
Lekta: A tool for the development of e�cient LFG{based

Machine Translation systems

J. Gabriel Amores

Departamento de Lengua Inglesa

Universidad de Sevilla

e-mail: gaby@�ng.us.es

Jose F. Quesada

Centro Informatico Cienti�co de Andalucia (CICA)

e-mail: josefran@cica.es

1 Introduction

In this paper we describe Lekta, a tool for the development of e�cient LFG{based

Machine Translation systems. The paper is organized as follows:

Part I describes the overall architecture of the tool. Three layers are distin-

guished in order to preserve expressive power without losing e�ciency. The lower

level {the "translation kernel"{ contains the following submodules: lexical database

manager, parser, uni�er, transfer and generator. The intermediate level ("control

and con�guration") is concerned with the compilation of speci�cation languages,

trace, output, statistics and setup. Finally, the top level ("speci�cation languages")

de�nes a set of speci�cation languages for the lexicon and grammar, transfer and

generation rules. The tool is written in C and assumes a classical transfer{based

approach to MT. From a functional point of view, the tool allows the simultan-

eous manipulation of several languages. Con�guration commands establish which

languages are used as source and target.

This section also describes some of the computational strategies used in the

translation kernel. Special attention is devoted to the parser and the uni�er. The

parser is based on a bidirectional, bottom-up and event-driven strategy. We use a

constructive approach to uni�cation. E�ciency is achieved by a special memory or-

ganization model which takes into account the characteristics of the data structures

involved in the translation process. We o�er statistics with arti�cial grammars and

lexicons to show how the tool would behave in a real application context.

Part II describes the speci�cation languages in detail. For each natural lan-

guage involved, we can de�ne an analysis grammar and lexicon, a set of transfer

modules (from source language to a number of target languages) and a generation

grammar and lexicon. The speci�cation of the lexicon allows the use of macros,

lists, disjunction, negation, etc. Grammar rules follow the classical LFG notation.

The functional equations associated with each rule are augmented with a control

language which allows IF-THEN-ELSE constructions, logical, relational and math-

ematical operators, string and lists functions such as MEMBER and CONCAT,

and speci�c functions for the control of f{structure wellformedness (COMPLETE-

NESS and COHERENCE). The transfer module (from source language f{structure

to target language f{structure) allows a uniform de�nition of structural and lexical

transfer rules. Each rule may be associated with conditions and actions. Conditions

are triggered according to the input f{structure and actions involve the manipulation

of the resulting f{structure by means of speci�c functions such as NOTRANSFER,

TRANSFERAS and overwrite. Generation rules (from target f{structure to target

c{structure) assign a c{structure to the input f{structure depending on the attrib-

utes present.

2 Overall Architecture

This section outlines the overall architecture of the system.

2.1 Overall Architecture of the System

Three layers are distinguished in order to preserve expressive power without losing

e�ciency (Fig. 1). The lower level {the "translation kernel"{ contains the follow-

ing submodules: lexical database manager, parser, uni�er, transfer and generator.

The intermediate level ("control and con�guration") is concerned with the compil-

ation of speci�cation languages, trace, output, statistics and setup. Finally, the

top level ("speci�cation languages") de�nes a set of speci�cation languages for the

lexicon and grammar, transfer and generation rules. The tool is written in C and

assumes a classical transfer{based approach to MT. From a functional point of view,

the tool allows the simultaneous manipulation of several languages. Con�guration

commands establish which languages are used as source and target.

2.2 Lexical Analysis

Feature structures may be considered one of the standards of current NLP.

More recently, a number of formalisms have incorporated typed or sorted f{

structures [3]. Among them are TDL [9], ALE [4], CUF [5] and TFS [6], [7].

Formally speaking, sorted feature terms have an expressive power equivalent

to �rst{order terms in Prolog [11]. However, the
exibility and representational

adequacy of feature structures, either typed (HPSG, GPSG) or untyped (DCG,

PATR{II, LFG), make them more suitable for the description of linguistic know-

ledge.

