
Context Change and Underspeci�cation in Glue Language

Semantics

�

Dick Crouch

Speech Research Unit,

DRA Malvern, UK

crouch@signal.dra.hmg.gb

Josef van Genabith

School of Computer Applications

Dublin City University, Eire

Josef.Van.Genabith@CompApp.DCU.IE

August 1996

1 Introduction

Context Update

The interpretation of a natural language utterance typically both depends on the context of

utterance, and has the e�ect of updating that context. A common response to this context-

sensitivity has been to view the meaning of a sentence as an update function on contexts. The

meaning can be derived in a strictly compositional way on the basis of the syntactic structure

of the sentence. But depending on the context to which the update function is applied, the

truth-conditional signi�cance of the sentence may vary.

This paper is a preliminary exploration of an alternative way of approaching context up-

date. Instead of composing the meaning of a sentence out of its parts in a context-independent

way, and having the meaning update context, the composition itself draws on and updates

context. The result is a context-independent meaning that represents the truth-conditional

import of the sentence as uttered in its particular context.

We start with the use by Mary Dalrymple and others [Dalrymple et al 1993a, 1993b, 1995a,

1995b] of a fragment of linear logic as a `glue language' for piecing together the meanings of

individual words and constituents within a deductive setting. In computer science, linear

logic has come to be seen as a useful tool for modelling update and change. It is therefore

natural to wonder whether linear logic can be used to model contextual update. As we will

shortly see, Dalrymple et al's glue language treatment already models the update of meaning

assignments to constituents. We intend to use basically the same mechanism to additionally

update context assignments, and provide and E-type analysis of certain anaphors.

Underspeci�cation

Another common, though to some extent orthogonal, reaction to the context-sensitivity of

natural language interpretation has been a concern with underspeci�cation. In the absence

of context, sentences (e.g. like They won) can be highly ambiguous. It is computationally

infeasible to generate all possible interpretations and use context purely as a �lter to weed

�

This is a shortened working draft of a longer paper in preparation. Comments are welcome

1



out the implausible ones. The aim has instead been to produce semantic representations (on

the basis of syntactic structure) that leave contextual factors unspeci�ed, though capable of

further speci�cation.

An increasingly favoured approach to underspeci�cation (e.g. [Crouch 1995, Bos 1995]

introduces an extra layer of indirection. On the basis of syntactic structure, sentences are

translated into representations that describe a set of possible meanings, or ways of construct-

ing meanings. This description can then be further re�ned to take account of context.

This view of underspeci�cation sits quite happily with the use of glue languages. Syntactic

analysis results in a set of meaning constructors expressed in the glue language. These are

used as premises to a proof whose conclusion must be a single assignment of a meaning to

the sentence as a whole. In the case of sentences involving quanti�ers, several di�erent proofs

resulting in distinct meaning assignments may be possible. In this sense, the glue language

premises can be seen as describing a set of ways in which the meaning of the sentence can

be constructed. What the glue language account so far lacks is (a) a way of re�ning these

descriptions, and (b) a way of accounting for the contribution of context to the meaning

derived.

Two Hypotheses

We can sum up the preceding discussion by means of the following two hypotheses about

contextual-sensitivity:

1. Syntactic structure (and lexical semantics) alone is not su�cient to determine the mean-

ing of a sentence.

(a) Strict compositionality (homomorphism from syntax to meaning) therefore fails.

(b) But we can preserve a form of compositionality:

The meaning of the whole depends (i) on the meaning of the parts and (ii) on the

way in which they are combined

(c) Syntax and lexical semantics does not always fully specify the meaning of the parts

(e.g. pronouns), or the way they are combined (e.g. scope ambiguities).

(d) Context also contributes to the composition of meaning, and �lls in the gaps left

by syntax

2. Semantic composition updates context, in addition to depending on the contribution

from context.

2 Meaning Update

Linear logic is a resource conscious logic. Unlike material implication (!), linear implication

( �� ) does not support inferences of the form

A
 (A �� B) ` A
B

(where 
 is linear multiplicative conjunction). Both the A and the A �� B get used up in

inferring B, so that there is no A left to conjoin with the inferred B.

