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Abstract

The development of large coverage, rich unification- (constraint-) based
grammar resources is very time consuming, expensive and requires lots of
linguistic expertise. In this paper we report initial results on a new methodol-
ogy that attempts to partially automate the development of substantial parts of
large coverage, rich unification- (constraint-) based grammar resources. The
method is based on a treebank resource (in our case Penn-II) and an automatic
f-structure annotation algorithm that annotates treebank trees with proto-f-
structure information. Based on these, we present two parsing architectures:
in our pipeline architecture we first extract a PCFG from the treebank follow-
ing the method of [Charniak, 1993; Charniak, 1996], use the PCFG to parse
new text, automatically annotate the resulting trees with our f-structure an-
notation algorithm and generate proto-f-structures. By contrast, in the inte-
grated architecture we first automatically annotate the treebank trees with f-
structure information and then extract an annotated PCFG (A-PCFG) from
the treebank. We then use the A-PCFG to parse new text to generate proto-f-
structures. Currently our best parsers achieve more than 81% f-score on the
2400 trees in section 23 of the Penn-II treebank and more than 60% f-score on
gold-standard proto-f-structures for 105 randomly selected trees from section
23.

1 Introduction

The development of large coverage, rich unification- (constraint-) based grammar
resources is very time consuming, expensive and requires considerable linguistic
expertise [Butt et al, 1999; Riezler et al, 2002].

In this paper we report initial results on a new methodology that attempts to
partially automate the development of substantial parts of large coverage, rich
unification- (constraint-) based grammar resources.

A large number of researchers (cf. [Charniak, 1996; Collins, 1999; Hocken-
maier and Steedman, 2002]) have developed parsing systems based on the Penn-II
[Marcus et al, 1994] treebank resource but to the best of our knowledge, to date,
none of them have attempted to semi-automatically derive large coverage, rich uni-
fication (constraint) grammar resources.

Our method is based on the Penn-II treebank resource and an automatic Lexical-
Functional Grammar [Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001]
f-structure annotation algorithm that annotates treebank trees with proto-f-structure
information.

Based on these, we present two parsing architectures: in our pipeline architec-
ture we first extract a PCFG from the treebank following the method of [Charniak,
1993; Charniak, 1996], use the PCFG to parse new text, automatically annotate



the resulting trees with our f-structure annotation algorithm and generate proto-f-
structures. By contrast, in the integrated architecture we first automatically anno-
tate the treebank trees with f-structure information and then extract an annotated
PCFG (A-PCFG) from the treebank. We then use the A-PCFG to parse new text to
generate proto-f-structures.

The paper is structured as follows: first, we briefly describe the automatic f-
structure annotation algorithm and proto-f-structure representations. Second, we
introduce our two parsing architectures: the pipeline model and the integrated
model. Third, we evaluate our approaches quantitatively and qualitatively in terms
of f-structure fragmentation and precision and recall results against trees and man-
ually encoded gold standard f-structures. We also compare our results with a PCFG
resulting from a parent transformation as discussed in [Johnson, 1999] and we con-
duct a number of thresholding grammar compaction experiments [Krotov et al,
1998]. We briefly compare our approach with that of [Riezler et al, 2002]. Fourth,
we outline further work on “proper” (rather than “proto-”) f-structures and finally,
we summarise and conclude.

2 An Automatic F-Structure Annotation Algorithm

In this section we describe our automatic f-structure annotation algorithm by means
of an example. Consider the following Penn-II treebank tree:

(S (NP-SBJ (DT The)
(NN investment)
(NN community))

(, ,)
(PP (IN for)

(NP (CD one)))
(, ,)
(VP (VBZ has)

(VP (VBN been)
(VP (VBG anticipating)

(NP (DT a)
(JJ speedy)
(NN resolution)))))

(. .))

