
Uni�
ation-based Parsers that Automati
ally

Take Advantage of Context Freeness

�

John T. Maxwell III

y

and Ronald M. Kaplan

z

Palo Alto Resear
h Center

x

Abstra
t

Although parsing with
ontext-free phrase stru
ture rules
an be done

in worst-
ase
ubi
 time, it is well-known that adding feature
onstraints

an make the resulting system exponential in the worst
ase, if not unde-

idable. In this paper we observe that the standard algorithms for
om-

bining feature
onstraints with
ontext-free phrase stru
ture rules
an be

exponential even when the
ombination is
ontext-free equivalent. We then

introdu
e two new algorithms based on disjun
tive lazy
opy links that au-

tomati
ally take advantage of simple
ontext-freeness in su
h grammars

and parse in
ubi
 time. The algorithms des
ribed do not require that the

grammar be pre-analyzed or
ompiled; instead, the
omputational prop-

erties are a by-produ
t of how the algorithms work. Consequently, the al-

gorithms improve performan
e even for grammars that are not altogether

ontext-free equivalent, sin
e they will automati
ally take advantage of

situations where the amount of information
owing upward from a
on-

stituent to any of its
onsumers is bounded.

1 Introdu
tion

Many grammati
al formalisms use hierar
hi
al feature stru
tures to des
ribe

the synta
ti
 stru
ture of natural language utteran
es. For instan
e, Lexi
al-

Fun
tional Grammar (Kaplan and Bresnan 1982), Fun
tional Uni�
ation Gram-

mar (Kay 1979), and HPSG (Pollard and Sag 1987) all use hierar
hi
al feature

stru
tures as a major
omponent of grammati
al des
riptions. De�nite Clause

Grammars (Pereira and Warren 1980) use what
an be regarded as an equiva-

lent representation as well. Feature stru
tures have the advantage of being easy

to understand and easy to implement, given uni�
ation programming languages

su
h as Prolog. However, they have the disadvantage of making the resulting

grammati
al formalisms diÆ
ult to parse eÆ
iently, both in theory and in pra
-

ti
e.

�

originally presented at the LFG96
onferen
e in Grenoble as \An EÆ
ient Parser for LFG"

y

maxwell.par
�xerox.
om

z

kaplan.par
�xerox.
om

x

3333 Coyote Hill Rd, Palo Alto, CA 94304

1

On the theory side, grammati
al formalisms that use arbitrary hierar
hi
al

feature stru
tures
an be unde
idable in the worst
ase (Kaplan and Bresnan

1982). Even with suitable restri
tions, su
h as the o�-line parsability
onstraint

of LFG, the formalisms
an be NP
omplete (Barton, Berwi
k, and Ristad

1987). Although in pra
ti
e the sorts of phenomena that make a formalism take

exponential time are rare, it is not un
ommon for untuned uni�
ation parsers

to take minutes to parse a relatively simple senten
e.

There have been a number of di�erent approa
hes over the years to mak-

ing uni�
ation parsers run faster. One approa
h has been to fo
us on making

uni�
ation itself faster. In addition to the general work on eÆ
ient uni�
ation

(Knight 1989), there has been work within the
omputational linguisti
s
om-

munity on undoable uni�
ation (Karttunen 1986), lazy
opying (Godden 1990),

and
ombinations thereof (Tomabe
hi 1991).

Another approa
h has been to fo
us on the problem of disjun
tion and to

propose te
hniques that handle spe
ial
ases of disjun
tion eÆ
iently. For in-

stan
e, disjun
ts that are in
onsistent with a non-disjun
tive part of a formula

an be eliminated early (Kasper 1987). Also,
ertain types of disjun
tions
an be

eÆ
iently pro
essed by being embedded within the feature stru
ture (Karttunen

1984; Bear 1988; Maxwell and Kaplan 1989; D�orre and Eisele 1990).

There has also been some work on the intera
tion between feature
on-

straints and the
ontext-free
omponent of grammati
al formalisms. It has long

been known that some feature
onstraints
an be
ompiled into a re�ned set of

ategories in the
ontext-free
omponent of the grammar (Gazdar, Klein, Pul-

lum, and Sag 1985). Nagata (1992) showed that the granularity of phrase stru
-

ture rules has an important e�e
t on parsing eÆ
ien
y. In parti
ular, grammars

with medium-grained
ategories performed better than grammars with
oarse-

grained or �ne-grained
ategories. Also, Maxwell and Kaplan (1993) showed

that the strategies used for handling the intera
tion between the phrasal and

fun
tional
omponents
an make a surprising performan
e di�eren
e.

This paper takes a di�erent ta
k on the performan
e problem. Our approa
h

is a
ontinuation of our earlier investigations (Maxwell and Kaplan 1989, 1993),

but here we fo
us on the �ne details of the intera
tion between phrasal and

fun
tional
onstraints. This work is based on the observation that the standard

methods for parsing with a uni�
ation grammar
an be exponential even when

the grammar is
ontext-free equivalent. We say that a uni�
ation grammar is

ontext-free equivalent when the uni�
ation grammar
an be easily transformed

into a �nite set of ordinary
ontext-free phrase stru
ture rules that a

epts ex-

a
tly the same language. We know that a senten
e of length n
an be parsed

with a set of
ontext-free phrase stru
ture rules in at most O(n

3

) time. How-

ever, parsing with a uni�
ation grammar that is
ontext-free equivalent
an

sometimes take O(2

n

) time. Sin
e we know that the grammar is
ontext-free

equivalent, this exponential result
annot be due to the inherent
omplexity of

the linguisti
 phenomena that the grammar a

ounts for. Instead, it must be

aused by some de�
ien
y in the strategy used by standard parsing methods.

In this paper we investigate the nature of this de�
ien
y and propose two new

algorithms that automati
ally take advantage of
ontext-freeness in
ontext-

2

free equivalent grammars. We then show that the new algorithms also improve

performan
e for situations in irredu
ibly non-
ontext-free grammars where the

amount of information
owing upward from a
onstituent to any of its
onsumers

is bounded.

We are not the �rst to observe that parsing with
ontext-free equivalent

grammars should take at most
ubi
 time regardless of the expressive power

of the formalism. Although Tree Adjoining Grammars take O(n

6

) time in the

worst
ase to parse a senten
e, it has been shown that TAGs that are of a
ertain

form
an be parsed in O(n

3

) time,
onforming to the linguisti

omplexity of

the phenomena they a

ount for (S
habes and Waters 1993; Rogers 1994). At a

super�
ial level our work di�ers from theirs be
ause of the di�eren
e in nature

between feature stru
ture uni�
ation and tree adjun
tion. A more important

di�eren
e is that our algorithms take advantage of
ontext-freeness automati-

ally, wherever it o

urs. This means that even if a grammar is not
ompletely

ontext-free equivalent, the algorithms will still improve performan
e if there are

situations where the amount of information
owing upward from a
onstituent

to any of its
onsumers is bounded. The TAG algorithms des
ribed in (S
habes

and Waters 1993; Rogers 1994) only work for grammars that are
ompletely

ontext-free equivalent. Other advantages of our algorithms are that they do

not require a di�erent me
hanism for grammars that are not
ontext-free equiv-

alent, and they do not depend on a pre-analysis or spe
ial
ompilation of the

grammar.

order 10 20 30 40 50

O(n) .01 se
. .02 se
. .03 se
. .04 se
. .05 se
.

O(n

2

) .1 se
. .4 se
. .9 se
. 1.6 se
. 2.5 se
.

O(n

3

) 1 se
. 8 se
. 27 se
. 64 se
. 125 se
.

O(n

6

) 17 min. 18 hours 8 days 47 days 180 days

2

n

1 se
. 17 min. 12 days 35 years 357
enturies

Figure 1: How bad is exponential?

Before
ontinuing, it is worth reviewing how bad an exponential
an be.

Figure 1 shows how various fun
tions of n behave for senten
es up to length 50.

The starting assumption is that the parser
an parse one word in a millise
ond.

Noti
e �rst that at n = 10 there is virtually no di�eren
e between exponential

and
ubi
. It is only for longer senten
es that the di�eren
e begins to show up.

At n = 50, the di�eren
e is astronomi
al. The se
ond observation is that O(n

6

),

although polynomial, is not pra
ti
al if the parser is n

6

on every input, not

just in the worst
ase. The �nal thing to noti
e is the di�eren
e between O(n

3

)

and O(n) at n = 50. This explains the growing interest in (presumably linear)

�nite-state approximations for synta
ti
 analysis (assuming that the resulting

state ma
hine is of tra
table size).