2



This can be used to model update as follows. Suppose the; is an (uninterpreted) symbol

associating constituents with their meanings. Thus

� ; sleep(john)

associates the meaning `John slept' with a constituent �. Suppose, for the sake of argument,

the we have a sentential modi�er whose meaning constructor is

8�: � ; � �� � ; probably(�)

This can be used to update the meaning assigned to � through the application of modus

ponens

� ; probably(sleep(john))

However, in applying the rule of modus ponens, both the original meaning assignment to �

and the meaning constructor of the modi�er are consumed. Consequently, we can't conclude

that both � ; sleep(john) and � ; probably(sleep(john)). The original meaning of � has

been updated, and is no longer available.

2.1 Scope Ambiguities

As a fuller introduction to glue language semantics, we will describe the treatment of the

scope ambiguity in the sentence

Every candidate appointed a manager.

as presented in [Dalrymple et al. 1995b].

Glue language premises (meaning constructors) are associated with nodes in a semantic

projection of the f-structure for the sentence. For ease of exposition, we have given the nodes

mnemonic names, though no signi�cance attaches to the names.

� s: the projection of the verb appoint, the verb phrase and the sentence as a whole

� subj: the projection of the subject noun phrase every candidate

� subj.var: the projection of the subject determiner, every

� subj.restr: the projection of the subject noun, candidate

� obj: the projection of the object noun phrase a manager

� obj.var: the projection of the object determiner, a

� obj.restr: the projection of the object noun, manager

Lexical meaning constructors derived from the semantic projection are (recall that in building

the projection, variables over nodes in the general lexical entries will have been instantiated

to refer to speci�c nodes in the projection)

� appoint:

8X;Y: (subj; X 
 obj; Y ) �� s; appoint(X;Y )

� every:

3



8scope;R;S: (8x:subj.var; x �� subj.restr; R(x))


 (8x:subj; x �� scope; S(x))

�� scope; every(R;S)

� a:

8scope;R;S: (8x:obj.var; x �� obj.restr; R(x))


 (8x:obj; x �� scope; S(x))

�� scope; a(R;S)

� candidate:

8X: subj.var; X �� subj.restr; candidate(X)

� manager:

8X: obj.var; X �� obj.restr; manager(X)

In these meaning constructors, the variable scope ranges over nodes in the semantic projection,

upper case X;Y;R; S are higher-order variables ranging over meanings, and the lower case x

is a �rst order variable.

The meaning constructors serve as premises to a proof, the aim of which is to derive a

single expression of the form s ; M , where M is a possible meaning for the sentence s. In

order to arrive a single meaning assignment as the conclusion, it is necessary to use up all the

premises to the proof, for otherwise we would be left with a conjunctive conclusion.

As we will see, in this case the premises allow two conclusions of this form to be derived:

s; every(candidate; �v:a(manager; �u:appoint(v; u)))

and

s; a(manager; �u:every(candidate; �v:appoint(v; u)))

There might seem to be an air of lurking inconsistency here, in that we have shown that

two incompatible meanings can be the meaning of s. But this is not so. Just because we

can prove that s ; M

1

and also that s ; M

2

, for incompatible meanings M

1

and M

2

,

the resource consumption of the linear logic glue language does not permit us to conclude

s;M

1


s;M

2

. In establishing one meaning for s we use up premises, so that these cannot

be reused in the middle of the same proof to derive an alternative, incompatible meanings for

some of the nodes.

How do these proofs proceed? We start o� with a (multiplicative) conjunction of the

premises, thus ensuring that each premise can only be used once. Rules of inference used

include modus ponens and universal instantiation. The currying equivalence between (A 


B) �� C, A �� (B �� C) and B �� (A �� C) is also employed.

Both proofs contain the same steps to combine subject and object determiners and nouns.

Taking every and candidate, note that with a universal instantiation taking R to candidate,

and renaming X as x, the noun constructor can identi�ed with the �rst conjunct in the

determiners antecedent. We can thus combine them using the currying equivalence and

applying modus ponens (similarly for the object noun phrase) to form:

� every-candidate:

8scope; S: (8x: subj; x �� scope; S(x)) �� scope; every(candidate; S)

4



� a-manager:

8scope; S: (8x: obj; x �� scope; S(x)) �� scope; a(manager; S)

In forming these constructors, the original premises are consumed.