In LFG this tree would be associated with an f-structure of the following form
representing abstract syntactic information approximating to predicate-argument-
modifier (or: rich dependency-) structure:1

1Note that our f-structures are more hierarchical with XCOMP functions for temporal and aspec-
tual auxiliaries than e.g. the f-structures given in [Butt et al, 1999]. The repetition of the subject NP



subj : spec : det : pred : the
headmod : 1 : num : sg

pers : 3
pred : investment

num : sg
pers : 3
pred : community

adjunct : 1 : obj : pred : one
pred : for

xcomp : subj : spec : det : pred : the
headmod : 1 : num : sg

pers : 3
pred : investment

num : sg
pers : 3
pred : community

xcomp : subj : spec : det : pred : the
headmod : 1 : num : sg

pers : 3
pred : investment

num : sg
pers : 3
pred : community

obj : spec : det : pred : a
adjunct : 2 : pred : speedy
pred : resolution
num : sg
pers : 3

participle : pres
pred : anticipate

pred : be
tense : past

pred : have
tense : pres

F-structures are associated with strings and their parse trees (c-structures) in
terms of annotating nodes in parse trees (and hence the corresponding CFG rules)
with f-structure annotations (in simple cases, attribute value structure equations;
more generally, expressions in a full equality logic including disjunction, negation
etc. [Johnson, 1988]). The f-structure in our example would be induced by the fol-
lowing annotated CFG rules

is due to a reentrancy ( SUBJ = XCOMP SUBJ) annotation in the VP rule.



S NP-SBJ PP VP
subj= adjn =

NP-SBJ DT NN NN
spec= headmod =

PP IN NP
= obj=

NP CD
=

VP VBZ VP
= xcomp=

subj= subj

VP VBN VP
= xcomp=

subj= subj

VP VBG NP
= obj=

NP DT JJ NN
spec= adjn =

together with equations resulting from lexical entries.
The question is how can we construct such an LFG grammar? Traditionally,

LFG (and HPSG [Pollard and Sag, 1994]) grammatical resources have been con-
structed manually. For large coverage and rich grammars that scale to the Penn-II
treebank data (about 1 million words of WSJ text) [Butt et al, 1999; Riezler et al,
2002], this can easily accumulate to a person decade.

Is there any way of (at least partially) automating the construction of large
coverage, rich, unification-based grammatical resources? From the large litera-
ture on probabilistic parsing it is clear that given a treebank we can easily extract
a probabilistic CFG (following the method of [Charniak, 1993; Charniak, 1996].
Indeed, such grammars are at the heart of many probabilistic parsing approaches
such as [Charniak, 1993; Charniak, 1996; Collins, 1999; Hockenmaier and Steed-
man, 2002], to mention but a few. However, to the best of our knowledge, to date,
there have been no attempts at semi-automatically deriving large coverage, rich
unification- (constraint-) based grammar resources.

In order to obtain a unification grammar, we need the functional annotations (the
f-structure constraints) in addition to the CFG rules. Of course, theoretically, we



could annotate the CFG rules extracted from a treebank manually. For the Penn-II
treebank, however, we would be required to manually annotate more than 19,000
extracted rule types resulting in at least 2 person years of annotation work (on a
very conservative estimate with 10 minutes annotation time for each rule type and
no time budgeted for testing, comparison, improvement and verification cycles).

2.1 Previous Work

A number of researchers have addressed automatic functional structure identifica-
tion or annotation in CFG trees or, alternatively, direct transformation of trees into
functional structures.

To date, we can distinguish three different types of automatic f-structure anno-
tation architectures:2

annotation algorithms,

regular expression based annotation,

flat, set-based tree description rewriting.

All approaches are based on exploiting categorial and configurational informa-
tion encoded in trees. Some also exploit the Penn-II functional annotations.3

Annotation algorithms come in one of two forms. They may

directly (recursively) transduce a treebank tree into an f-structure – such an al-
gorithm would more appropriately be referred to as a tree to f-structure trans-
duction algorithm;

indirectly (recursively) annotate CFG treebank trees with f-structure annota-
tions from which an f-structure can be computed by a constraint solver.

As was recently pointed out to us by Shalom Lappin (p.c.), the earliest approach
to automatically identify SUBJ, OBJ etc. nodes in CFG trees structures is probably
[Lappin et al, 1989]. Their algorithm identifies nodes in CFG trees (output of the
PET parser) corresponding to grammatical functions to facilitate the statement of

2These have all been developed within an LFG framework and although we refer to them as auto-
matic f-structure annotation architectures, they could equally well be used to annotate treebanks with
e.g. HPSG typed feature-structures [Pollard and Sag, 1994] or Quasi-Logical Form (QLF) [Liakata
and Pulman, 2002] annotations.