In the following se
tions we �rst des
ribe a standard approa
h to parsing

with uni�
ation grammars and show why it is exponential for grammars that

3

are
ontext-free equivalent. Then we review how lazy
opy links work, sin
e

understanding them is
ru
ial to understanding the algorithms that we later

introdu
e. Next, we present lazy DNF uni�
ation, a fairly simple algorithm

for automati
ally taking advantage of
ontext-freeness. Then we introdu
e lazy

ontexted uni�
ation, a more sophisti
ated algorithm that pa
ks alternatives

even more than the lazy DNF algorithm, whi
h
an redu
e the e�e
tive gram-

mar
onstant. Finally, we give some performan
e results for industrial-strength

grammars for English, Fren
h, and German.

2 The Problem

There are well-known methods for parsing with a
ontext-free phrase stru
ture

grammar in time proportional to the
ube of the length of a senten
e. However,

when a grammar has feature stru
ture
onstraints in addition to its
ontext-free

skeleton, then a typi
al parser will often take an exponential amount of time

to analyze a senten
e. This is true even if the uni�
ation grammar is
ontext-

free equivalent, i.e. a new stri
tly
ontext-free grammar
an be produ
ed that

a

epts the same senten
es as the original but without using feature stru
tures.

In order to see why this is so, we need to �rst understand how a parser
an

parse with a
ontext-free grammar in
ubi
 time using a
hart, and why adding

uni�
ation to a
onvential
hart parser makes the parser exponential even for

grammars that are
ontext-free equivalent.

2.1 The Chart

A
hart is simply a data stru
ture for
a
hing the
onstituents that have already

been
onstru
ted by a parser. The main advantage of a
hart is that it allows

the parser to reuse previously re
ognized
onstituents as it tries to parse the

senten
e in di�erent ways (Sheil 1976). If the grammar is
ontext-free, then the

parser need not re
ord how
onstituents get
onstru
ted, only that they are

onstru
table. For instan
e, the parser must determine whether there is an NP

that goes from the �fth word to the tenth word, but it need not re
ord how

many PPs the NP has in it. Be
ause of this, there are only O(Cn

2

) di�erent

onstituents that might be
onstru
ted for a senten
e of length n, where C

is the number of di�erent
ategories that the grammar allows (The n

2

omes

from the
ross-produ
t of all possible word positions). Con
eptually, the
hart is

just a three-dimensional array of (Category, Left Position, Right Position) that

indi
ates whether or not there is a
onstituent of type Category that starts at

the Left Position and ends at the Right Position. A senten
e has a parse if there

is an S
ategory that begins at the beginning of the senten
e and ends at the

end of the senten
e.

One way to �ll in the
hart is to start with all the one word
onstituents,

then build two word
onstituents out of pairs of adjoining one word
onstituents,

then build three word
onstituents out of pairs of adjoining one and two word

onstituents, and so on, with ea
h level building on the results of the previous

4

levels. This is
alled the CKY algorithm (Younger 1967). The reason that the

algorithm is O(n

3

) rather than O(n

2

) is that ea
h of the
onstituents
an be built

in multiple ways. In the worst
ase, a
onstituent that is O(n) in size
an be built

in O(n) di�erent ways by
onsidering all of the intermediate positions at whi
h

the
onstituent
an be split into two daughters.

1

To build O(n

2

)
onstituents

ea
h in O(n) ways requires O(n

3

) time.

The
hart parser des
ribed so far is a
ting just as an a

eptor. It determines

whether or not a given senten
e belongs to the language of the grammar, but

it does not produ
e the senten
e's valid parse trees. However, there is a simple

extension to provide this additional information. Whenever a \mother"
on-

stituent is
onstru
ted out of a sequen
e of \daughter" sub-
onstituents, the

onstru
tion is re
orded as a lo
al subtree on the mother
onstituent. A
hart

annotated with su
h subtrees is
alled a \parse forest". When the parser is

done, a parti
ular parse tree
an be read out by starting at the S
onstituent

that spans the whole senten
e, and arbitrarily pi
king one subtree. Then for ea
h

daughter
onstituent in the subtree, one of its subtrees is arbitrarily pi
ked. This

pro
ess is
arried on until the tree is fully spe
i�ed. In general, there
an be ex-

ponentially many su
h fully-spe
i�ed trees, but the parse forest for them
an be

produ
ed in
ubi
 time be
ause they are stored in a
ompa
t representation.

Thus the parsing pro
ess is divided into two phases: a
hart
onstru
tion

phase, and a parse-tree read out phase. The
hart
onstru
tion phase for a

ontext-free grammar runs in worst-
ase
ubi
 time. The read out phase takes

linear time for ea
h of the possible parse trees. In order to be able to say that we

an parse in
ubi
 time, parse trees
annot be �ltered during the read out phase.

Instead, every possible
hoi
e at every possible point in a top-down enumeration

of the
hart must lead to a valid tree.

If there are only a few (e.g. a polynomial number of) valid parse trees,

then the whole pro
ess runs in polynomial time. On the other hand, for an

exponentially ambiguous senten
e the time to read out all of its parse trees will,

of
ourse, be exponential. However, it is not always ne
essary to read out all the

parse trees to obtain a useful result. For instan
e, if we only want to pi
k out the

parse tree with the best s
ore a

ording to some metri
, we may be able to pi
k

out that tree by making lo
al
hoi
es within the
hart instead of applying the

metri
 to ea
h tree. This is what Sto
hasti
 Context-Free Grammars do using

the Inside-Outside algorithm (Lari and Young, 1990).

We
an
onstru
t in
ubi
 time a parse-forest
hart that represents an expo-

nential number of parse trees be
ause
onstituents are grouped into equivalen
e

lasses a

ording to what part of a senten
e they span and what their top
ate-

gories are. Ea
h triple of (Category, Left Position, Right Position) represents a

(possibly exponential) number of di�erent parse trees that are indistinguishable

from the point of view of possible
onsumers. The equivalen
e
lasses abstra
t

away from the irrelevant details of how the
onstituents are
onstru
ted, and

subsequent parsing de
isions are based just on these equivalen
e
lasses and

1

This assumes that the grammar is in Chomsky Normal Form, so that all of its rules are

at most binary bran
hing.

5

not their individual members. These notions are
ru
ial to how our uni�
ation

parsers will automati
ally take advantage of
ontext-freeness. To foreshadow

some of the terminology that we use below, we
all the equivalen
e
lasses

\external solutions", the subtrees that make up an equivalen
e
lass \internal

solutions", and we say that the equivalen
e
lasses are \opaque" sin
e their

internal details do not in
uen
e the
onstru
tion of larger
onstituents.

Another important observation about
ontext-free parse-forest
harts is that

they bound the amount of work done for ea
h subtree. This means that sin
e

there are only O(n

3

) subtrees in the worst
ase, the whole
hart takes only O(n

3

)

time to produ
e in the worst
ase. Our new parsing algorithms build o� of this

hart parser ar
hite
ture. We
an show that our algorithms parse in O(n

3

) time

in the worst
ase when a grammar is
ontext-free equivalent by proving that

they do a bounded amount of work per subtree. This is an important insight

that allows us to fo
us on pro
essing at individual subtrees instead of having to

pay attention to the properties of the entire parse-forest
hart.

2.2 Feature Stru
tures

Most feature stru
ture grammar formalisms add the feature stru
ture
on-

straints to a ba
kbone of
ontext-free phrase stru
ture rules. Lexi
al-Fun
tional

Grammar (Kaplan and Bresnan 1982) and PATR (Karttunen 1986), for exam-

ple, are very expli
it in assigning both a phrase-stru
ture tree and an attribute-

value fun
tional stru
ture to every senten
e of a language. For Fun
tional Uni-

�
ation Grammar (Kay 1979) and other uni�
ation formalisms (su
h as HPSG

(Pollard and Sag 1987)), the phrase stru
ture is more impli
it, showing up as

the re
ord of the
ontrol strategy that re
ursively re-instantiates the
olle
tion

of attribute-value
onstraints from the grammar.

A + A + A + A + A + A +

B 1 B 1 B 1 B 2 B 2 B 2

A +

B 1

A +

B 2

A -

B 3

C 1 C 2 C 1 C 2

A +

C 1

A +

C 2

A +

C 3

C 3 C 3

A+-

B 3

C 1

A+-

B 3

C 2

A+-

B 3

C 3

Figure 2: DNF approa
h to handling feature stru
tures

One way to parse with su
h a feature stru
ture grammar is �rst to build

a
ontext-free phrase stru
ture
hart using standard
ontext-free algorithms,

and then to make a se
ond pass over the
hart data stru
ture, building feature

6

stru
tures bottom-up (see Maxwell and Kaplan 1993 for some advantages and

disadvantages of this approa
h). First, feature stru
tures are instantiated from

lexi
al items a

ording to their feature
onstraints. If the lexi
al items are am-

biguous in any way, this will produ
e multiple feature stru
tures. Then, feature

stru
tures for a mother
onstituent are
onstru
ted by taking the
ross-produ
t

of the feature stru
tures that belong to the daughter
onstituents and unifying

(or
onjoining) ea
h
ombination. If uni�
ation fails or the
onjun
tion is in
on-

sistent for any
ombination, that
ombination is thrown away. The result is a

set of feature stru
tures in disjun
tive normal form (DNF) that are
onsistent

to this point (see Figure 2). If there is more than one way of
onstru
ting the

mother
onstituent out of daughter
onstituents (e.g. there is more than one

subtree), then the sets of feature stru
tures produ
ed from all of the analyses

are unioned together. This pro
ess
ontinues bottom-up until feature stru
tures

for all of the
onstituents have been
onstru
ted. This is exponential in the

worst
ase be
ause of the
ross-produ
t that o

urs at ea
h level. For instan
e,

if ea
h lexi
al item is ambiguous with two feature stru
tures, then every valid

parse tree
an be asso
iated with O(2

n

) di�erent feature stru
tures.

