InProc. LINC’03.

Klein, D. and Manning, C. D. 2003. Accurate unlexicalized parsing. InProc. ACL
2003.

257

Malouf, R. and van Noord, G. 2004. Wide coverage parsing with stochastic at-
tribute value grammars. InProc. IJCNLP-04 Workshop “Beyond Shallow Anal-
yses”.

Marcus, M., Santorini, B. and Marcinkiewicz, M. A. 1994. Building a large anno-
tated corpus of English: The Penn Treebank.Computational Linguistics19(2),
313–330.

Matsuzaki, T., Miyao, Y. and Tsujii, J. 2007. Efficient HPSG parsing with supertag-
ging and CFG-filtering. InIn Proc. IJCAI 2007.

Miyao, Y. 2007. Enju 2.2 Output Specifications. Technical Report TR-NLP-UT-
2007-1, Tsujii Laboratory, University of Tokyo.

Miyao, Y., Ninomiya, T. and Tsujii, J. 2005. Corpus-oriented grammar develop-
ment for acquiring a Head-driven Phrase Structure Grammar from the Penn
Treebank. In Keh-Yih Su, Jun’ichi Tsujii, Jong-Hyeok Lee and Oi Yee Kwong
(eds.),Natural Language Processing - IJCNLP 2004, volume 3248 ofLNAI,
pages 684–693, Springer-Verlag.

Miyao, Y. and Tsujii, J. 2005. Probabilistic disambiguation models for wide-
coverage HPSG parsing. InProc. ACL 2005, pages 83–90.

Ninomiya, T., Matsuzaki, T., Miyao, Y. and Tsujii, J. 2007. A log-linear model
with an n-gram reference distribution for accurate HPSG parsing. InProc. IWPT
2007.

Oepen, S., Flickinger, D. and Bond, F. 2004. Towards holistic grammar engineering
and testing — grafting treebank maintenance into the grammar revision cycle.
In Proc. IJCNLP-04 Workshop “Beyond Shallow Analyses”.

Preiss, J. 2003. Using grammatical relations to compare parsers. InProc. EACL
2003, pages 291–298.

Pyysalo, S., Ginter, F., Haverinen, K., Laippala, V., Heimonen, J. and Salakoski,
T. 2007a. On the unification of syntactic annotations under the Stanford depen-
dency scheme: A case study on BioInfer and GENIA. InProc. BioNLP 2007,
pages 25–32.

Pyysalo, S., Ginter, F., Heimonen, J., Bjorne, J., Boberg, J., Jarvinen, J. and
Salakoski, T. 2007b. BioInfer: a corpus for information extraction in the biomed-
ical domain.BMC Bioinformatics8(50).

Sagae, K., Miyao, Y. and Tsujii, J. 2007. HPSG parsing with shallow dependency
constraints. InProc. ACL 2007.

Toutanova, K., Markova, P. and Manning, C. 2004. The leaf projection path view
of parse trees: exploring string kernels for HPSG parse selection. InEMNLP
2004.

258

The Grammix CD-ROM
A Software Collection for Developing Typed Feature

Structure Grammars

Stefan Müller
Freie Universität Berlin

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

259

Abstract

This paper discribes a bootable CD-ROM that contains grammar devel-
opment software for teaching and research.

1 Purpose

The CD-ROM contains the TRALE system and various other software compo-
nents that are useful for grammar development (see Section 3). It can be used for
research projects as well as for teaching syntax or grammar engineering courses. It
contains example grammars for German that correspond to chapters in a textbook
(Müller, 2007). The texbook motivates the complex feature geometry that is used
in current HPSG publications. The book starts with basic head argument structures
and head features and extends this feature geometry to more complex structures
including a semantic representation, and features for nonlocal dependencies and
relative clauses. Students who work with this textbook can use the CD to look at
structures corresponding to their respective knowledge indetail. They can modify
and extend the toy grammars and study the consequences of their changes. While
the set of reference grammars in the HPSG framework is growing larger and larger,
large scale grammars are not usable for grammar teaching forvarious reasons. For
instance such grammars often use auxiliary features that are needed for technical
reasons and that are not documented in the literature. Feature descriptions of large
scale grammars have an enourmous complexity which makes them unusable for
teaching. The Grammix CD-ROM tries to fill the gap and providea set of gram-
mars with increasing complexity which allows to focus on certain features when
they are introduced.

Apart from the textbook grammars the CD contains grammar fragments for
German, Chinese, and Maltese. These grammars use a common core and can
be seen as reference grammars for multi-lingual grammar engeneering with the
TRALE system.

In addition, the CD contains the textbook by Frank Richter onGrammar For-
malisms and Parsingand the software that comes with it.

The CD-ROM is intended to be a reference installation of TRALE and the
attached software components. The system is Unicode-enabled and displays gram-
mar files and grammar output that use Simplified Chinese, ISO-Latin-1, and Mal-
tese characters correctly. As a bootable, stand-alone CD including an operating
system, this reference CD provides not only the software mentioned but also all
appropriate fonts, configurations, and other collateral files.

The CD-ROM also contains an installation of the LKB system. Readers who
have other textbooks, grammars, and/or software that they want to distribute to-
gether with TRALE or LKB, should contact the author of this paper.

260

2 Description

The Grammix CD-ROM is a bootable Knoppix-based CD-ROM that contains two
complete grammar development systems (the TRALE system (Meurers, Penn and
Richter, 2002; Penn, 2004) and the LKB system (Copestake, 2002)) together with
the grammar profiling tool [incr tsdb()] and example grammars written for the
TRALE system, which correspond to the respective chapters in the text bookEin-
führung in die Head-Driven Phrase Structure Grammar(Müller, 2007). In ad-
dition, the CD-ROM contains the Babel System (Müller, 1996,1999, 2004) and
TRALE grammars for Chinese, Maltese, and German which have acommon core
and use Minimal Recursion Semantics (Copestake, Flickinger, Pollard and Sag,
2005) for semantic representations.

Users may use the software contained on the CD to:

• load grammars, display analyzes as trees or as feature structure with arbitrary
level of detail

• display type hierarchies and signatures (types together with the features that
are introduced by the respective types)

• change and extend existing grammars (and of course write newones . . .)

• to watch the Bottom-Up-Chart-Parser doing its work, visualize grammar
rules, and explore newly developed grammars systematically.

• do systematic grammar testing and profiling with the profiling tool [incr
tsdb()].

3 Grammar development software

The Grammix CD-ROM contains the following software (in addition to some of
the software that usually comes with Knoppix):

• Main components:

– TRALE
Developers and Project Coordinators: Gerald Penn (University of To-
ronto), Detmar Meurers (The Ohio State University), Frank Richter
(Universität Tübingen), with help by Nick Pendar (University of To-
ronto), Thilo Götz (Universität Tübingen), Stephan Kepser(Universität
Tübingen), Dale Gerdemann (Universität Tübingen), Frederik Fouvry
(Universität Tübingen), Vanessa Metcalf (The Ohio State University),
Markus Dickinson (The Ohio State University), Holger Wunsch (Uni-
versität Tübingen), Martin Lazarov (Universität Tübingen), Oliver
Suhre (Universität Tübingen), Mike Daniels (The Ohio StateUniver-
sity), and Stefan Müller (Freie Universität Berlin)

261

– Chart-Display
Author: Patric Stiffel (DFKI Saarbrücken)
TRALE- and Babel-Interface: Stefan Müller (Freie Universität Berlin)

– [incr tsdb()] distributed with the LKB
Author: Stephan Oepen (University of Oslo)
TRALE-Interface: Stefan Müller (Freie Universität Berlin) and Fred-
erik Fouvry (Universität des Saarlandes, Saarbrücken)

– utool: The Swiss Army Knife of Underspecification
Authors: Alexander Koller, Stefan Thater, and Michaela Regneri, with
help by Marco Kuhlmann
TRALE-Interface: Stefan Müller (Freie Universität Berlin)

– Grammars for TRALE
Author: Stefan Müller (Freie Universität Berlin)

– Babel with grammar
Author: Stefan Müller (Freie Universität Berlin)

• Other material:

– MoMo
Authors: Katja Ovchinnikova (Universität Osnabrück), Frank Richter
(Universität Tübingen), Beata Trawiński (Universität Tübingen), Ash-
ley Brown and Levente Barczy

– Textbook Grammar Formalisms and Parsing
Author: Frank Richter (Universität Tübingen)

– Grammars for Grammar Formalisms and Parsing
Author: Frank Richter (Universität Tübingen), Manfred Sailer (Uni-
versität Göttingen), and Beata Trawiński (Universität Tübingen)

4 System Background and system Requirements

The CD-ROM is based on Knoppix (currently version 5.0.1). Knoppix is a Linux
distribution that is based on Debian. Knoppix uses a compressed file system which
makes it possible to store more than 2 Gbyte of software on a CD-ROM. Recent
versions of Knoppix use the Union file system which makes it possible to “change”
configuration and application files although they are storedon the non-writable
CD-ROM. The changed files are stored in the RAM. The operatingsystem looks
at the modified files in the RAM rather than at the earlier versions of these files
on the CD-ROM. The modifications in the RAM will be lost when the machine is
switched off or rebooted. However, users can store such information permanently
on the hard disc or on an USB stick. This makes it possible to modify example
grammars that are delivered with Grammix and store these grammars permanently.

The graphical desktop that is delivered with Grammix is KDE.The system
requirements correspond to the system requirements imposed by Knoppix:

262

• Intel-compatible CPU (i486 or later, including Intel Macs with firmware
1.0.1 or later),

• at least 128 MB,

• bootable CD-ROM drive,

• standard SVGA-compatible graphics card,

• serial or PS/2 standard mouse or IMPS/2-compatible USB-mouse.

If you want to work with more complex grammars (starting fromChapter 10 of
the textbook), you need 256 MB memory, 512 MB is recommended.If you work
with [incr tsdb()] to debug TRALE grammars, another TRALE process is started
and you need the corresponding amount more memory. Since theLKB and [incr
TSDB()] are more tightly integrated, this does not apply to the profiling of LKB
grammars.

Since Knoppix uses open source drivers for hardware components, Grammix
may not run on very new hardware. For instance the graphics chip may not be
recognized which may result in failure to display anything or in a suboptimal dis-
play with low resolution. In such cases using virtualization software may help (see
Section 8).

5 Performance Issues

Grammix contains a standalone version of TRALE, which consists of saved states.
Saved states do no contain the SICStus Prolog compiler. Instead the TRALE code
is interpreted, which slows down the system considerably. Users who want to use
TRALE professionally should consider buying a SICStus license and installing a
SICStus version on top of Grammix.

Note also that Grammix is based on a 32bit operating system. SICStus Prolog
runs much faster (factor two in certain situations) on modern CPUs with 64bit
architecture.

6 Localization

Since the CD-ROM is a supplement of a textbook in German, the default language
for menus and desktop information is German. If you prefer English, you may boot
the system and enter the language code as an option at the bootprompt and press
return:

knoppix lang=en

This will select the respective keyboard driver and providemenus and icon names
in KDE according to the language you selected. Since the localization files are very

263

big not all languages are included in the CD-ROM. If your language is missing,
please send an email to the author. Please refer to the Grammix web page to find
out which languages are supported.

7 Download

You need a good internet connection for the download, since the size of the CD
image is approximately 500 MB.

The CD image is available at:
http://dg.fu-berlin.de/Software/Grammix/.

8 Grammix and Other Operating Systems

The Grammix CD contains an operating system, so no other operating system is
required to run the software. However, users may find it more convenient to run
their normal operating system while using Grammix. Thanks to some auxiliary
files provided by Doug Arnold it is possible to use VM Player1 on Windows to run
Grammix in a virtual machine. It is then possible to switch between your normal
Windows environment and Grammix. Grammix can use the network facilities used
by the host operating system without any further configuration. Depending on
personal preferences, users may run Grammix from the CD-ROMor from a copy
of the ISO image on their hard disk. The necessary files for setting up VM PLayer
can be downloaded on the Grammix page, which was given in the previous section.
VM Player is provided free of charge. Mac users with Intel Macs can use VM Ware
Fusion2.

References

Copestake, Ann. 2002.Implementing Typed Feature Structure Grammars. CSLI
Lecture Notes, No. 110, Stanford: CSLI Publications.

Copestake, Ann, Flickinger, Daniel P., Pollard, Carl J. andSag, Ivan A. 2005. Min-
imal Recursion Semantics: an Introduction.Research on Language and Com-
putation4(3), 281–332.http://lingo.stanford.edu/sag/papers/
copestake.pdf, 11.10.2006.

Flickinger, Dan, Koller, Alexander and Thater, Stafan. 2005. A New Well-
Formedness Criterion for Semantics Debugging. In Stefan Müller (ed.), The
Proceedings of the 12th International Conference on Head-Driven Phrase Struc-
ture Grammar, Department of Informatics, University of Lisbon, pages 129–142,

1http://www.vmware.com/products/player/
2http://www.vmware.com/products/fusion/

264

Stanford: CSLI Publications.http://cslipublications.stanford.
edu/HPSG/6/, 05.13.07.

Koller, Alexander and Thater, Stefan. 2005. Efficient Solving and Exploration
of Scope Ambiguities. InProceedings of the ACL Interactive Poster and
Demonstration Sessions, pages 9–12, Ann Arbor: Association for Computa-
tional Linguistics.http://acl.ldc.upenn.edu/P/P05/P05-3003.
pdf, 04.09.2007.

Meurers, Walt Detmar, Penn, Gerald and Richter, Frank. 2002. A Web-Based
Instructional Platform for Constraint-Based Grammar Formalisms and Pars-
ing. In Dragomir Radev and Chris Brew (eds.),Effective Tools and Method-
ologies for Teaching NLP and CL, pages 18–25, proceedings of the Work-
shop held at 40th Annual Meeting of the Association for Computational Lin-
guistics. Philadelphia, PA.http://www.ling.ohio-state.edu/~dm/
papers/acl02.html, 08.01.2004.

Müller, Stefan. 1996. The Babel-System—An HPSG Prolog Implementation. In
Proceedings of the Fourth International Conference on the Practical Appli-
cation of Prolog, pages 263–277, London.http://dg.fu-berlin.de/
~stefan/Pub/babel.html, 24.11.2007.

Müller, Stefan. 1999.Deutsche Syntax deklarativ. Head-Driven Phrase Structure
Grammar für das Deutsche. Linguistische Arbeiten, No. 394, Tübingen: Max
Niemeyer Verlag.http://dg.fu-berlin.de/~stefan/Pub/hpsg.
html, 24.11.2007.

Müller, Stefan. 2004. Continuous or Discontinuous Constituents? A Compari-
son between Syntactic Analyses for Constituent Order and Their Processing
Systems.Research on Language and Computation, Special Issue on Linguistic
Theory and Grammar Implementation2(2). http://dg.fu-berlin.de/
~stefan/Pub/discont.html, 24.11.2007.

Müller, Stefan. 2007.Head-Driven Phrase Structure Grammar: Eine Einfüh-
rung. Stauffenburg Einführungen, No. 17, Tübingen: Stauffenburg Verlag.
http://dg.fu-berlin.de/~stefan/Pub/hpsg-lehrbuch.
html, 24.11.2007.

Oepen, Stephan and Callmeier, Ulrich. 2000. Measure for Measure: Parser
Cross-Fertilization. Towards Increased Component Comparability and Ex-
change. InProceedings of the 6th International Workshop on Parsing Technolo-
gies, pages 183–194, Trento, Italy.http://www.delph-in.net/itsdb/
publications/fertilization.ps.gz, 04.09.2007.

Oepen, Stephan and Carroll, John A. 2000a. Ambiguity Packing in Constraint-
Based Parsing—Practical Results. InProceedings of the 1st Conference of
the North American Chapter of the Association for Computational Linguistics

265

(NAACL’00), Seattle, WA, pages 162–169.http://www.delph-in.net/
itsdb/publications/packing.ps.gz, 04.09.2007.

Oepen, Stephan and Carroll, John A. 2000b. Parser Engineering and Perfor-
mance Profiling.Natural Language Engineering6(1), 81–97. http://
www.delph-in.net/itsdb/publications/parsing.ps.gz,
04.09.2007.

Oepen, Stephan and Flickinger, Daniel P. 1998. Towards Systematic Grammar
Profiling. Test Suite Technology Ten Years After.Journal of Computer Speech
and Language12(4), 411–436, (Special Issue on Evaluation).http://
www.delph-in.net/itsdb/publications/profiling.ps.gz,
04.09.2007.

Ovchinnikova, Ekaterina and Richter, Frank. 2007. Morph Moulder: Teach-
ing Software for HPSG and Description Logics.Logic Journal of
the IGPL . http://jigpal.oxfordjournals.org/cgi/content/
abstract/jzm024v1, 04.09.2007.

Penn, Gerald. 2004. Balancing Clarity and Efficiency in Typed Feature Logic
Through Delaying. InProceedings of the 42nd Meeting of the Association for
Computational Linguistics (ACL’04), Main Volume, pages 239–246, Barcelona,
Spain.

Penn, Gerald and Carpenter, Bob. 1999. ALE for Speech: a Translation Prototype.
In Proceedings of the 6th Conference on Speech Communication and Technology
(EUROSPEECH), Budapest, Hungary.

Richter, Frank. 2006. A Web-based Course in Grammar Formalisms and Pars-
ing, electronic Textbook.http://milca.sfs.uni-tuebingen.de/
A4/Course/PDF/gramandpars.pdf, 20.09.2007.

266

Grammars and Programming Languages:
To Further Narrow the Gap

Paula S. Newman
newmanp@acm.org

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

267

Abstract

Symbolic parser/grammar combinations can be viewed as programming systems
for natural language processing applications. From this perspective, they can be
compared with conventional programming systems, and seen to require more
effort in the important development activities of testing and debugging. This
paper describes tools associated with the RH (Retro-Hybrid) parser that facilitate
these activities and are, to varying extents, more broadly applicable. The paper
also suggests a new approach to improving parser efficiency using constrained
inputs, based in part on one of the RH debugging tools.

1 Introduction 1

Developing general-purpose symbolic natural language parsers and grammars is
difficult. One way of appreciating the difficulties is to view parser/grammar
combinations as programming systems for natural language applications, and to
compare them to traditional programming systems. From this perspective, it can
be seen that far more effort must be devoted to testing grammars, reviewing test
results, and debugging, than is required for traditional programs. Also, although
considerable effort has been devoted to efficiency, parser execution tends to be
slow, especially for deep-unification based grammars. Many innovative ap-
proaches have been applied to these problems. Copestake (2002) describes a
comprehensive development system for HPSG grammars, and the XLE Online
Documentation (2006) does the same for LFG grammars.