3Note that apart from SBJ and LGS, functional annotations or tags in the Penn-II treebank do not
provide LFG type predicate-argument style annotations but semantically classify e.g. modifying PP
constituents as TMP (temporal), LOC (locative) etc. modifiers.



transfer rules in a machine translation project. It does not construct f-structures (or
other attribute-value structures) although it could easily form the basis of such an
algorithm for trees generated by the PET parser.

The first direct automatic f-structure annotation algorithm we are aware of is
unpublished work by Ron Kaplan (p.c.) from 1996. Kaplan worked on automati-
cally generating f-structures from the ATIS corpus to generate data for LFG-DOP
applications. The approach implements a direct tree to f-structure transduction al-
gorithm, which walks through the tree looking for different configurations (e.g. NP
under S, 2nd NP under VP, etc.) and “folds” or “bends” the tree into the correspond-
ing f-structure.

A regular expression-based, indirect automatic f-structure annotation method-
ology is described in [Sadler et al, 2000]. The idea is simple: first, the CFG rule set
is extracted from the treebank (fragment); second, regular-expression based anno-
tation principles are defined; third, the principles are automatically applied to the
rule set to generate an annotated rule set; fourth, the annotated rules are automati-
cally matched against the original treebank trees and thereby f-structures are gen-
erated for these trees. Since the annotation principles factor out linguistic gener-
alisations, their number is much smaller than the number of CFG treebank rules.
In fact, the regular expression-based f-structure annotation principles constitute a
principle-based LFG c-structure/f-structure interface.

In a companion paper, [Frank, 2000] develops an automatic annotation method
that in many ways is a generalisation of the regular expression-based annotation
method. The idea is again simple: trees are translated into a flat set representa-
tion format in a tree description language and annotation principles are defined in
terms of rules employing a rewriting system originally developed for transfer-based
machine translation architectures. In contrast to [Sadler et al, 2000] which applies
only to “local” CFG rule contexts, [Frank, 2000] can consider arbitrary tree frag-
ments. Secondly, it can be used to define both order-dependent cascaded and order-
independent annotation systems. [Liakata and Pulman, 2002] have recently devel-
oped a similar approach to map Penn-II trees to QLFs.

The approaches detailed in [Sadler et al, 2000; Frank, 2000] and compared in
[Frank et al, 2002] are proof-of concept and operate on small subsets of the AP and
Susanne corpora.4

2.2 A New Automatic Annotation Algorithm

In our more recent research [Cahill et al, 2002a; Cahill et al, 2002b], we have devel-
oped an algorithmic indirect annotation method for the 49.000 parse annotated

4This is not to say that these approaches cannot be scaled to a complete treebank!



strings in the WSJ section of the Penn-II treebank.
The algorithm is implemented as a recursive procedure (in Java) which anno-

tates Penn-II treebank tree nodes with f-structure information. The annotations de-
scribe what we call “proto-f-structures”. Proto-f-structures

encode basic predicate-argument-modifier structures;

interpret constituents locally (i.e. do not resolve long-distance dependencies
or “movement” phenomena encoded as traces in the Penn-II trees);

may be partial or unconnected (the method is robust: in case of missing an-
notations a sentence may be associated with two or more unconnected f-
structure fragments rather than a single complete f-structure).

Even though the method is encoded in the form of an annotation algorithm, we
did not want to completely hardwire the linguistic basis for the annotation into the
procedure. In order to support maintainability and reusability of the annotation al-
gorithm and the linguistic information encoded within, the algorithm is designed in
terms of three main components thatare applied in sequence:

L/R Context APs Coordination APs Catch-All APs

L/R Context Annotation Principles are based on a tripartition of the daughters
of each local tree (of depth one, i.e. of CFG rules) into a prefix, head and suffix
sequence. We automatically transform the Penn-II trees into head-lexicalised trees
by adapting the rules of [Magerman, 1994; Collins, 1999]. For each LHS in the
Penn-II CFG rule types we construct an annotation matrix. The matrix encodes in-
formation on how to annotate CFG node types in the left (prefix) and right (suffix)
context. Table 1 gives a simplified matrix for NP rules.