Lexicon Grammar Transfer Generation

Control and Set-Up

Compilation

Control

Outputs

Statistics

Kernels

Specification Languages

GenerationTransfer

Parser

Unifier

Search

in the

Lexicon

Fig.1. Overall Architecture of the System

This has motivated the implementation of tools that translate from feature struc-

tures into Prolog terms[14]. Examples of such systems are CLE [1], ALEP [2] and

ProFIT [8].

Nevertheless, most of the systems and tools mentioned above (whether designed

for the manipulation of Prolog terms, f{structures or typed f{structures) present

some problems of computational e�ciency. They have focussed on aspects related

to the syntax and semantics of the models, paying less attention to the compu-

tational model itself, especially with regard to storage and retrieval. Usually, the

computational model is of little importance if we are developing prototypes with

a reduced number of lexical entries. The scenario changes dramatically when the

goal is the implementation of a real system [16], where the size of the lexicon may

condition the feasibility of the overall system.

In this paper we present a computational model aimed at the e�cient manipu-

lation of large knowledge bases which use f{structures as their theoretical backbone

[12].

2.3 LektaKb: A Novel Approach for the E�cient Storage of Very

Large Knowledge Bases

Within the �eld of knowledge engineering, the problems that arise in NLP as a

result of the growth of the lexical database may be understood as a bottleneck in

the communication between the inference engine (IE) and the knowledge base (KB).

As a starting point, it is usually required that the KB speci�cation module

satis�es a series of properties such as representational adequacy, modularity, high

level of abstraction and expressive power.

These requirements are necessary in order to satisfy criteria of adequacy in the

interface between the system and the expert knowledge engineer. Unfortunately,

it is also the case that those requirements are usually in contradiction with other

properties which would allow an e�cient interface between the IE and the KB.

Both sets of properties do not seem to be compatible with e�cient storage and

use of the KB, where we have to take into account low{level computational issues

pertaining to the physical architecture of the computer, its operating system and

the characteristics of the compiler.

All these problems arise as a consequence of using a \direct" or \
at" model in

the design of the interface between the KB and the IE. Instead, we propose a model

based on a layered architecture.

Knowledge Base

Knowledge Writer

Knowledge Compiler

Knowledge Representation

Physical Devices, Operating Systems, etc

Knowledge Prospector

Seek Receptor

Inference Engine

Level 0

Knowlege Generator

Level 1

Level 2

Level 3

Level 4

Fig.2. A Layered Architecture between KB and IE

In Fig. 2, the Knowledge Writer module de�nes the KB speci�cation language.

Its task is to provide the necessary expressive power. This is achieved through the

use of semantically very powerful constructions which enhance the representational

adequacy.

The Seek Receptor and Knowledge Generator modules serve as query languages.

Their immediate goal is the achievement of inferential adequacy in the knowledge

constructions returned to the IE.

The interface between levels 2 and 3 consists of
at terms. Since their expressive

power is equivalent to that of feature structures [11] they are able to convey the same

type of information as in level 3. However, limitations relative to representational

and inferential adequacy disfavor their use in the interface between levels 3 and 4.

As a result, the Knowledge Writer and Knowledge Generator act as rewrite systems

between complex structures and
at terms and viceversa.

The Knowledge Compiler module is primarily aimed at securing an optimal lo-

gical model of representation. From this model, the Knowledge Prospector will be

able to perform an e�cient use and retrieval of the KB. In sum, level 2, as a whole,

will be in charge of use and storage e�ciency.

Finally, level 1 performs the actual storage and retrieval of the data. The inter-

face between levels 1 and 2 makes use of packets with a very simple format, whose

basic constituents are strings of characters. Level 1 aims at obtaining the best con-

stituents adequacy possible between the logical model in level 2 and the physical

properties of the devices (in level 0) involved in storage and retrieval.

The Knowledge Compiler, Knowledge Representation and Knowledge Pros-pector

modules use two types of techniques in order to achieve usage and storage e�ciency.