This paper explores some additional possibilities, based on tools developed for
the relatively shallow RH parser (Newman, 2007a, 2007b), or suggested by those
tools. The necessary background for the RH parser is provided in section 2.
Then three problem areas are addressed. Section 3 discusses test/review prob-
lems, and broadly applicable methods of alleviating them using tools exploiting
the TextTree display format (Newman, 2005). Section 4 discusses the difficulty
of identifying failure points in debugging declarative grammars, shows how the
difficulty is avoided in RH, and suggests some related approaches that are more
widely relevant. Finally, section 5 suggests an approach to improving parser effi-
ciency that adapts and combines: (a) a technique for leveling differences among
parser outputs, for purposes of measurement (Ringger et al., 2004) with (b) meth-
ods of constrained execution, one of which is used in RH debugging

1 Acknowledgments: Thanks are due to John Sowa, who made many helpful comments
on an early draft of this paper, and also to an anonymous reviewer of another paper, who
partially motivated this one by implying that developing deep-unification-based gram-
mars is easy.

268

2 Background: The RH Parser

The RH (Retro-Hybrid) parser combines two major components, a shallow
parser, and an overlay parser. These components are outlined below.

2.1 Shallow Parser

The shallow parser used in RH is the Xerox Incremental Parser (XIP), developed
by Xerox Research Center Europe. XIP is actually a full parser, whose per-
sentence output consists of a single tree of basic chunks, together with
identification of (sometimes alternative) typed dependences among the chunk
heads (Ait-Mokhtar et al. 2002, Gala 2004). But because the XIP dependency
analysis for English was not mature at the time that work on the RH parser
began, and because a classic parse tree annotated by syntactic functions can be
more convenient for some applications, the overlay parser uses only the output
chunks.

XIP is astonishingly fast, contributing very little to overall RH parse times
(about 20%). It consists of the XIP engine, plus grammars for many languages.
The grammar for a particular language consists of:
(a) a finite-state lexicon that produces alternative part-of-speech and

morphological analyses for each token, together with bit-expressed
subcategorization and control features, and (some) semantic class features,

(b) a substitutable tagger that identifies the most probable part of speech for each
token, and

(c) sequentially applied rule sets that extend and modify lexical analyses,
disambiguate tags, identify named entities and other multiwords, produce
basic output chunks, and identify inter-chunk head dependences. (Note: the
dependency rule results are not used in the RH hybrid.)

2.2 Overlay Parser

The overlay parser uses a guiding grammar expressed as a collection of networks
that are similar to Augmented Transition Networks (Woods, 1970), thus the term
"retro". A recursive control mechanism traverses the grammar networks top-
down and depth-first to build constituents.

The grammar network arcs are labeled by references to tests for specialized
categories. These tests, if successful, either return a shallow parser chunk or a
parse forest, with the latter obtained by recursively invoking the control to trav-
erse another grammar network. The specialized category tests are context-free,
and, if performed, their results are cached. But the tests are often gated by pre-
tests referring to contextual considerations such as parent category and left-
sibling features. An extensive preference scoring system (see Newman, 2007b)

269

is used to prune partial parses early, and to select a single "best" parse, with scor-
ing ties resolved by low attachment considerations.

3 Grammar Test and Review

3.1 The Problem

Conventional applications based on traditional programming languages are built
using a more-or-less standard development process that assumes applications
consist of relatively independent, modular units. As an application is specified,
written, and unit-tested, a collection of global tests reflecting meaningfully dif-
ferent input combinations is constructed. Before the application is released, the
tests are executed iteratively, and errors are removed, until the results are correct.
In general, the number of input combinations that must be tested on a global level
is relatively small, and determining whether results are correct is straightforward.

In contrast, for symbolic NL grammars, the test/review process is an integral
part of grammar construction, and involves applying the grammars as a whole to
as many input examples as feasible. This is because grammar elements are not
modular in the same way as conventional programs, and the number of meaning-
fully different input combinations for a target genre is usually enormous.

Furthermore, determining the correctness of test results is far more difficult
than for conventional applications. A standard result representation is a parse
tree rendered in node + edge form. This representation, although useful for short
sentences, is not easily scanned for longer sentences, which are very frequent.
For example, the many non-fiction documents (in several genres) that were used
to refine the RH English grammar have an average sentence length of roughly 20
words, with a standard deviation of about 11. Thus many parse trees obtained by
parsing those documents are twenty or more words wide at the leaves, plus inter-
vening blanks, so that the trees do not fit into a single window. Parse trees can
also be very deep, making it difficult to grasp the structure.

3.2 TextTrees

TextTrees were developed for RH grammar test and review, and can also sub-
stantially reduce test/review effort for other types of syntactic grammars.
TextTrees are linearly rendered, flattened, parse trees that convey right-side de-
pendency by indentation. They can be read as prose, but at the same time expose
most parsing errors.

An excerpt from a TextTree display obtained by parsing section J42 of the
Brown Corpus is given in Figure 1. The indentations of the first TextTree show

270

4 (2) Thus the Congress marks a formal recognition of the political system that
was central to world politics for a century. best more morett chunks

 Thus
 the Congress
 marks
 a formal recognition
 of the political system
 {that
 was
 central
 to world politics
 for a century}.

5 (8) International law had to fit the conditions of Europe , and nothing that could
not fit this system , or the interests of the great European nations collectively ,
could possibly emerge as law in any meaningful sense. best more morett chunks

 International law
 had to fit
 the conditions
 of
 [Europe,
 and
 nothing
 {that
 |could not| fit}]
 {[this system,
 or
 the interests
 of the great European nations]
 collectively,
 could possibly emerge
 as law
 in any meaningful sense}.

Figure 1. Example TextTrees

a correct structure, but those of the second show a coordination of "Europe" and
"nothing" as the object of the preposition "of". The probable correctness of the
first sentence and the errors of the second sentence can be seen quickly, even
though the sentences contain 20 and 35 words respectively.

The TextTree construction algorithm is given by Newman (2005). The algo-
rithm is almost parser-independent, requiring only a <category, style-name> pair

271

40.0 Hidden behind Hegelian abstractions were more practical reasons for a changing jurispru-
dence.

VPNFINS (1)
INV_COMP

VPINV (0)

FV PP (1)
VMOD

FV*: GNP (1)
INV_SUBJ

0 V
Hidden

1 P
behind

GNP
PMOD

4 V*:
were

NP PP -ffor (1)
NMOD

 NP
 AP 7 N*:

reasons
8 P*
for

GNP
PMOD

AP 3 N*:

abstrac-
tions

5
QUANT
more

6 ADJ
practical

NP*

2
ADJ*:
Hege-
lian

9 D
a

AP 11 N
jurispru-
dence

 10 ADJ*
changing

Figure 2. A full parse tree

for each constituent category type used by the parser. Limited empirical tests
(see reference) show review speed improvements of 25% to 50% relative to us-
ing full parse trees, depending on the effort made to obtain a high review speed.
Also, TextTree display files provide a good grasp of overall document problems.

3.3 Other Uses of TextTrees

TextTree displays, like those of Figure 1, have been the primary means of re-
viewing RH parser results, allowing rapid determination of whether parses identi-
fied as "best" are probably correct, and providing access to other results. Each
sentence in the display has the following links:
a) The best link leads to a display of the full parse tree2 for the best parse. Fig-

ure 2 gives an example. We note that the Figure 2 tree is for a sentence of
only 12 words, yet spans the page in this format, even with some tokens split
between lines. Although full-screen presentations accommodate wider trees,
trees for long sentences must be split into segments, arranged vertically.

2 The full parse tree displays are in a TreeTable format (Newman, 2002). Parent nodes
physically span children, giving a good appreciation of structure. For applications with
narrower trees, the cells can contain indicative content. In the parse tree adaptation, node
features are accessed by mouse-over of category names.

272

b) The chunk link leads to a display of shallow parser output in the same for-
mat as for full parse trees, with basic chunks shown as children of the (omit-
ted) top node.

c) The more and morett links lead to displays of other parses retained, in full
parse tree form and TextTree form, respectively. The number of parses re-
tained depends on parser invocation options, outlined below.

0. International law had to fit the conditions of Europe, and nothing that could
not fit this system, or the interests of the great European nations could possibly
emerge. 0.40 (s = 4) 0.35 (s = 4)
 International law
 had to fit
 the conditions
 of
 [Europe,
 and
 nothing
 {that
 |could not| fit}]
 {[this system,
 or
 the interests
 of the great European nations]
 could possibly emerge}.

0. International law had to fit the conditions of Europe, and nothing that could
not fit this system , or the interests of the great European nations could possibly
emerge . 0.4 (s = 3)
 [{International law
 had to fit
 the conditions
 of Europe},
 and
 {nothing
 {that
 |could not| fit
 [this system,
 or
 the interests]
 of the great European nations}
 could possibly emerge.}]

Figure 3. Excerpt from morett display

273

The number of trees retained by the parser depends on the parser invocation
mode. In "production" mode, only the best parse is retained, so the more and
morett links are not of interest. In "standard" mode, all parses with the highest
preference score are retained, while in "noprune" mode preference-based pruning
is disabled, and many more parses may be completed and retained.

The morett link supplies additional TextTree-based information. Figure 3 ex-
cerpts a morett display of "noprune" mode results for a reduced version of the
incorrectly parsed sentence of Figure 1. Duplicate structures are grouped. Figure
3 first shows a strange, incorrect structure, reflected in two parses, both given the
preference score s = 4, and then a better structure, with score s = 3, indicating
that one source of the problem is in the preference assignments. (The correct
structure appears slightly further on in the display.) If the display were produced
in standard mode, only the highest scoring parses would be shown.

The morett display thus serves several purposes. First, it highlights probably
duplicate parses. Also, when pruning is enabled, it shows parses that were re-
tained when they should not have been. Finally, by grouping duplicate structures
(thus limiting the number of structures to be scanned), it facilitates determining
whether the correct parse was found, even if not identified as best 3

A further RH use of TextTrees (not illustrated) allows a more direct determi-
nation of whether a correct structure was obtained. A "find" parser option ac-
cepts single sentences in TextTree format and produces as output a list of
matches found in the retained parses, with links to the full parse trees.

All these TextTree-based RH tools should be useful in other parser develop-
ment environments. Another potential use beyond those discussed is in regres-
sion testing, to illustrate changes in results. But a caveat is needed. TextTrees
are clearly useful for SVO languages with mostly projective grammars (i.e., with
mostly contiguous constituents). Their adaptability to other types of languages
has not been explored.

4 Grammar Debugging

4.1 The problem

Debugging erroneous grammar outputs addresses several questions: why a cor-
rect parse was not found, why some incorrect parses were found, and why dupli-
cate parses were found.

3 The number of trees shown via the more and morett links is somewhat constrained, to
limit the size of files containing full parse trees. Currently, if only one sentence is being
parsed, the highest scoring 100 trees are shown; otherwise a random sample of 30 is used.

274

In comparison with conventional applications, grammar debugging involves
more effort, partly because it is far more frequent, being an integral part of the
continuous test/review process. But the major reason for the increased difficulty
is that traditional debugging approaches, which rely to a large extent on tracing
program execution, are usually not applicable. The tracing can involve obtaining
application specific intermediate results at critical points in the program, and/or
using language-processor-supplied debugging tools to step through code related
to errors. Analogous tracing of grammar "execution" would follow the applica-
tion of the grammar rules. However, useful traces require the existence of a sim-
ple, accurate mental model of the execution sequence and, unfortunately, parsers
rarely conform to such a model. As an important example, chart parsing makes
the sequence of parser operations difficult to predict and follow, because adding
an edge to the chart can activate the continuation of many rules to which that
edge might be relevant. Also, general traces of rule application are likely to be
extremely voluminous, because of the number of alternatives examined.

Therefore, debugging tools for grammars tend to focus on accumulated results.
For bottom up parsing, displays can be constructed to illustrate the successive
node attachments that were made, linked to the associated grammar rules, to aid
in detecting both inappropriate and missing attachments. Such displays, how-
ever, can be quite complex, even for relatively short sentences. Copestake
(2002) discusses how the complexity can be reduced, by highlighting nodes
which are ancestors or descendants of an interactively selected node.

For top-down parsing, creating equally informative post-parse displays is more
challenging. A bottom-up display of attachments can only contain constituents
that were eventually expanded down to tokens, and so are of less help in discov-
ering missing rules or rule components.

In the next subsection we discuss why and how traces are used successfully in
RH grammar development. A subsequent subsection discusses an extension
which is more generally applicable.

4.2 RH debugging with traces

While, for many parsers, tracing is not practical for grammar debugging, it is
useful for debugging an RH overlay parser grammar, for three reasons:
1. Most important, overlay parser execution is a simple, top-down/depth-first

process, and therefore can be traced by a hierarchically indented sequence
recording significant parser actions.

275

2. Trace volume is limited, because the overlay parser operates on disambigu-
ated tags and chunks.4

3. The ATN-like grammar networks provide symbolic information that can be
replicated in the traces. An excerpt of a grammar network is shown in Figure
4, with each row representing one or more network arcs in terms of a single
From state, possibly multiple To states, and a Label of a specialized cate-
gory test. (For a fuller description of the networks, see (Newman, 2007a)).
The relevant aspect here is that searching and following the traces is aided by
the inclusion of the network names, row information, as well as general cate-
gory names within the trace output. Figure 5 shows an excerpt from an
overlay parser trace that is attempting to develop a coordinated NP (category
NPC) using the network of Figure 4, starting at token position 0. The trace
shows a test for pre-coordinators, and then goes on to a test for a simple
(non-coordinated) noun phrase. (The excerpt is edited to remove detail and
expand some abbreviations).

From To Label Other material & comments
NC_1 NC_2 T_PRE_COORD // e.g., both, either, between

NC_1 -1 T_CUT // meta-test, like prolog cut
// stops testing if prior test satisfied

NC_1 NC_3 T_NPS // simple noun phrase
… Omitted…
// After first simple noun phrase
NC_3 NC_5 T_COMMA
 …Omitted…

Figure 4. Excerpt from NPC_NET for parsing coordinated noun phrase

• Parsing NPC:0 in NPC_NET entry NC_1
• Continue NPC(0:0) NPC_NET at NC_1, test T_PRE_COORD

• do_T_PRE_COORD:0
• do_T_PRE_COORD:0 : failed

• Continue NPC(0:0) NPC_NET at NC_1, test T_CUT
• Continue NPC(0:0) NPC_NET at NC_1, T_NPS

• do_T_NPS:0
• Parsing GNP:0 in NPS_NET entry N_1
• Continue GNP(0:0) NPS_NET at N_1, test T_TITLE

Figure 5. Excerpt from trace for a coordinated noun phrase at token position 0

4 Erroneous RH parses that are the result of errors in tagging and chunking are found via
the chunks display, and can be investigated using the very helpful XIP trace facilities.

276

4.3 Debugging with Constraining Inputs

A more generally applicable approach to grammar debugging uses constraining
inputs, which are sentences with some substrings bracketed and category-labeled,
for example "{NP: Time} flies {PP: like an arrow}.}".

Constraining inputs can be applied in different ways, depending on parser di-
rection and type. For bottom-up parsers, the constraining inputs can be used to
identify points of failure by limiting a bottom-up chart to constituents that are
bottom-up consistent with the brackets and labels, For top-down chart parsers,
the constraining inputs might dictate a parse of each bracketed element, starting
with the lowest. A failure would occur if there is no parse for a bracketed ele-
ment, or if no parse for a bracketed element includes all its contained bracketed
elements in the input.5

 For the RH overlay parser, constraining inputs are used to restrict parser exe-
cution. This reduces trace volume and limits the effects of an inconvenience in-
troduced by caching, namely that all but the first invocation of a test at a token
position returns a cached result, and the trace indicates only either failure or a
success. In that case, the trace must be searched from the beginning to find the
trace of that first invocation.

However, only simple bracketings have been used in RH debugging, because
effective top-down bracketing requires that the brackets serve as barriers. Any
bracket beginning at a token position p must be preceded by any higher level
brackets also beginning at p. Figure 6 shows effective and ineffective bracket-
ings to constrain processing of a sentence to a declarative, rather than imperative,
interpretation with an initial NP.

The constraining brackets need not be precise with respect to punctuation en-
closure. Methods for allowing this are described further on, in the context of us-
ing constraining inputs to improve parser performance.

Summarizing the debugging tools discussed above, literal traces of parser ac-
tivity are used directly for RH debugging, and their convenience is improved by
the use of constraining inputs. While tracing parser activities may not be suitable
to other parser environments, constraining inputs may well be helpful in other
ways to aid in debugging.

5A somewhat related facility is provided by XLE (XLE Online Documentation, 2006). It
allows the complete trees retained after the parse to be searched for ones consistent with a
bracketing. The facility might thus be used to find a point of failure by applying the fa-
cility multiple times, each time adding higher brackets

277

ANY: {NP: You} love Mary}} will not rule out imperative reading
{ROOT: {NP: You} love Mary}} will rule it out
{NP: You} love Mary parse fails because NP not outermost at 0

Figure 6. Constraining inputs

5 Parser Efficiency

5.1 The Problem

Deep-unification-based parsers do not currently approach the efficiency of the
fastest parsers. Figure 7 gives approximate relative parse times of several parsers
for the Penn TreeBank Wall Street Journal Section 23. The relative times are
derived from reports comparing the efficiency of Collins Model 3 (Collins, 1999)
with one of the other parsers, when executed on the same machine.6

The relative times for the XLE LFG parser, considered a very fast unification-
based parser, are based on a report by Kaplan et al. (2004). Results are given for
both core (reduced) and full English grammars. The relative time for the fast sto-
chastic parser by Sagae and Lavie (2005) is derived from that reference, and that
for the RH parser is based on results reported by Newman (2007a).

Deep-unification-based parsers tend to be slower because unification is a de-
structive operation that requires copying of the structures to be unified, using
large amounts of time and space. Sophisticated methods have been developed to
limit this cost (Maxwell and Kaplan, 1996), but do not remove the gap.