NP left context head right context

subcat DT,CD: spec= NN,NNS,NP: = .. .
ADJP: adjn SBAR,VP: relmod=

non-sub NN,NNS,NP: headmod PP: adjn
. . . NN,NNS,NP: app=

Table 1: Simplified, partial annotation matrix for NP rules

For each LHS category, the annotation matrices are populated by analysing the
most frequent rules types such that the token occurrence of the rule types in the
corpus covers at least 85%. To give an example, this means that instead of looking



at 6,000 NP rule types in the Penn-II corpus, we only look at the 102 most frequent
ones to populate the NP annotation matrix.

To keep L/R context annotation principles simple and perspicuous, they only
apply if the local tree does not contain coordination. Like and unlike coordinate
structures are treated by the second component of our annotation algorithm, Finally,
the algorithm has a catch-all and clean-up component. Lexical information is sup-
plied via macros associated with each pre-terminal tag type.

The automatic annotation algorithm generates the following annotations. The
annotations are collected, sent to a constraint solver and the f-structure shown be-
fore is generated.

(S
(NP-SBJ[up-subj=down]

(DT[up-spec:det=down] The[up-pred=’the’])
(NN[down-elem=up:headmod]

investment[up-pred=’investment’,up-num=sg,up-
pers=3])

(NN[up=down]
community[up-pred=’community’,up-num=sg,up-

pers=3]))
(, ,)
(PP[down-elem=up:adjunct]

(IN[up=down] for[up-pred=’for’])
(NP[up-obj=down]

(CD[up=down] one[up-pred=’one’])))
(, ,)
(VP[up=down]

(VBZ[up=down]
has[up-pred=’have’,up-tense=pres])

(VP[up-xcomp=down,up-subj=down:subj]
(VBN[up=down] been[up-pred=’been’,up-tense=past])
(VP[up-xcomp=down,up-subj=down:subj]

(VBG[up=down]
anticipating[up-pred=’anticipate’,up-

participle=pres])
(NP[up-obj=down]

(DT[up-spec:det=down] a[up-pred=’a’])
(JJ[down-elem=up:adjunct] speedy[up-

pred=’speedy’])
(NN[up=down]

resolution[up-pred=’resolution’,up-
num=sg,up-pers=3])))))

(. .))



Annotation coverage is measured in terms of f-structure fragmentation. The
method is robust and in case of missing annotations may deliver unconnected f-
structure fragments for a tree. Annotation accuracy is measured against a manually
constructed gold-standard set f-structures for 105 trees randomly selected form Sec-
tion 23 of the Penn-II treebank.5

# f-str. [Cahill et al, 2002a] [Cahill et al, 2002b] current
frags # sent percent # sent percent # sent percent

0 2701 5.576 166 0.343 120 0.25
1 38188 78.836 46802 96.648 48304 99.75
2 4954 10.227 387 0.799 0 0
3 1616 3.336 503 1.039 0 0
4 616 1.271 465 0.960 0 0
5 197 0.407 70 0.145 0 0
6 111 0.229 17 0.035 0 0
7 34 0.070 8 0.017 0 0
8 12 0.024 6 0.012 0 0
9 6 0.012 0 0 0 0
10 4 0.008 0 0 0 0
11 1 0.002 0 0 0 0

Table 2: Automatic proto-f-structure annotation fragmentation results

Table 2 shows the progress we have made over the last 6 months. Initially,
78.836% of the trees in the Penn-II treebank were associated with a single com-
plete proto-f-structure with quite a number of trees having more than one proto-f-
structure fragments and 2701 trees failing to get an f-structure because of inconsis-
tent annotations. Currently our automatic annotation algorithm associates 99.75%
of the trees with a complete (unfragmented) proto-f-structure while 120 trees do not
receive any proto-f-structure.