The �rst consists of a tetra{dimensional logical organization of the data which adapts

the representational model to access probabilities. The second technique incorpor-

ates a special type of binary tree (improved binary trees with vertical cut).

2.4 Lexical Analysis Performance

In order to test the e�ciency of the lexical component of Lekta (called Vtree [13])

we generated a series of arti�cial lexicons automatically.

The �rst column in the table below indicates the size of the lexicon; the second,

times taken in loading the lexicon (VtUse()); and the remaining columns show

information about the search operation (VtSeek()) for a total of 10,000 searches.

Records

Vtree: Knowledge Prospector

VtUse VtSeek: T

1

VtSeek: T/R

2

VtSeek: R/S

3

1(2

0

) 0.0029 1.245 0.00012 8030

4(2

2

) 0.0029 1.462 0.00014 6840

16(2

4

) 0.0039 1.801 0.00018 5550

64(2

6

) 0.0029 1.896 0.00019 5273

256(2

8

) 0.0039 2.502 0.00025 3996

1024(2

10

) 0.0039 4.992 0.00049 2003

4096(2

12

) 0.0029 6.679 0.00066 1497

16384(2

14

) 0.0029 8.008 0.00080 1249

65536(2

16

) 0.0039 10.889 0.00108 918

262144(2

18

) 0.0019 12.059 0.00120 829

1048576(2

20

) 0.0029 13.166 0.00131 760

Apart from the absolute values of the times obtained in the test, it is interesting

to observe that the performance of the VtUse() function is independent of the

number of records.

A system with a complexity of O(log(N)) would have multiplied the times of the

last database for 20, with respect to the �rst database. On the contrary, we may see

that our results are of the order O(log(log(N))), or more precisely, 2*log(log(N)).

The same tests have been tried leaving all the management to Prolog and then

using Prolog and Vtree concurrently [13].

1

Total time in seconds.

2

Time per record, in seconds.

3

System's performing rate, measured in records compiled per second.

Records

Quintus Prolog Quintus Prolog with Vtree

CT

4

M

5

PT

6

CT (Vtree) M (Prolog) PT

1(2

0

) 0.050 308 0.000 0.050 800 0.007

4(2

2

) 0.034 436 0.000 0.050 800 0.007

16(2

4

) 0.133 1,196 0.001 0.080 800 0.010

64(2

6

) 0.400 4,204 0.002 0.150 800 0.020

256(2

8

) 1.600 15,620 0.005 0.400 800 0.020

1024(2

10

) 6.284 63,076 0.022 1.690 800 0.040

4096(2

12

) 25.284 247,436 0.079 8.140 800 0.053

16384(2

14

) 102.600 1,145,868 0.300 39.960 800 0.047

65536(2

16

) 432.100 4,738,392 1.215 171.760 800 0.063

262144(2

18

) 1,764,783 17,783,352 4.709 803.750 800 0.070

1048576(2

20

) ***

7

*** *** 4,725,207 800 0.080

2.5 Parsing

The e�ciency and robustness of a parser may be said to depend, among others,

on three factors: a) the parsing algorithm itself; b) the mathematical model which

serves as a base for the representation of grammatical relations, and c) the compu-

tational model or data structures which represent the objects to be manipulated by

the parser.

In this section we present original ideas with respect to those three criteria. Our

basic goal is the design of a parsing kernel for real time applications in natural

language processing. Therefore, we propose a complete framework which includes:

�rst, a new parsing technique based on a bottom-up, bidirectional and event-driven

parsing strategy; second, a very well found formal de�nition of a set of predicates

and relations that serve as the mathematical background of the parser; and third, a

speci�c computational model that takes into account the memory organization for

e�cient storage of compiled CFG, as well as the data model used during parsing,

that we have named multi virtual-trees. All these components have been de�ned in

an completely uni�ed model [13].