The proofs diverge when it comes to combining the noun phrases with the verb. We can

consume the verb meaning in one of two ways by currying, to get either of:

� appoint1:

8X: subj; X �� (8Y: obj; Y �� s; appoint(X;Y ))

� appoint2:

8Y: obj; Y �� (8X: subj; X �� s; appoint(X;Y ))

We can then combine appoint1 with a-manager by instantiating universal variables as

follows

scope 7! s, S 7! �v:appoint(X; v)

and identifying x with Y This instantiates a-manager to

� a-manager1:

(8Y: obj; Y �� s; appoint(X;Y )) �� s; a(manager; �v:appoint(X; v))

which can then be combined with appoint1 through transitivity of implication to give:

� appoint1-a-manager:

8X: subj; X �� s; a(manager; �v:appoint(X; v)

This can then be combined with every-manager via the substitutions

scope 7! s, S 7! �u:a(manager; �v:appoint(u; v))

and identifying x with X, to give

� every-candidate-appointed-a-manager:

s; every(candidate; �v:a(manager; �u:appoint(v; u)))

The alternative proceeds by combining every-candidate with appoint2 (using the sub-

stitutions scope 7! s, S 7! �u:appoint(u; Y ) and identifying x with X) to get

� every-candidate-appointed2:

8Y: obj; Y �� s; every(candidate; �u:appoint(u; Y ))

which can then be combined with a-manager to give the alternative scoping, using the

substitutions scope 7! s, S 7! �v:every(candidate; �u:appoint(u; v)).

The two scopings are the only meanings for s that can be derived from the lexical premises.

5



3 Context Update

We will now introduce a context assignment, ,!, analogous to the meaning assignment ;.

Nodes in semantic projections are assigned both a meaning and a contextual contribution.

The meanings and/or contextual contributions of some nodes may depend on the meanings

and/or contextual contributions of other nodes; and the meaning/context constructors may

also update these assignments by means of the linear implication, �� .

The main di�erence brought about by introducing context assignments in addition to

meaning assignments is in the desired result of glue language derivations. Previously, we

needed to establish conclusions of the form

� ` s;M

where � was the entire set of lexical premises, and a single meaning assignment occurred on

the right hand side. Now, however, the desired result is

�;� ` s;M 
 �

0


 : : : 
 �

i

Here, � is a set of lexical premises as before. � is a set of context assignments, and �

0

: : : �

i

is a set of possibly updated context assignments.

An important feature of context assignments that needs to be captured is that, unlike

meaning assignments, they do not need to be used exactly once. They may not be used at all

(e.g. an NP that is never referred back to by an anaphor), or they may be used repeatedly.

However, when contextual contributions are used repeatedly, each re-use is liable to update

the contextual contribution made. It is for this reason that it is inappropriate to make use

of linear logic's `of course' modality, !, to allow zero or repeated use of context assignments.

Use of the modality would undo the e�ects of any update. Instead we modify the form of the

desired results of glue language derivations to allow any number of context assignments to

occur on the right hand side of the turnstile. These output context assignment may either be

passed on directly from the input assignments in �, or may be updated versions of assignments

in �, or context assignments to entirely new constituents. The output assignments �

0

; : : : ; �

i

will form the input assignments � for the next sentence to be interpreted.

3.1 A Simpli�ed Illustration

The use of context assignments can be best illustrated by looking at the simple mini-discourse

A man walked. He whistled.

for which we will give an E-type analysis of the pronoun.

Taking the �rst sentence, A man walked, we have the following lexical constructors

� a:

8scope; R; S: 8x:subj1.var; x �� subj1.restr; R(x))


8x:subj1; x �� (scope; S(x)
 subj1 ,! �y:y = x)

�� scope; a(R;S)
 subj1 ,! �y:R(y) ^ S(y)

� man:

8X: subj1.var; X �� subj1.restr; man(X)

6



� walked:

8X;Y: subj1; X �� (s1; walk(X) 
 subj1 ,! �y:y = X)

Starting with a null context, we can combine these constructor to show that

a, man, walked `

s1; a(man,walk) 
 subj1 ,! �y:man(y) ^ walk(y)

In other words, as well as building the meaning of the s node, we have also constructed a

contextual assignment for the subject noun phrase, subj, which associates it with the property

of being a man that walked.