Table 3 reports the quality of the f-structures generated in terms of precision
and recall against our manually encoded gold-standard f-structures. We currently
achieve P&R results of 0.94 and 0.87 for preds-only proto-f-structures.6

5Our gold-standard f-structures are available for inspection at
http://www.computing.dcu.ie/˜away/Treebank/treebank.html.

6Preds-only f-structures only show paths ending in a PRED feature.



[Cahill et al, 2002b] current
All annotations Preds-only All annotations Preds-only

Precision 0.95 0.94 0.93 0.94
Recall 0.94 0.89 0.90 0.87

Table 3: Precision and Recall on descriptions of proto-f-structures

3 Two Parsing Architectures

Once we have the annotation algorithm and the annotated version of the Penn-II
treebank, we can parse new text into trees and f-structures in two ways:

In our pipeline architecture we first extract a PCFG (probabilistic context free
grammar) from the unannotated version of the Penn-II treebank and use this to parse
new text. We then take the most probable tree associated with a string and send
it to our automatic annotation algorithm. The algorithm annotates the tree with f-
structure equations. We collect the equations and send them to a constraint solver
to generate an f-structure:

Treebank PCFG text Trees f-str ann. F-Str

In our integrated architecture we first annotate the Penn-II treebank trees with
f-structure information using our automatic annotation algorithm and then extract
an annotated PCFG (A-PCFG) from the annotated treebank. We treat strings con-
sisting of CFG categories followed by one or more f-structure annotations, e.g.
NP[up-subj=down], as monadic categories. The effect of this is that the rules
extracted in the A-PCFG will be different and will be associated with different prob-
abilities compared to the simple PCFG rules extracted for the pipeline model. For
instance, the A-PCFG distinguishes between subject and object NPs whereas the
PCFG does not. We then parse text with these annotated rules and pick again the
tree with the highest probability. We then collect the f-structure annotations from
this tree and send them to a constraint solver to generate an f-structure:

Treebank f-str ann. A-PCFG text A-Trees F-Str

We employ the following pre-processing steps to extract both the PCFG and the
A-PCFG from the treebank: every tree is associated with a Root category node;
we eliminate empty productions; we remove unary branches percolating daughter
category information up in the tree and finally we annotate auxiliary verbs with an
Aux category but only in the case where there is a sister VP node somewhere to the
right of the Aux node.



Our grammars are extracted from sections 01 – 21 in the WSJ part of the Penn-
II treebank and we measure our results against the held out section 23. All results
are for sentences with length less than or equal to 40. We assume correct tagging
of the roughly 2400 test sentences in section 23, i.e. we parse the tag sequences for
those sentences given by the Penn-II treebank.

Our parsing experiments are based on a Java implementation of a CYK parser.
For parsing, the grammar has to be transformed into Chomsky Normal Form (with
binary branching productions). After parsing, the output trees are retransformed
into the possibly -ary branching treebank trees without loss of information. The
parser is efficient ( ) and returns the single most probable tree.

We deliberately decided to use simple PCFG-based parsing technology in our
experiments. The reason is that we want to be able to construct a system suitable
for on-line parsing (this is not always possible with log-linear models as they may
require unpacking of ambiguities). Mathematically speaking, however, this means
that we do not use proper probability models. The reason is simple: PCFG technol-
ogy is based on independence assumptions. The probability of a tree is the product
of the probabilities of the productions in the tree (as each CFG production is as-
sumed to be independent). What can happen in our model is that the parser returns
the most probable tree but the f-structure equations generated for this tree (in the
pipeline or the integrated architecture) are inconsistent and the constraint resolver
cannot generate an f-structure. In such a case the probability mass associated with
this tree is lost. Based on our experiments this case is extremely rare (less than
0.1%) so that the advantages of our engineering approach (speed and the ability to
construct on-line applications ) outweigh the disadvantages.

In order to evaluate our parsing results, we measure precision and recall using
evalb on the 2400 trees in section 23. In order to evaluate the f-structures we mea-
sure f-structure fragmentation and precision and recall against manually encoded
f-structures for 105 randomly extracted sentences from section 23.