During the
ross-produ
t step dis
ussed above, it may happen that the same

feature stru
ture is produ
ed more than on
e. When this happens, it is suÆ
ient

to put only one of the instan
es in the mother's set of feature stru
tures. This

is be
ause further
omputations only depend on what the feature stru
ture is,

not on how it was derived.

If the grammar only spe
i�es �nite-valued features, then a parser
an be

made to run in
ubi
 time. This is be
ause there is only a �nite number of

possible feature stru
tures. In parti
ular there are only a �nite number of dif-

ferent feature stru
tures at ea
h level (if we eliminate dupli
ate o

urren
es),

and therefore the number of
ross-produ
t uni�
ations at ea
h level is bounded.

Sin
e ea
h uni�
ation step is bounded, the total amount of work per subtree is

also bounded and the parser retains the worst
ase
ubi
 bound of the
ontext-

free
hart
onstru
tion phase.

brown bears like fish

NP V NP

NP VP

S
C S

L [C A]

R [C NP]

L [C V]

C NP

C VP

L

R

A

R [C NP]

Figure 3: A
ontext-free equivalent grammar

We have seen that �nite-valued features thus provide a ri
her notation for

�ltering the trees that the
ontext-free rules would otherwise permit, but they

7

do not
hange the
omplexity of the parsing pro
ess. On the other hand, we

an also exhibit hierar
hi
ally-valued features that do not �lter the set of trees

but do in
rease the
omplexity of parsing. Let us
onstru
t a simple uni�
ation

grammar with hierar
hi
al feature stru
tures where the feature stru
tures sim-

ply en
ode the stru
ture of the parse-trees assigned by a given binary-bran
hing

ontext-free grammar. We need only three features, a C feature that indi
ates

the
ategory of ea
h
onstituent, and L and R features that point to the feature

stru
tures of the left daughter and right daughter respe
tively. Below is a frag-

ment of su
h a grammar for English. The rules are expressed in traditional LFG

notation (Kaplan and Bresnan, 1982); the lexi
al items are represented as rules

expanding the preterminal
ategories rather than as separate lexi
al entries.

S �! NP

(" L) =#

(" C) = S

VP

(" R) =#

NP �! A

(" L) =#

(" C) = NP

NP

(" R) =#

NP �! N

(" L) =#

(" C) = NP

NP

(" R) =#

VP �! V

(" L) =#

(" C) = VP

NP

(" R) =#

N �! light: (" C) = N

A �! light: (" C) = A

N �! brown: (" C) = N

A �! brown: (" C) = A

NP �! bears: (" C) = NP

V �! like: (" C) = V

N �! white: (" C) = N

A �! white: (" C) = A

NP �! �sh: (" C) = NP

Figure 3 shows a sample tree and its feature stru
ture en
oding as produ
ed

by this grammar. This uni�
ation grammar is
learly
ontext-free equivalent,

sin
e it is a transparent en
oding of a
ontext-free phrase stru
ture grammar.

However, the typi
al uni�
ation parsing algorithms
an take exponential time

to analyze a senten
e with respe
t to this grammar. There will be one feature

stru
ture produ
ed for ea
h parse tree so, if there are an exponential number of

parse trees, there will be an exponential number of feature stru
tures at the top

level. Figure 4 illustrates this possibility (in this �gure, we use a letter in square

8

bra
kets to represent a
opy of the daughter feature stru
ture that is labeled

with the same letter in order to redu
e the
lutter).

light brown bears like white fish

a[C A] c[C A]

b[C N] d[C N]

e[C NP] f[C V] g[C A]

h[C N]

i[C NP]

R [e]

C NP

L [c]

R [e]

C NP

L [d]

R [j]

C NP

L [a]

R [k]

C NP

L [a]

R [j]

C NP

L [b]

R [k]

C NP

L [b]

kj
R [i]

C NP

L [g]

R [i]

C NP

L [h]

R [l]

C VP

L [f]

R [A]

C VP

L [f]

l m

n o p q r s

R [r]

C S

L [n]

R [s] R [r] R [s]

C S

L [n]

C S

L [o]

C S

L [o]

R [r]

C S

L [p]

R [s] R [r] R [s]

C S

L [p]

C S

L [q]

C S

L [q]

Figure 4: Unne
essary multipli
ation

For this parti
ular grammar the feature
onstraints do not �lter the parse

trees, and so we
ould have postponed
onstru
ting the feature stru
tures until

the phase of reading out the solutions. We
annot do this in general, though,

be
ause most grammars do use the feature stru
tures to �lter the parse trees

and we are not allowed to �lter trees during the read out phase.

One way of dealing with grammars that have hierar
hi
al feature stru
tures

is to trun
ate the feature stru
tures below a
ertain depth, e�e
tively treating

the hierar
hi
al situations as a �nite-valued
ase. However, this might not pro-

du
e
orre
t results. If two feature stru
tures have a feature in
ommon, then

when the feature stru
tures are uni�ed, the values of that feature are uni�ed

too. If those values have features in
ommon, the pro
ess
ontinues re
ursively.

In the worst
ase, the two feature stru
tures will be uni�ed together from top

to bottom. We
all this a \zipper uni�
ation", sin
e the pro
ess is analogous to

how a zipper works. Be
ause of zipper uni�
ations, it is not possible to trun-

ate feature stru
tures while parsing, sin
e no matter at what depth a feature

stru
ture is embedded, it may be
ome relevant to some future uni�
ation.

If the parser knows for a given grammar that the feature
onstraints do not

�lter the trees, then it
ould
on
eivably �nish the
onstru
tion phase in
ubi

time. However, there are very few uni�
ation grammars that do absolutely no

9

feature-stru
ture �ltering. Usually, there is at least a little bit of �ltering to

determine things like subje
t-verb agreement, but rarely are things �ltered by

means zipper uni�
ation. One possibility might be to de�ne the formalism so

that zipper uni�
ation
annot be expressed or is limited to a
ertain depth. But

a better possibility is to design algorithms that run in
ubi
 time ex
ept for the

few pla
es where zipper uni�
ation plays an important grammati
al role.

3 Lazy Copy Links

In order to understand our algorithms, we need to �rst understand how lazy

opy links work. Lazy
opy links are one way of redu
ing the amount of
opying

required by a uni�
ation
hart parser (Godden 90). Feature stru
tures from the

hart must be
opied when they are uni�ed be
ause the same feature stru
ture

may be used in two disjoint analyses. If the feature stru
ture is not
opied

when uni�ed, then the result of uni�
ation in one analysis might show up in the

other analysis (this is
alled \
ross-talk"). However,
opying feature stru
tures

is very expensive sin
e we may have to
opy an amount that is proportional to

the whole tree. Thus, a lot of resear
h has been dire
ted towards redu
ing the

amount of
opying ne
essary to a
hieve
orre
t results. (Karttunen 86) proposed

one approa
h to this problem, whi
h is to unify daughter feature stru
tures

together undoably, to
opy the result only if the uni�
ation su

eeds, and then

to undo the uni�
ation. This is valuable if most uni�
ations fail.

B

C

A +

A +

B D +

A +

E +C

Figure 5: Lazy
opying

(Godden 90) proposed another approa
h, namely, to
opy the feature stru
-

tures lazily in an in
remental fashion. At �rst, just the top levels of ea
h feature

stru
ture are
opied. At the fringe of what has been
opied, lazy
opy links point

to the material that has not yet been
opied. Then the
opied feature stru
tures

are uni�ed together. If no lazy
opy links are en
ountered during the uni�
ation,

then the features in the two
opied feature stru
tures are disjoint and the uni-

�
ation
an safely stop. This is be
ause there is no possibility of the uni�
ation

failing by pro
essing the lower levels of the feature stru
tures. The resulting

feature stru
ture will probably have a mixture of lazy links, some pointing to

parts of the feature stru
ture of one daughter and some pointing to parts of the

10

other's (see Figure 5). On the other hand, if lazy links are en
ountered during a

uni�
ation, it may be that the material that has not yet been
opied is in
om-

patible with the
orresponding material in the other daughter. The lazy link

must be expanded to explore this possibility. This is done by
opying up one

level of features in the feature stru
ture pointed to by the lazy link, introdu
ing

a new set of lazy links pointing to the next level of material. The next level of

ommon features are uni�ed together, with the possibility that more lazy links

will need to be expanded.