2.5.1 Bottom-Up Parsing with Top-Down Predictions

Bottom-up parsing enriched with top-down predictions is one of the most common

strategies in the design of parsers for CFG. Bottom-up models have been defended

based on their e�ciency. The additional incorporation of top-down predictions

improves the overall e�ciency of the parser. As a result, we could say that these

parsers are controlled simultaneously by the data (the input string) and the goal

(the grammar).

4

Total compilation time in seconds.

5

Memory needed to store the knowledge base, in bytes.

6

Average time in analysing a string of �ve words.

7

The system used up all memory and could not compile this base.

We present a parser which incorporates both strategies in a novel way. The core

of the bottom-up component is a bidirectional generator of analysis events, whose

strategy is theoretically founded in a chart model. In our case the events will take

on the roles of both active and inactive edges in a chart. Nevertheless, a pure chart

generates during analysis an overhead of edges which reduces the overall e�ciency

of the system. To avoid this, a top-down component will act upon the bottom-up

generator imposing strong restrictions. This will result in the elimination of edges

(events) without any possibility of success.

2.5.2 Mathematical Foundations

The top-down predictor component must be mathematically sound, so that the

elimination of an event must be an unfailing decision. With this goal, we de�ne a

set of relations and predicates in the domain of context free grammars which will

serve as the basis for the de�nition of top-down predictions.

In regards to the mathematical model, we use the speci�cation of a CFG to de�ne

the following predicates and relations: root symbols, epsilon symbols, left and right

partial derivability, left and right primary adjacency, left and right adjacency, left

and right partial self-derivability, left-most symbol and right-most symbol.

Associated with this mathematical model we present a computational organiza-

tion, that we have named Q-memory, which improves the operations involved in the

manipulation of symbols and productions. Specially, this model has been designed

to avoid the operations of string character comparison.

2.5.3 Bidirectional Parsing and the Plane of Analysis

The choice of the mathematical model above is mutually dependent on the parsing

algorithm. Basically, it consists of a bottom-up, bidirectional and event-driven

parser. The events behave as analysis objects which are triggered by coverage tables.

Moreover, there is also a hierarchy of �lters which use the information available from

the "plane of bidirectional analysis" and the tables of derivations and adjacencies

in order to reject multiple events in the �rst stages of analysis.

For deterministic analyses, the parser actually manipulates a "surface of ana-

lysis" which evolves in time, until it becomes the root node in the grammar. For

ambiguous grammars, it is necessary to refer to a "plane of analysis", leading to

the problem of how to de�ne structures computationally e�cient to store so much

information.

2.5.4 Event Driven Parsing and Multi Virtual-Trees

We propose the creation of multi virtual-trees, a novel approach to the notion of

analysis forests, which is based on virtual relations among the components of the

forest and on the separation of tree skeletons from the contents of each node.

The basic goal of our proposal has been to achieve a complete independence

between the nodes which make up a tree or a forest of analyses and the structures

and algorithms manipulated by the parser. This independence has been achieved

by the use of MvtNod (node of a multi virtual-tree) and MvtCaD (collection and

difussion of events in an multi virtual-tree) structures in such a way that when the

analysis �nishes we do not obtain a compact tree but a set of MvtNod's, each of

which knows one or more possibilities of analysis. This motivates the use of the

adjective "virtual" when describing the model. What are actually virtual are the

relations between the MvtNod's, and in turn, these relations are transparent for the

parsing algorithm, which only takes into account the events which depart from or

arrive at each MvtCaD.

The basic idea underlying the parser is that the analysis is an operation internal

to an MvtCaD. As a consequence, we will be able to delete, merge, transfer or run

an event. Each time that an event has been modi�ed the MvtCaD's a�ected will be

marked using some
ags in the MvtCaD structure.

2.5.5 Experimental Results

These ideas have been implemented in C on a medium-size workstation and have

yielded results of between 1000 and 5000 words analyzed per second, for the most

complex grammars found in the specialized literature.

The experimental results have shown a real complexity of the order O(n) depend-

ing on the length of the input string for grammars including recursive constructions

and local and non-local dependencies.

Next, we show the predicted model obtained for each type of grammar. The

dependent variable T is the time used for the complete analysis (in seconds) and

the factor used, W, has been the length of the input string (number of words).