For the second sentence, He whistled, we have the constructors

� he:

8scope; R; S: 8x:subj2; x �� (scope; S(x)
 subj2 ,! �y:y = x)

�� subj1 ,! P

�� scope; exists(P; S)


subj2 ,! �y:P (y) ^ S(y)


8Q: subj2 ,! Q �� (subj ,! Q
 subj1 ,! Q)

� whistled:

8X;Y: subj2; X �� (s2; whistle(X) 
 subj2 ,! �y:y = X)

Here we have assumed some process of anaphoric linking in building up the semantic projec-

tion, the links the pronoun subj2 to the antecedent contextual contribution of subj1. The

pronoun existentially quanti�es over the property associated with its antecedent.

These constructors can be put together, along with the context assignment for the �rst

sentence to show that

he, whistled, subj1 ,! �y:man(y) ^ walk(y), `

s2; exists(�x:man(x) ^ walk(x); �x:whistle(x))


subj1 ,! �y:man(y) ^ walk(y) ^ whistle(y)


subj2 ,! �y:man(y) ^ walk(y) ^ whistle(y)

Notice how the context assignment to the antecedent NP has been updated in addition to

producing a new assignment for the pronoun. The meaning derived for the second sentence

entails that derived for the �rst sentence, and is truth-conditionally equivalent to a DPL like

meaning for the entire discourse,

9x:(man(x) ^ walk(x)) ^ whistle(x)

As suggested in the introduction, a glue language treatment of context update di�ers from

dynamic approaches to semantics in its location of update. Dynamic and update semantics

treats the meanings resulting from semantic composition as update functions on context.

But in the example above, it is the (glue language) composition itself that brings about the

update.

7



3.2 Interactions with Scope

The simpli�ed illustration of context update above unfortunately does not readily extend

to handling interactions of context with scope.

1

To see how context assignments need to be

revised to handle scope, we will reconsider the sentence Every candidate appointed a manager.

� appoint:

8X: subj; X �� subj; X 
 subj ,! �x:x = X


8Y: obj; Y �� obj; Y 
 obj ,! �y:y = Y


8X;Y: (subj; X 
 obj; Y ) ��

s; appoint(X;Y )


(8P;Q: (subj ,! P 
 obj ,! Q) �� s ,! 9x; y:P (x) ^Q(y) ^ appoint(x; y))


>

� every candidate:

8scope; S; S

0

;�;�:

(8x; P: subj; x ��

scope; S(x)
 subj ,! P (x)


subj ,! P (x) �� (� �� scope ,! S

0

(x))


�)

�� (scope; every(candidate; S)


� �� (�
 subj ,! �x:candidate(x) ^ S

0

(x))


� �� scope ,! every(candidate; S

0

)


�)

� a manager:

8scope; S; S

0

;�;�:

(8x; P: obj; x ��

scope; S(x)
 obj ,! P (x)


obj ,! P (x) �� (� �� scope ,! S

0

(x))


�)

�� (scope; a(manager; S)


� �� (�
 obj ,! �x:manager(x) ^ S

0

(x))


� �� scope ,! a(manager; S

0

)


�)

The meaning constructor for appoint sets up two initial conditional context assignments for

the subject and object noun phrases (the property denoting the same thing as whatever the

noun phrases do). Dependent on the meaning of the subject and object, it also sets up a

meaning assignment for the s node, and a contextual assignment to s which is dependent on

whatever contextual properties are assigned to the subject and object NPs. > is a vacuously

true proposition, present solely for irritating technical reasons.

The meaning constructor for every candidate is a conditional that updates (a) the

meaning assignment to the NP's scope, (b) the contextual assignment of the NP, and (c)

the conditional context assignment to the scope. The variables � and � range over glue

language propositions. � corresponds to the contextual assignments on which the context

1

A more brutal way of putting this is that it can only cope with simple sentences built using intransitive

verbs!

8



assignment to the scope depends (excluding the assignment to the NP itself). � ranges over

all other contextual assignments that may have been built up, and these are transferred to the

consequent of the conditional without update. The constructor for a manager is analogous.

We can rearrange the meaning constructor for appoint to get

� appoint1:

8X: subj; X �� subj; X 
 subj ,! �x:x = X


8X: subj; X ��

8Y: obj; Y ��

obj ,! �x:y = Y


s; appoint(X;Y )


obj ,! �y:y = Y �� (subj ,! P �� s ,! 9xy: P (X) ^ y = Y ^ appoint(x; y))


>

The second and third conjuncts of appoint have the form A �� (A 
 B) and A 
 C �� D,

from which we can derive C �� (A �� B 
 C), where A is obj; Y , B is obj ,! �y:y = Y , C

is subj; X, and D is the consequent of the third conditional.