5.2 Current Approaches

An important current approach to the efficiency problem uses the results of
fast partial parsers to constrain, or establish preferences for, follow-on parser
search paths (Frank et al, 2003 and Daum et al., 2003).

 Time
Sagae & Lavie 2005 .25
RH 2007 .31
Collins model 3 1
XLE/LFG core English grammar 2004 1.5
XLE/LFG complete English grammar 2004 5

Figure 7. Relative time comparison

6 We do not include relative times for the probably faster stochastic CCG parser by Clark
and Curran (2007), because their comparisons are explicitly stated to be indicative only,
in that the CCG results were obtained on a faster machine than the other parser results.

278

{N '' {SPEC the} {N'{N boy} {P '�����' … }}}

 {NP {NP {DET the} {N boy}} {PP … }}

Figure 8. Two parses for "the boy in the park"

It should be possible to pursue this direction further, that is, to constrain deep,
relatively slow, parsers by the results of full, fast, parsers. The difficulty with
doing so is that the results of an arbitrary front-end parser are unlikely to be con-
sistent with those of a back-end parser in terms of constituent structure, labeling,
and punctuation enclosure. For example, different parsers might deliver the dif-
ferent structures shown in Figure 8 for the same noun phrase.

Cahill et al (2007) describe one way of addressing this difficulty. They train a
fast statistical parser on the uncorrected outputs of the target back-end parser for
a large corpus. The resulting trained parser then serves as the constraining front
end. This removes the inconsistency problem, at the price of not training on a
gold standard. It can thus improve performance and coverage (the latter because
the constraints can prevent the parser from exceeding imposed resource limits),
but the potential improvements in accuracy that might be obtained by training on
fully-correct parses are not realized. The method is reported to obtain speedups
of approximately 1/3.

5.3 Alternative Possibility: Leveling Differences

Another way of using a faster parser to constrain the execution of a slower,
deeper one is to adapt an approach developed by Ringger et al (2004). That ap-
proach is intended to remove differences between parse trees for purposes of
measurement, for example, to compare the correctness of parser results against a
treebank. It focuses on removing brackets from non-maximal projections of
heads, and essentially consists of the following steps:

1. General transformation rules developed for the pair of gold standard
trees and the output trees of the parser to be measured are applied. Most
transformation rules just modify the identification of phrasal heads.

2. Then, brackets representing non-maximal projections of heads are re-
moved from both sets of trees. After this operation the result for the
first parse of Figure 8 would be simply: {N'' the boy {P'' …}}

3. Finally, after other (not specified) pair-specialized transformations are
performed, the resulting trees are compared using unlabeled bracketing.

279

To adapt the approach for purposes of constraining parser execution, transfor-
mation rules would necessarily be restricted to the outputs of the fast front-end
parser. Then brackets and labels would be retained only for maximal projections
of heads.

The resulting transformed results of the front-end parser could be used in dif-
ferent ways to constrain a back-end parser, depending on the back-end parser
approach. Two examples are given.

Top-down usage. For top-down parsing, the approach sketched in the preceding
section on debugging the RH overlay parser using constraining inputs is applica-
ble. Bracketing by maximal projections of heads (with heads identified by the
front-end parser adjusted if necessary) should satisfy the requirement that the
brackets serve as barriers, that is, that any bracket beginning at a token position p
must be preceded by any higher level brackets also beginning at p. To deal with
differences in category labeling and punctuation enclosure, the following method
is used:

1. Opening brackets in the input are considered to extend over an interval
<b', b>, where b is the actual position of the bracket, and b' is the first of
possibly several punctuation tokens immediately preceding b.

2. Each back-end parser category is considered equivalent to ANY of the
constraining categories which it might match.

3. In parsing a constituent, when the parser reaches token position p within
the next open bracket interval <b', b>, and that bracket has category c,
the parser will not process a test for a category sc unless sc= c, or sc is
considered equivalent to c, or sc is a punctuation test.

4. When processing a constituent corresponding to a bracket pair ending at
a position eb, no tests are processed for the constituent beyond eb except
for immediately following sequences of punctuation.

Bottom-up usage. For bottom-up head-driven parsing, the constraining structure
might be used in roughly the following way:

1. Restricting token tags to those given by the constraining parse (suitably
mapped)

2. Initiating a constituent c using a lexical head h only if there is a con-
straining subtree containing h that is headed by h.

3. When a constituent c with lexical head h is to be extended by some de-
pendent d, the extension is accepted only if there is a lowest constraining
subtree LCTc larger than c that also has lexical head h, and d is either a
token or equal to another constraining subtree, and LCTc includes d.

In either usage case, if no parse is obtained by the combination, the deeper
parser might be used directly.

280

These approaches would also address the ambiguity problem, limiting the
burden on current methods of supplementing unification-based grammars with
stochastic, corpus-based post-processors for disambiguation (Kaplan et al. 2004,
and Toutanova et al. 2005). (The suggested approaches do not replace post-
processing, because a particular syntactic structure might have multiple associ-
ated deep structures requiring disambiguation.)

5.4 Experiment

A small experiment was performed to test the potential performance improve-
ment for the RH overlay parser using the method combination for top-down
parsers described in the previous subsection. Specifically, we combined a simu-
lated result of the described adaptation of the Ringer et al. (2006) approach, with
the RH approach to debugging using constraining inputs.

For a sentence that required an inordinate amount of parse time, the overlay
parser was constrained by a manually constructed bracketed input, shown in Fig-
ure 9, with the brackets used only for maximal projections of heads.7 The results
were not encouraging, because even for a sentence that the parser found difficult,
the performance improvement was only about 35%.

However, the approach should realize more significant gains if used with a
slower parser, because: (a) the RH overlay parser builds on the results of the fast
front-end shallow parser, so no time is spent in considering alternative token tags
or basic attachments, and (b) the work performed by the overlay parser for each
potential constituent is far less than that performed, for example, by unification-
based parsers.

6 Summary

We have described some development tools associated with the RH parser, both
mainstays, and some more recent extensions. These tools bring the grammar de-
velopment process closer to that of applications built using traditional program-
ming languages, in the sense that they reduce the amount of effort required for
result review and debugging. Many of the tools are relevant across grammar
frameworks. We have also described an approach to improving efficiency par-
tially suggested by one of the RH development tools. Figure 10 summarizes the
existing and potential tools discussed, their usage in RH development, and their
wider relevance

7 We note that the illustration is formatted just for readability. It is not a TextTree be-
cause it contains many brackets and labels, and the first PP is not indented.

281

{ROOT
{GNP It}
 reached
 {GNP its ultimate philosophical statement}
 {PP in {GNP notions
 {PP of `` {GNP state will ''
 {VPNFINS put forward {PP by {GNP the Germans}}
 {PP especially by {GNP Hegel,}}}}}}}
 {SUBCL although
 {S
 {GNP political philosophers}
 will recognize
 {GNP its origins
 {PP in
 {GNP the rejected doctrines
 {PP of {GNP Hobbes}}}}} }}} .

Figure 9. A constraining input using maximal projections of heads

The most important of the tools described, TextTrees, allow most erroneous

parser results to be rapidly identified. Also, displaying all retained parses in
TextTree form assists in finding parses that were obtained, but were not identi-
fied as "best", and in identifying duplicates for further study and removal.
TextTree displays are relevant to reviewing parser results for SVO languages
with mostly projective grammars. Their relevance to other types of grammars is
yet to be studied.

Parser execution traces have served as the primary tool for debugging the RH
overlay parser grammar. A recent extension constrains parser execution by par-
tially labeled and bracketed inputs, to make following traces more convenient.
While execution traces are of questionable relevance to chart parsers, using con-
straining inputs in debugging are of wider relevance.

The paper also suggests a technique for using the results of a fast parser to
constrain the activities of a slower one. The technique combines: (a) an adapta-
tion of a method for leveling differences between parser results with (b) different
methods of constraining the activities of a back-end slower parser, depending on
parser approach. While the technique is not very promising for the RH hybrid,
because the overlay parser builds on the results of a very fast shallow parser, it
may provide significant performance gains for deep-unification-based parsers

282

Tool Area Usage in RH
development

Relevance
beyond RH?

Test/Review
 Best texttrees heavy yes
 All texttrees some (relatively new) yes
 Find texttree in outputs new yes
Debug
 Via tracing heavy limited

 Using constraining input limited (relatively new) yes
Efficiency
 Using constraining input no probably

Figure 10. Summary of tools, usage in RH, and applicability

References

Cahill, Aoife, King, Tracy Holloway, Maxwell, John T. 2007. Pruning the Search
Space of a Hand-Crafted Parsing System with a Probabilistic Parser. Proceed-
ings of the Workshop on Deep Linguistic Processing, pages 65-72

Clark, Stephen and Curran, James R 2007. Wide-Coverage Efficient Statistical
Parsing with CCG and Log-Linear Models. To appear in Computational Lin-
guistics 33(4). Draft at www.cs.usyd.edu.au/~james/pubs/pdf/cl07parser.pdf

Collins, Michael. 1999. Head-Driven Statistical Models for Natural Language
Parsing. Ph.D. thesis, University of Pennsylvania.

Copestake, Ann. 2002, Implementing Typed Feature Structure Grammars, CSLI
Publications

Daum, Michael, Foth, Kilian A., and Menzel, Wolfgang. 2003. Constraint Based
Integration of Deep and Shallow Parsing Techniques. In Proc. 11th Conf. of
the European ACL, pages 99-106

Frank, Anette, Becker, Markus, Crysmann, Berthold, Kiefer, Bernd, and Schae-
fer, Ulrich. 2003. Integrated Shallow and Deep Parsing: TopP Meets HPSG. In
Proc 41st Annual Meeting of the Association for Computational Linguistics

Kaplan, Ronald M., Riezler, Stephan, King, Tracy H., Maxwell, John T.,
Vasserman, Alex, and Crouch, Richard. 2004. Speed and accuracy in shallow
and deep stochastic parsing. In Proc Human Language Technology Confer-
ence of the North American Chapter of the Association for Computational
Linguistics, pages 97-104

283

Maxwell, John T., Kaplan, Ronald M. 1996. Unification-based parsers that
automatically take advantage of context freeness. Proc First Annual LFG Con-
ference

Newman, Paula S. 2002. Exploring discussion lists: steps and directions. In Proc
Second Joint ACM/IEEE-CS Conference on Digital Libraries, pages 126-134

Newman, Paula S. 2005. TextTree Construction for Parser and Grammar Devel-
opment. In Proc Workshop on Software at 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics.

 Available at http://www.cs.columbia.edu/nlp/acl05soft/

Newman, Paula S. 2007a. RH: A Retro-Hybrid Parser. In Proc Human Language
Technologies 2007: The Conference of the North American Chapter of the As-
sociation for Computational Linguistics; Companion Volume, pages 121-124

Newman, Paula S. 2007b. Symbolic Preference Using Simple Scoring. In Proc
10th International Workshop on Parsing Technology, pages 83-92

Ringger, Eric K., Moore, Robert C., Vanderwende, Lucy, Suzuki, Hisami, and
Charniak, Eugene. Using the Penn Treebank to Evaluate Non-Treebank Pars-
ers, In Proc 2004 Language Resources and Evaluation Conference, pages 867-
870

Sagae, Kenji, and Lavie, Alon. 2005. A classifier-based parser with linear run-
time complexity. In Proc. 9th Int'l Workshop on Parsing Technologies.

Toutanova, Kristina, Manning, Christopher D., Flickinger, Dan, and Oepen,
Stephan, 2005. Stochastic HPSG Parse Disambiguation using the Redwoods
Corpus. Research on Language and Computation 3(1), pages 83-106

XLE Online Documentation. 2006.
 Available at http://www2.parc.com/isl/groups/nltt/xle/doc/xle.html#SEC

284

Soft Constraints at Interfaces

Nick Pendar

Iowa State University

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

285

Abstract

Assuming that grammar is best modeled as a set of modules eachrep-
resenting a constraint system, like other human cognitive faculties, these
constraint systems are bound to disagree and soft constraints are needed for
conflict resolution among modules. This paper outlines an approach to incor-
porate soft constraints among grammar modules. The paper first goes over
the issue of modularity and conflicting requirements. It then summarizes a
generalized theory of soft constraint satisfaction (SCSP). It then outlines a
linguistic constraint system based on SCSP theory. Finally, it shows how
the type antecedent constraints of HPSG can be extended in anSCSP-based
framework to allow for constraint violations and gradient constraints.

1 Introduction

Inquiry in theoretical linguistics, cognitive science, and AI has led many research-
ers to believe that constraint-based approaches in modeling human behavior cap-
ture our understanding of the phenomena in question better than procedural ap-
proaches. The advantage of these approaches is that expressing what we know
about the data in the form of constraints can capture generalizations more accu-
rately and intuitively. A procedural formalization has thedisadvantage of mix-
ing knowledgewith the processingof that knowledge. By keeping the two sepa-
rate, we as researchers give ourselves the opportunity to improve each separately.
Constraint-based linguistic theories have been making headway in better under-
standing of language. Two noteworthy examples are Head-Driven Phrase Structure
Grammar (HPSG, Pollard and Sag, 1987, 1994), and Lexical Functional Grammar
(LFG, Bresnan, 1982, 2001). Another remarkable example is Optimality Theory
(OT, Prince and Smolensky, 1993); the underlying assumption in this theory is that
constraints are not absolute (crisp), but instead they are violable (soft). Constraints
are thus ranked according to their importance, and the form that violates the fewest
high-ranking constraints is considered the optimal form. Constraint-based systems
are also widely used to solve real-life problems in computerscience. Network
management, scheduling, and transportation problems are most easily solved in a
constraint-based approach.

In cognitive science and AI, problems are envisioned as constituting discrete
objects with constraints imposed on their interactions. A keyword in the preceding
statement isobjectsas objects are more or less independent entities with certain
properties and they perform a set of predefined functions. Several theories in cog-
nitive science have found modular approaches beneficial. For example, Newell’s
(1990) unified theory of cognition paints a modular picture of the mind in which
each cognitive faculty takes the form of a discrete entity that communicates with

†I thank Elizabeth Cowper, Elan Dresher, Frank Keller, Jean-Pierre Koenig and Gerald Penn for
their insightful comments on my work. This work was partially funded by the Social Sciences and
Humanities Research Council of Canada and Ontario GraduateScholarships.

286

Syn/Sem Phon

W

Discourse

Figure 1: Modular grammar architecture proposed by Haji-Abdolhosseini (2003,
2005)

other modules. Oatley and Johnson-Laird (1987) and Oatley (1992) develop a
theory of emotions within a larger context of cognitive science. This theory also
relies on the fundamental assumption that human cognitive processes are modu-
lar and need to communicate with one another. In linguistics, Jackendoff (1992)
also argues that human cognitive faculties form modules that need to communicate
with one another. He also believes that each module (e.g., language, vision, or
musical perception) is itself made up of its own sub-moduleswhich in turn com-
municate with one another. Jackendoff (1997, 2002) argues for a tripartite architec-
ture of grammar where phonological, morpho-syntactic and semantic components
work in parallel and communicate at interface levels. Haji-Abdolhosseini (2003,
2005) takes a modular approach to HPSG where different linguistic modules inter-
act through a shared list of domain objects.

However, disagreement among modules in any given intelligent system is a fact
of life. Having crisp constraints, therefore, is not considered a desirable feature
because as we gradually grow out of toy models and move towards approximat-
ing real-life problems, a system with crisp constraints quickly turns into what is
known as anover-constrainedsystem; i.e., one that yields no solution; or it be-
comes so complicated that it takes the system an inordinate amount of time to find
an answer. In the AI community, several approaches have beenproposed to rem-
edy such problems.Partial constraint satisfaction(Freuder and Wallace, 1992),
constraint hierarchies(Borning et al., 1992),probabilistic soft constraint satisfac-
tion (Fargier and Lang, 1993),valued constraint satisfaction(Schiex et al., 1995),
and fuzzy soft constraint satisfaction(Rosenfeld et al., 1976; Dubois et al., 1993;
Ruttkay, 1994) are most notable.1

In computational linguistics, probabilistic approaches are dominant, and have
led to some theoretical contributions (Abney, 1996, 1997; Bod, 1998; Bod, Hay
and Jannedy, 2003a; Bod, Scha and Sima’an, 2003b; Foth, Menzel and Schröder,

1Some useful literature reviews can be found in Bistarelli (2001) and at
http://kti.ms.mff.cuni.cz/∼bartak/constraints/ (accessed 9/11/2007).

287

2005; Schröder, 2002, among others). One notable approachwithin linguistics
proper that relies on non-crisp constraints is OT.

Jackendoff (1997; 2002), who is a proponent of a modular approach, introduces
correspondence rulesthat apply at the interfaces among major linguistic modules.
Haji-Abdolhosseini (2005) observes that soft constraintstend to be interface con-
straints and hard constraints tend to be intramodular. Thiswork advocates the use
of soft constraints at interfaces.

From a practical point of view, there are additional reasonswhy it is impor-
tant to do research in grammatical interfaces in constraint-based and multi-partite
frameworks: A modular theory is easier for the researcher towork with. A gram-
mar written in this approach is certainly more readable and more convenient to
maintain. Furthermore, with the emergence of large-scale grammars a modular
approach becomes even more significant to promote code readability and reuse.

2 A Generalized Theory of Constraint Satisfaction

Constraint programming has been a very exciting area of research in artificial intel-
ligence in the past decade. The holy grail of constraint programming is to find ways
of describing a problem in terms of constraints without having to worry about how
those constraints are processed in finding a solution. This will allow one to con-
centrate on the problem as opposed to the details of algorithms and processing (for
an excellent introduction, see Marriott and Stuckey, 1998). This constraint-based
view of characterizing problems has also found its way into linguistics. Head-
Driven Phrase Structure Grammar (HPSG, Pollard and Sag, 1987, 1994), Lexical
Functional Grammar (LFG, Bresnan, 1982, 2001), and Optimality Theory (OT,
Prince and Smolensky, 1993) are all constraint-based theories of language, and
their claim is that by expressing linguistic generalizations in terms of constraints,
we are better able to see the phenomena involved without getting entangled in pro-
cedural details.

The problem of over-constrained systems has led researchers to seek ways of
relaxing or weighting constraints so that the less important ones can be violated in
favor of the more important ones. This is also a route that OT has taken.

