
TIGER TRANSFER

Utilizing LFG Parses for Treebank Annotation

Heike Zinsmeister

University of Stuttgart
Institute for Natural Language Processing
zinsmeis@ims.uni-stuttgart.de

Jonas Kuhn

Stanford University
Department of Linguistics1

jonask@mail.utexas.edu

Stefanie Dipper

University of Stuttgart
Institute for Natural Language Processing
dipper@ims.uni-stuttgart.de

Proceedings of the LFG02 Conference

National Technical University of Athens, Athens

Miriam Butt and Tracy Holloway King (Editors)

2002
CSLI Publications

http://csli-publications.stanford.edu/

1Jonas Kuhn was at the University of Stuttgart when the main work reported in this paper was performed.

LFG02 – Zinsmeister et al.: TIGER Transfer

Abstract

Creation of high-quality treebanks requires expert knowledge and is extremely time consuming.
Hence applying an already existing grammar in treebanking is an interesting alternative. This ap-
proach has been pursued in the syntactic annotation of German newspaper text in the TIGER project.
We utilized the large-scale German LFG grammar of the PARGRAM project for semi-automatic cre-
ation of TIGER treebank annotations. The symbolic LFG grammar is used for full parsing, followed
by semi-automatic disambiguation and automatic transfer into the treebank format. The treebank
annotation format is a ‘hybrid’ representation structure which combines constituent analysis and
functional dependencies. Both types of information are provided by the LFG analyses.

Although the grammar and the treebank representations coincide in core aspects, e.g. the en-
coding of grammatical functions, there are mismatches in analysis details that are comparable to
translation mismatches in natural language translation. This motivates the use of transfer technology
from machine translation.

The German LFG grammar analyzes on average 50% of the sentences, roughly 70% thereof are
assigned a correct parse; after OT-filtering, a sentence gets 16.5 analyses on average (median: 2).
We argue that despite the limits in corpus coverage the applications of the grammar in treebanking
is useful especially for reasons of consistency. Finally, we sketch future extensions and applications
of this approach, which include partial analyses, coverage extension, annotation of morphology, and
consistency checks.

1 Introduction

This paper reports on work done in the context of the TIGER project.2 The project aims at creating a large
German treebank, the TIGER treebank (Brants et al. 2002), and at developing search tools (TIGERSearch,
Lezius (2002)) for exploiting the information encoded in the treebank. The annotation is very detailed in
that it encodes information about part-of-speech: e.g. NN, VMFIN (common noun, finite modal verb);
morphology: e.g. Masc.Nom.Sg; syntactic category: e.g. NP, PP (noun/prepositional phrase); and gram-
matical function: e.g. SB, OP (subject, prepositional object). In order to represent the functional de-
pendency relations in a compact graph format with the sequential word string at the terminal nodes, a
generalized tree format was adopted which includes crossing branches (cf. the NEGRA project, Skut et al.
1997; for an example, see Figure 5 below). In this format, for instance, a nominal phrase may form a
discontinuous constituent with an extraposed relative clause that modifies it. (A more familiar phrase
structure format involving traces can be obtained with a conversion routine.)

Two different annotation methods are used in the TIGER project: (i) an interactive combination of
a cascaded probabilistic parser (Brants 1999) and manual annotation with the ANNOTATE tool (Plaehn
and Brants 2000); (ii) parsing by a symbolic LFG grammar, followed by manual disambiguation and
automatic transfer into the TIGER format (Dipper 2000). Technique (i) is the main line in the annotation
process; (ii) has a more experimental status. A motivation for the use of (ii) was to explore to what
extent a preexisting broad-coverage unification grammar of German can be exploited for an annotation
project. Since the corpus is supposed to satisfy high standards of quality (in particular consistency), each
sentence is generally annotated independently by two annotators. In cases of mismatch the annotators
have to go over the sentence again in a discussion session. The use of two entirely independent methods

2The TIGER project (URL: http://www.ims.uni-stuttgart.de/projekte/TIGER/) is funded by the
Deutsche Forschungsgemeinschaft (DFG).