This matches the antecedent of a manager (� instantiated to subj ,! P , and � to >).

Consequently, we can apply modus ponens to get

� appoint a manager:

8X: subj; X �� subj; X 
 subj ,! �x:x = X


8X: subj; X ��

s; a(manager; �v:appoint(X; v)


8P: subj ,! P ��

subj ,! P 
 obj ,! �y:manager (y) ^ 9x

0

; y

0

:P (x

0

) ^ y

0

= y ^ appoint(x

0

; y

0

)


8P: subj ,! P �� s ,! a(manager; �y:9x

0

; y

0

:P (x

0

) ^ y

0

= y ^ appoint(x

0

; y

0

))


>

By a similar process, this can be combined with every candidate to give

� every candidate appoint a manager:

s; every(candidate; �u:a(manager; �v:appoint(u; v)


8P: subj ,! P ��

subj ,! P 
 obj ,! �y:manager (y) ^ 9x

0

; y

0

:P (x

0

) ^ y

0

= y ^ appoint(x

0

; y

0

)


s ,! every(candidate; �x:a(manager; �y:9x

0

; y

0

:x

0

= x ^ y

0

= y ^ appoint(x

0

; y

0

)))


subj ,! �x:candidate(x) ^ a(manager; �y:9x

0

; y

0

:x

0

= x ^ y

0

= y ^ appoint(x

0

; y

0

))


>

The context assignments resulting from this derivation have a conditional form, so that

the context assignments to narrow scope quanti�ers depend on the assignment to wider scope

quanti�ers.

3.2.1 Bound Variable Anaphora

Giving pronouns a meaning constructor of the general form

� pro:

8scope; S; S

0

;�;�:

(8x; P: pro; x ��

9



scope; S(x)
 pro ,! P (x)


pro ,! P (x) �� (� �� scope ,! S

0

(x))


�)

�� 8Q:ante ,! Q

�� (scope; every(candidate; S)


� �� (�
 pro ,! �x:candidate(x) ^ S

0

(x))


� �� scope ,! every(candidate; S

0

)


8P: pro ,! P �� (pro ,! P 
 ante ,! P )


�)

we now sketch how bound variable anaphora can be treated. Scoping the pronoun with the

antecedent having wide scope will give rise to (shown heavily abbreviated):

� pro scope

8X: ante; X �� ante; X 
 ante ,! �x:x = X


8X;P: ante; X 
 ante ,! P ��

scope; exists(P; : : :)
 : : :

The two conjuncts can be combined to instantiate P to �x:x = X and replace the consequent

of the �rst conditional with that of the second to get

� pro scope1

8X: ante; X �� scope; exists(�x:x = X; : : :) otimes : : :

At this point, the antecedent can be scoped, binding the variable X introduced by the pro-

nouns antecedent.

If we attempt to give the antecedent narrow scope with respect to the pronoun, scoping

the pronoun leads to a conclusion of the form

� pro ante scope

8P: ante ,! P ��

scope; quant(R;�x:exists(P; ::x::))


8Q: pro ,! Q �� (pro ,! Q
 ante ,! :::)


pro ,! ::::

But there is nothing else present to match the antecedent of this conditional (we cannot

use the assignment derivable from the consequent, since this depends on the antecedent).

Consequently, this scope order does not lead to a derivation giving a conclusion of the correct

form.

3.2.2 Donkey Anaphora

For every farmer who owns a donkey beats it (where `every farmer takes wide scope), the

contextual property picked up by the anaphor will depend on the contextual assignment to

the noun phrase every farmer who owns a donkey. Until this NP is given scope, its contextual

property is �x:x = X, where X will get bound once the NP is scoped. Thus we derive a

meaning

every(�x. farmer(x) ^ a(donkey, �y. owns(x,y)),

�x. exists(�y. donkey(y) ^ 9x1,y1. x1=x ^ y1=y ^ own(x',y'),

�y. beat(x,y)))

10



This is a weak reading of the donkey sentence. The more familiar strong reading can be

obtained by using a universal quanti�er to bind the antecedent's contextual property. The

choice of pronominal quanti�ers is beyond the scope of this paper.