The advantage of lazy
opying is that it defers
opying of some material

when
ombining feature stru
tures from two di�erent daughter
onstituents.

The disadvantage is that it does not deal with the possibility of alternative sub-

trees. In parti
ular, it does not redu
e the number of feature stru
tures that are

onstru
ted in the
ross-produ
t
omputation, as
an be seen by
onsidering

what lazy
opying would do for Figure 4. Repla
ing the bra
keted letters with

lazy
opy links would redu
e the amount of
opying, but it would not redu
e

the number of top-level feature stru
tures.

4 Lazy DNF Uni�
ation

Our �rst new algorithm, Lazy DNF Uni�
ation, builds on the lazy
opy idea but

extends it to redu
e the amount of unne
essary
ross-produ
t multipli
ation.

The key idea of lazy DNF uni�
ation is to merge together feature stru
tures

that have the same expanded material but
ould have di�erent material in the

parts that have not yet been expanded (i.e. whi
h are pointed to by lazy links).

Instead of having at most one lazy link per feature at the fringe, we
an have a

set of disjun
tive lazy
opy links, one for ea
h feature stru
ture that was merged

in. Whenever the uni�er en
ounters disjun
tive lazy
opy links, it in
rementally

expands them and repla
es the existing feature stru
ture with a set of expanded

feature stru
tures. The expanded feature stru
tures may have lazy
opy links

further down, allowing the pro
ess to
ontinue if ne
essary.

Ea
h merged feature stru
ture represents a possible equivalen
e
lass of fea-

ture stru
tures that
ould have the same satis�ability from the point of a
on-

suming feature stru
ture, depending on whether the
onsumer
ares about the

material under the lazy
opy links. The major di�eren
e between these equiva-

len
e
lasses and those used in the
hart is that these equivalen
e
lasses may be

dynami
ally split into smaller
lasses when more detailed information is needed

by the uni�er.

Ea
h
onstituent has two types of feature stru
tures: \internal" feature stru
-

tures whi
h are the result of unifying together daughter feature stru
tures, and

\external" feature stru
tures whi
h are the result of merging together internal

feature stru
tures that are the same down to a
ertain point. The internal feature

stru
tures use lazy
opy links in the standard way to avoid
opying up material

from below. The external feature stru
tures use disjun
tive lazy
opy links to

represent alternative extensions of the feature stru
ture. The internal and exter-

nal feature stru
tures form an AND-OR tree of feature stru
tures: the internal

11

feature stru
tures point to the external daughter feature stru
tures that they

unify, and the external feature stru
tures point to the alternative internal fea-

ture stru
tures that they are an equivalen
e
lass for. This AND-OR stru
ture

mirrors the AND-OR stru
ture of a parse forest, where
onstituents
an have

alternative subtree analyses and subtrees are the
onjun
tion of
onstituents.

4.1 Example

A + A + A + A - A + A + A + A +

B 1 B 2 B 3 B 4 C + C - D + D -

Figure 6: Uni�
ation begun, possible intera
tion dete
ted

Figures 6-11 illustrate how lazy DNF uni�
ation works. We start in Figure

6 with two daughter
onstituents and a mother
onstituent. Ea
h daughter

onstituent has a number of alternative internal feature stru
tures at its bottom.

These feature stru
tures
ould
ome from lexi
al and/or phrasal ambiguities.

The left daughter has four feature stru
tures, ea
h of whi
h has an A attribute

and a B attribute with di�erent values. The right daughter has four feature

stru
tures with di�erent
ombinations of A, C, and D attributes and their values.

The A, C, and D attributes
an have + or � as their values, the B attribute

an have 1, 2, 3, or 4 for its value.

Ea
h daughter
onstituent is assigned an empty external feature stru
ture

with disjun
tive lazy
opy links to the internal feature stru
tures (the disjun
tive

lazy
opy links are shown as dotted arrows). This represents the situation where

the external feature stru
tures have not been expanded at all, and so all of the

internal feature stru
tures of ea
h daughter are in the same equivalen
e
lass.

We want to unify the external feature stru
tures of the daughter
onstituents

in order to produ
e an internal feature stru
ture for the mother. When we try to

unify the two external feature stru
tures, the result is an empty feature stru
ture

with lazy
opy links to the external feature stru
tures. The lazy
opy links are

shown in bold in Figure 6 to indi
ate that there is a possible intera
tion between

them and that they will have to be expanded to determine whether or not the

uni�
ation is su

essful (there is the possibility of an intera
tion whenever a lazy

opy link is
onjoined with anything else, in
luding another lazy
opy link). This

would normally trigger a simple
opy, but sin
e these lazy
opy links point to

12

disjun
tive lazy
opy links, the external feature stru
tures will �rst have to be

expanded into a set of alternatives.

A +

B 1

A +

B 2

A +

B 3

A -

B 4

A +

C +

A +

C -

A +

D +

A +

D -

A A AA

B

A

B

A

B

A

B C C D

A

D

Figure 7: Lazy disjun
tion expanded

In Figure 7 we have expanded the daughter
onstituents' external feature

stru
tures. This produ
es four partial
opies for ea
h daughter, with lazy
opy

links under ea
h attribute pointing down to the original values. Note that ex
ept

for what the lazy
opy links point to, many of the partial
opies are identi
al.

A +

B 1

A +

B 2

A +

B 3

A -

B 4

A +

C +

A +

C -

A +

D +

A +

D -

A

B

A

C

A

D

Figure 8: Equivalent feature stru
tures merged together

In Figure 8 we have merged the identi
al partial
opies together, produ
ing

one external feature stru
ture on the left and two on the right (be
ause the

attributes are di�erent). The lazy
opy links have also been merged, produ
ing

disjun
tive lazy
opy links (again, shown as dotted arrows).

In Figure 9 we have restarted taking the
ross-produ
t of the daughter fea-

ture stru
tures by unifying the external feature stru
tures L1 and R1 to produ
e

M1. This produ
es lazy
opy links for the A, B, and C attributes. Be
ause there

are two lazy
opy links under the A attribute, this attribute will have to be ex-

panded to dete
t possible
on
i
ts. But the lazy
opy links point to disjun
tive

values, so the disjun
tive values will have to be expanded �rst.

13

A +

B 1

A +

B 2

A +

B 3

A -

B 4

A +

C +

A +

C -

A +

D +

A +

D -

A

B

A

C

A

D

C

B

A

L1 R1

M1

Figure 9: Uni�
ation restarted, new intera
tion dete
ted

A +

B 1

A +

B 2

A +

B 3

A -

B 4

A +

C +

A +

C -

A +

D +

A +

D -

A

D

A

C

+A

B

+ A

B

-

C

B

A +

L2 L3 R2 R3

M2

Figure 10: First uni�
ation
ompleted

In Figure 10 we have expanded the A attributes of L1 and R1 to produ
e

L2, L3, and R2. Expanding L1 produ
ed four new partial
opies on the left, but

we merged the four partial
opies into two equivalen
e
lasses: those with A=+

(represented by L2), and those with A=- (represented by L3). Expanding R1

produ
ed two partial
opies whi
h then got merged into one equivalen
e
lass

(represented by R2). At this point, we have �nished the �rst uni�
ation in the

ross-produ
t of the daughter feature stru
tures.

Figure 11 shows the result of taking the
ross-produ
t of all the daughter

feature stru
tures. The third and fourth uni�
ations (the ones with L3) failed

be
ause their A attributes had in
onsistent values. This left us with two valid

internal feature stru
tures for the mother. We
onstru
ted an empty feature

stru
ture (M5) with disjun
tive lazy
opy links to these as the external feature

stru
ture of the mother
onstituent. Note that if all of the lazy
opy links in

Figure 11 were expanded we would have 12 features stru
tures at the top level

instead of 2.

14

A +

B 1

A +

B 2

A +

B 3

A -

B 4

A +

C +

A +

C -

A +

D +

A +

D -

A

C

+A

B

+ A

B

-

C

B

A +

B

A

D

+

A

D

+

A +- A +-

L2 L3 R2 R4

M2 M4

M5

Figure 11: Cross-produ
t
ompleted

4.2 Dealing with a
hanging
a
he in the
hart

As we noted earlier, one of the di�eren
es between the equivalen
e
lasses of a

standard
hart parser and the equivalen
e
lasses of a lazy DNF uni�er is that

the latter equivalen
e
lasses
an
hange dynami
ally as more information is

needed for uni�
ations higher up

2

. This
an pose a problem in a
hart environ-

ment where the equivalen
e
lasses of a parti
ular
onstituent may be used by

several di�erent mother
onstituents. What happens to the �rst
onsumer of a

set of equivalen
e
lasses when the se
ond
onsumer wants the set expanded?