We would like to thank Anette Frank (DFKI Saarbrücken, formerly at XEROX Grenoble) for her input and great help with
the transfer component. Thanks also to Bettina Schrader who was not only responsible for the disambiguation of the LFG
analyses but also implemented parts of TIGER transfer. Credit for the original idea of exploiting an existing transfer module
goes to Martin Emele. Besides these three people, we would like to thank Stefan Evert, Jan Anderssen, Hannah Kermes, and the
audiences at the Workshop on “Syntactic Annotation of Electronic Corpora” (Tübingen, 2000) and at the “Third Workshop on
Linguistically Interpreted Corpora” (LINC – Leuven, 2001), for discussion and comments on previous versions of this paper.

LFG02 – Zinsmeister et al.: TIGER Transfer

is an additional way of ensuring consistency. With the more mechanical grammar-based approach, low-
level mistakes resulting from carelessness are less likely to appear. To a certain degree this outweighs
the problem that the grammar of course does not cover all the constructions appearing in a newspaper
corpus.

sentence of TIGER corpus
�

parsed by LFG grammar
�

several analyses
�

disambiguation
�

one analysis
�

Tiger Transfer
�

TIGER format

Figure 1: Scenario of annotation by LFG

This report focuses on the grammar-based annotation approach (ii), which is depicted in Figure 1,
and in particular on its transfer component: TIGER Transfer. The paper is organized as follows: Section 2
gives a short introduction to the German LFG grammar that is used in the annotation and also addresses
the disambiguation task. Section 3 presents the transformations that an LFG analysis of a sentence un-
dergoes on its way to the TIGER representation. Section 4, then, gives some statistics. Finally, Section 5
concludes the paper with an outlook on future work.

2 The LFG Analysis

2.1 German LFG Grammar

The German LFG grammar (Dipper to appear) was developed in the PARGRAM project,3 using the Xe-
rox Linguistic Environment (XLE). Analyzing a given sentence with the LFG grammar yields two rep-
resentations, the constituent structure (c-structure) and the functional structure (f-structure). C-structure
encodes information about morphology, constituency, and linear ordering. F-structure represents infor-
mation about predicate argument structure, about modification, and about tense, mood, etc.

Figure 2 shows the LFG c-structure for a simple sentence from the TIGER corpus: Hier herrscht
Demokratie ‘Democracy rules here’. The example demonstrates both, familiar aspects of German syntax
and more technically motivated specialities of this particular grammar implementation.4 The latter in-

3URL: http://www.parc.com/istl/groups/nltt/pargram
4The German LFG grammar encodes a generalized CP-analysis of German: The finite verb herrscht thus occupies the C-

position, preceded by the adverb phrase hier in the specifier position of CP. The NP Demokratie is immediately dominated by
Cbar. For processing reasons, there is no VP-projection covering the ‘Mittelfeld’ and hence dominating the NP. Note finally,
the root node does not only dominate the clausal projection of the sentence but also its identification and its final punctuation

LFG02 – Zinsmeister et al.: TIGER Transfer

CS 1: ROOT:2285

S−ID:980

tiger_4548:0

COLON:25

::26

CP[std,−dep]:2277

ADVP[std]:1217

ADV[std]:1005

hier:60

Cbar[+fin]:2182

V[v,+fin]:1534

Vmorph[v,+fin]:1533

herrscht:117

NP[std]:2158

NPx[std]:1777

NPap:1775

Cat[noun]:1753

H[noun]:1752

Demokratie:169

PERIOD:194

.:195

Figure 2: C-structure of tiger_4548: Hier herrscht Demokratie.

clude a fine-grained differentiation of category symbols, among others ‘complex’ category symbols with
category-level features in squared brackets, like V[v,+fin]5. Figure 3 shows the f-structure of Hier
herrscht Demokratie ‘Democracy rules here’. The leftmost bracket opens the feature structure of the
main predicate, the verbal predicate herrscht. This f-structure includes several grammatical functions,
which have embedded f-structures as values: ADJUNCT points to the adverbial predicate hier (embed-
ded in a set, since there can be several adjuncts), SUBJ(ect) points to the predicate Demokratie. In addi-
tion the f-structures contain morphosyntactic information like TENSE, MOOD, CASE, and GENDER.
In LFG, the level of c-structure is related to the f-structure by the function � which maps each c-structure
node to a feature structure (a many-to-one mapping). The mapping relations between c-structure nodes
and f-structures are indicated by indices. In Figure 2, for instance, the c-structure nodes representing the
projections of the adverb hier are indexed with 60, 1005, and 1217, respectively. The function � maps
the nodes to the feature structure that is the value of the (set-valued) feature ADJUNCT on f-structure,
cf. Figure 3.