In the following subsection, we review a generalized theoryof soft constraint
satisfaction introduced by Bistarelli (2001). This theoryis based on a certain al-
gebraic structure called thesemiring. Based on a solid mathematical foundation,
Bistarelli’s theory of Semiring-based Constraint Satisfaction Problems (SCSP) il-
lustrates that several of the previous models of soft constraint satisfaction are in-
stances of SCSP. The next section provides a formal introduction to constraint satis-
faction problems in general, and section 2.2 introduces Bistarelli’s semiring-based
account. We will also outline an SCSP-based extension to HPSG type antecedent
constraints in section 3.1.

288

2.1 Constraint Satisfaction Problems

This subsection is based on section 1.1 of Bistarelli (2001).

DEFINITION 2.1 Constraint Satisfaction Problem A Constraint Satisfaction Prob-
lem is a sextuple〈V,D,C, con, def , a〉 where

• V is a finite set of variables, i.e.,V = {v1, . . . , vn};

• D is a set of values, calledthe domain;

• C is a finite set of constraints, i.e.,C = {c1, . . . , cm}. C is ranked, i.e.,
C =

⋃

k Ck such thatc ∈ Ck if c involvesk variables;

• con is called theconnection functionand it is such that

con :
⋃

k

(Ck → V k),

wherecon(c) = 〈v1, . . . , vk〉 is the tuple of variables involved inc ∈ Ck;

• def is called thedefinition functionand it is such that

def :
⋃

k

(Ck → ℘(Dk)),

where℘(Dk) is the power set ofDk, that is, all the possible subsets ofk-
tuples inDk;

• a ⊆ V , and represent thedistinguishedvariables of the problem.

con describes which variables are involved in which constraint; def specifies which
are the domain tuples permitted by the constraint. The seta is used to point out the
variables of interest in the given Constraint SatisfactionProblem (CSP), i.e., the
variables for which we want to know the possible assignments, compatible with
all the constraints. This set is equal toV if all the variables are of interest. This
does not have to be the case however. In fact, it is reasonableto think that the CSP
representation of a problem contains many details (in termsof constraints and/or
variables) which are needed for a correct specification of the problem but are not
important as far as the solution of the problem is concerned.

The solutionSol(P) of a CSPP = 〈V,D,C, con, def , a〉 is defined as the set
of all instantiations of the variables ina which can be extended to instantiations of
all the variables which are consistent with all the constraints inC.

DEFINITION 2.2 Tuple Projection and CSP Solution Given a tuple of domain
values〈v1, . . . , vn〉, consider a tuple of variables〈xi1, . . . , xim〉 such that for all
j = 1, . . . ,m, there exists akj ∈ {1, . . . , n} such thatxij = xkj. Then the pro-
jection of〈v1, . . . , vn〉 over 〈xi1, . . . , xim〉, written 〈v1, . . . , vn〉|〈xi1,...,xim〉, is the

289

tuple of values〈vi1, . . . , vim〉. The solutionSol(P) of a CSPP = 〈V,D,C, con,

def , a〉 is defined as
{

〈v1, . . . , vn〉|a such that

{

vi ∈ D for all i;
for all c ∈ C, 〈v1, . . . , vn〉|con(c) ∈ def (c).

}

The solution to a CSP is therefore an assignment of a value from its domain to
every variable, in such a way that every constraint is satisfied. We may want to find
just one solution, with no preference as to which one, or all solutions.

2.2 A Semiring-Based Theory of Constraint Satisfaction Problems

The constraint satisfaction approach defined above clearlyemploys crisp cons-
traints, which can lead to over-constrained problems. To solve the problem of
over-constrained CSPs, researchers have proposed severalalternative approaches
which enable one to relax some constraints in order to find a solution to the prob-
lem. As mentioned earlier, Bistarelli (2001) shows that some of these approaches
(e.g., probabilistic, fuzzy, and weighted CSPs) can be thought of as special in-
stances of a more general soft-constraint satisfaction framework, which he calls
the Semiring-based Constraint Satisfaction Problems (SCSP). The present and the
following sections, which are based on Chapter 2 of Bistarelli (2001), briefly in-
troduce this theory.

Bistarelli’s main idea is that

. . . a semiring (that is, a domain plus two operations satisfying cer-
tain properties) is all that is needed to describe many constraint sat-
isfaction schemes. In fact, the domain of the semiring provides the
levels of consistency (which can be interpreted as cost, or degree of
preference, or probabilities, or others), and the two operations define
a way to combine constraints together. More precisely, we define the
notion of constraint solving over any semiring. Specific choices of the
semiring will then give rise to different instances of the framework,
which may correspond to known or new constraint solving schemes.

DEFINITION 2.3 Semiring A semiring is a quintuple〈A, sum,×, 0, 1〉 such that

• A is a set and0, 1 ∈ A;

• sum, called theadditive operator, is a commutative, i.e.,sum(a, b) = sum(b,
a), and associative, i.e.,sum(a, sum(b, c)) = sum(sum(a, b), c), opera-
tion with0 as its identity element, i.e.,sum(a, 0) = a = sum(0, a);

• ×, called themultiplicative operator, is an associative operation such that1
is its identity elementand0 is itsabsorbing element, i.e.,a×0 = 0 = 0×a;

• ×, distributes oversum, i.e., for anya, b, c ∈ A, a×sum(b, c) = sum((a×
b), (a × c)).

290

The reader may have noted that the set of real numbers between0 and1 (inclusive)
together with arithmetic+ and× form a semiring, for example.

Bistarelli introduces semirings with additional properties for the two opera-
tions. He calls this algebra ac-semiring(c for “constraint”), and defines it as
follows:

DEFINITION 2.4 C-SemiringA c-semiring is a quintuple〈A,⊕,⊗, 0, 1〉 such that

• A is a set and0, 1 ∈ A;

• ⊕ is defined over (possibly infinite) sets of elements ofA as follows:2

– for all a ∈ A,
∑

({a}) = a;

–
∑

(∅) = 0 and
∑

(A) = 1;

–
∑

(
⋃

Ai, i ∈ I) =
∑

({
∑

(Ai), i ∈ I}) for all sets of indicesI (flat-
tening property);

• ⊗ is a binary associative and commutative operation such that1 is its iden-
tity element and0 is its absorbing element;

• ⊗ distributes over⊕, i.e., for anya ∈ A andb ⊆ A, a⊗
∑

(B) =
∑

({a⊗
b, b ∈ B}).

The fact that⊕ is defined oversetsof elements, and notpairs or tuples, auto-
matically makes such an operation commutative, associative, and idempotent. It
is also possible to show that0 is the identity element of⊕. By using the flatten-
ing property, we get

∑

({a, 0}) =
∑

({a}∅) =
∑

({a}) = a. This means that
a c-semiring is a semiring (where thesum operation is⊕) with some additional
properties. It is also possible to prove that1 is the absorbing element of⊕. By flat-
tening and by the fact that we set

∑

(A) = 1, we get
∑

({a, 1}) =
∑

({a}∪A) =
∑

(A) = 1.
According to Bistarelli, the advantage of using c-semirings instead of semirings

is as follows: The idempotency of the⊕ operation is needed in order to define
a partial ordering≤s over the setA, which will enable us to compare different
elements of the semiring. Such a partial order is defined as:a ≤s b iff a ⊕ b = b.
Intuitively, a ≤s b means thatb is “better” thana, or, from another point of view,
that betweena andb, the⊕ operation choosesb. This ordering is used to choose
the “best” solution in constraint problems.

Given any c-semiringS = 〈A,⊕,⊗, 0, 1〉, consider the relation≤s over A

such thata ≤s b iff a ⊕ b = b. Then Bistarelli proves that≤s is a partial order.
He also proves that⊕ and⊗ are monotones over≤s. That is, given any c-semiring
S = 〈A,⊕,⊗, 0, 1〉, consider the relation≤s over A. Then that⊕ and⊗ are
monotones over≤s means thata ≤s a′ impliesa⊕b ≤s a′⊕b anda⊗b ≤s a′⊗b.

2We use⊕ in infix notation for a two-element set, and the symbol
P

in prefix notation for more
elements.

291

Since1 is also the absorbing element of the additive operation, then a ≤s 1 for
all a. Thus1 is the maximum element of the partial ordering. This impliesthat the
⊗ operation isintensive, that is,a⊗ b ≤s a. This is important since it means that
combining more constraints leads to a “worse” result in terms of the≤s ordering.

Sometimes we need the⊗ operation to be closed on a certain finite subset of
the c-semiring.

DEFINITION 2.5 AD-closedGiven any c-semiringS = 〈A,⊕,⊗, 0, 1〉, consider
a finite setAD ⊆ A. Then⊗ is AD-closed if for anya, b ∈ AD, (a⊗ b) ∈ AD.

It is shown that c-semirings can be assimilated to complete lattices. We also
sometimes need to consider c-semirings where⊗ is idempotent, which makes the
c-semiring equivalent to distributive lattices.3

DEFINITION 2.6 LUB, GLB, (Complete Lattice) Consider a partially ordered
setS and any subsetI of S. Then we define the following:

• an upper bound(resp. lower bound) of I is any elementx such that for all
y ∈ I, y ≤ x (resp.,x ≤ y);

• the least upper bound (LUB)(resp. greatest lower bound (GLB)of I is an
upper bound (resp. lower bound)x of I such that for any other upper bound
(resp. lower bound)x′ of I, we have thatx ≤ x′ (resp.,x′ ≤ x).

A lattice is a partially ordered set where every subset of two elementshas a LUB
and a GLB. Acomplete latticeis a partially ordered set where every subset has a
LUB and GLB.

Bistarelli proves that〈A,≤s〉 is a complete lattice, which entails
∑

(I) =
LUB(I) for any setI ⊆ A. Thus every subsetI of A has a least upper bound
(which coincides with

∑

(I)). This means that〈A,≤s〉 is a LUB-complete partial
order. Note that the⊕ operator coincides with the LUB of the lattice〈A,≤s〉.

Bistarelli also proves that given a c-semiringS = 〈A,⊕,⊗, 0, 1〉 and a cor-
responding complete lattice〈A,≤s〉, ⊗ is also idempotent. Furthermore, in the
particular case in which⊗ is idempotent and≤s is total, we have thata ⊕ b =
max(a, b) anda⊗ b = min(a, b).

2.3 Constraint Systems and Problems

The notions of constraint system, constraint, and constraint problem in this theory
are parametric with respect to the notion of c-semiring discussed in the previous
section. Intuitively, a constraint system specifies the c-semiring 〈A,⊕,⊗, 0, 1〉 to
be used along with the set of all variables and their domainD.

3For an introduction to lattices and ordered sets, see Davey and Priestley (1990).

292

DEFINITION 2.7 Constraint System A constraint system is defined as a triple
CS = 〈S,D, V 〉, whereS is a c-semiring,D is a finite set, andV is an ordered
set of variables.

A constraint over a given constraint system specifies the involved variables and
the “allowed” values for them. More precisely, for each tuple of values (ofD) for
the involved variables, a corresponding element ofA is given. This element can be
interpreted as the tuple’s weight, or cost, or level of confidence, etc.

DEFINITION 2.8 Constraint Given a constraint systemCS = 〈S,D, V 〉, where
S = 〈A,⊕,⊗, 0, 1〉, a constraint overCS is a pair 〈def , con〉, where

• con ⊆ V , it is called thetypeof the constraint;

• def : Dk → A (wherek is the cardinality ofcon) is called thevalueof the
constraint.

A constraint problem is then just a set of constraints over a given constraint
system, plus a selected set of variables (thus atype). These are the variables of
interest in the problem, i.e., the variables for which we want to know the possible
assignments compatibly with all the constraints.

2.4 Instances of the SCSP Framework

Having laid out the c-semiring-based theory of constraint satisfaction, Bistarelli
shows that some of the previous constraint satisfaction approaches can be seen as
instances of this theory differing only in the choice of the semiring. Below I list
the different CSPs and the semirings used in them as discussed by Bistarelli.

• Classical CSPs:A classical CSP is just a set of variables and constraints,
where each constraint specifies the tuples that are allowed for the involved
variables. Since the constraints in a CSP are crisp, they canbe modeled
with a semiring containing only 0 and 1 inA. Also we can model constraint
combination with logicaland, and the projection over some of the variables
(to obtain the value of the tuples of the variables in the typeof the problem)
with logical or. Thus, a CSP can be seen as just an SCSP with the following
c-semiring:

SCSP = 〈{0, 1},∨,∧, 0, 1〉

• Fuzzy CSPs:Fuzzy CSPs allow for non-crisp constraints, which associate a
preference level with each tuple of values. This level of preference is always
between0 and1. The solution to a fuzzy CSP is defined as the set of tuples of
values for all the variables which have the maximal value. Fuzzy CSPs can
be modeled in the SCSP framework by choosing the following c-semiring:

SFCSP = 〈{x|x ∈ [0, 1]},max,min, 0, 1〉

293

• Probabilistic CSPs: In probabilistic CSPs, each constraintc has an associ-
ated probabilityp(c). Saying thatc has probabilityp, means that the situation
corresponding toc has probabilityp of occurring in the real-life problem.
The c-semiring corresponding to the probabilistic CSPs is as follows:

Sprob = 〈{x|x ∈ [0, 1]},max,×, 0, 1〉

• Weighted CSPs: Contrary to fuzzy CSPs whose constraints come with
preferences, in weighted CSPs, constraints have associated costs. The so-
lution to a problem in such models is the one with minimum cost(e.g., time,
space, number of resources, etc.). Therefore, the associated c-semiring for a
weighted CSP is the following:

SWCSP = 〈R∗,min,+,+∞, 0〉

• Set-Based CSPs:The SCSP framework gives rise to an interesting class of
its instances that are based on set operations such as union and intersection.
The corresponding c-semiring for this class of CSPs is this:

Sset = 〈℘(A),
⋃

,
⋂

, ∅, A〉

This section presented a brief overview of Bistarelli’s c-semiring-based gen-
eralized theory of soft constraint satisfaction systems. As Bistarelli shows, many
previous CLP approaches to soft constraints are in fact instances of this general-
ized framework, which is parametric with respect to the semiring used. In the next
section, we will show that an instance of this theory, theweighted soft constraint
satisfactionapproach is suitable for modeling linguistic constraints.

3 Soft Linguistic Constraints

This section outlines a theory of linguistic soft constraint satisfaction based on
the SCSP framework (the c-semiring-based theory of Soft Constraint Satisfaction
Problems).

Section 3.1 briefly talks about how a c-semiring-based approach might be in-
corporated into a unification-based theory of grammar. We can think of a grammar
in SCSP terms as a constraint system,CS = 〈S,D, V 〉, whereS = 〈A,⊕,⊗, 0, 1〉
is a semiring, andV is a set of variables characterizing the candidate.D is a finite
set of values that the variables inV can take. Therefore, a constraint over thisCS

is a tuple〈def , con〉 such thatcon ⊆ V anddef : Dk → A. Values in the carrier
setA correspond to the overall compliance of a candidate linguistic structure,can,
with the whole constraint system.

The functiondef in SCSP, takes the vector representationDk of the candidate
and maps it to a global valuation. Figure 2 shows howCan is mapped toA.
Embedding applies tocan ∈ Can returning a vector of features, which is passed to

294

c̄i, for 1 ≤ i ≤ m perhaps, which returns a vector of valuations. These valuations
are then combined (in this case, weighted and summed up) by the global valuation
functiong returning a value inA.

Can Dk

C1

C2

...

Cm



















































A
e

c̄1

c̄2

c̄m

g

def

Figure 2: Global valuation calculation of candidate structures

The optimal candidate, to use optimality theoretic terminology, will be the one
that has the smallest value for its global valuation; that is, the candidate with a
global valuation closest to zero is optimal and the ones withlarger values are in-
creasingly suboptimal (in other words,V(can) represents a cost). In this context,
the semiring used will be the one shown below in (1), whereR

∗ is the set of non-
negative real numbers,min chooses the solution, and+ combines the values in the
carrier setA, (which in this semiring isR∗). Absolute consistency is denoted by0
and absolute inconsistency by+∞.

(1) SSCSP = 〈R∗,min,+,+∞, 0〉

A semiring withmin as the additive operation and+ as the multiplication operation
with +∞ and0 corresponding to0 and1, respectively, is also known as thetrop-
ical semiring. SV is a c-semiring since the additive operation,min, is idempotent
(i.e., min(a, a) = a for all a), and the multiplicative operation,+, is commuta-
tive. Also,+∞ is the identity element formin (i.e., min(a,+∞) = a for all a),
and0 is the identity element for+, (i.e., a + 0 = a for all a). Z

∗ is the set of
non-negative integers (including0). The associated ordering≤s corresponds to≥
over non-negative integers, which means that smaller numbers correspond to better
candidates.

A linguistic constraint system is then defined as follows:

DEFINITION 3.1 A linguistic constraint system based on SCSP,CS = 〈SSCSP,D,

V 〉, will then have the following components:

• C-Semiring: SSCSP = 〈R∗,min,+,+∞, 0〉.

• Variables: An ordered setV representing the candidate structure.

295

• Domain: D a finite set of values that members ofV can take.

DEFINITION 3.2 Connection: con ⊆ V , is called the type of the constraint.

The setcon tells us which variables are involved in each constraint.

DEFINITION 3.3 Domain Function: dom : V → D, whereD ⊆ D.

The domain functiondom tells us which members ofD can be assigned to each
member ofV .

DEFINITION 3.4 Embedding: e : Can →֒ Dk is a bijective function that maps
the set of linguistic structures onto vector representations; in particular, for all
~d ∈ Dk, di ∈ dom(vi), where1 ≤ i ≤ k.

Embedding ensures a representation of linguistic structures that is suitable for the
constraint solver. The embedding function must be bijective because once the
solver returns a vector as the solution, we want to be able to identify a candidate
with that vector.

Bistarelli (2001) also defines a functiondef as follows:

DEFINITION 3.5 Definition: def k : Dk → R
∗

This function is actually the composition of̄ci with g (see Figure 2 above and
definition 3.9 below), that is,def = g ◦ c̄i. Based on this definition, a constraint in
SCSP is defined as follows:

DEFINITION 3.6 Constraint: 〈c̄i, con
n〉, for some1 ≤ n ≤ k wheren is the

cardinality ofcon.

DEFINITION 3.7 Constraint Weight: wi is a numerical weight associated with
each constraint〈c̄i, con

n
i 〉. In OT literature, this is known as therank of the con-

straint.