4 Underspeci�cation

So far we have sketched how context may contribute to and be updated by semantic compo-

sition, which are represented as glue language derivations. We now turn to integrating this

with a view of underspeci�cation based on the idea that we have semantic compositions where

either (a) the meanings of certain constituents are not fully speci�ed, or (b) the way in which

they are combined is not fully speci�ed. In glue language terms, this amounts to (a) having

a choice about which contextual assignments to make use of in a derivation, and (b) a choice

about the order in which certain steps in the derivation are carried out.

4.1 Scope Speci�cation

To begin with we will con�ne our attention to underspeci�cation of type (b), as exempli�ed

by scope ambiguity. The two derivations in section 2.1 that lead to di�erent scopings di�er as

to the order in which the subject and object noun phrase meanings are consumed. If we had

some way of further specifying this ordering, we would have a way of further constraining the

derivations permitted, and thus a way of specifying scope.

It might be though that a simple ordering on premise usage would be su�cient to constrain

scope, but for various reasons this turns out not to be the case. But an ordering over the

nodes in the semantic projection su�ces.

Each node is a `channel' controlling how certain semantic elements combine to form mean-

ings, and where each channel term of the form Channel ; Meaning acts as either a consumer

or producer on the speci�ed channel [Dalrymple et al. 1993a]. A successful glue language

derivation is one that matches up consumers and producers on all channels, except for one

remaining producer on the channel corresponding to the sentence as a whole. The lexical

meaning constructors ensure that there are normally only a few orderings of production and

consumption on the various channels that meet the requirements. By imposing further or-

dering constraints on the nodes, one can monotonically eliminate possible derivations.

Scoping a noun phrase matches a consumer with a producer on the NP channel. In

terms of the derivations sketched in section 2.1, this means that the channel term for the NP

disappears from the rest of the derivation. By constraining the order in which NP channel

terms disappear, both relative to each other and to those for other nodes, we constrain the

range of derivations.

The reader can check that in the derivations in section 2.1, the order of disappearance of

channel terms is

� Wide scope subject NP:

s � subj � obj

� Wide scope object NP:

s � obj � subj

11



The scope of NPs relative to one another is given directly by the node ordering: if subj � obj

then subj has wide scope over obj. The ordering between NP nodes and the nodes of their

immediate scopes is super�cially the reverse of what one might expect. If a node s is the

immediate scope of an NP np, then the ordering is s � np. That is, the s node still remains

an active channel after the NP is scoped. But for any other prospective scope node, scp, if

np � scp this means that the meaning of scp is consumed within the primary scope of np, so

that np has scope over scp (see [Crouch & Genabith 1996] for examples of this).

4.2 Formal Properties

To show that node orderings really do what we claim above, we need a more precise formu-

lation of glue language derivations, and to establish certain properties of the ordering.

4.2.1 Derivations and Node Orders

Assume sequent style natural deduction rules for the linear logic glue language (derived from

[Troelstra 1992])


I

� ` A � ` B

�;� ` A
B


E

� ` A
B �; A;B ` C

�;� ` C

�� I

�; A ` B

� ` A �� B

�� E

� ` A �� B � ` A

�;� ` B

8I

� ` A[x=y]

� ` 8x A

8E

� ` 8x A

� ` A[x=t]

�

1

� ` A

0

A

0

!

�

A

� ` A

�

2

� ` A A

0

!

�

A

� ` A

0

Axiom

A ` A

where!

�

indicates �-reducibility. The standard side condition applies to universal introduc-

tion: y does not occur free in �.

A derivation is a tree-like structure of sequents, whose leaves are instances of the axiom

sequent A ` A. (In glue language derivations, there will be one leaf for each lexical premise).

Each sequent in the tree must be derivable from those immediately preceding it via one of

the above rules of inference. Represent derivations D as triples hS;>

S

; $i where S is the set

of points in the tree, >

S

is a transitive, asymmetric ordering over them, and $ is a function

mapping the points onto their corresponding sequents.