2.2 Disambiguation

Almost every sentence of a newspaper corpus is syntactically ambiguous. There are structural ambigu-
ities such as different attachment sites of adjuncts and word-level ambiguities due to ambiguous inflec-
tional marking, homographic word forms or alternatives in subcategorization. Hence the grammar output
has to be disambiguated, which normally means that a human annotator has to select the correct analysis.6

mark (S-ID and COLON).
5V[v,+fin] denotes a verbal category of the subtype ’finite full verb’.
6Shallow parsing approaches typically employ a more deterministic strategy, i.e., they combine parsing and disambiguation

(from corpus-based training), producing just a single analysis. Quite obviously in the scenario of creating a high-quality
treebank annotation, manual control is indispensable. In the approach using the ANNOTATE tool, this is ensured through the
interactive cascaded procedure involving the human annotator at all levels. In our case, the entire analyses are presented to the

LFG02 – Zinsmeister et al.: TIGER Transfer

"tiger_4548: Hier herrscht Demokratie ."

’herrschen<[169:Demokratie]>’PRED

’hier’PRED
ADV−TYPE adj−sem , OBL−SEM loc

1217
1005

60
ADJUNCT

’Demokratie’PRED

+SPECCHECK

−NEED−SPEC
NMORPH

massGRAINNTYPE

CASE nom, GEND fem, NUM sg, PERS 32158
1777
1775
1753
1752
169

SUBJ

MOOD indicative, TENSE presTNS−ASP

habenVERBAUX−SELECT

+_FIN
VMORPH

SENTENCE_ID tiger_4548, STMT−TYPE decl2285
980

0
25
26

2277
2182
1534
1533
117
194
195

Figure 3: F-structure of tiger_4548: Hier herrscht Demokratie.

XLE supports this disambiguation in so far as it packs all different readings into one complex represen-
tation that can easily be browsed by the human annotator. On average, however, a sentence of the TIGER

corpus receives several thousands of LFG analyses. Obviously it is impossible to disambiguate those
analyses manually. For that reason, XLE provides a (non-statistical) mechanism for suppressing certain
ambiguities automatically. We illustrate both kinds of disambiguation in the following paragraphs.

Manual Disambiguation The parses of one sentence are represented in a packed feature structure
chart, cf. Maxwell and Kaplan (1989): the features common to all readings of the sentence are repre-
sented a single time; feature constraints that do not hold in all readings are marked by context variables.
The result is an f-structure that is annotated with variables to show where alternatives are possible. After
some training, this representation is easily readable for the annotator. Manual selection of the correct
analysis is done either by picking the corresponding c-structure tree or by clicking on the respective vari-
ables in the f-structure. XLE moreover supports manual disambiguation by various other browsing tools
applied to c-structure as well as to f-structure (King et al. to appear describe these tools in detail).

In Example (1), ambiguity in case marking gives rise to two different predicate argument structures
(and to two different constituent structures). Der Stiftung ‘the foundation’ can either be dative or genitive,
i.e., it can either function as indirect object to the ditransitive verb verkaufen ‘sell’ or as genitive attribute
to Haus ‘house’ (with a transitive version of verkaufen, which is likewise possible), cf. the readings
in (2). In Figure 2.2, the f-structure alternatives that are restricted to the transitive reading are annotated
with the variable a:1, the ditransitive ones with a:2, respectively. The resolution of this ambiguity
requires context knowledge and has to be done manually.

(1) Die Stadt verkaufte das Haus der Stiftung.
The town sold the house the foundation

human annotator grammar includes many more explicit grammatical constraints than the grammars that are used in a shallow
parser) .

LFG02 – Zinsmeister et al.: TIGER Transfer

(2) a. [Die Stadt] ����� verkaufte [das Haus] ����� [der Stiftung] 	
��� .
‘The town sold the house to the foundation.’

b. [Die Stadt] ����� verkaufte [das Haus [der Stiftung]
�� �] ����� .
‘The town sold the house of the foundation.’

Figure 4: Packed f-structure-chart of Die Stadt verkaufte das Haus der Stiftung.