DEFINITION 3.8 Valuation: c̄i : Dk → Ci, a function that evaluates the valued
of each variablev.

DEFINITION 3.9 Global Valuation: g : C1 × C2 × . . . × Cm → R
∗ is the com-

bination function that calculates the global valuation of~d based on a vector of
valuations returned by all of thēci. In this model,g(c1, c2, . . . , cm) = Σm

i=1wici

for all ci ∈ Ci.

296

3.1 Toward Graded Unification-Based Grammars

In section 1, we talked about the benefits of a parallel modular grammar architec-
ture saying that such an architecture leads to simpler modules and captures gener-
alizations better. One important advantage of implementing such an architecture
in a unification-based framework is that unification naturally allows for the mod-
ules to constrain one another. Through structure-sharing,even though the modules
may not care about nor see the details inside other modules, they cannot gener-
ate structures that are unacceptable to other modules. It would then be natural to
try to implement the proposed soft-constraint satisfaction system in a unification-
based framework such as HPSG. In order to do this, we need to change how type
antecedent constraints are enforced without modifying theunification mechanism.
Standard HPSG type antecedent constraints are crisp; theirviolation causes the
generated structure to be rejected. Multiple constraints on a type are explicitly
connected by logical AND, which also means the violation of any one constraint
results in the rejection of the generated structure. This constraint system roughly
corresponds to Bistarelli’sSCSP mentioned in section 2.4.

Malouf (2003) argues that the fact that an analysis naturally falls out of OT’s
notion of ranked violable constraints does not necessarilymean that ithas to be
analyzed that way. He states that OT suffers from a “procedural metaphor;” that is,
the theory relies on some cognitively unreal and intractable operations to account
for acceptable structures. The most notable part of this metaphor is the generate-
and-test procedure of the theory where a partial representation (such as a logical
form) is fed to a component calledGenthat generates a potentially infinite number
of candidate output structures to be evaluated against a setof constraints byHEval.
This is a common concern. As a solution, Malouf discards the procedural metaphor
along with the violability of the constraints, and accountsfor his data using an
HPSG type hierarchy. His analysis, albeit elegant, does notleave any room for
graded grammaticality judgments, accounting for multipleviolations of the same
constraint, and ganging up effects, not to mention the graded constraints discussed
by Haji-Abdolhosseini (2005). This section shows that we can incorporate soft
constraints within constraint-based grammars such as HPSGwithout resorting to
any procedural metaphors.

In order to account for violable constraints as well as degrees of constraint
violation, multiple constraint violations, and ganging upeffects discussed in Keller
(2000), we can use the weighted CSP paradigm defined in the previous section
(SWCSP = 〈R∗,min,+,+∞, 0〉).

We now go over some illustrative examples. It should be mentioned that the
goal of the following examples is not to derive the “correct”analysis but to show
how a system of type antecedent constraints based on the tropical semiring would
calculate costs for different analyses.

In the case of sentences (2) and (3), we can formulate a constraint on head-
complement phrases (hd-comp-ph) as in Figure 3. For simplicity of exposition, this
constraint only employs two non-head daughters. The extension of the constraint

297

to accommodate more daughters is straightforward.

(2) a. He wanted to demonstrate it to us.

b. He wanted to demonstrate that life to us.

c. He wanted to demonstrate the consequences to us.

d. ? He wanted to demonstrate the consequences of such an unholy life
to us.

e. ?? He wanted to demonstrate the consequences of such a horribly filthy
and unholy life to us.

(3) a. * He wanted to demonstrate to us it.

b. ?? He wanted to demonstrate to us that life.

c. He wanted to demonstrate to us the consequences of such an unholy
life.

hd-comp-ph⇒









PHON
〈

1 , 3

〉

NON-HD-DTRS

〈

[

PHON 1

]

,
[

PHON 2

]

〉









∧length
(

1

)

≤ length
(

2

)

Figure 3: An HPSG formulation of the LH constraint on verb complements

The valuation function for the LH constraint as formulated above can be calculated
according to the following function:

(4) Valuation Function for LH:

Given the description













hd-comp-ph

PHON 3⊕
〈

1 , 2

〉

NON-HD-DTRS

〈

[

PHON 1

]

,
[

PHON 2

]

〉













,

val(LH) = length(1)

length(1)+length(2)

Let us assume, for now, thatlength(x) is the number of words inx, and that the
weight of the constraint LH is1. The formula in (4) returns a number between0
and1. If the two complements are of equal size, the valuation returned will be0.5;
the valuation approaches1 as the first complement gets longer than the second,
and it approaches0 as the second complement gets longer than the first. Of course,
one can think of many ways to formulate LH. The definition presented here is just
one of them. This formulation is flexible because it reflects the magnitude of the
difference between the two complements. We can now see how the sentences in
(2) are evaluated in terms of LH. The valuations of LH calculated for (2a–e) are
shown in (5) below.

298

(5) a. For (2a):val(LH) = 1
1+2 ≈ .33

b. For (2b):val(LH) = 2
2+2 = .5

c. For (2c):val(LH) = 2
2+2 = .5

d. For (2d):val(LH) = 7
7+2 ≈ .78

e. For (2e):val(LH) = 10
10+2 ≈ .83

As can be seen, this accounts for the declining acceptability of the examples in (2).
The examples in (3) demonstrate the interaction of two constraints: (i) LH, and

(ii) the constraint that requires verbal complements to appear in descending order
of obliqueness (call it COMPORD). If obliqueness is a total order defined over
verbal complements represented with>o, then we can formulate COMPORD as in
Figure 4. The valuation function for COMPORD is defined in (6).

hd-comp-ph⇒

[

NON-HD-DTRS
〈

1 , 2

〉

]

∧ 1 >o 2

Figure 4: An HPSG formulation of COMPORD

(6) Valuation Function for COMPORD:

Given the description





hd-comp-ph

NON-HD-DTRS
〈

1 , 2

〉



,

val(COMPORD) =

{

0 iff 1 >o 2

1 otherwise

val(COMPORD) is defined as acharacteristicor selectorfunction returning either
0 or 1, but notice that since we are using the tropical semiring these values do not
have their traditionaltrueor falsemeaning. In this constraint system,0 corresponds
to no violation and1 corresponds a violation of degree1. Also notice, since we
are adding costs, multiple instances of such constraint violations will incrementally
increase global evaluation as it does in Linear Optimality Theory (Keller, 2000).
Let us assume that the two constraints LH and COMPORD have equal weights.
Then the valuation of the sentences in (3a–c) with respect toLH and COMPORD

is calculated as in (7).

(7) a. For (3a):val(LH) + val(COMORD) ≈ .66 + 1 = 1.66

b. For (3b):val(LH) + val(COMORD) = .50 + 1 = 1.50

c. For (3c):val(LH) + val(COMORD) ≈ .22 + 1 = 1.22

This analysis quantitatively captures the increasing acceptability of the sentences
in (3) as the sentence-final direct object gets longer than the indirect object.

An interesting outcome of this analysis is that it naturallycaptures speakers’
intuitions about the relative acceptability of forms like the ones in (8) without the
need to posit an arbitrary constraint prohibiting ending a dative construction with

299

clause⇒









DOM 1⊕ 2

INFO

〈[

theme

I-DOM 1

]

,

[

rheme

I-DOM 2

]〉









Figure 5: An HPSG formulation of THRH

a pronoun (which would completely rule out (8b), incorrectly). According to this
analysis, we not only capture the graded grammaticality of each example, we can
also show how much each example is worse than the other.4

(8) a. Give it to me.
val(LH) + val(COMPORD) ≈ .33 + 0 = .33

b. ?? Give me it.
val(LH) + val(COMPORD) = .5 + 1 = 1.5

c. * Give to me it.
val(LH) + val(COMPORD) ≈ .66 + 1 = 1.66

To incorporate more modules, let us now consider how information structure
can be integrated into this model. Let THRH stand for the violable constraint that
requires the theme to appear before the rheme. A version of this constraint for just
one theme and one rheme is shown in Figure 5;5 an extension to the constraint
for multiple themes and rhemes is also straightforward. Thevaluation function for
THRH is formulated in (9).

(9) Valuation Function for THRH:

Given the description





clause

INFO
〈

1 , 2

〉



,

val(THRH) =

{

0 iff type(1) = theme∧ type(2) = rheme
1 otherwise

Let us assume that the preferred response to the question “What did John give to
the man?” is (10a) as opposed to (10b).6

(10) a. [He gave]theme1 [money]rheme[to the man]theme2.

b. [He gave the man]theme[money]rheme.

4Note that we are assuming equal weights for these constraints. Estimating the exact weights of
the constraints requires having access to training data obtained through corpus analysis or experi-
mental work. I shall leave this for future research.

5I am following the analysis in Haji-Abdolhosseini (2003, 2005) wheresignhas the featuresDOM

andINFO taking a list of lexical items andinfo objects, respectively. The typesthemeandrhemeare
subtypes ofinfo.

6Again note that we are not making any strong claims as to what sentence is actually the preferred
response. This should be determined through separate studies. The point here is to illustrate how
valuation calculations work.

300

Again assuming equal weights for LH, COMPORD, and THRH, we can calculate
the global valuations of these sentences with respect to these three constraints as
in (11). It can be seen that (10a) gets a lower global valuation (i.e., is preferred by
the model).

(11) a. For (10a):val(LH)+val(COMPORD)+val(THRH) = .25+0+1 =
1.25

b. For (10b):val(LH)+val(COMPORD)+val(THRH) ≈ .66+1+0 =
1.66

In this example, THRH has been violated in favor of COMPORD and LH. Note that
since the difference in the lengths of the two verb complements is small the two
sentences show a small difference in their global valuation(0.41).

Let us look at another example in which the difference in the lengths of the
verb complements is larger.

(12) a. [He gave]theme1 [a lot of his hard earned money]rheme[to the
man]theme2 .

b. [He gave the man]theme[a lot of his hard earned money]rheme.

The global valuations of these sentences are given below:

(13) a. For (12a):val(LH)+val(COMPORD)+val(THRH) = .70+0+1 =
1.70

b. For (12b):val(LH)+val(COMPORD)+val(THRH) ≈ .22+1+0 =
1.22

Here we see that (12b) is preferred. We also see that the difference between the
global valuations of (12a) and (12b) is larger than before (0.48), which means
that in this example the alternative is costlier than in the previous example. In
other words, the gradient characterization of LH captures the fact that larger dif-
ferences in the lengths of the complements result in higher degrees of constraint
violation if the heavier constituent appears before the lighter one, an observation
made by Arnold et al. (2000) as well as Haji-Abdolhosseini (2005). In addition,
the c-semiring-based implementation of type antecedent constraints in HPSG al-
lows for capturing the ganging up effects of constraint violation as well as multiple
violations of the same constraint (since valuations are summed up).

The cost of a feature structure,f , of typeτ is the weighted sum of the valua-
tions of all the constraints imposed onτ with respect tof plus the sum of the costs
of all the feature values off . This is formalized in (14).

(14) cost(fτ) =
∑

i wi · val(cτ
i) +

∑

j cost(gj)
wherefτ is the feature structure of typeτ to which we want to assign a
cost;cτ

i is a constraint on the typeτ ; val(cτ
i) is the valuation ofcτ

i ; andgj

is a feature value off .

The formula in (14) implies that the cost of a feature structure is never less
than the sum of the costs of its substructures (provided thatthere are no negative

301

weights, which is what we have been assuming). If there are any cases where the
same description gets different valuations in different contexts (i.e., in different
feature structures), then we can replace our original constraint with other more
specific constraints.

The reason for this desideratum is twofold: (i) We want to make sure that every
part of the feature structure is contributing information about constraint violations
in substructures; and (ii) we want the constraints to be local; that is, every constraint
has to be sensitive only to the description on its consequentand should not be
affected by the context in which it is applied. For instance,consider the following
feature structures:

(15) a.

[

t

F a

]

b.

[

u

G a

]

If the cost of a feature structuref of typea depends on whetherf is the value ofF
or G, then we cannot formulate a single constraint on typea. This is because such
a constraint ona would be non-local as it would have to have information about
whetherf occurs in a feature structure of typet or u. In order to keep our constraint
local in this case, we must formulate two constraints ont andu making reference
to the value of theF andG features, respectively.

4 Conclusion

This paper incorporated a generalized c-semiring-based theory of soft constraint
satisfaction within a constraint-based grammar architecture. The stipulation that
soft constraints apply at interfaces while hard constraints apply inside modules is
advantageous from a grammar engineering point of view. Linguistic modules can
be developed separately and then put together allowing softconstraints to resolve
conflicts among modules.

This work can be pursued in many different directions. One obvious way to
follow up this work would be to work out the formal details of incorporating SCSP
in a theory like HPSG. Another way to pursue would be to implement an SCSP-
based constraint solver in a logic-programming language like ALE (Carpenter and
Penn, 1999). One can also investigate different learning algorithms for an SCSP-
based grammar.

References

Abney, Steven. 1996. Statistical Methods and Linguistics.In Judith Klavans and
Philip Resnik (eds.),The Balancing Act: Combining Symbolic and Statistical
Approaches to Language, Cambridge, MA: The MIT Press.

302

Abney, Steven. 1997. Stochastic Attribute-Value Grammars. Computational Lin-
guistics23(4), 597–618.

Arnold, Jeniffer E., Wasow, Thomas, Losongco, Anthony and Ginstrom, Ryan.
2000. Heaviness vs. Newness: The effects of structural complexity and discourse
status on constituent ordering.Language76(1), 28–55.

Bistarelli, Stefano. 2001.Soft Constraint Solving and Programming: A General
Framework. Ph.D. thesis, Università di Pisa.

Bod, Rens. 1998.Beyond Grammar: An Experience-Based Theory of Language.
CSLI Publications, Cambridge University Press.

Bod, Rens, Hay, Jennifer and Jannedy, Stefanie (eds.). 2003a. Probabilistic Lin-
guistics, Cambridge, MA, MIT Press.

Bod, Rens, Scha, Remko and Sima’an, Khalil (eds.). 2003b.Data-Oriented Pars-
ing. CSLI Publications.

Borning, Alan, Freeman-Benson, Bjorn and Wilson, Molly. 1992. Constraint Hier-
archies.Lisp and Symbolic Computation5(3), 223–270.

Bresnan, Joan (ed.). 1982.The Mental Representation of Grammatical Relations.
Cambridge, MA: The MIT Press.

Bresnan, Joan. 2001.Lexical-Functional Syntax. Blackwell Textbooks in Linguis-
tics, Malden, MA: Blackwell.

Carpenter, Bob and Penn, Gerald. 1999. ALE The At-
tribute Logic Engine: User’s Guide, available online at
www.cs.toronto.edu/∼gpenn/ale/files/aleguide.ps.gz.

Davey, Brian A. and Priestley, Hilary A. 1990.Introduction to Lattices and Order.
Cambridge Mathematical Textbooks, Cambridge: Cambridge University Press.

Dubois, Didier, Fargier, Hélèn and Prade, Henri. 1993. The Calculus of Fuzzy
Restrictions as a Basis for Flexible Constraint Satisfaction. In Proceedings of
IEEE International Conference on Fuzzy Systems, pages 1131–1136, IEEE.

Fargier, Hélèn and Lang, Jérôme. 1993. Uncertainty in Constraint Satisfaction
Problems: A Probabilistic Approach. InProceedings of the European Confer-
ence on Symbolic and Qualitative Approaches to Reasoning and Uncertainty
(ECSQARU), number 747 in LNCS, pages 97–104, Springer-Verlag.

Foth, Kilian, Menzel, Wolfgang and Schröder, Ingo. 2005. Robust Parsing with
Weighted Constraints.Natural Language Engineering11(1), 1–25.

Freuder, Eugene C. and Wallace, Richard J. 1992. Partial Constraint Satisfaction.
In Proceedings of the Eleventh International Joint Conference on Artificial In-
telligence, IJCAI-89, volume 58, Detroit, MI.

303

Haji-Abdolhosseini, Mohammad. 2003. A Constraint-Based Approach to
Information Structure and Prosody Correspondence. In Stefan Müller
(ed.), Proceedings of The HPSG-2003 Conference, pages 143–162,
http://cslipublications.stanford.edu/HPSG/4/.

Haji-Abdolhosseini, Mohammad. 2005.Modularity and Soft Constraints: A Study
of Conflict Resolution in Grammar. Ph.D. Thesis, University of Toronto.

Jackendoff, Ray. 1992.Languages of the Mind: Essays on Mental Representation.
The MIT Press.

Jackendoff, Ray. 1997.The Architecture of the Language Faculty. Linguistic In-
quiry: Monograph Twenty-Eight, Cambridge, Mass.: The MIT Press.

Jackendoff, Ray. 2002.Foundations of Language: Brain, Meaning, Grammar, Evo-
lution. New York, NY: Oxford.

Keller, Frank. 2000.Gradience in Grammar: Experimental and Computational
Aspects of Degrees of Grammaticality. Ph.D. thesis, University of Edinburgh.

Malouf, Robert P. 2003. Cooperating Constructions. In E. Francis and L. Michaelis
(eds.),Mismatch: Form-function Incongruity and the Architectureof Grammar,
pages 403–424, Stanford: CSLI Publications.

Marriott, Kim and Stuckey, Peter J. 1998.Programming with Constraints: An In-
troduction. Cambridge, MA: The MIT Press.

Newell, Allan. 1990.Unified Theories of Cognition. Cambridge, MA: Harvard
University Press.

Oatley, Keith. 1992.Best Laid Schemes: The Psychology of Emotions. Cambridge:
Cambridge.

Oatley, Keith and Johnson-Laird, Philip N. 1987. Towards a Cognitive Theory of
Emotions.Cognition and Emotions1, 29–50.

Pollard, Carl and Sag, Ivan A. 1987.Information-Based Syntax and Semantics,
Volume I: Fundamentals. CSLI Lecture Notes, No. 13, Stanford: CSLI Publica-
tions.

Pollard, Carl and Sag, Ivan A. 1994.Head-Driven Phrase Structure Grammar.
Studies in Contemporary Linguistics, Chicago: CSLI Publications.

Prince, Alan and Smolensky, Paul. 1993. Optimality Theory:Constraint Interac-
tion in Generative Grammar. Technical Report 2, Rutgers University Center for
Cognitive Science, Piscataway, NJ.