Sequents within a glue language derivation will contain literals (channel terms) of the form

Channel ; Meaning, where Channel is a constant referring to some node in the semantic

projection. A channel or node is active at a certain point s in a derivation if a literal referring

to that channel occurs both on the left and the right hand side of s's sequent:

12



De�nition 1 (Active Channel/Node) A channel c is active at point s in a derivation i�

a) $(s) = � ` �,

b) A literal of the form c;M

1

is a subexpression of �, and

c) A (possibly di�erent) literal of the form c;M

2

is a subexpression of �

(In the more informal derivations illustrated previously, a channel being active amounts to

it not yet having disappeared from the derivation. In the sequent style derivations assumed

here, channels that cease to be active may still be referred to in the left hand side of a sequent,

�, but not in the right hand side).

Given the ordering >

S

over points in a derivation, and the de�nition of an active channel

/ node, we can now de�ne an ordering over nodes

De�nition 2 (A � B) A node A remains active in a derivation D after a node B, A � B,

i�

a) There is some point s in D at which A is active,

b) For all points s

0

>

S

s, B is not active at s

0

, and

c) There is some point s

00

s.t. s >

S

s

00

at which B is active.

4.2.2 Properties of the Ordering

We need to show that (i) only scoping an NP moves all the NP's channel terms to the left

hand side of the sequent, and (ii) no subsequent derivation steps can move a channel term

back to the right hand side. For (ii) we con�ne our attention to normalized derivations (in

the proof theoretic sense), since a detour | an introduction step immediately followed by an

elimination step | can always vacuously reintroduce and then eliminate a channel term.

Point (i) follows from the fact that there must be no outstanding dependencies on an NP

when it is scoped (as detailed in [Dalrymple et al. 1995b]) and inspection of the canonical

form of the �nal �� -elimination step involved in scoping:

�

1

` (8x:np; x �� scp; S(x)) �� scp; Q(R;S) �

2

` 8x:np; x �� scp; S(x)

�

1

;�

2

` scp; Q(R;S)

Also, given that (a) a single determiner premise introduces a producer on the NP channel,

(b) a single premise (corresponding to the lexical head of the constituent subcategorizing for

the NP) introduces a consumer on the NP channel, and (c) any other premises dependent on

the NP meaning (e.g. anaphors) are both consumers and producers (i.e. have NP channel

terms in both the antecedent and consequent of an implication), it follows that only scoping

moves all channel terms for an NP to the left-hand side of a sequent.

For point (ii) note that only three rules can add channel terms to the right hand side of a

sequent: the axiom A ` A, �� -introduction, and 8-elimination (universal instantiation). All

the other rules either leave things unchanged, or move channel terms from the right hand to

the left hand sides of sequents.

If A ` A is used to reintroduce an NP channel term, there needs to be some active

consumer on that channel still present. Otherwise it will not be possible to eliminate the

channel term again, as demanded by the �nal conclusion of the derivation, which must be

a single channel term for the sentence. But (see [Dalrymple et al. 1995b]) when the NP is

scoped there must be no outstanding consumers.

13



Universal instantiation can reintroduce an NP channel by instantiating a variable intro-

duced by one of the premises. The only variables of the right type to be instantiated to a

node in a semantic projection are the `Scope' variables. But these should only be instantiated

to nodes that could serve as scopes for quanti�ers.

With �� -introduction we can undo the e�ects of the �� -elimination in the �nal step

of scoping. But as there are no other outstanding consumers on the NP node, we can only

eliminate the NP channel term by repeating the �� -elimination, introducing a detour in the

derivation.

Hence in normalized glue language derivations it is only scoping that moves NP channel

terms irrevocably to the left hand side of sequent. So node orderings really do constrain NP

scope. By supplementing glue language premises with sets of node orderings (the output of

scope resolution), we have a powerful mechanism for underspecifying scope.

It should also be noted that the introduction of context assignments does not a�ect the

order in which meanings are consumed and produced with respect to scoping. Hence, this

method of scope speci�cation remains applicable.

4.3 Anaphoric Underspeci�cation

With scope, we have looked at a case of underspeci�cation arising out of the way that oth-

erwise speci�ed meanings are composed together. We now turn brie
y to the other case,

where the meanings themselves are not fully speci�ed. In glue language terms, this form of

underspeci�cation amounts to having a choice about which premises to employ in a derivation.