Automatic Disambiguation Example 1 is even more ambiguous. Das Haus and die Stadt can either
be nominative or accusative, i.e. subject or direct object of the clause, cf. the readings in given in (3). In
this case, one reading is rather improbable, namely that with the object occupying the first position (the
‘Vorfeld’). When like in this example, the case marking is ambiguous (but not when the accusative is
overtly marked), then there is a strong dispreference against the reading with the object in the Vorfeld
position. This phenomenon is sometimes called the word order freezing effect (compare (Kuhn 2001,
sec. 4.2), Lee (2001)). This dispreference, as well as other biases, is exploited by a (non-statistical)
mechanism that XLE provides for suppressing ambiguities automatically. The mechanism consists of a
constraint ranking scheme inspired by Optimality Theory (OT), see Frank et al. (2001). Each rule and
each lexicon entry may be marked by ‘OT marks’. When a sentence is parsed, each analysis is annotated

LFG02 – Zinsmeister et al.: TIGER Transfer

by a multi-set of OT marks, thereby keeping a record of all OT-marked rules and lexicon entries that
were used for the respective parse. The grammar contains a ranked list of all OT marks. When an
ambiguous sentence is parsed, the OT mark multi-sets of all readings compete with each other. A multi-
set containing a higher ranked OT mark than another multi-set is filtered out, thus suppressing highly
improbable or marked readings, and reducing the number of ambiguities the human disambiguator has
to deal with. (Note that no suppressing of parses happens in the absence of ambiguity.)

(3) a. [Die Stadt] ����� verkaufte [das Haus] ����� [der Stiftung] 	
��� . [improbable]
‘The house sold the town to the foundation.’

b. [Die Stadt] ����� verkaufte [das Haus [der Stiftung]
�� �] ����� . [improbable]
‘The house of the foundation sold the town.’

A mark ‘ObjInVorfeld’, for example, forces to disprefer a direct or indirect object in the ‘Vorfeld’
(rather than subject or adjunct). Thus the improbable readings in (3) are suppressed. For Sentence (1), the
German LFG grammar reduces the eight possible readings7 to two by means of the OT filter mechanism.
A further option would be to integrate a probabilistic disambiguation of sentence analyses (cf. Riezler
et al. 2000).

3 From LFG to TIGER

This section deals with the mapping of the LFG grammar output to the TIGER format. Section 3.1 illus-
trates the close correspondence between LFG f-structure and TIGER graphs. Section 3.2 gives criteria
for implementing the conversion procedure and motivates the particular way of splitting up the task in
subtasks. Section 3.3 presents preprocessing steps that make the LFG output suited for the actual transfer
component. Sections 3.4 and 3.5 deal with the actual transfer. Finally, Section 3.6 concludes the section
with the postprocessing steps that complete the mapping.

3.1 LFG F-structure and Tiger Graphs

The initial motivation for adopting the LFG-based annotation method was that despite many differences
in details, the syntactic analyses of the LFG grammar and the TIGER graph representation are very similar
at the level of functional/dependency structure: Both, LFG’s f-structure and the TIGER graph represen-
tation, model a dependency structure at a comparable degree of granularity. A further similarity is that in
both representations, the dependency structure is explicitly related to the word string. In the case of LFG,
this relation is mediated through the level of c-structure; in TIGER it is coded directly into the depen-
dency graph. The TIGER format gives dependency structure priority over phrase structural constituency.
It makes use of a generalized tree graph notation which allows for crossing branches. In both schemes,
the situation can arise that a single f-structure/dependency-structural constituent corresponds to a set of
non-adjacent terminal nodes, i.e., nodes with some intervening word material belonging to a higher-
level f-structure/constituent. For example, in Hans hat dem Bericht geglaubt, daß Maria kommt ‘Hans
believed the report that Maria will come’, the embedded clause is a complement of the non-adjacent
nominal Bericht, cf. the representations in Figure 5. The dependency which yields the crossing branch in
the TIGER graph is encoded in the LFG f-structure as the complement clause embedded under a COMP
feature of the nominal predicate.

Along with these high-level similarities there are a number of differences in the representation con-
ventions of TIGER vs. the German LFG grammar. One main difference is due to the fact that redundant

7The discussed four readings are doubled by an additional ambiguity of the verb. It also allows a (dispreferred) subjunctive
reading.

LFG02 – Zinsmeister et al.: TIGER Transfer

0 1 2 3 4 5 6 7 8 9

500

501

502

503

Hans

NE

hat

VAFIN

dem

ART

Bericht

NN

geglaubt

VVPP

,

$,

daß

KOUS

Maria

NE

kommt

VVFIN

.

$.