We conducted a number of experiments. We extracted a simple PCFG for the
pipeline model. We extracted an annotated A-PCFG for the integrated model. The
integrated model with its f-structure annotations on CFG categories allows us to
distinguish between subject and object NPs, for example, and associates different
probabilities with rules expanding such NPs. A similar effect can be achieved in
terms of a simple parent transformation on treebank trees: every daughter node re-
ceives an additional annotation involving its mother CFG category. An NP-S, e.g.,
is a an NP under S (i.e. a subject NP in English) while an NP-VP is a an NP un-
der VP (i.e. an object NP). This approach (attributed to Charniak) has been studied
extensively in [Johnson, 1999]. In our experiments we compare the parent transfor-
mation PCFG+P with our f-structure annotation pipeline and integrated approach.
Finally, we conducted a number of experiments with simple thresholding grammar



compaction techniques [Krotov et al, 1998]. Our results are summarised in the fol-
lowing tables.

Pipeline Integrated
PCFG PCFG+P A-PCFG A-PCFG+P

# Rules 19439 30026 29216 35815
F-Score Labelled 77.37 80.49 81.26 81.18

Full F-Score Unlabelled 79.89 82.56 83.16 83.08
Grammar F-Str Fragm. 95.80 95.64 94.69 94.93

F-Score Gold Stnd. 51.98 56.28 60.66 60.21
# Parses 2240 2227 2223 2207

All fractions are percentages. F-scores are calculated as
2 precision recall/(precision recall). The first row shows the number of
rules extracted for each grammar. PCFG+P is the standard PCFG with the parent
transformation and A-PCFG+P is the annotated PCFG with the parent transfor-
mation (here the functional annotations of the mother nodes do not carry over to
daughter nodes). Interestingly, PCFG+P and the automatically annotated A-PCFG
are of roughly equal size. The next two rows show labelled and unlabelled f-score
(composite precision and recall) on trees against the section 23 reference trees as
computed by evalb. The parent transfom shows a 3% advantage over the PCFG
while our A-PCFG performs slightly better with an almost 4% advantage for
labelled f-score. Interestingly, combining the parent transform with our automatic
f-structure annotation does not seem to improve results. The next row measures
f-structure fragmentation. Our current results seem to indicate that (surprisingly
perhaps) the pipeline parsing architecture outperforms the integrated model with
respect to f-structure fragmentation. The next row reports f-score results against
the hand-coded, gold-standard reference f-structures for the 105 randomly selected
trees in section 23. The results show clearly that currently the f-structures gener-
ated by the integrated model are of higher quality than the ones generated by the
pipeline model.

Pipeline Integrated
PCFG PCFG+P A-PCFG A-PCFG+P

# Rules 7906 12117 11545 13970
F-Score Labelled 76.81 79.79 80.08 80.39

Threshold 1 F-Score Unlabelled 79.41 81.92 82.09 82.30
F-Str Fragm. 96.14 93.92 94.79 95.41
F-Score Gold Stnd. 51.99 56.07 59.15 60.42
# Parses 2227 2173 2189 2115

This table reports on a simple thresholding grammar compaction experiment
with a threshold set to 1. This means that every rule that occurs only once in the



Penn-II training set is discarded from the grammar. The first row in the table shows
that this corresponds to a reduction in size of 60–70% against the original grammars
with a very small loss in coverage as indicated in the last row in the table. The
reduction in size results in a corresponding increase in parsing speed. According
to our experiments, a threshold of 1 results in an increase in speed by a factor of
6–12. To give just one example, parsing section 23 (about 2400 sentences of length
average around 20 words) takes 48.71 CPU hours with the full PCFG but “only”
7.91 CPU hours with the compacted PCFG under threshold 1. The table shows that
labelled and unlabelled recall on trees as well as f-structure fragmentation and the
quality of the f-structures measured as f-score against the gold standard f-structures
suffer surprisingly little from this level of thresholding.