Since all meaning assignments bar one must be consumed by the derivation, the only scope

for premise choice lies in which contextual assignments to use. The meaning constructors for

pronouns in section 3 �x the choice of contextual assignment by specifying which node is to

provide the contextual property bound by the pronoun. This could be un�xed by having

a universal quanti�cation over both the contextual property and the antecedent node to

which the property is assigned. We can then allow partial coindexing of anaphors with their

antecedents at the level of f-structure. When an anaphor is coindexed this constrains the glue

language derivation to make use of a particular premise when scoping the anaphor. Those

anaphors that are not coindexed at f-structure can make use of any contextual premise that

leads to a legitimate derivation.

4.4 Underspeci�cation with Glue Languages

Given the foregoing, we would like to think of resolving underspeci�cation as being a process of

monotonically building up constraints on the set of derivations permitted by the glue language

premises. Here we have only considered node-order constraints for scope, and coindexing for

anaphors, but a wider variety of constraints would almost certainly be needed.

It should be pointed out that we are not proposing glue languages as a form of under-

speci�ed semantic representation. Rather, glue language is to be seen as providing a way

of giving a semantics to such representations. That is, the denotation of an underspeci�ed

semantic representation is a set of compositions, represented as glue language derivations.

From these derivations we can, to be sure, derive a set of possible meanings for the sentence

or fragment being represented, but these do not (directly) provide the semantics of the un-

derspeci�ed representation. Given the close relation between f-structure and underspeci�ed

14



representations like Quasi Logical Form [van Genabith & Crouch 1995], it would be natural

to view f-structure (supplemented with such things as a means for representing scope node

orderings) as a candidate for an underspeci�ed representation with a glue language semantics.

It should also be said that the glue language semantics does not determine the way in

which underspeci�cation is to be resolved. In the case of scope, the range of possible node-

orderings is mapped out by the glue language semantics, but it does not dictate particular

choices of ordering within this range. Similarly for the resolution / coindexing of anaphors.

It is also worth noting that a glue language semantics does not violate the disjunctive

fallacy for underspeci�cation, which holds that a sentence ambiguous between � and  means

(� _  ). Instead it correctly analyzes it as either meaning � or meaning  (see p. 4).

5 Further Work

This paper only presents an initial exploration of the use of glue languages for modelling

contextual update and underspeci�cation. Much further work obviously needs to be done to

establish this approach. For instance, in the realm of anaphora nothing has yet been said

about the choice between strong and weak readings of pronouns (which roughly amounts to

binding the antecedent's contextual property with a universal or an existential quanti�er).

Nor has anything been said about forms of anaphora (like one anaphora) that don't assume

strict identity between antecedent and anaphor. Another major testing area would be the

analysis of ellipsis in a glue language framework.

References

[Bos 1995] J. Bos 1995. Predicate Logic Unplugged In Proceedings 10th Amsterdam Colloquium.

[Crouch 1995] R. Crouch 1995. Ellipsis and Quanti�cation: a substitutional approach. In Proceedings

7th EACL, pages 229{236.

[Crouch & Genabith 1996] R. Crouch and J. van Genabith 1996 F-structure: A Glue for QLF and

UDRT? 1995. In FraCaS Deliverable D15, pages 217{254.

[Dalrymple et al. 1993a] M. Dalrymple, A Hinrichs, J. Lamping, and V. Saraswat 1993. The Resource

Logic of Complex Predicate Interpretation. Xerox Technical Report ISTL-NLTT-1993-08-03.

[Dalrymple et al. 1995a] M. Dalrymple, A. Kehler, J. Lamping, and V. Saraswat 1995. The Semantics

of Resource Sharing in Lexical-Functional Grammar. In Proceedings 7th EACL, pages 31{38.

[Dalrymple et al. 1993b] M. Dalrymple, J. Lamping, and V. Saraswat 1993. LFG Semantics via

Constraints. In Proceedings 6th EACL, pages 97{105.

[Dalrymple et al. 1995b] M.Dalrymple, J. Lamping, F.Pereira, and V.Saraswat 1995. Quanti�ers,

Anaphora, and Intensionality. cmp-lg/9504029.

[van Genabith & Crouch 1995] J. van Genabith and R. Crouch 1995. Direct and Underspeci�ed

Interpretations of LFG f-structures. Proceedings Coling 96.

[Troelstra 1992] A. Troelstra 1992. Lecture Notes on Linear Logic. CSLI Lecture Notes, 29.

15