Rosenfeld, Azriel, Hummel, Robert A. and Zucker, Steven W. 1976. Scene La-
belling by Relaxation Operations.IEEE Transactions on Systems, Man, and Cy-
bernetics6(6), 420–433.

304

Ruttkay, Zsofi. 1994. Fuzzy Constraint Satisfaction. InProceedings of the 3rd
IEEE International Conference on Fuzzy Systems, pages 1263–1268.

Schiex, Thomas, Fargier, Hélèn and Verfaille, Gérard. 1995. Valued Constraint
Satisfaction Problems: Hard and Easy Problems. InProceedings of IJCAI95,
pages 631–637, Morgan Kaufman.

Schröder, Ingo. 2002.Natural Language Parsing with Graded Constraints.
Ph. D.thesis, Fachbereich Informatik der Universität Hamburg.

305

A Morpho-Syntactic Analyzer of Controlled Japanese

Yukiko Sasaki Alam

Department of Digital Media
Hosei University, Tokyo

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

306

Abstract

The proposed morpho-syntactic analyzer parses controlled Japanese texts
such as articles in newspapers, technical magazines and professional journals
and public documents that are transcribed wherever applicable by using Joyo
Kanji (frequently used Chinese characters). The analyzer parses sentences in
controlled Japanese texts into morpho-syntactic units, further dividing them
into the content and the functional parts, and assigning a functional role or
roles to each unit in the sentences. As the system is not equipped with a dic-
tionary, the parsing algorithm is based on the orthographic characteristics of
words and morphemes, and the role assignment to each unit is based on the
functional elements located at the end of the unit, which is a feature of a
Head-final language like Japanese. The system is a light-weight rule-based
morpho-syntactic analyzer that could be a useful tool for natural language
processing. As the system identifies syntactic units rather than individual
morphemes, together with the functional and/or syntactic roles of the units, it
would help a computational system understand the syntactic and functional
structures of sentences, and eventually interpret the semantics of the sen-
tences.

1 Introduction

There being no spaces between words in Japanese, a main concern of
Japanese morphological and syntactic analyzers has been word segmentation.
Word-breaking is a fundamental task in natural language processing for
Japanese, and various approaches have been taken. While many morphologi-
cal analyzers, notably Juman (Kurohashi and Nagao, 2003) and Chasen (Ma-
tsumoto et al., 2000), have concentrated on the segmentation of morphemes
(such as prefixes, suffixes, inflections, Case markers, particles and the com-
ponents of compound words), the current analyzer focuses on the segmenta-
tion of phrases and the identification of the functional roles of the phrases in
sentences.

The proposed system is intended to parse controlled Japanese texts which
are written wherever applicable by using Joyo Kanji (frequently used Chinese
Characters), the members of which are determined by the Ministry of Educa-
tion and Science of Japan. Such texts typically include articles in newspapers,
technical magazines and journals, and official documents. The analyzer
draws on the information of the orthographic types of words and morphemes
used in sentences as well as linguistic knowledge of functional morphemes
and words.

In the past, other researchers have also developed morphological analyzers
exploiting the information of orthographic types of words and morphemes: to
name a few, Asahara (2003), Kazama (2001), Kashioka et al (1998), and

307

Kameda (1996). Unlike such previous studies, however, the main focus of the
present analyzer is not on phrase segmentation per se, but on identifying the
functional roles of phrases played in the sentences.

Futhermore, unlike Kudo (2002), Sekine (2001), Uchimoto (2000),
Kanayama et al (2000), and Haruno et al (1999), all of which are statistically
modeled systems, the current analyzer runs on a purely rule-based algorithm.
The purpose of the present paper is to demonstrate that a light-weight rule-
based analyzer can successfully identify phrases in sentences, and determine
the functional roles of the phrases.

The paper first gives an overview of the current system, and then describes
the algorithm used in the system. Before concluding, it discusses what are the
difficulties faced by the current system, and what areas need further research.

2 Overview of the Morpho-Syntactic Analyzer

The current analyzer runs by referring to the different orthographic types of
Japanese words and morphemes. Japanese sentences are transcribed in sev-
eral orthographic types: Kanji (Chinese characters), Katakana (phonetic char-
acters for words of foreign origin), Hiragana (phonetic characters for words
of Japanese origin, inflections, particles, etc.), Arabic numerals, the Roman
alphabet, special symbols and punctuation.

The most important feature used by the current analyzer is that most func-
tional morphemes in Japanese are transcribed in Hiragana, including all the
particles indicating Case markers, verbal inflections, auxiliaries, and suffixes
indicating different types of clauses. In addition to their special orthographic
feature, unexceptionally these functional elements are located at the end of
phrases, 1 thus marking phrase boundaries. The current analyzer is based on
these two characteristics, i.e. Hiragana-transcribed functional elements and
their phrase-final positions.

A sequence of Kanji characters followed by Hiragana characters would be
a good candidate for a phrase, which consists of a content word followed by a
functional element, as illustrated below:

[PP [NP content word in Kanji] [P functional element in Hiragana]]

It is relatively straightforward to identify such phrases, as demonstrated by
the example output of the analyzer in Table 1.

1 This is because Japanese is a Head-final language where the non-Head content part
is followed by the Head functional part at all the morphological and syntactic levels
of Japanese including words, phrases and clauses.

308

TABLE 1 A successful output of the analyzer

研究グループの鈴木宏志教授によると、
kenkyuu-guruupu-no-suzuki-hiroshi-kyouju-niyoruto,
research-group-of-suzuki-hiroshi-professor-according-to,
全国の盲導犬協会から
zenkoku-no-moudouken-kyoukai-kara
entire-country-of-guide-dog-association-from
盲導犬の口腔粘膜や血液の提供を
moudouken-no-koukou-nenmaku-ya-ketsueki-no-teikyou-o
guide-dog-of-oral-membrane-and-blood-of-donation-OBJECT
受け、遺伝子を解析する。
uke, idenshi-o-kaiseki-suru
receiving, gene-OBJECT-analysis-do

‘According to Professor Hiroshi Suzuki in the research group, they will ana-
lyze genes by receiving the oral membranes and the blood of guide dogs do-
nated by the Associations of Guide Dogs in the entire country.’

CONTENT
WORD

FUNCTION
ELEMENT GRAMMATICAL ROLE

研究グループ の 名詞修飾句 (NOMINAL MODIFIER)

鈴木宏志教授 によると 出典 (SOURCE)

全国 の 名詞修飾句 (NOMINAL MODIFIER)

盲導犬協会 から 始点 (POINT OF DEPARTURE)

盲導犬 の 名詞修飾句 (NOMINAL MODIFIER)

口腔粘膜 や 列挙接続語 (CONJ – ETC)

血液 の 名詞修飾句 (NOMINAL MODIFIER)

提供 を 目的語 (OBJECT)

受 け 述語-接続形 (PREDICATE - CONJUNC-
TIVE)

中段 (Break) 、 読点 (COMMA)
遺伝子 を 目的語 (OBJECT)

解析 する 述語- 現在・未来 (PREDICATE - PRESENT
or FUTURE)

Whenever a content word in Kanji (and/or Katakana) is followed only by a
functional element in Hiragana (colored in red in Table 1), which is further

309

followed by another content word in Kanji (and/or Katakana), word and
phrase boundaries are clearly distinguished as in:

[PP KENKYU-GURUUPU (‘research group’)-no (nominal modifier marker)]
[PP SUZUKI-HIROSHI-KYOUJU (‘Prof. Hiroshi Suzuki’)-niyoruto (‘accord-

ing to’)] …(omitted) …
[PP KETSUEKI (‘blood’)-no (nominal modifier marker)]
[PP TEIKYO (‘donation’)-o (Object marker)]
[VP UK (‘receive’)-e (verbal conjunctive form)]
[PP IDENSHI (‘genes’)-o (Object marker)]
[VP KAISEKI (‘analysis’)-suru (‘do’)].

The words in uppercase are written in Kanji or Katakana, while those in low-
ercase are in Hiragana.

As long as a content word is transcribed all in Kanji and/or Katakana, it is
relatively straightforward to identify phrases, but unfortunately a content
word can be transcribed by a mixture of Kanji and Hiragana characters, fol-
lowed by Hiragana-written functional elements as in:

[PP [NP content word both in Kanji and Hiragana] [P functional element in
Hiragana]],

or a content word can be transcribed all in Hiragana as in:

[VP [V content verb stem in Hiragana] [INFL verbal inflection in Hiragana]]
[CONJ clause-final suffix in Hiragana].

Both undesirable cases are exemplified by the last phrase in Table 2 below.

310

TABLE 2 An unsuccessful output of the phrase analyzer

電力業界では、九州、四国が
denryoku-gyoukai-dewa, Kyuushuu, Shikoku-ga
electricity-industry-in-TOPIC, Kyushu-Shikoku-SUBJECT
０６年度採用を横ばいにとどめるが、…。
06-nendo-saiyou-o-yokobai-ni-todom-eru-ga, ….
06-fiscal-year-employment-OBJECT-the same level-in-keep-but,

‘In the electricity industry, Kyushu and Shikoku keep the employment in the
06 fiscal year in the same level, …’

CONTENT
WORD

FUNCTION
ELEMENT GRAMMATICAL ROLE

電力業界 では 話題 (TOPIC)

中段
(Break) 、 読点 (COMMA)

九州 (省略) 次の内容要素と同じ (SAME AS
NEXT CONTENT ELEMENT)

中段
(Break) 、 読点 (COMMA)

四国 が 主語 (SUBJECT)

０６年度採
用 を 目的語 (OBJECT)

横 ばいにとど
めるが

逆接接続語節 (CLAUSE-BUT)

The last row of Table 2 contains a content word in a mixture of Kanji and
Hiragana, and the analyzer fails to recognize the end of the content word,
leaving out part of the content word and placing it in the box for the func-
tional element as: [[NP YOKO] [bainitodomeruga]]. The proper analysis
would be:

[PP [NP YOKObai (‘same level’)] [P ni (postposition indicating state)]]
[VP [todom (‘keep’)]+[eru (non-past verbal inflection)]]
[CONJ [(preceding clause] [ga (suffix meaning ‘but’)]].

The failure is due to the content noun words that often consist of a mixture of
Kanji and Hiragana as well as due to the fact that the content verb stem to-
dom ‘remain’ was transcribed not in the regularly expected Kanji but excep-
tionally in Hiragana.

311

3 Algorithm of the Morpho-Syntactic Analyzer

As the above two examples illustrate, the success of the present analyzer in
detecting phrases depends upon whether phrases are (a) typical ones consist-
ing of a content word in Kanji (and/or Katakana) followed by a functional
element in Hiragana, or whether they are complex ones, for instance, (b)
consisting of a complex functional element in Hiragana or whether they are
atypical ones (c) containing a content word transcribed in Hiragana. The cur-
rent analyzer attempts to handle (a) and (c).

The algorithm of the analyzer, illustrated in Figure 1, begins to look for a
new phrase by checking special characters and suffixes including a period, a
comma, a parenthesis, and a complementizer. It then checks for an atypical
case of a phrase, i.e., whether the phrase begins with a Hiragana or a Hira-
gana sequence (the loop marked (1) in Figure 1). When it finds only one Hi-
ragana followed by a non-Hiragana sequence, it asks whether the Hiragana
is equal to an Honorific prefix or not. If it is, it flags the phrase as prefixed
with an honorific, and goes on to process the non-Hiragana sequence that
follows. On the other hand, when it finds more than one Hiragana that pre-
cedes a non-Hiragana, the Hiragana chunk is treated as a phrase and sent to
the procedure to identify the grammatical role, primarily by analyzing the
final portion that is expected to comprise a functional morpheme or mor-
phemes.

When a phrase begins with a non-Hiragana character, the analyzer keeps
reading it (the loop marked (2) in Figure 1) until it hits a comma, a bracket, a
period or a Hiragana, and assigns the non-Hiragana sequence as the content
part of the phrase. The algorithm then checks whether the non-Hiragana con-
tent part ends with a period. If it does, the phrase is determined to be the final
nominal phrase of the sentence with the functional element omitted.

On the other hand, when the non-Hiragana content part is followed by a
Hiragana, it is likely to embody a typical phrase structure, and the following
Hiragana sequence is sent to the procedures so as to find out first (i) how
much of the Hiragana sequence represents a functional element or elements,
and then (ii) what is the functional role or the final functional role if there is
more than one element.

When the non-Hiragana content part is not followed by Hiragana, the al-
gorithm checks for two possible instances. First, when it finds the content
part to be an expression of a date, time or a clause ending with a suffix denot-
ing time, it marks the phrase as the one whose functional element is omitted.
Second, when it finds the character in question to be a comma, it indicates
that the phrase is without the functional part, and that the functional role is
the same as that of the following phrase, because the comma is treated the
same as a conjunction.

312

FIGURE 1 Algorithm of the morpho-syntactic analyzer

(1) Hiragana
loop,
looking
for a
content
word

(2) Non-
Hiranana
loop,
looking
for a con-
tent
word

(3) Hiragana
loop,
looking
for a
func-
tional
suffix

Looking for a
phrase bound-

ary

313

4 Architecture of the Present System

The current system is constructed on an object-oriented design, comprising
four Java programming language classes (programs): MorphAlgorithm,
Phrase, CharIdentifier and Grammar. The MorphAlgorithm is the main pro-
gram that runs on the algorithm introduced in the previous section and
charted in Figure 1. The Phrase simulates a phrase (a syntactic unit), thus
housing access methods to the Head and Complement.2 The CharIdentifier
provides the MorphAlgorithm with several methods that identify characters.
The Grammar is instanced by the MorphAlgorithm to find out the functional
role of the Head of a phrase. The grammatical roles identified are listed in the
following tables.

TABLE 3 Case markers/Particles denoting thematic relations

Case/
Particles

Pronunci
ation

Functional role(s)

が ga Subject marker
を o Object marker
は wa Topic marker
で de Place/Instrument/conjunctive
へ e Goal
から kara Point of departure
まで made ‘up to/till’
より yori Point of departure (formal or archaic)
として toshite ‘as’ (Representative)
による niyoru Means
について nitsuite ‘concerning’
によると niyoruto ‘according to’

TABLE 4 Particles denoting conjunction

Particles Pro-
nuncia-
tion

Functional role(s)

も mo ‘too’/conjunction for nouns
や ya conjunction for nouns (inclusive)
と to conjunction for nouns (exclusive)
か ka ‘or’/Question particle
および oyobi conjunction for nouns (formal)

2 It is based on the linguistic assumption that a phrase consists of a Head component
and a Complement component.

314

TABLE 5 Particles that form modifiers of clauses

Particles Pronunciation Functional role(s)
ので node ‘because’
ため tame ‘because’
ために tameni ‘because’
けど kedo ‘although’ (informal)
けれど keredo ‘although’
のに noni ‘even though’
ても temo ‘even though’
とき toki ‘when’
れば reba ‘if’
あいだ aida ‘while’

TABLE 6 Particles that form modifiers of verb phrases

Particles Pronunciation Functional role(s)
ものの monono ‘even though’ (formal)
ながら nagara ‘while’
したまま shitamama ‘while doing’

TABLE 7 Particles denoting approximation or comparison

Particles Pronunciation Functional role(s)
ほど hodo ‘or so’ (a little formal)
くらい kurai ‘or so’

In addition, the Grammar is able to identify the past and non-past affirmative
and negative inflections of verbs and adjectives, and the conjunctive forms.

5 Discussion

Accuracy rates could be very high (a) when a text is written primarily in con-
trolled Japanese (i.e., when the text is transcribed wherever applicable by us-
ing Joyo Kanji), (b) when the content words are followed by single functional
elements, (c) when the content words are transcribed exclusively in Kanji
and/or Katakana, and (d) when the text does not contain a long word in Hira-
gana such as a long adverb or conjunction. Table 1 shows such a sentence,
and the accuracy rate is 100%. Accuracy rates become lower when the above
conditions are not satisfied.

When the content words of a text are followed by a long sequence in Hira-
gana (counter to (b) above), the sequence is likely to comprise:

315

(i) more than one compound verbal suffix, or
(ii) a sequence of compound particles such as a Case marker

followed by other particles.
It would not be very difficult to parse compound verbal suffixes consisting of
long Hiragana sequence because of the following two facts: verbal and ad-
jectival inflections in Japanese exhibit systematic paradigms, and such suf-
fixes as causative, passive, aspectual and modal auxiliaries are aligned in
rigid and thus predictable orders. To deal with a long predicate comprising
more than one verbal suffix, a morphological analyzer is being prepared. Be-
cause this kind of a long predicate verb or adjective phrase occurs at least
once in a sentence (that requires a predicate), and twice or more when the
sentence contains a subordinate clause or clauses, significant improvement is
expected, once the morphological analyzer for treating the complex verb
phrase is incorporated into the current system.

Compound particles (for instance, consisting of a Case marker followed by
a focus particle) also have a fairly rigid order, and it would be possible to
analyze them in the system, once the orders are identified and implemented.
However, it would be necessary to conduct a comprehensive linguistic study
in this area for the successful identification of each functional element in se-
quence. At present a sequence of particles is treated as one chunk, the func-
tional role of which is identified by the final particle.

When the content words in a sentence are transcribed in a mixture of Kanji
(or Katakana) and Hiragana (counter to (c) above), the current system is un-
able to deal with such content words, because it does not have a dictionary. It
would be interesting to investigate how frequently such words are transcribed
in a mixture of Kanji (and/or Katakana) and Hiragana. Most adverbs and
conjunctions are transcribed in Hiragana, even though there are some such as
OMOigakezu (‘by chance’) and sorenimoKAKAwarazu (‘in spite of that’)
that are transcribed in a mixture of Kanji and Hiragana. As a result, it is not
so problematic to parse words in the two categories. Problems are caused
mainly by nouns and compound verbs. However, nouns derived from verbs
and adjectives are written in a mixture of the two characters: for instance, the
noun KAri (‘loan’) derived from the verb KAriru (‘borrow’) and the noun
TANOshisa (‘pleasure’) derived from the adjective TANOshii (‘pleasant’).
Such derivations are predictable, so it would be possible to prepare a mor-
phological analyzer to handle them. Further research on derivations would be
needed to improve the current system.