Pipeline Integrated
PCFG PCFG+P A-PCFG A-PCFG+P

# Rules 5433 8400 7924 9538
F-Score Labelled 76.18 79.64 79.96 79.90

Threshold 2 F-Score Unlabelled 78.75 81.74 82.01 81.92
F-Str Fragm. 96.38 96.34 95.10 95.75
F-Score Gold Stnd. 50.95 55.65 59.07 57.46
# Parses 2210 2104 2143 2025

Setting the threshold to 2 (i.e. discarding rules that are used less than or equal
to 2), again shows remarkably little overall effect apart from a slight decrease in
coverage and slightly worse overall f-score results. F-structure fragmentation, by
contrast, even decreases in some cases. Parsing speed increases by a factor of 15–
20 compared to the full grammar. To give an example, parsing section 23 takes 3.08
CPU hours with the compacted PCFG under a threshold of 2.

Pipeline Integrated
PCFG PCFG+P A-PCFG A-PCFG+P

# Rules 3246 4899 4520 5447
F-Score Labelled 75.07 79.16 78.66 79.24

Threshold 5 F-Score Unlabelled 77.75 81.23 80.77 81.21
F-Str Fragm. 96.19 96.36 95.77 96.30
F-Score Gold Stnd. 48.99 54.63 56.26 58.80
# Parses 2125 1922 1963 1784

A more severe threshold of 5 shows more marked results. On the one hand, all
grammars now parse the 2400 sentences in section 23 in less than 1 CPU hour in
our Java implementation. However, there is a marked decrease in both coverage and
quality. In terms of coverage, the table shows that the more fine-grained grammars
PCFG+P, A-PCFG and A-PCFG+P suffer more under severe compaction than the
simple PCFG.



It is difficult to compare our approach with that of [Riezler et al, 2002]. The
proto-f-structures generated in our approach are much more coarse-grained than the
detailed proper f-structures delivered by their carefully handcrafted and optimised
LFG grammar. Riezler et. al use an off-line exponential discriminative disambigua-
tion method and achieve f-structure f-scores close to 80% (as against about 60% in
our semi-automatic grammar development approach). They use partial bracketing
derived from the Penn-II treebank in section 23 to guide their parses whereas we
report our results for free (unguided) parses of tagged strings in section 23.

4 Current Work

In our work to date, we have shown how the development of large coverage, rich
unification-based grammar resources can be partially automated. However, our re-
search is only a first step in that direction. The reason is that the attribute-value
structures we parse into are proto-f-structures. Proto-f-structures interpret linguis-
tic material locally where it occurs in the tree and not where it should be interpreted
semantically. Examples of such “non-local” phenomena are extraposition, topical-
isation, wh-dependencies, distribution of subjects into VP-coordinate structures to
mention but a few. Penn-II employs a rich arsenal of traces and empty productions
(nodes that do not realise any lexical material) to coindex “displaced material” (and
partly to indicate passive constructions) with positions where the material “origi-
nated” (or, to put it in more neutral terms, positions where it should be interpreted
semantically). The proto-f-structure annotation algorithm ignores all such traces
and empty productions. In our current work we have extended our automatic an-
notation algorithm to exploit this information. We do this in terms of a new fourth
component (Traces) to our annotation algorithm:

L/R Context APs Coord APs Catch-All APs Trace APs

So far we have incorporated traces for A and A movement (movement to ar-
gument and non-argument positions) including traces for wh-questions, relative
clauses, fronted elements and subjects of participle clauses, gerunds and infiniti-
val clauses (including both controlled and arbitrary PRO) as reentracies in our f-
structures. Null constituents are now treated as full nodes in the annotation (except
passive empty object NP) and traces are recorded in terms of INDEX = f-structure
annotations. Traces without indices are translated into arbitrary PRO. The encoding
of passive is important as LFG “surface-syntactic” grammatical functions such as
SUBJ and OBJ differ from “logical” grammatical functions: surface-syntactic gram-
matical functions are identified in terms of e.g. agreement phenomena while logical



grammatical functions are more akin to thematic roles. The surface-syntactic sub-
ject of a passive sentence is usually a logical object, while a surface grammatical
object of an optional by-prepositional phrase is usually the logical subject.