This be
omes even more
ompli
ated if subsequently the �rst
onsumer also

needs to
hange the set of equivalen
e
lasses be
ause of another uni�
ation

that is higher up in the
hart.

One possibility is to allow there to be multiple sets of equivalen
e
lasses.

At �rst there is just one set, but then as di�erent
onsumers request di�erent

expansions of the equivalen
e
lasses, the sets begin to diverge. We must be

areful to avoid the situation where we end up with one set of equivalen
e

lasses per
onsumer sin
e in the worst
ase this would make the pro
ess O(n

4

)

instead of O(n

3

). So this requires that we regularly
he
k whether two sets are

the same and repla
e one set with the other.

Another possibility is to only allow one set of equivalen
e
lasses per
on-

stituent, and to update all of the
onsumers so that they use the latest set

whenever some equivalen
e
lasses are expanded. This
an be a

omplished in

the following manner: whenever an equivalen
e
lass needs to be expanded,

the equivalen
e
lass is modi�ed in pla
e to in
lude one of the alternatives. The

other alternatives are then added to the set of equivalen
e
lasses, and are
ross-

uni�ed with the equivalen
e
lasses of the other daughter (if any) of all existing

onsumers. The
ross-uni�
ation is ne
essary sin
e the existing equivalen
e
lass

2

This is independent of whether or not the
hart itself is dynami
, e.g. that new subtrees

an be added to a
onstituent even after the
onstituent has been
onsumed.

15

has been narrowed.

4.3 Reading out solutions

In order to be able to enumerate solutions when we are done, we always keep

tra
k of how feature stru
tures were
onstru
ted. Thus, external feature stru
-

tures will have a list of the internal feature stru
tures that they represent, and

internal feature stru
tures have a list of the external feature stru
tures that

were used to produ
e them

3

. This allows us to enumerate solutions by start-

ing at the top with the top
onstituent's external feature stru
tures, and for

ea
h external feature stru
ture non-deterministi
ally
hoosing a feature stru
-

ture. This feature stru
ture must have been a produ
t of a uni�
ation, and so

we follow its links to the daughter external feature stru
tures, and so on. The

whole stru
ture is basi
ally an AND-OR tree similar to a parse forest in a
hart,

where the external feature stru
tures
orrespond to
onstituents with di�erent

analyses and the internal feature stru
tures
orrespond to parti
ular subtrees

with a
onjun
tive list of daughters.

4.4 Computational
omplexity

light brown bears like white fish

[C A] [C A]

[C N] [C N]

[C NP] [C V] [C A]

[C N]

[C NP]

R []

C NP

L []

R []

C NP

L []

R []

C NP

L []

R []

C NP

L []

R []

C VP

L []

[]

[]

R []

C S

L []

R []

C NP

L []

R []

C NP

L []

[]

Figure 12: Figure 4 revisited

3

The reason that we
annot use the lazy links dire
tly for reading out solutions is that the

disjun
tive lazy links have to be
orrelated. For instan
e in Figure 9, the disjun
tive lazy links

of L1's A attribute must be
orrelated with those of L1's B attribute.

16

The
omputational
omplexity of lazy DNF uni�
ation will be proportional

to the size and number of internal and external feature stru
tures produ
ed for

ea
h subtree in the
hart forest. If a grammar is
ontext-free equivalent, then the

size of the external feature stru
tures will be bounded by a grammar
onstant.

This is be
ause the number of intera
tions possible at ea
h
onstituent will be

limited, and so the amount of material that gets
opied up into an external

feature stru
ture will be similarly limited.

If the size of the external feature stru
tures is bounded by a grammar
on-

stant, then the number of external feature stru
tures that a
onstituent
an

have is bounded, too. This is be
ause equivalent external feature stru
tures are

always merged together, and there
an only be a bounded number of equiva-

len
e
lasses. If the number of external feature stru
tures that ea
h
onstituent

an have is bounded, then the number of internal feature stru
tures that ea
h

subtree
an have is also bounded. This is be
ause the daughter
onstituents

ea
h have a bounded number of external feature stru
tures, and the produ
t of

two bounded numbers is bounded. Sin
e the size and number of internal feature

stru
tures per subtree is bounded, the parser parses in worst
ase O(n

3

) time.

Even if a grammar is not
ontext-free equivalent, su
h a parser will improve

performan
e with for the parts that are. Note that this
ubi
 time result does

not depend on any pre-analysis or
ompilation of the grammar. Instead, the

result is an emergent property of the way that lazy DNF uni�
ation works.

As a �nal example,
onsider how the grammar in Figure 4 is handled by lazy

DNF uni�
ation in Figure 12. Note that the result is isomorphi
 to a parse-

forest
hart
onstru
ted using the
ontext-free grammar that the
onstraints

were derived from applied to the same input.

5 Lazy Contexted Uni�
ation

In the previous se
tion we showed that lazy DNF uni�
ation automati
ally

takes advantage of
ontext-freeness when parsing with uni�
ation grammars.

Although the lazy DNF uni�
ation algorithm produ
es a performan
e
urve with

the desired shape, it still has some potential performan
e problems. Although

bounded, the number of external feature stru
tures may be large. This may

pose a problem whenever a new external feature stru
ture is produ
ed, sin
e

it must be merged with any existing external feature stru
ture that has the

same stru
ture. In this se
tion we present another algorithm for automati
ally

taking advantage of
ontext-freeness that has the property that there is always

at most one external feature stru
ture per
onstituent. This algorithm is
alled

lazy
ontexted uni�
ation.

Lazy
ontexted uni�
ation is like lazy DNF uni�
ation ex
ept that it re-

pla
es standard DNF uni�
ation with
ontexted uni�
ation (Maxwell and Ka-

plan 1989). Contexted uni�
ation allows a number of alternative feature stru
-

tures to be merged into one
ontexted feature stru
ture, plus a set of solutions

to the propositional variables used for the
ontexts (des
ribed below). This

means that there is always exa
tly one representative feature stru
ture for ea
h

17

daughter
onstituent, and so the
ross-produ
t uni�
ation of daughter feature

stru
tures found in lazy DNF uni�
ation
an be eliminated. The solutions to the

ontexted variables are
onstru
ted in a se
ond pass. There is a
ross-produ
t at

this stage, but the atomi
 operations are simpler and there is more information

about whi
h solutions are invalid, allowing more pruning of the
ross-produ
t.

Thus ea
h senten
e is pro
essed in three passes:

1. produ
e a
ontext-free
hart based on the phrase stru
ture rules

2. build a
ontexted feature stru
ture for ea
h
onstituent in a bottom-up

fashion (i.e. all the di�erent analyses of a
onstituent are in
orporated into

its feature stru
ture before the feature stru
ture is
onsumed by higher

onstituents.)

3.
onstru
t the set of
ontexted variable solutions for ea
h
onstituent in a

bottom-up fashion.

Before we des
ribe the algorithm in more detail, we �rst review how
on-

texted uni�
ation works.

5.1 Contexted Uni�
ation

Contexted

4

uni�
ation is a method for merging alternative feature stru
tures

together by annotating the alternatives with propositional variables. Contexted

uni�
ation is based on ideas from Assumption-based Truth Maintenan
e Sys-

tems (de Kleer 1986). The basi
 idea
an be formalized with the following rules:

1. �

1

_ �

2

is satis�able if and only if (p ! �

1

) ^ (:p ! �

2

) is satis�able,

where p is a new propositional variable

2. if �

1

^ �

2

! �

3

is a rule of dedu
tion, then (P ! �

1

) ^ (Q ! �

2

) !

(P ^ Q ! �

3

) is a
ontexted version of that rule, where P and Q are

boolean
ombinations of propositional variables

3. (P ! �) ^ (Q! �)
an be repla
ed by (P _Q)! �

4. if P ! FALSE, then assert :P (P is
alled a nogood in ATMS terminol-

ogy).

Contexted uni�
ation is performed in three stages. First, the disjun
tions

are
onverted to
onjun
tions using rule 1 above and instantiated as a feature

stru
ture with the propositional variables stored with the values. Then fea-

ture stru
tures are uni�ed and nogoods are produ
ed. Finally, the nogoods are

olle
ted and solved in order to �nd out whi
h
ombinations of propositional

variables are valid

5

.