Quasi-compound verbs such as KAkeKOmu (‘run into’), TAmeKOmu
(‘save up’), HIkiNObasu (‘stretch out’) and HIkiHANAsu (‘separate’) are
problematic. They take the form of compound verbs, but they do not seem to
be semantically compound verbs, because the original meanings of the fol-
lowing suffix verb or the preceding prefix verb are no longer independent but
incorporated into the meanings of the main stem verbs. Therefore it is appro-
priate to handle such compound verbs as single verbs. As the current system

316

aims at analyzing sentences into phrases, it is undesirable to treat them as
separate verbs. This problem cannot be solved without a dictionary that lists
quasi-compound verbs or a morphological engine that deals with such verbs.

The current system is not equipped with a dictionary, and does not contain
an exhaustive list of adverbs and conjunctions. At present it identifies twenty-
two adverbs and thirteen conjunctions. Since the numbers of adverbs and
conjunctions are relatively definitive and not large, a future task would be to
see how much improvement can be achieved, once an exhaustive list of
words in these categories is incorporated into the system.

Finally, the system is unable to handle elements in parentheses, which are
often semantically related to the preceding elements in various manners.
Parenthetical elements could be explanations of the preceding abbreviations
or vice versa. There are no formal clues to the understanding of the relations
between the two elements. This area remains to be explored.

6 Conclusion

The current morpho-syntactic analyzer, without a dictionary, aims at parsing
into phrases texts written in Joyo Kanji (frequently used Chinese characters).
The phrases are divided into content and functional sections and functional
roles are assigned. The results suggest that this light-weight phrase analyzer
could be a useful tool for natural language processing, while awaiting further
study and additional modules of implementation for better results. In machine
translation, once the functional roles of phrases are identified, it will not be
necessary to further break up phrases into morphemes, thus saving time and
avoiding unnecessary parsing. Text understanding would be improved when
the phrases of sentences are understood.

References
Asahara, Masayuki. 2003. Corpus-based Japanese morphological analysis. Ph.D.

Thesis: Nara Institute of Science and Technology.

Fuchi, Takeshi and Shinichiro Takagi. 1998. Japanese Morphological Analyzer using
Word C0-occurrence. In Proceedings of the COLING, pp. 409-413.

Haruno, Masahiko, Satoshi Shirai, and Yoshifumi Ooyama. 1999. Using Decision
Trees to Construct a Practical Parser. Machine Learning, 34:131-149.

Kameda, Masayuki. 1996. A Portable & Quick Japanese Parser: QJP. In Proceedings
of the COLING, pp. 616-621.

Kanayama, Hiroshi, Kentaro Torisawa, Yutaka Mitsuishi and Jun’ichi Tsujii. 2000.
A Hybrid Japanese Parser with Hand-crafted Grammar and Statistics. In Proceed-
ings of the COLING, pp. 411-417.

Kashioka, Hideki, Yasuhiro Kawata and Yumiko Kinjo. 1998. Use of Mutual Infor-
mation Based Character Clusters in Dictionary-less Morphological Analysis of
Japanese. In Proceedings of the COLING, pp. 658-662.

317

Kazama, Jun’ichi. 2001. Adaptive Morphological Analysis with a Small Tagged Cor-
pus. Master Thesis: University of Tokyo.

Kurohashi, Sadao and Makoto Nagao. 2003. Building a Japanese Parsed corpus ―
while improving the parsing system. In Anne Abeille (ed.), Treebank Building Us-
ing Parsed Corpora, pp. 249-260. Dordrecht, The Netherlands: Kluwer Academic
Publishers.

Matsumoto, Yuji, Akira Kitauchi, TatsuoYamashita, Yoshitaka Hirano, Hiroshi Ma-
tsuda, Kazuma Takaoka and Masayuki Asahara. 2001. Morphological Analysis
System ChaSen version 2.2.4 Manual. Nara, Japan: Nara Institute of Science and
Technology.

Sekine, Satoshi. 2001. A Fast Japanese Sentence Analyzer. In Proceedings of the
First International Workshop on MultiMedia Annotation.

Suzuki, Hisami, Chris Brockett, and Gary Kacmarcik. 2000. Using a Broad-Coverage
Parser for Word-Breaking in Japanese. In Proceedings of the COLING, pp. 822-
828.

Uchimoto, Kiyotaka, Masaki Murata, Satoshi Sekine and Hitoshi Isahara. 2000. De-
pendency model using posterior context. In Proceedings of the Sixth International
Workshop on Parsing Technologies, pp. 321-322.

318

Framework Independent Summarized Parser Output in XML and its
Example-based Documentation

Tam Wai Lok Miyao Yusuke Tsujii Jun’ichi
University of Tokyo University of Tokyo University of Tokyo

University of Manchester
National Centre for Text Mining

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

319

Abstract

We see a communication problem between the grammar engineering community and the NLP commu-
nity. The information to be communicated is the results produced by a grammar. This paper is about our
solution to the problem. Our solution has two components: an alternative output format and its documen-
tation. Our alternative output format carries constituency information that parsers are built for computing,
but in lesser quantity and a simpler form than the standard attribute-value matrix (AVM) output format.
The documentation for it provides a shallow and static explanation different from the deep and dynamic
explanation found in literature about grammar formalisms meant for grammar writers. The shallow and
static explanation is meant to enable members of the NLP community to achieve a shallow level of under-
standing of the results produced by a grammar for the sake of developing NLP systems that interoperate
with parsers.

1 Introduction

Grammar engineering presents an especially difficult tension between grammar writers who are predominantly
interested in carrying research in the field forward and developers who build NLP systems that interoperate
with deep parsers but are not very interested in the grammars behind them. The source of this tension is
that the results produced by grammars are not designed and documented as a language resource for the wider
NLP community. Members of the grammar engineering community can proceed with their research without
documentation that explains the meaning of the results produced by a grammar. The common knowledge
acquired from the literature about the formalism on which a grammar is based and shared among them in
the computation of the results render such documentation unnecessary for the grammar writers. However,
given that grammars are built for practical use in the development of larger NLP systems, the paucity of
documentation for users who should not need to acquire the common knowledge shared among members of
the grammar engineering community and the design of the output format of deep parsers which require such
knowledge for deciphering the results are practical problems, if not theoretical ones. In this paper, we present
a solution to these practical problems. It is our hope that our work can draw the attention of the grammar
engineering community to the need of the wider NLP community for a simpler design of and documentation
for the results produced by a grammar.

We are not being critical of the non-existence of documentation for grammar writers. There may not be a
practical problem in that area as long as members of the grammar engineering community can carry on with
their work by relying on common knowledge shared among them and on the literature about the grammar
formalisms on which their work is based. Such documentation, while good to have for the sake of new
members of the grammar engineering community, is not a solution to the practical problem in communicating
the results produced by the grammar engineering community to the wider NLP community. Developers of
NLP systems outside the grammar engineering community are not equipped with the background knowledge
needed for understanding such documentation. The solution we present here is meant for these developers
who share knowledge about linguistic concepts like POS, semantic representations and subcategorization with
grammar writers but lack the knowledge in a specific framework required for finding information about these
concepts from framework specific representations.

Our solution is built on top of ENJU (Miyao et al.[2004]). ENJU is built with a view to being a practical
parser that accepts real text and forms a part of larger NLP systems. It includes a mostly induced, partly
handcrafted grammar which keeps grammar engineering work at a minimum. This is in part why we are
less concerned with meeting the needs of grammar writers but more concerned with providing support for

320

use in NLP system development. This support is provided by means of an alternative output format which
carries information summarized from that carried in the standard AVM output format and documentation for
the alternative output format.

To illustrate what is kept and what is left out in our summary of a complete feature structure representation,
we give the representation of the relative pronoun ”who” in the AVM format and the representation of it in our
alternative output format one after the other.



PHON ”who”

SYNSEM




LOCAL




CAT




HEAD




AGR 1

ADJ minus

PRD binary

CASE case

MOD {}
POSTHEAD binary




VAL




SUBJ {}
COMPS{}
SPR {}
SPEC {}
CONJ {}







CONT
[

INDEX 2
]




NONLOCAL




INHER




QUE {}
SLASH {}

REL




CAT




HEAD




AGR 1

ADJ minus

PRD binary

CASE case

MOD {}
POSTHEAD binary




VAL




SUBJ {}
COMPS{}
SPR {}
SPEC {}
CONJ {}







CONT
[

INDEX 2
]







TO BIND




QUE {}
SLASH {}
REL {}













Figure 1:the complete AVM representation of ”who”

1 <t ok i d =” t 4 ” c a t =”N” pos=”WP” base =” who” l e x e n t r y =”N. 3 sg/ [& l t ;NP. 3 sg& g t ;] ” p red
=” r e l a t i v e a r g 1” a rg1 =” c8”>

who
3 < / t ok>

As an alternative to the standard AVM output format, our format is different from MRS (Copestake et al.
[2005]), another alternative output format but similar to the bracketing style used in the Penn Treebank. While

321

both MRS and the Penn Treebank bracketing style are grounded in linguistic theories, the Penn Treebank
bracketing style is meant to be understood (at a shallow level) without in-depth knowledge of the theories
whereas MRS is meant to be understood with deep knowledge of them. This difference is obvious in the
literature about the two formats. The Penn Treebank annotation manual (Bies[1995]) provides a large number
of examples without explaining how they are computed with the transformationalist theories. MRS comes
with a paper that describes in details the steps for computing a MRS representation and the theories on which
the computation is grounded (Copestake et al.[2005]). For the Penn Treebank, the point of enabling users
to achieve a shallow level of understanding of the analysis by annotators is to help developers to debug NLP
systems that use the Penn Treebank as a language resource by giving them an idea how the analysis of a
linguistic phenomenon looks, not to enable them to do the computation done by annotators. Likewise, we
want to enable our users to achieve a shallow level of understanding of the results produced by our grammar
for debugging NLP systems that use these results as a language resource: we do this by giving them an idea
how the analysis of a linguistic phenomenon looks. Our goal is not to enable them to do the computation done
by parsers and grammar writers.

This paper is organized as follows: We start with giving more details on the communication problem we
mention above. Then we describe our solution by highlighting some of its characteristics and providing some
examples. Finally, we conclude this paper with a summary and some thoughts on the direction our work is
heading.

2 Problem definition

In the beginning of this paper, we describe the problem we are addressing as one of communication between
the grammar engineering community and the wider NLP community. This kind of communication problems
between research communities is not uncommon in the academic world. But the problem involving the gram-
mar engineering community and the NLP community is particularly serious for two reasons.

The first reason is that substitute for more canonical documentation that serves members of the grammar
engineering community well does not function well for members of the wider NLP community. By substitute
of documentation, we are referring to textbooks that introduce students to a formalism like (Sag et al.[2003])
or handbooks that cover everything essential about a formalism like (Pollard and Sag[1994]). Literature does
not function well for members of the wider NLP communities because the parser results are different from
those in papers. The former comes with much more information than the latter. This is because linguists who
propose these formalisms omit feature-value pairs they consider irrelevant to the linguistic phenomena they
are interested in when they present the computation in papers.

Let us illustrate the difference between the result produced by a parser and the analysis given on paper with
an example. A sign of any POS carries theMOD feature in HPSG. A noun or a verb that does not function as
an adjunct is assigned an empty value for this feature. When talking about control and raising, linguists know
that there is not much point in specifying theMOD value of the control (raising) verb and its NP arguments
on paper. However, parsers do not know this. They can only display all feature-value pairs or rely on users
to choose which features to display. The knowledge required for filling in the gaps between the output of
parsers and the output given on paper, like the common knowledge that members of the grammar engineering
community rely on for carrying research in their field forward, is missing for members of the wider NLP
community. This renders the literature about the grammar formalism on which a grammar is based less useful
for members of the wider NLP community.

322

The second reason is that there is an explosion in the information being communicated between (the sys-
tems built by) the two communities. The grammar engineering community places little restriction on the
introduction of new features for covering new phenomena in a grammar. Often the new features are included
in the feature structure representations of all signs. So the introduction of new features for covering a new
phenomenon does not only put more information in the feature structure representations of sentences related
to the phenomenon for which the features are introduced. It also puts more information in the feature structure
representations of sentences not related to the phenomenon. The result of this is an explosion of information.
With wide-coverage being the pursuit of the grammar engineering community, we are witnessing such explo-
sions in every well-known deep parser. For example, the features structure representation of example sentence
1 has more than 500 feature-value pairs in the output produced by ENJU, the deep parser we use.

(1) John is the man who Mary loves

Common current attempts at providing a solution to the communication problem we identify here are not
satisfactory in two aspects:

• Reducing the information to be communicated to (the systems built by) the NLP community is recog-
nized as a means of providing a solution to the problem. However, the information left to be commu-
nicated to the NLP community is very often packed in a new format which demand them to acquire
new knowledge for the purpose of making sense of and using the packed information. One such new
format is MRS. It may be true that the design of a new format is inevitable for the purpose of packing the
information to be communicated. However, the reduced information is often in an unfamiliar format. If
such a format is significantly different from what developers are familiar with it would create the same
hurdle created by the original grammar frameworks.

• MRS and dependencies are two formats sometimes cited as a solution to the problem. Both formats
carry no constituency information, which is the information parsers are supposed to compute according
to the widely accepted definition of a parser as a program that identifies the phrase structure of an
input sentence. As a result, many other research communities and systems built by them expect this
information from parsers and the research community working on parsers. An example of NLP systems
that needs constituency information from parsers is a speech synthesiser. It needs the phrase structure
of an input sentence to determine the prosodic structure of it. Providing constituency information with
other information would help to solve the communication problem between the grammar engineering
community and the NLP community.

3 Solution

3.1 Our alternative output format: summarized parser output format

Our alternative output format has the following characteristics:

Fixed number of attributes In feature structure based grammar formalisms, the number of attributes of every
sign increases proportionally with the coverage of a grammar. In our simplified output format, we define
a fixed set of attributes for terminal nodes and a fixed set of attributes for non-terminal nodes.

323

Framework independent attribute names In feature structure based grammar formalisms, features may be
embedded as the value of some other features. Path information, that is, the names of all the embedding
features of a feature, is needed for identifying the embedded feature. Different feature structure based
formalisms have different paths and names for features that carry similar information. In our simplified
output format, attributes take atomic values and are given framework independent names based on the
type of information they carry.

Hidden value-sharing In feature structure based grammar formalisms, unification of values occurs between
features found in multiple locations, essentially repeating the same information. In our simplified output
format, inheritance of attribute values from a daughter node to its mother is not shown. Only sharing of
values between sisters and constituents in a long distance dependency relation is visible. The visibility
of value-sharing of the later kind is enough for capturing a wide range of linguistic phenomena.

It is not difficult to see that these three characteristics deal with the following sources of complaints about
the complete AVM output:

1. There are too many feature-value pairs in a feature structure representation of a constituent.

2. It is difficult to tell what kind of information is contained in an embedded feature with a long path name.

3. The sharing of values between features in a large feature structure is difficult to trace and make sense of.

4. The same piece of information appears in multiple locations.

These complaints are not only about the quantity of information represented in the complete output.
Some of these complaints are about the way information is carried. HPSG allows phrase structure trees
whose non-root nodes carry information produced by the parsing of large constituents. For example, the
SYNSEM|LOCAL|CONT|LOVER feature of the root node ”loves” in a HPSG-style phrase structure tree of
example sentence1 is assigned the
SYNSEM|LOCAL|CONT|INDEX value of the root node ”Mary”. This information is produced by the parsing
of the nonterminal embedded sentence node ”Mary loves”.

Mary

[
SYNSEM|LOCAL|CONT|INDEX 1

]

loves

[
SYNSEM|LOCAL|CONT|LOVER 1

]

[
SYNSEM|LOCAL|CONT|LOVER 1

]

Figure 2:Mary loves

In lambda calculus based semantics found in other frameworks like LFG (Dalrymple[2001]) and CCG
(Steedman[2000]), the agent role of the semantic representation of the root node ”loves” would not be filled
by the reference marker of the root node ”Mary”. Instead, it would remain uninstantiated and the variable
corresponding to the argument slot would be marked by aλ:

324

λX.λY.love(X,Y)

Grammar writers who are familiar with the HPSG formalism have little problem in understanding why the
agent role of the semantic representation of the root node ”loves” is filled by the reference marker of the root
node ”Mary” in a HPSG-style phrase structure tree. However, developers in the NLP community may find it
confusing. The problem is that the complete AVM output includes steps in the computation but these steps
look different from the way they look during the computation. To address this problem, we remove these steps
from our alternative output format by hiding the sharing of values.

Our alternative output format represents an attempt to simplify feature structure based grammar formalisms
without sacrificing the power of deep processing in capturing linguistic phenomena like long distance depen-
dencies and raising which proves difficult for shallow processing. Our approach is different from the approach
of output formats like MRS and dependencies. We try to summarize the complete AVM output. They extract
some specific information (e.g. semantics in the case of MRS) from the complete AVM output. For this reason,
we name our output formatSummarized Parser Output(SPO). In SPO, it is possible to distinguish between
the output produced by parsing example sentence1 and the output produced by parsing:

(2) John is a man and Mary loves John

Capturing this difference between different constructions is what we mean by capturing linguistic phenom-
ena. This is important for the output of a parser. In other alternative output formats, it would be impossible
to distinguish output produced by sentences with the same meaning or the same dependencies between con-
stituents.

SPO is meant to be a format for making it easy to use the parser results in the development of NLP systems.
During the development of an NLP system that interoperates with a parser, developers are not involved in the
computation done by the parser but they are often required to check the results produced by the parser for
debugging purpose. Textbooks and handbooks which explain how the computation is done do not meet their
need. They need a large collection of examples in the style of the Penn Treebank manual against which they
can check the results produced by the parser without doing the computation. Therefore, our documentation for
SPO is modelled on the Penn Treebank manual.

3.1.1 Specifications of SPO

Nodes of a phrase structure tree in feature structure based formalisms are structured complexes of features and
values. These nodes are represented by XML elements in SPO. The structure of a parse tree is determined
by mother-daughter relations and sister relations between its nodes. The two relations are captured in the
following way:

mother-daughter relations Two nodes in a mother-daughter relation are represented by an enclosure relation
between twoconselements. The node represented by the enclosed element is the daughter. The node
represented by the enclosing element is the mother.

sister relations Two nodes in a sister relation are represented by two non-mutually-enclosingconselements
which are both enclosed by the sameconselement.

325

A conselement can represent the root node, a terminal node and a nonterminal node. The outermostcons
element represents the root node. A leaf node of a parse tree is represented by atok element.

To enable our readers to visualize what we have just described, we give the following empty template with
all attributes exceptid removed .