In order to evaluate the new “proper-” (rather than “proto-”), f-structures we
have updated our manually encoded 105 gold-standard reference f-structures from
section 23 with traces encoding reentrancies reflecting locations where linguistic
material is encountered and where it should be interpreted. Our current results for
proper f-structures (fragmentation and precision and recall) are summarised in the
following tables:

# frags. # sent.

0 507
1 47916
2 1

preds only
Precision 0.93

Recall 0.87

Proper f-structure annotation precision and recall results suffer very little com-
pared to the best (in terms of coverage) proto-f-structure annotation (preds only:
precision 0.93 against 0.94; recall 0.87 against 0.87), indicating that the ex-
tended annotation algorithm can reliably determine traces for wh-questions, relative
clauses, fronted elements and subjects of participle clauses, gerunds and infinitival
clauses as well as passives, and reflect them accurately in terms of indices in the
f-structure representations. At this stage, however, fragmentation goes up consid-
erably. We are confident of being able to reduce the number of sentences that do
not receive a proper f-structure significantly in further work.

5 Future Work

Penn-II trees annotated with proper f-structures reflecting non-local dependencies
are an important ingredient in automatically deriving large coverage unification
grammar resources. Recall, however, that the f-structure reentrancies were induced
from traces and empty productions in full Penn-II trees relating linguistic material
to where it should be interpreted semantically. Full Penn-II style trees with detailed
coindexation traces and empty productions are not the standard fare in probabilis-
tic parsing. Indeed, empty productions are usually eliminated in PCFGs and similar
approaches to parsing.

In view of this, where do we now get our CFG backbone to parse into proper f-
structures? Fortunately, LFG comes to the rescue: standardly, LFG assumes a very
surface-oriented approach to its CFG backbone. Non-local phenomena are dealt
with in terms of functional uncertainty equations on the level of f-structure repre-
sentations. Given our annotated Penn-II treebank resource we can automatically



compute shortest paths through proper f-structure representations relating material
coindexed in f-structure. For each of the long-distance phenomena we collect the
paths and compact them into a regular expression to obtain e.g. the functional un-
certainty equation for sentential TOPIC etc. During parsing (or annotation), our au-
tomatic annotation algorithm then associates every sentential TOPIC function with
this equation and the reentrancy is resolved by the constraint solver. In order to
make this work properly, we will need to enforce completeness and coherence con-
straints on our f-structures. Completeness and coherence constraints rely on seman-
tic form values of PRED features. These semantic forms provide subcategorisation
information in the form of the syntactic functions required by the predicate govern-
ing that level of f-structure. Semantic forms are supplied lexically. Our approach to
date, however, is mostly non-lexical. Annotation is driven by categorial and con-
figurational information in Penn-II trees, templates for pre-terminal tags and occa-
sionally by functional annotations (-TMP, -LOC, -CLR etc.) in the Penn-II tree-
bank. How are we going to obtain the semantic forms? One possibility is to use
a lexical resource such as COMLEX. Given our annotated version of the Penn-II
treebank another option is available to us: if the quality of the automatically gener-
ated f-structures is good we can automatically read off semantic forms from these
f-structures. Following [van Genabith et al, 1999], for each level of embedding in
an f-structure we determine the value of the PRED function and collect all subcate-
gorisable grammatical functions present at that level of f-structure. From these we
construct a semantic form. We will explore this in the next stage of our research.

6 Conclusions

In this paper we have developed the first steps and presented initial results of a
new methodology to partially automate the development of large coverage, rich
unification-based grammar resources. The method is based on an automatic f-
structure annotation algorithm that annotates trees in the Penn-II treebank with
proto-f-structure information. We have presented two parsing architectures based
on this resource: a pipeline model and an integrated model. Currently our best
parsers achieve more than 81% f-score on the 2400 trees from section 23 and more
than 60% f-score on gold-standard f-structures for 105 randomly selected trees from
the same section. We have compared our results with the parent transform approach
investigated in [Johnson, 1999] and have conducted a number of thresholding gram-
mar compaction experiments [Krotov et al, 1998]. We have briefly compared our
approach with that of [Riezler et al, 2002]. We have presented results of current
work on automatic annotation of “proper-” (as opposed to “proto-”) f-structures and
outlined future research involving functional uncertainty equations and semantic



forms to semi-automatically develop grammatical resources that parse new text into
full f-structures.
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