CP SB HD

NK NK

S

OC

NP

DA HD

SB HD

VP

OC

S

"Hans hat dem Bericht geglaubt, daß Maria kommt. "

’glauben<[1:Hans], [52:Bericht]>’PRED

’Hans’PRED1SUBJ

’Bericht<[163:kommen]>’PRED

’kommen<[186:Maria]>’PRED

’Maria’PRED186SUBJ163
COMP

52

OBJ2

32

Figure 5: Long distance dependencies in TIGER graph and LFG f-structure representation

information is not encoded in the TIGER format (which we will deal with in Section 3.6). For example,
phrasal categories are always given in LFG c-structure, independent of the complexity of the phrase,
whereas in TIGER only complex constituents are dominated by a phrasal node (e.g. VP), compare the
representation of the intransitive kommt ‘comes’ vs. the transitive (i.e. complex) geglaubt ‘believed’ in
the TIGER graph in Figure 5. Other discrepancies exist in the representational conventions for particular
phenomena (dealt with in Section 3.5). For example, in the TIGER representation, the verbal phrase
dem Bericht geglaubt ‘believed the report’ (containing the full verb participle geglaubt) is embedded as
a clausal object (OC) under the auxiliary hat. The LFG grammar does not employ a nesting analysis on
the functional level. The full verb and the auxiliary occur at the same f-structure level.

In summary, differences between the two representation schemes fall in two distinct categories:
formalism-inherent differences and differences in representational convention or linguistic analysis. The
latter could in principle be overcome within either of the two formal frameworks, e.g., by using the LFG
formalism for writing a new grammar that uses category symbols according to the exact specifications
of the TIGER annotation scheme (although this is certainly not a practical option, since the grammar has
its independent motivation the way it is).

3.2 Criteria for implementing the conversion procedure

The observed systematic relation between the source and the target format of the required conversion
makes it realistic to implement a mechanical routine for this conversion. At the same time, subtleties in
the differences of the second kind (differences in convention or linguistic analysis) have to be approached
with care. In particular, one has to be aware that neither the source nor the target format conventions are
specified in all detail; they are not even fixed once and for all, but may undergo occasional changes. (Pre-

LFG02 – Zinsmeister et al.: TIGER Transfer

sumably they cannot be fixed in principle as long as one keeps applying the grammar and the annotation
scheme to new corpus material.)

We put great emphasis on the criterion of flexibility in the specification of the conversion procedure
in order to be able to react to modifications in the source and target format conventions. This excluded a
monolithic implementation of the conversion step. Rather a design with a declarative specification of the
convention-related conversion-steps was vital. As mentioned above, it is possible to make all conversions
but the ones concerning formalism-inherent differences within either one of the formalisms. The decision
we made was to exploit this fact and stay within the formal framework of LFG for most of the conversion
procedure8 – until a final low-level conversion into the notational format of the TIGER treebank (this
will be called the postprocessing below, see Figure 6). The great advantage of this move was that we
could exploit existing systems for modifying grammatical analyses within a linguistic formalism: transfer
systems as used in machine translation. Although the present context of application is quite different,
the task is very similar. In our case the source and target structures do not originate from grammars of
different languages, but from different systems of representation for syntactic data of the same language.

In order to ensure a high-quality conversion, our goal has been to rely on systematic differences,
which can be converted mechanically, as much as possible. Besides the more or less notational rewriting
step that we perform towards the end of the conversion there are other highly systematic differences be-
tween the formalisms, concerning the relation between functional/dependency structure and the surface
string. Basically, LFG’s c-structural information has to be folded into the f-structure (and reduced to a
subset of relevant categorial information). It turned out convenient to perform this conversion right at the
beginning (as what we call preprocessing below). Having separated out these two formalism-inherent
aspects of the conversion, the remaining step can focus on the more linguistically involved conversion
aspects as part of the transfer proper.

Prolog term: c- and f-structure
�

preprocessing
�

Transfer source format
�

transfer
�

Transfer target format
�

postprocessing
�

TIGER column format

Figure 6: Subprocedures of the conversion routine

The resulting modular design shown in Figure 6 has some obvious advantages: Changes in the gram-
mar or annotation scheme (unless radical) should only affect this ‘middle’ step. Testing of the conversion

8One advantage of this is that the XLE visualization tools for LFG structures can be used even at a stage in which the
representation has already been converted quite a long way (cf. Figures 8 and 9 below).