� Recursive Structures

T = �81E � 5 + 0:0003 �W

� Local Dependencies

T = �0:005 + 0:0012 �W

� Non Local Dependencies

T = �0:004 + 0:0009 �W

2.6 Uni�cation

In NLP, uni�cation is usually described as a computational sink. During the last

years, research has concentrated in elucidating the reasons of such a problem. Some

authors have identi�ed processes such as early copying, over copying or redundant

copying. We propose a novel model based on constructive uni�cation, that avoids all

copying problems. The general constructive model can be expanded using di�erent

techniques like strategic uni�cation, sub-structure sharing or post-copy in order to

accomodate to di�erent situations.

The algorithm permits the incorporation of a strategic uni�cation model, using

probabilistic information about previous successes and failures.

The constructive model may be viewed as a family of uni�cation algorithms

based on sub-structure sharing or post-copy techniques [13].

2.7 Generation

Our basic goal was the design and implementation of a robust and e�cient gen-

eration model. The generation component takes as input the f{structure resulting

from transfer and returns as output the corresponding c{structure and the string of

words associated with that tree. Decisions such as target lexical choice and struc-

tural organization were taken during the transfer stage.

From a computational point of view, the generation process may be understood

as a recursive function (GENERATE) in charge of generating the non{terminal

nodes. Terminal nodes are generated by a SYNTHESIS function which is called

when no more substructures are necessary. From the linguistic point of view, we

have to solve at least two problems: �rst, that all the information in the input f{

structure has been consumed and second, the appropriate syntactic label must be

assigned to each attribute in the f{structure.

For each target language in the MT system, we have to de�ne a generation

grammar and a generation lexicon. A speci�cation language has been designed for

this purpose. Each grammar begins with the speci�cation of grammatical functions

(GFs) and atomic attributes susceptible of being synthesised (HGs). Each genera-

tion rule is associated with a pair of lists of attributes obtained from the GF and

HG sets respectively. The generation rule is triggered if and only if the input f{

structure contains those features. Each rule may generate di�erent substructures.

For this purpose, we allow the de�nition of more than one PS rule inside each gener-

ation rule, which are discriminated using WHEN conditions. Following the standard

LFG{notation, each PS rule is associated with a set of functional equations which

call the GENERATE and SYNTHESIS functions.

The SYNTHESIS function takes a triple of syntactic category, semantic root and

list of attributes and returns the corresponding lexical item.

3 Speci�cation Languages

3.1 Analysis and Generation Lexicons: Soft{typed Feature Struc-

tures (STFS)

This section describes the implementation of speci�cation languages intended for

the description of lexical entries in an LFG{like formalism [13].

From the point of view of typi�cation, this language may be placed half{way

between untyped formalisms such as PATR{II or DCG and completely typed ones

such as ALE or TFS.

3.1.1 Shapes and Multiple Inheritance

The basic object used in STFS is that of \shapes". A shape de�nes the structure

of a lexical entry, allowing for the de�nition of both typed and untyped structures.

STFS also permits the de�nition of hierarchies of shapes organized as a partial order,

including the standard mechanisms of multiple inheritance [15]. Following we show

the syntax of the de�nition of shapes for a verbal entry in the lexicon.

DefShapes

Lex (LU)

% Auxiliary Shapes

AGR (agr:(gen,num,per))

% English verbs

Everb (CAT:v,LU,MOR,pred,ggf,vtype,aktion,tense,

asp:(fut,cond,part,prog,nec),

num,form,

subj:(role,form,semfeat,@AGR),

obj:(role,form,semfeat,@AGR),

{\dots}

vcomp:(role))

3.1.2 Transformational Rules

A shape may have a number of transformational rules associated with it. The

application of these rules to lexical entries which match the condition will generate

new lexical entries. This is interesting in the case of LFG, since it allows us to de�ne

morphological rules and lexical redundancy rules using the same format.