4

The \
ontext" in
ontexted uni�
ation is not the same \
ontext" that o

urs in
ontext-

free, although they are related ideas. To avoid
onfusion, we will only use the latter notion of

ontext in the phrases \
ontext-free" or \non-
ontext-free".

5

See (Maxwell and Kaplan 1989) for more details.

18

nogood(p∧¬r)

p +

¬p -

A

B

q +

¬q -
C

s +

¬s -

r +

¬r -A

D

¬p -B

q +

¬q -
C

r +

¬r -

p +

A

s +

¬s -
D

Figure 13:
ontexted uni�
ation

Figure 13 gives a simple example that shows how
ontexted uni�
ation works.

We assume that the �rst feature stru
ture is the result of instantiating the

onstraints ([A+℄_ [B�℄)^ ([C+℄_ [C�℄) and the se
ond is the result of ([A+℄_

[A�℄) ^ ([D+℄ _ [D�℄). The propositional variables p, q, r, and s have been

introdu
ed to represent the four disjun
tions. When we unify the two feature

stru
tures on the left, only the A attributes overlap. A
annot be + and � at

the same time, so we obtain the nogood p ^ :r.

In order to �nd the solutions, we
ompute all possible
ombinations of propo-

sitional variables that are
onsistent with the nogoods that we have found. In

this
ase, there are 12 solutions:

p ^ q ^ r ^ s :p ^ q ^ r ^ s :p ^ :q ^ r ^ s

p ^ q ^ r ^ :s :p ^ q ^ r ^ :s :p ^ :q ^ r ^ :s

p ^ :q ^ r ^ s :p ^ q ^ :r ^ s :p ^ :q ^ :r ^ s

p ^ :q ^ r ^ :s :p ^ q ^ :r ^ :s :p ^ :q ^ :r ^ :s

Note that all of the solutions that involve p ^ :r have been eliminated.

The main advantage of
ontexted uni�
ation is that it postpones taking the

ross-produ
t of alternatives until we have found all of the nogoods. This is help-

ful for three reasons: 1) taking the
ross-produ
t of propositional variables is less

expensive than taking the
ross-produ
t of feature stru
tures, 2) we do not take

ross-produ
ts until we have
omplete information (It is often the
ase that late

in the uni�
ation pro
ess we dis
over that the uni�
ation is
ompletely invalid,

in whi
h
ase there is no need for
ross-produ
ts), 3) the nogood database may

de
ompose into a set of independent problems that
an be solved independently,

avoiding a global
ross-produ
t of solutions.

5.2 Lazy Copying Using Contexted Uni�
ation

Let us go ba
k to the example we used to illustrate how lazy DNF uni�
ation

worked, and use it to show how lazy
ontexted uni�
ation works. In Figure 14

we have two daughter
onstituents that ea
h have an empty external feature

stru
ture with disjun
tive lazy
opy links pointing to the internal feature stru
-

tures. This is like Figure 6, only now the disjun
tive lazy
opy links have been

19

A + A + A + A - A + A + A + A +

B 1 B 2 B 3 B 4 C + C - D + D -

p:1 p:2 p:3 p:4 q:1 q:2 q:3 q:4

Figure 14: Possible intera
tion dete
ted

annotated with
ontexts p:1, p:2, p:3, p:4 and q:1, q:2, q:3, q:4

6

. We start to pro-

du
e an internal feature stru
ture for the mother
onstituent by unifying
opies

of the daughters' external feature stru
tures. The bold lazy
opy links indi
ate

that there is a possible intera
tion between the external feature stru
tures and

that they will need to be expanded.

A +

B 1

A +

B 2

A +

B 3

A -

B 4

A +

C +

A +

C -

A +

D +

A +

D -

A

B

C

B

A

D

A

C

D

q:1 q:2 q:3 q:4p:1 p:2 p:3 p:4

Figure 15: New intera
tion dete
ted

In Figure 15

7

the daughters' external feature stru
tures have been expanded

in pla
e. We
opied up the �rst level of ea
h of the alternative feature stru
tures

into the
orresponding daughter feature stru
ture and pushed the
ontexted

lazy
opy links down one level. Noti
e that in the right daughter we have a

single feature stru
ture that has both a C feature and a D feature. This is

orre
t, be
ause the C feature only has values in the q:1 and q:2
ontexts, and

6

We use this notation to allow the
ontext variables to have more than two values. It is

logi
ally equivalent to de�ne p:1 = r^ s, p:2 = r^:s, p:3 = :r^ t, and p:4 = :r^:t, where

s only takes a value when r is TRUE, and t only takes a value when :r is TRUE.

7

The
ontexts annotate the disjun
tive lazy
opy links, not the feature stru
tures. To avoid

lutter ea
h
ontext in the �gure labels two lazy links.

20

the D feature only has values in the q:3 and q:4
ontexts. Having expanded the

attributes in pla
e in the mother's internal solution, we
ontinued the uni�
ation

and noti
e a possible intera
tion under the A attribute, shown in bold.

A +

B 1

A +

B 2

A +

B 3

A -

B 4

A +

C +

A +

C -

A +

D +

A +

D -

q:1 q:2 q:3 q:4p:1 p:2 p:3 p:4

A

C

D

+

C

B

A

D

TRUE +

p:4 - nogood(p:4)

A

B

 p:1∨p:2∨p:3 +

p:4 -

Figure 16: Nogood asserted

In Figure 16 we expand the A attribute of both external daughter feature

stru
tures and determine that A=+ when p:1 or p:2 or p:3 is TRUE, and A=-

when p:4 is TRUE for the left daughter, and that A=+ in every
ontext for the

right daughter. Copying this information up into the mother's internal feature

stru
ture, we �nd that A=+ in the TRUE
ontext

8

and that A=- when p:4 is

TRUE. Sin
e A
annot be plus and minus at the same time, we assert p:4 as a

nogood.

5.3 Solving the Nogood Database

After we have done all of the uni�
ations, we still need to �nd ways of assigning

values to propositional variables that avoid the nogoods in the nogood databases.

The
ase above is fairly simple: we throw out p:4, and we are left with (p:1 _

p:2 _ p:3)^ (q:1 _ q:2 _ q:3 _ q:4). Another
ase that is handled fairly simply

is when there are no nogoods at all. In this
ase, we
an freely
hoose any value

for ea
h propositional variable and we are guaranteed to have a solution.

In more
ompli
ated
ases, we may have nogoods involving
onjun
tions of

propositional variables s
attered all over the
hart. This
an happen even in

ontext-free equivalent uni�
ation grammars be
ause of things like subje
t-verb

agreement and unsatis�ed sub
ategorization frames. In these more
ompli
ated

ases, we
annot use simple te
hniques like those des
ribed above to determine

what are the valid solutions. Instead, we need to enumerate possible assignments

of values to propostional variables and test ea
h set of assignments against

8

A=+ is in the TRUE
ontext be
ause of the rule that (P ! �)^(Q! �)
an be repla
ed

by (P _Q)! �. In this
ase, TRUE disjoined with anything is TRUE.

21

the nogoods to determine whi
h assignments are good. One way to do this is

to gather all of the nogoods together and treat the nogoods and variables as

a giant boolean satisfa
tion problem. Unfortunately, this
an produ
e O(n

3

)

nogoods over O(n

3

) propositional variables, even if the grammar is
ontext-free

equivalent. Sin
e the boolean satisfa
tion problem is NP
omplete, it
ould take

O(2

n

3

) time to solve this problem (unless P=NP).

What we really want to do is to solve the nogoods lo
ally, within the internal

feature stru
tures that they o

ur. If the grammar is
ontext-free equivalent,

then the number of nogoods that ea
h internal feature stru
ture
an have will be

bounded. This means that the boolean satisfa
tion problem will be bounded. We

may end up with O(n

3

) boolean satisfa
tion problems, but if ea
h is bounded,

the overall pro
ess will still be
ubi
.

Just solving the nogoods lo
ally is not enough, however. This is be
ause the

ontexts of the fa
ts that are
opied up from the external feature stru
tures of

the daughters
an be
ompli
ated boolean expressions that involve propositional

variables used by des
endents of the daughter
onstituents. In the worst
ase,

some of these expressions
an have a size proportional to the
hart up to that

point.

The key insight that lets us solve the lo
al nogoods in a bounded amount of

time is that although the
ontexts of the
opied fa
ts
an be arbitrarily
om-

pli
ated, there are only a bounded number of
ontexts for ea
h internal feature

stru
ture if the grammar is
ontext-free equivalent (be
ause only a bounded

number of fa
ts are
opied). We take advantage of this insight by introdu
ing

a new propositional variable for ea
h
ontext expression when a
ontext are

opied from an external feature stru
ture into an internal feature stru
ture. We

all these variables opaque variables sin
e their internal stru
ture is not available

at the higher level

9

.