1 <cons i d =” c1”>
<!−− t h i s i s t h e r o o t node −−>

3 <!−− t h i s i s t h e mother o f t h e c o n s t i t u e n t s r e p r e s e n t e dby c2 and c3 −−>
<cons i d =” c2”>

5 <!−− t h i s i s t h e d a u g h t e r o f t h e c o n s t i t u e n t r e p r e s e n t e dby c1 −−>
<!−− t h i s i s t h e s i s t e r o f t h e c o n s t i t u e n t r e p r e s e n t e dby c3 −−>

7 <t ok i d =” w1”>
<!−− t h i s i s a l e a f node −−>

9 < / t ok>
< / cons>

11 <cons i d =” c3”>
<!−− t h i s i s t h e d a u g h t e r o f t h e c o n s t i t u e n t r e p r e s e n t e dby c1 −−>

13 <!−− t h i s i s t h e s i s t e r o f t h e c o n s t i t u e n t r e p r e s e n t e dby c2 −−>
<t ok i d =” w2”>

15 <!−− t h i s i s a l e a f node−−>
< / t ok>

17 < / cons>
< / cons>

As for the attributes carried by theconsandtok elements:

Attributes carried by both consand tok elements POS information (cat), reference marker (id)

Attributes carried only by conselements syntactic head (head), semantic head (semhead), the rule respon-
sible for rewriting an element as its daughter (s) (schema)

Attribute carried only by tok elements base form (base), references to lexical rules or lexical entries (lex-
entry), tense (tense), aspect (aspect), verb type (aux), the argument variables to which the semantic
representations of the corresponding nodes apply (argn), semantic representation (pred)

Attributes liketense, aspectandvoice, which correspond to features whose values are passed up from the
lexical entry of a verb to the terminal verb node and from a terminal verb node to a non-terminal verb phrase
node in a phrase structure tree of feature structures, are not included as attributes of theconselements which
we use for representing terminal nodes and non-terminal nodes. This is what we mean by hiding values shared
between a mother and a daughter.

3.1.2 Summarizing features

The attributes ofconsand tok elements are summarized from features of the corresponding nodes. Some
features of a node are captured by straightforward one-to-one conversion. Others are captured by generalizing
over a few features of the node and producing one attribute in the corresponding XML representation for
several features of the node. The rest are simply not represented in the XML form.

326

The case of one-to-one conversion and the case of neglecting a feature are trivial but the idea of gen-
eralizing over several features of a node requires some explanation. To illustrate, let us take thecat at-
tribute of aconselement or atok element as an example. Its value is determined by both the value of the
SYNSEM|LOCAL|CAT|HEAD feature and the value of the SYNSEM|LOCAL|CAT|SUBCAT feature of the
corresponding node. We say thecat attribute is a generalization over the HEAD feature and the SUBCAT fea-
ture. By neglecting some features and generalizing over others, we greatly reduce the number of attributes in
SPO while keeping the number of elements the same as the number of nodes in the parse tree being represented
by it.

3.1.3 An example

The specifications and the methods of summarization produce less expressive power in exchange for reducing
complexity. But they can be used creatively for capturing a wide range of linguistic phenomena in a deep but
simple way. Let us illustrate how this can be done with our analysis of the relative clause contained in example
sentence (1).

<cons i d =” c36” c a t =”NX” x c a t =” ” head=” c37” sem head=” c37” schema=”
h e a d r e l a t i v e”>

2 <cons i d =” c37” c a t =”NX” x c a t =” ” head=” t16” sem head=” t16”>
<t ok i d =” t16” c a t =”N” pos=”NN” base =” man” l e x e n t r y =” [D& l t ;N. 3 sg& g t ;] lxm ”

pred =” noun arg0”>
4 man< / t ok>< / cons>

<cons i d =” c38” c a t =” S” x c a t =” REL” head=” c40” sem head=” c40” schema=”
f i l l e r h e a d”>

6 <cons i d =” c39” c a t =” NP” x c a t =” REL” head=” t17” sem head=” t17”>
<t ok i d =” t17” c a t =”N” pos=”WP” base =” who” l e x e n t r y =”N. 3 sg/ [& l t ;NP. 3 sg& g t

;] ” p red =” r e l a t i v e a r g 1” a rg1 =” c37”>
8 who< / t ok>< / cons>

<cons i d =” c40” c a t =” S” x c a t =” TRACE” head=” c43” sem head=” c43” schema=”
s u b j h e a d”>

10 <cons i d =” c41” c a t =” NP” x c a t =” ” head=” c42” sem head=” c42” schema=”
empty spec head”>

<cons i d =” c42” c a t =”NX” x c a t =” ” head=” t18” sem head=” t18”>
12 <t ok i d =” t18” c a t =”N” pos=”NNP” base =” mary” l e x e n t r y =” [D& l t ;N. 3 sg& g t

;] lxm ” pred =” noun arg0”>
Mary< / t ok>< / cons>< / cons>

14 <cons i d =” c43” c a t =” VP” x c a t =” TRACE” head=” t19” sem head=” t19”>
<t ok i d =” t19” c a t =”V” pos=”VBZ” base =” l ove” t e n s e =” p r e s e n t” a s p e c t =”

none” vo i c e =” a c t i v e” aux=” minus” l e x e n t r y =” [NP. nom& l t ;V . bse& g t ;NP.
acc] lxm−movement ru le−s i n g u l a r 3 r d v e r b r u l e ” p red =” v e r b a r g 1 2” arg2
=” c37” arg1 =” c41”>

16 l o v e s< / t ok>< / cons>< / cons>< / cons>< / cons>

We make use of the idea of gaps in our analysis of relative clauses. In HPSG, this is done by introducing the
SYNSEM|NONLOCAL|INHER|SLASH feature, the SYNSEM|NONLOCAL|INHER|REL feature and the
SYNSEM|NONLOCAL|TO-BIND|SLASH feature. We try to do this without introducing any new attribute.
A gap is formed when the relativized argument (object) of the embedded verb (”loves”) is removed from the
subcategorization frame temporarily in the phrasal projection of the verb is formed without the argument being

327

sister to the verb. The phrasal projection of the verb formed as a result is gapped. A gapped verb phrase is
simply marked by being assigned acat value which says something different from the XML representation
of the phrase structure of the sentence in question about the subcategorization frame of the verb. In the XML
representation of example sentence (1), the lexical entry of the transitive verb ”love” (t19) is dominated by
a verb phrase node (c43) whose subcategorization frame contains only a subject. This is indicated by itscat
value VP. But we cannot find any other element that is enclosed by the element representing the verb phrase
node. This is what we mean by having thecat value of a verb phrase saying something different from the
phrase structure.

The semantic representation of the embedded verb ”loves” is given as the value of thepredattribute of the
lexical entry of ”loves” (t19). Its theme role is represented by thearg2 attribute of t19, which is assigned the
id value c37 of the nonterminal head noun node.id can be understood as the entity a constituent refers to. Two
different ids refer to the same entity if they come from two elements one of whoseid value is assigned as the
semheadvalue of the other. So theid value c37 of the terminal noun node andid value t16 of the root node
”man” refers to the same entity.

3.2 Shallow documentation for parser output

In this section, we first provide a more detailed description of our example-based documentation and give an
excerpt of it to illustrate the difference between theory-centred literature and example-based documentation.
Then we offer more explanation as to why the latter is better suited for developers in the NLP community.

Our documentation is indexed by linguistic phenomena. It is organized into sections, each of which in-
cludes:

1. a section title that describes a linguistic phenomenon

2. an example sentence that illustrates the linguistic phenomenon

3. the translation of the result produced by parsing the example sentence with our parser to a format based
on the Penn Treebank bracketing style

4. explanation for our analysis of the linguistic phenomenon

Here is an excerpted section broken into the mentioned elements:

Section title non-subject wh-relatives

Example sentence (3) John is the man who Mary loves

Simplified output
(S (NP (NX John))

(VP (VX is)
(NP (DP the)

(NX (NX man[id=c37]))
(S-REL (NP-REL who[pred=relative_arg1,arg1=c37])

(S-TRACE (NP (NX Mary[id=c41]))
(VP-TRACE

loves[pred=verb_arg12,arg1=c41,arg2=c37))))))

328

Explanation

Syntax

• The relative pronoun ”who” is assigned the POS label (cat) NP .

• The embedded transitive verb ”loves” forms a gapped verb phrase, which is assigned the POS
label VP, with no daughters.

• The gapped verb phrase is sister to the subject noun phrase ”Mary”. Together they form the
gapped sentence ”Mary loves’, which is assigned the POS label S.

• The gapped sentence is sister to the relative pronoun. Together they form the relative clause
”who Mary loves”, which is assigned the POS label S.

• The relative clause is sister to the head noun ”man”.

Semantics

• The object position (arg2) of the embedded transitive verb ”loves” is relativized. It is assigned
the reference marker (id) of the head noun ”man” (c37).

Note the similarity in style to the Penn Treebank annotation manual. Our explanation and the explanation
offered in the Penn Treebank annotation manual are shallow and static. A shallow explanation does not give
the readers the reason for a certain output. For example, we do not tell our readers the reason that a certain
attribute is assigned a certain value is because a particular feature structure unifies with another feature struc-
ture and some values of the features carried by them are shared. The Penn Treebank annotation manual does
not account for the existence of a trace in a specific position in terms of transformations. A static explanation
does not include the steps taken to compute the result. Such steps are transformations in a transformation-
alist framework and unifications in a feature structure based framework. Our explanation does not mention
unification . Likewise, transformations are hardly mentioned in the Penn Treebank annotation manual.

Also note the difference in style between our explanation and the explanation offered for the analysis of lin-
guistic phenomenon in textbooks like (Sag et al.[2003]), handbooks likePollard and Sag[1994] and literature
like Copestake et al.[2005]. The explanation offered in these textbooks, handbooks and literature meant for
members of the grammar engineering community and hence is deep and dynamic. A deep explanation gives
the readers the reason for a certain output. A dynamic explanation goes through the steps taken to compute the
result meant to be explained.

The importance of deep and dynamic explanation for grammars is obvious. (A deep and dynamic expla-
nation for the results necessarily becomes a holistic explanation for the grammar.) In order to understand how
a grammar works, grammar writers have to know which feature structure unifies with which and what values
are shared between them. It is the unification and the sharing that enable a grammar to rule out ungrammatical
sentences and construct the meaning of a sentence from its parts. The existence of such explanations, which
are so useful to grammar engineering, obviates the task of creating documentation that provides the same kind
of explanation.

However, it is easy to underestimate the importance of shallow and static explanation for results produced
by a grammar. Such documentation is a major means of communication between the producers and the con-
sumers of the parser, less often the means of communication among the producers. The need of the consumers
is determined by the purpose for which they use the parser results: in our case, this purpose is the develop-
ment of NLP systems that interoperate with parsers. What is needed is a shallow understanding of the results
produced by a grammar.

329

What is a shallow level of understanding of the results produced by a grammar? It is some ideas about what
the correct analysis of a linguistic phenomenon looks like. We provide examples in our shallow explanation
to allow developers to check their results. Likewise, the shallow explanation offered in the Penn Treebank
annotation manual comes with examples that allows developers to check their results they get from systems
trained with the treebank against the examples directly. There is no question about the usefulness of shallow
explanation to developers because it is simply designed to meet their needs during development.

4 Conclusion and future work

We have outlined and illustrated with examples our solution to the communication problems between the
grammar engineering community and the wider NLP community. We attempt to solve these problems by
simplifying the output of a deep parser in an alternative output format and providing documentation for that
format.

Our alternative output format SPO is different from alternative output formats proposed for other deep
parsers in our concern with preserving the syntactic information in the AVM format. We preserve this infor-
mation so that the output of our parser in its simple form can be used for a wide range of NLP applications.
(Chun et al.[2006], Miyao et al.[2006], Yakushiji et al.[2006])

The documentation for SPO provides shallow and static explanations to developers in the NLP community.
This differs from the deep and dynamic explanation found in literature that serves grammar writers well as
documentation. Though not very useful to grammar engineering, shallow and static explanation is needed by
developers in the NLP community for the purpose of building NLP systems that interoperate with parsers.
In showing that there is no substitute for documentation meant for developers, we argue that documentation
targeted at the NLP community is an urgent task for those developing parser for NLP applications.

Our idea of a simplified but information-rich output format and documentation of it for members of the
NLP community presented here are tested on a partly-handcrafted grammar should help development of ap-
plications fed on the output of more handcrafted grammars like LKB/ERGCopestake and Flickinger[2000])
as well.

We create the summarized output format described in this paper by summarizing the output of a deep parser
which do HPSG-based parsing. Our simplified output format can be used for summarizing the output of other
deep parsers which use other grammar formalisms. In fact, our simplified output format has some similarities
to LFG. For example, subcategorization information is implicitly represented by the POS label and argument
slots of the semantic representation in our simplified output and in LFG. The idea of leaving information
that can be read off the phrase structure tree (in XML format) unrepresented in attribute-value pairs is also
similar to the idea of separating constituency information from the functional-structure. Currently, we are in
talks with groups working on parsing in LFG to explore using the same output format for summarizing output
of deep parsers based on different formalisms. Our next step would be to extend the use of our summarized
output to parsers built on feature based CCG. A common output format between deep parsers based on different
formalisms would be very useful for parser evaluation, if accompanied by documentation created in the manner
described in this paper for the output produced by each of the deep parsers.

330

Acknowledgments

This work was partially supported by Grant-in-Aid for Specially Promoted Research (MEXT, Japan) and
Grant-in-Aid for Young Scientists (MEXT, Japan).

References

Ann Bies. Bracketing guidelines for treebank II style Penn treebank project, 1995. URL
citeseer.ist.psu.edu/bies95bracketing.html .

Hong-Woo Chun, Yoshimasa Tsuruoka, Jin-Dong Kim, Rie Shiba, Naoki Nagata, Teruyoshi Hishiki, and
Jun’ichi Tsujii. Extraction of gene-disease relations from Medline using domain dictionaries and machine
learning. InProceedings of the Pacific Symposium on Biocomputing 2006, pages 4–15, Maui, 2006.

Ann Copestake and Dan Flickinger. An open-source grammar development environment and broad-coverage
English grammar using hpsg. InProceedings of the Second conference on Language Resources and Evalu-
ation, Athens, Greece, 2000.

Ann Copestake, Dan Flickinger, Ivan A. Sag, and Carl Pollard. Minimal recursion semantics: An introduction.
In Journal of Research on Language and Computation, volume 3, pages 281–332. Springer, 2005.

Mary Dalrymple.Lexical Functional Grammar, volume 34 ofSyntax and Semantics. Academic Press, 2001.

Yusuke Miyao, Takashi Ninomiya, and Jun’ichi Tsujii. Corpus-oriented grammar development for acquiring
a head-driven phrase structure grammar from the penn treebank. InProceedings of the First International
Joint Conference on Natural Language Processing, pages 684–693, Hong Kong, 2004.

Yusuke Miyao, Tomoko Ohta, Katsuya Masuda, Yoshimasa Tsuruoka, Kazuhiro Yoshida, Takashi Ninomiya
Takashi, and Jun’ichi Tsujii. Semantic retrieval for the accurate identification of relational concepts in
massive textbases. InProceedings of COLING-ACL 2006, pages 1017–1024, Sydney, 2006.

Carl Pollard and Ivan A. Sag.Head-Driven Phrase Structure Grammar. University of Chicago Press and
CSLI Publications, 1994.

Ivan A. Sag, Tom Wasow, and Emily M. Bender.Syntactic Theory: A Formal Introduction. CSLI Publications,
second edition, 2003.

Mark Steedman.The Syntactic Process. MIT PRess, 2000.

Akane Yakushiji, Ysuke Miyao, Tomoko Ohta Tomoko, Yuka Tateisi, and Jun’ichi Tsujii. Automatic construc-
tion of predicate-argument structure patterns for biomedical information extraction. InProceedings of the
2006 Conference on Empirical Methods in Natural Language Processing, pages 284–292, Sydney, 2006.

331

	Editor's Note
	Jason Baldridge, Sudipta Chatterjee, Alexis Palmer, and Ben Wing: DotCCG and VisCCG: Wiki and Programming Paradigms for Improved Grammar Engineering with OpenCCG
	Emily M. Bender: Combining Research and Pedagogy in the Development of a Crosslinguistic Grammar Resource
	Daniel G. Bobrow, Bob Cheslow, Cleo Condoravdi, Lauri Karttunen, Tracy Holloway King, Rowan Nairn, Valeria de Paiva, Charlotte Price, and Annie Zaenen: PARC's Bridge and Question Answering System
	António Branco and Francisco Costa: Accommodating Language Variation in Deep Processing
	Elizabeth Owen Bratt, Karl Schultz, and Stanley Peters: Challenges in Interpreting Spoken Miliary Commands and Tutoring Session Responses
	Lucas Champollion, Joshua Tauberer and Maribel Romero: The Penn Lambda Calculator: Pedagogical Software for Natural Language Semantics
	Nikos Chatzichrisafis, Dick Crouch, Tracy Holloway King, Rowan Nairn, Manny Rayner, and Marianne Santaholma: Regression Testing For Grammar-Based Systems
	Ji Fang and Tracy Holloway King: An LFG Chinese Grammar for Machine Use
	Lars Hellan: On `Deep Evaluation' for Individual Computational Grammars and for Cross-Framework Comparison
	Tracy Holloway King and John T. Maxwell III: Overlay Mechanisms for Multi-level Deep Processing Applications
	François Lareau and Leo Wanner: Towards a Generic Multilingual Dependency Grammar for Text Generation
	Montserrat Marimon, Núria Bel, and Natalia Seghezzi: Test-suite Construction for a Spanish Grammar
	Yusuke Miyao, Kenji Sagae, Jun'ichi Tsujii: Towards Framework-Independent Evaluation of Deep Linguistic Parsers
	Stefan Müller: The Grammix CD-ROM A Software Collection for Developing Typed Feature Structure Grammars
	Paula S. Newman: Grammars and Programming Languages: To Further Narrow the Gap
	Nick Pendar: Soft Constraints at Interfaces
	Yukiko Sasaki Alam: A Morpho-Syntactic Analyzer of Controlled Japa-nese
	Tam Wai Lok, Miyao Yusuke, and Tsujii Jun'ichi: Framework Independent Summarized Parser Output in XML and its Example-based Documentation