A transformational rule consists of a pattern to be matched and a set of target

structures. The pattern �lters out the entries to which the rule may be applied and

the target structures specify the \e�ect" of the rule. These consist of a series of new

shapes in whose de�nition we may use values from the original entry and a language

for the manipulation of lexical information.

Below we give examples of transformational rules for the generation of {ing

forms and examples of a lexical redundancy rule of \intransitivization". This rule

generates an intransitive verb entry from a transitive verb which allows optional

deletion of its object.

% ING RULES

% default, add ``ing''

% look -> looking

TRulePattern (MOR:[EING1])

TRuleTargets {

(MOR:extract(base->MOR:,[EING1]))

(LU:strcat(base->pred:,ing),

asp:(part:pres),num:sing|plur,MOR:null()) }

%

% look up -> looking up

TRulePattern (MOR:[EING1c])

TRuleTargets {

(MOR:extract(base->MOR:,[EING1c]))

(LU:strcat(base->pred:[1],ing," ",base->pred:[2+]),

asp:(part:pres),num:sing|plur,MOR:null()) }

%

% stop -> stopping

TRulePattern (MOR:[EING2])

TRuleTargets {

(MOR:extract(base->MOR:,[EING2]))

(LU:strcat(base->pred:,strlast(base->pred:,1),ing),

asp:(part:pres),num:sing|plur,MOR:null()) }

%

% solve -> solving

TRulePattern (MOR:[EING3])

TRuleTargets {

(MOR:extract(base->MOR:,[EING3]))

(LU:strtail(base->pred:,1,ing),

asp:(part:pres),num:sing|plur,MOR:null()) }

%

% LEXICAL-REDUNDANCY RULES

TRulePattern (vtype:[opt_obj])

TRuleTargets {

(vtype:extract(base->vtype:,[opt_obj]))

(vtype:extract(base->vtype:,[opt_obj]),ggf:[subj,0],obj:null()) }

3.1.3 Meta{Relations

Meta{relations are a special type of transformational rule whose goal is the asso-

ciation of a shape with another virtual shape (a meta{shape) from which we have

access to the �rst. In the case of NLP we could create a meta{shape called \lex",

which plays the role of a target of the meta{relations of other shapes. E�ectively, a

query on \lex" will result in a query about any of the shapes associated with it. A

direct e�ect of this strategy is a transparent and compact solution to the problem

of lexical ambiguity in NLP. An example is given below. In this case every Everb

will be \meta{relationed" with Lex.

DefMetas

MetaPattern Everb ()

MetaTarget Lex (LU:base->LU:)

3.1.4 Macros and Input Forms

The speci�cation language permits the use of macros, whose behavior is similar to

templates in PATR{II, ProFIT, etc.

<MPl> = (agr:(gen:masc,num:plural))

In the de�nition of large lexicons it is frequent that many lexical entries vary

minimally with respect to each other, sharing many common features. The language

permits the de�nition of Input Forms to ease the lexicographer's job. For example,

we could de�ne di�erent input forms using Levin verb classes [10]. Following is an

example:

DefIForms

levin_if (pred,MOR,vtype)

Everb (pred:base->pred,MOR:base->MOR,

vtype:base->vtype)

3.1.5 Basic Entries

Basic lexical entries are associated with shapes. For the de�nition of an entry, we

may take advantage of macros, incorporating multiple inheritance mechanisms.

An entry may also be written making use of Input Forms, to which the corres-

ponding generation models will be applied.

ActIForm levin_if

(bake, [EING3,EED2], [opt_obj])

(chop, [EING2,EED4], [opt_obj])

Once we have de�ned the entry (either directly or through an input form), trans-

formational rules and meta{relations previously de�ned will be applied. The result

obtained will constitute the knowledge base.

3.2 Analysis Grammar

Grammar rules follow the classical LFG notation. The functional equations associ-

ated with each rule are augmented with a control language which allows IF-THEN-

ELSE constructions, logical, relational and mathematical operators, string and lists

functions such as MEMBER and CONCAT, and speci�c functions for the control

of f{structure wellformedness (COMPLETENESS and COHERENCE).