Making the
ontexts opaque does not make them independent. In general,

there may be
ompli
ated dependen
ies between the opaque variables that will

have to be taken a

ount of when solving the nogood database asso
iated with an

internal feature stru
ture. To do this, we �rst
olle
t all of the opaque variables

that were imported from ea
h daughter
onstituent. We then give ea
h daughter

the opaque variables that were imported from it, and request that the opaque

variables be solved for the assignments of TRUE and FALSE to the variables

that satisfy the daughter's nogoods. The
olle
tion of opaque variables and their

solutions are
a
hed on the daughter
onstituent in
ase other
onsumers need

the same information. If both daughters have solutions, we �lter these solutions

by the lo
al nogoods. If there are still solutions left, we take the
ross produ
t of

the solutions and �lter the
ross produ
t solutions by the lo
al nogoods. If the

onstituent has multiple internal solutions (one for ea
h subtree used to build

the
onstituent), then ea
h internal feature stru
ture is assigned a
ontext and

the
ontext is added to ea
h of its solutions.

9

In pra
ti
e we make
ontexts opaque by wrapping them in an opaque wrapper when they

are imported by a
onsumer. We do the wrapping after a
ontext is imported instead of before

so that we
an asso
iate information with the wrapper that is unique to the
onsumer without

worrying about
ross-talk between
onsumers.

22

Finally, we need to re
ast these internal solutions as solutions to the opaque

variables exported by the external feature stru
ture of the mother. We do this by

assigning truth values to the internal solutions one at a time, and then evaluating

ea
h opaque variable in an exported set to see what truth value it evaluates to

(there may be several exported sets of variables be
ause di�erent
onsumers

may import di�erent sets of fa
ts). The set of values represents a solution to

the exported set of variables. In general, ea
h solution to an exported set will

be represented by several internal solutions, sin
e there will be O(n) internal

solutions but the number of external variables (and hen
e solutions) must be

bounded if the grammar is
ontext-free equivalent. This is analogous to there

being multiple subtrees for ea
h
onstituent in a
ontext-free parse forest, where

the \
onstituent" in our
ase is some set of feature-value
ombinations.

A +

B 1

A +

B 2

A +

B 3

A -

B 4

A +

C +

A +

C -

A +

D +

A +

D -

q:1 q:2 q:3 q:4p:1 p:2 p:3 p:4

A

C

D

+

nogood(O2)

p:1 p:2 p:3 p:4

A

B

 O1 +

O2 -

O1∧¬O2 O2∧¬O1

q:1 q:2 q:3 q:4

TRUE

O1∧¬O2 O2∧¬O1

C

B

A

D

TRUE +

O2 -

TRUE

Figure 17: Solutions
onstru
ted

We show how this works with Figure 17. The left daughter has two opaque

variables, O1 and O2, and the right daughter has none (be
ause no
ontexts are

exported). This produ
es two external solutions for the left daughter: O1^:O2

and O2^:O1

10

. The O1^:O2 solution represents three internal solutions: p:1,

p:2, and p:3,
orresponding to the
ases where A=+. The O2 ^ :O1 solution

represents one internal solution: p:4,
orresponding to the
ase where A=-. The

right daughter has one external solution in the TRUE
ontext whi
h represents

four internal solutions. The solutions to the mother
onstituent are
onstru
ted

by taking the
ross-produ
t of the external daughter solutions and �ltering by

10

O1 ^ O2 and :O1 ^ :O2 are ruled out by the impli
it disjointness of p:1, p:2, p:3, and

p:4.

23

the lo
al nogood O2. This produ
es one internal solution, O1 ^ :O2, whi
h is

assigned to the external solution TRUE (sin
e we are assuming that no
ontexts

were exported from the mother's external feature stru
ture). The internal so-

lutions keep tra
k of the daughter solutions that they
ame from so that the

solutions
an be enumerated easily.

5.4 Reading out solutions

Solutions are read out of a lazy
ontexted uni�
ation
hart by �rst reading

out a solution to the propositional variables, and then using the propositional

variables to read out a
onstituent stru
ture and feature stru
ture. We begin

reading out a solution to the propositional variables by pi
king an external

solution for the top
onstituent (the root
onstituent that spans the senten
e).

Ea
h external solution may have multiple internal solutions. We freely
hoose

one. Internal solutions usually point to two external solutions, one for ea
h

daughter
onstituent. For ea
h external solution, we freely
hoose an internal

solution. We
ontinue this pro
ess re
ursively until we rea
h internal solutions

that do not point to external solutions (these
orrespond to the leaves of the

parse tree).

On
e we have a solution to the propositional variables, we
an use this

solution to extra
t a
onstituent stru
ture and a feature stru
ture. We start

from the top
onstituent. If there are multiple subtrees, we pi
k the one whose

internal feature stru
ture's
ontext evaluates to TRUE in this solution. Also,

we pi
k the parts of the external and internal feature stru
tures whose
ontexts

evaluate to TRUE. We re
ursively apply the same pro
ess to ea
h of the subtree's

daughters. When we are done, we will have a
omplete
onstituent stru
ture and

a
onsistent feature stru
ture.

5.5 Computational
omplexity

The lazy
ontexted uni�
ation algorithm is worst-
ase polynomial ex
ept for

the solution
onstru
tion phase. In the worst
ase, the number of solutions to

a set of opaque variables is exponential in the number of opaque variables.

However, if the number of opaque variables is bounded by the grammar, this

exponential be
omes a grammar
onstant. So the lazy
ontexted uni�
ation

algorithm is O(Gn

3

) unless the number of opaque variables per subtree
an

grow as a fun
tion of n, the length of the senten
e. This
an happen in three

di�erent ways:

1. The number of attributes at a parti
ular level grows as a fun
tion of n.

2. The number of values that an attribute
an have grows as a fun
tion of n.

3. The depth of attributes grows as a fun
tion of n.

In general, the number of attributes and values that
an appear is determined

in advan
e by the grammar. The depth of attributes
an only grow as a fun
tion

24

of n if there are zipper uni�
ations. One
on
lusion from this is that if there

are no zipper uni�
ations and long-distan
e dependen
ies are handled by slash

ategories and the number of values in the slash
ategories is bounded either

in theory or in pra
ti
e, then the parser will still parse in
ubi
 time with that

grammar.

6 Experimental Results

The algorithm for lazy
ontexted uni�
ation des
ribed above is used in the

parser and generator of the Xerox Linguisti
 Environment (XLE

11

). XLE, in

turn, has been used as part of the ParGram proje
t

12

to develop parallel LFG

grammars of English, Fren
h, and German (among other languages). At one

point, these grammar were all used to parse parallel versions of a software man-

ual for the HomeCentre, a Xerox produ
t. The senten
es (or senten
e fragments)

range from 1 word to 50 words long, with the average being about 9 words. If we

plot the number of subtrees pro
essed per senten
e against the number of se
-

onds that it takes to parse a senten
e

13

, then we
an see whether lazy
ontexted

uni�
ation is automati
ally taking advantage of
ontext-freeness. The plots for

English(Figure 18), Fren
h(Figure 19), and German(Figure 20)
an be found at

the end of the paper.

If we do a regression test on the statisti
s for the English HomeCentre
orpus,

we �nd that 75 per
ent of the varian
e in time is explained by the number of

subtrees. Most of the outliers are on senten
es that have an intera
tion between

a long distan
e dependen
y and
oordination. This sort of intera
tion in
reases

the amount of
opying required, whi
h in
reases the e�e
tive grammar
onstant

for these senten
es. For the Fren
h
orpus, 79 per
ent of the varian
e in time is

explained by the number of subtrees. Finally, 51 per
ent of the varian
e in time

is explained by the number of subtrees for the German
orpus. This is probably

be
ause German allows mu
h more s
rambling than English or Fren
h, and so

more information must be
opied up.

The English grammar
an also be used to parse the Wall Street Journal

orpus from the Penn treebank. The statisti
s for se
tion 02 of this
orpus are

shown in Figure 21. About 2 per
ent of the senten
es fail to parse within 60

se
onds and are ex
luded from the statisti
s. For some of these senten
es, the

grammar
onstant be
omes so large that the senten
es are e�e
tively unparsable.

However, it may be that by writing the grammar more
arefully XLE will be

able to parse the senten
es in a reasonable amount of time. If we ex
lude these

senten
es, we �nd that 78 per
ent of the varian
e in time is explained by the

number of subtrees.