Any analysis grammar must contain at least the following items:

Fig.3. Main Components of Analysis Grammars

3.3 Transfer

The transfer module (from source language f{structure to target language f{structure)

allows a uniform de�nition of structural and lexical transfer rules. Each rule may be

associated with conditions and actions. Conditions are triggered according to the in-

put f{structure and actions involve the manipulation of the resulting f{structure by

means of speci�c functions such as NOTRANSFER, TRANSFERAS and overwrite

(=c).

Fig.4. Sample Transfer

3.4 Generation

Generation rules (from target f{structure to target c{structure) assign a c{structure

to the input f{structure depending on the attributes present.

Fig.5. Sample Generation Grammar

References

[1] Alshawi, H. ed. 1991. The Core Language Engine. MIT Press.

[2] Alshawi, H., Arnold, D. J., Backofen, R., Carter, D. M., Lindop, J., Netter,

K., Tsujii, J. and Uszkoreit, H. 1991. Eurotra 6/1: Rule formalism and vir-

tual machine design study { Final report. Technical report, SRI International,

Cambridge.

[3] Carpenter, B. 1992. The logic of typed feature structures. Cambridge Tracts in

Theoretical Computer Science. Cambridge: Cambridge University Press.

[4] Carpenter, B. and Penn, G. 1994. ALE. The Attribute Logic Engine Version

2.0.1. User's Guide. University of Pittsburgh.

[5] D�orre, J. and Dorna, M. 1993. CUF { A formalism for linguistic knowledge rep-

resentation. In D�orre, J. ed. Computational Aspects of Constraint{Based Lin-

guistic Description. Deliverable R1.2.A. DYANA{2. ESPRIT Basic Research

Project 6852.

[6] Emele, M. and Zajac, R. 1990. Typed uni�cation grammars. Proceedings of

the 13th International Conference on Computational Linguistics, COLING{90.

Helsinki.

[7] Emele, M. 1994. TFS { The Typed Feature Structure Representation Formal-

ism. Proceedings of the International Workshop on Sharable Natural Language

Resources. Ikoma, Nara, Japan: Nara Institute of Science and Technology.

[8] Erbach, G. 1995. ProFIT: Prolog with Features, Inheritance and Templates.

CMP{LG e{print archive: cmp{lg/9502003

[9] Krieger, H. and Sch�afer, U. 1994. TDL{a type description language for

constraint{based grammars. Proceedings of the 15th International Conference

on Computational Linguistics, COLING{94, Kyoto, Japan.

[10] Levin, B. 1993. Verb classes and alternations. A Preliminary Study. Chicago:

The University of Chicago Press.

[11] Mellish, C. S. 1992. Term{encodable descriptions spaces. In Brough, D. R. ed.

Logic Programming: New Frontiers. Oxford: Intellect. 189{207.

[12] Quesada, J.F. & G. Amores 1995. A Computational Model for the E�cient Re-

trieval of Very Large Structure-Based Knowledge Bases. Proceedings of KRUSE

Symposium University of California at Santa Cruz.

[13] Quesada, J.F. & J.G. Amores (forthcoming 1996). C for Natural Language

Processing. Studies in Computational Linguistics. London: UCL Press.

[14] Sch�oter, A. P. 1993. Compiling feature structures into terms: A case study in

Prolog. Technical Report RP{55, University of Edinburgh, Centre for Cognitive

Science.

[15] Smolka, G., and A��t{Kaci, H. 1990. Inheritance Hierarchies: Semantics and

Uni�cation. In Kirchner, C. ed. Uni�cation. San Diego, California: Academic

Press Inc.

[16] Wah, B. W. ed. 1994. Report on Workshop on High Performance Comput-

ing and Communications for Grand Challenge Applications: Computer Vis-

ion, Speech and Natural Language Processing, and Arti�cial Intelligence. IEEE

Transactions on Knowledge and Data Engineering, 5 (1), Feb. 1994.