11

http://www.par
.xerox.
om/istl/groups/nltt/xle

12

http://www.par
.xerox.
om/istl/groups/nltt/pargram

13

using a 360MHz pro
essor on a Sun Ultra 60

25

7 Dealing with In
ompleteness

A number of grammati
al theories have a me
hanism for spe
ifying that
ertain

analyses are in
omplete. For instan
e, Fun
tional Uni�
ation Grammar has an

ANY value that uni�es with anything and whi
h must not be present in a valid

(i.e.
omplete) solution. As another example, LFG requires that ea
h argument

of a predi
ate have a predi
ate itself, plus it allows the grammar writer to spe
ify

that a feature must be assigned any value or some parti
ular value in order for

the feature stru
ture to be
omplete. These me
hanisms are useful for requiring

that a predi
ate be
omplete (i.e. saying why John threw is not a valid senten
e

without a thrown obje
t), and for other things (like requiring that all senten
es

be tensed).

One problem with dete
ting in
ompleteness is that we may not know whether

a feature stru
ture is in
omplete until we have �nished pro
essing the entire sen-

ten
e. For instan
e, the senten
e John threw is perfe
tly valid if it is embedded

in a relative
lause: The ball that [John threw℄ is lost. This means that in
om-

plete solutions
annot be pruned early. It also means that we must examine an

entire feature stru
ture in order to determine whether or not it is in
omplete.

On the surfa
e, this would seem to imply that we would have to look at every

solution one at a time to see whi
h ones are in
omplete. But this results in an

exponential system, sin
e there
an be an exponential number of solutions, even

when the grammar is
ontext-free equivalent.

However, there is a fairly simple way of dete
ting in
ompletenesses lo
ally.

First of all, it is obvious that if a feature stru
ture has something like the *ANY*

value in it, and the feature that
ontains it has never been
opied up, then the

feature stru
ture that
ontains the *ANY* valued feature is in
omplete. This

observation allows us to lo
ally de
lare the feature stru
ture in
omplete, and

add a
orresponding nogood to the database.

If an *ANY* value has been
opied up by all of the
onsumers of the
on-

stituent that it is part of, then this *ANY* value will be either satis�ed or not

satis�ed at some other level, and there is no need to do any further work at this

one's level.

A more
ompli
ated
ase is when an *ANY* value has been
opied up by

some but not all of the
onsumers of its
onstituent. In this
ase, the *ANY*s

that have been
opied up will be dealt with at a di�erent level, but not the ones

that haven't. To solve this, all that we need to do is assert the
ontext of the

ANY to be nogood at the level of the
onsumers that have not
opied up the

ANY.

In order to be able to tell whether something has been
opied, we require

that whenever a lazy
opy link is expanded, a forward
opy link is added to

the
opied feature stru
ture. That way we
an determine whether a feature

stru
ture has been
opied at all. Also, we
an
ompare the forward links with

the list of
onsumers to �nd out whether all of the
onsumers have
opied the

ANY value, and if not, whi
h ones should have a nogood asserted on them.

This adds to the
onstant overhead of doing uni�
ation, but is justi�ed sin
e it

helps us to avoid an exponential
ost.

26

Figure 18: English HomeCentre
orpus

8 Con
lusion

In this paper we have shown that the standard algorithms for parsing uni�
ation-

based grammars
an run in exponential time even when the grammars are

ontext-free equivalent. Using this as our starting point, we have introdu
ed

two di�erent algorithms for automati
ally taking advantage of simple
ontext-

freeness in uni�
ation-based grammars. The essen
e of both of these algorithms

is to implement lazy
opying of a data stru
ture that pa
ks alternative analyses

together. Finally, we have shown that these te
hniques are useful for industrial-

strength grammars even when the grammars may not be
ompletely
ontext-free

equivalent. This allows us to write grammars using an expressive formalism with-

out having to sa
ri�
e performan
e ex
ept in the
ase where non-
ontext-free

phenomena are being analysed.

27

Figure 19: Fren
h HomeCentre
orpus

Figure 20: German HomeCentre
orpus

28

Figure 21: se
tion 02 of the WSJ

29

Referen
es

[1℄ Barton, G. Edward; Berwi
k, Robert C.; and Ristad, Eri
 Sven. (1987).

Computational Complexity and Natural Language. MIT Press, Cambridge,

Mass.

[2℄ Bear, John, and Hobbs, Jerry R. (1988). \Lo
alizing expression of ambigu-

ity." In Se
ond Conferen
e on Applied Natural Language Pro
essing, pages

235{241.

[3℄ Bla
kburn, Patri
k, and Spaan, Edith. (1993). \De
idability and Unde
id-

ability in stand-alone Feature Logi
s." In Pro
eedings of the Sixth Confer-

en
e of the EACL, Utre
ht, The Netherlands, pages 30{36.

[4℄ de Kleer, Johan. (1986). \An Assumption-based TMS". Arti�
ial Intelli-

gen
e, 28:127{162.

[5℄ D�orre, Jo
hen, and Eisele, Andreas. (1990). \Feature logi
 with disjun
tive

uni�
ation." In Pro
eedings, 13th International Conferen
e on Computa-

tional Linguisti
s (COLING 90), Helsinki, Finland, pages 100{105.

[6℄ Earley, J. (1970). \An eÆ
ient
ontext-free algorithm." Communi
ations

of the ACM, 13:94{102.

[7℄ Gazdar, Gerald; Klein, Ewan; Pullum, Geo�rey; and Sag, Ivan. (1985).

Generalized Phrase Stru
ture Grammar. Harvard University Press, Cam-

bridge, Mass.

[8℄ Godden, K. (1990). \Lazy uni�
ation." In Pro
eedings of the 28th Annual

Meeting of the ACL, pages 180{187.

[9℄ Johnson, Mark. (1988). Attribute-Value Logi
 and the Theory of Grammar,

volume 16 of CSLI Le
ture Notes. CSLI, Stanford.

[10℄ Kaplan, Ronald M., and Bresnan, Joan. (1982). \Lexi
al-Fun
tional Gram-

mar: A formal system for grammati
al representation." In Joan Bresnan,

editor, The Mental Representation of Grammati
al Relations, pages 173{

281. MIT Press, Cambridge, Mass.

[11℄ Karttunen, Lauri. (1984). \Features and Values". In Pro
eedings of COL-

ING 1984, Stanford, Calif.

[12℄ Karttunen, Lauri. (1986). \D-PATR: A development environment for

uni�
ation-based grammars." In Pro
eedings, 11th International Confer-

en
e on Computational Linguisti
s (COLING 86), Bonn, Germany, pages

74{80.

[13℄ Kay, Martin. (1979). \Fun
tional Grammar." In C. Chiarello et al., editors,

Pro
eedings of the 5th Annual Meeting of the Berkeley Linguisti
 So
iety

Berkeley, California, pages 142{158.

30

[14℄ Knight, Kevin. (1989). \Uni�
ation: A multidis
iplinary survey." ACM

Computing Surveys, 21(1):93{124.

[15℄ Lari, K. and Young, S. J. (1990). \The Estimation of Sto
hasti
 Context-

Free Grammars Using the Inside-Outside Algorithm" Computer Spee
h and

Language, 4:35-56.

[16℄ Maxwell, John T. III, and Kaplan, Ronald M. (1989). \An overview of dis-

jun
tive
onstraint satisfa
tion." In Pro
eedings of the International Work-

shop on Parsing Te
hnologies, pages 18{27. (Also published as \A method

for disjun
tive
onstraint satisfa
tion" in M. Tomita, editor, Current Issues

in Parsing Te
hnology, Kluwer A
ademi
 Publishers, 1991).

[17℄ Maxwell, John T. III, and Kaplan, Ronald M. (1993). \The interfa
e

between phrasal and fun
tional
onstraints." Computational Linguisti
s,

19(3).

[18℄ Pereira, Fernando C. N., and Warren, David H. D. (1980). \De�nite
lause

grammars for language analysis - a survey of the formalism and a
ompari-

son with augmented transition networks." Arti�
ial Intelligen
e, 13(3):231{

278.

[19℄ Pollard, Carl, and Sag, Ivan. (1987). Information-Based Syntax and Se-

manti
s, volume 13 of CSLI Le
ture Notes. CSLI, Stanford.

[20℄ Rogers, James. (1994). \Capturing CFLs with Tree Adjoining Grammars".

In Pro
eedings of the 32nd Annual Meeting of the ACL, Las Cru
es, New

Mexi
o, pages 155{162.

[21℄ S
habes, Yves, and Waters, Ri
hard C., (1993). \Lexi
alized Context-Free

Grammars". In Pro
eedings of the 31st Annual Meeting of the ACL, Colum-

bus, Ohio, pages 121{129.

[22℄ Sheil, Beau. (1976). \Observations on
ontext-free parsing." In Statisti
al

Methods in Linguisti
s, 1976:71-109.

[23℄ Tomabe
hi, Hideto. (1991). \Quasi-destru
tive graph uni�
ation." In Se
-

ond International Workshop on Parsing Te
hnology, pages 164{171.

[24℄ Younger, D. H. (1967). \Re
ognition and parsing of
ontext-free languages

in time n

3

." Information and Control, 10:189{208.

31