LFG02 – Zinsmeister et al.: TIGER Transfer

steps can be performed separately, and it becomes an option simply to replace the postprocessing step,
for instance, if a different target format (e.g. XML) is desired.

3.3 Preprocessing

Since the transfer step proper proceeds along the f-structures of the LFG representation, it has to be
ensured that all the information required to construct the TIGER target structures is accessible from f-
structure. This is the task of the preprocessing step. Note that information about linearization of the
individual words – although not encoded at the level of f-structure – can be ignored in our context: the
word string remains identical, therefore it would be redundant to keep track of word order information
during transfer. As long as unique reference to the words is made, the linearization of the string can
easily be overlaid over the target TIGER graph – crossing edges result automatically.

Nevertheless, reference to c-structure categories is required in order to construct the correct category
labels in the target structure. Thus the preprocessing step implements a general format conversion of
the LFG structures, folding the c-structural information into the f-structure. (Not all the c-structural
information is required, but the transfer can easily eliminate irrelevant information.)

The LFG grammar development and parsing system XLE provides an export format for the syntactic
analyses: a Prolog term, containing flat lists of f-structure and c-structure descriptions, cf. Figure 7. The
preprocessing step was implemented as a Prolog program taking this format as input and producing a
similar term with an ‘enriched’ f-structure as output. Following the modular philosophy argued for in the
previous section, the preprocessing program performs only highly systematic, canonical modifications,
leaving phenomenon-specific decisions to the transfer step.

What the program effectively does is traverse the c-structure from the root node, keeping track of
the c-structure/f-structure correspondence. This leads to a set of partial subtrees consisting only of con-
nected co-projecting c-structure nodes. A feature representation of such subtrees is then added to the
respective f-structure under a special feature TT_TREE. Some special care has to be taken since a single
f-structure may have several corresponding connected subtrees; furthermore, it has to be made sure that
the connection to the words in the string remains recoverable, using a special feature TT_TERM-CAT.9

A detail of an enriched f-structure is shown in Figure 8 (here, not the Prolog term itself is shown, but
the XLE display of it – the modified export format can be read in and displayed again). Note how the sub-
tree projected by the adverb hier is merged into the feature structure of the corresponding predicate. The
pointer feature TT_PHI (somewhat redundantly) has the feature structure of hier as its value. This con-
figuration allows to test for features and values even in more complex structures without moving through
the recursive tree structure. The integrated c-structure information does not only include information
about the syntactic categories (e.g. ADV[std], AVDP[std]) but also sublexical information like part
of speech and lemma (e.g. +Adv+Common,hier), and the pointer to the surface token (TT_SFF_ID).

The preprocessing routine, in addition, splits parametrized category symbols like ADVP[std] into
functor-argument lists. This is relevant for generalizations over parametrized features since the transfer
system does not allow to use regular expressions on label names.

3.4 The Transfer Grammar

We made use of the transfer system of the XEROX Translation Environment by Martin Kay (XTE) which
is part of the XLE development platform. The transfer component is a rule rewriting system based on
Prolog. As mentioned in Section 3.1, differences in representation or linguistic analysis lead to structural

9This part is in fact non-trivial since the PARGRAM LFG grammar does not operate on a string of fullform words, but on the
output of a morphological analyzer which adds branching to the c-structure that would not be recoverable in the target structure,
given just the word string.

LFG02 – Zinsmeister et al.: TIGER Transfer

���������	�
��������
��
��� ���"!�#�$���%������'&���(
) &�&�&�*
+-, #�.��"���/%��
.��/�0�
)
���0
213(4��50
6%�������
87/%���
69/:3(��<;�=�>��?�@:A(4����!���#���!?
����������/���"����.B��(<C�() 7/%���
21�:
*�() *�:�:�:3(
���0
213(4��50
6%�������
87/%���
69/:3(��8D��/E"F�G ,�H �@:A(�7�%���
4I�:�:�:3(
���0
213(4��50
6%�������
87/%���
69/:3(��4J�>�G H >�G , >��/K
�?�2:3(��8���"�����������������@:�:A(
���0
213(4��50
6%�������
87/%���
69/:3(��4J H�L�H	M2H�N ;�>?�@:3(��8O��/��P0�@:�:3(
���0
213(4��50
6%�������
87/%���
69/:3(��4J"F�Q�E��@:A(�7�%���
21�:�:�:A(
���0
213(4��50
6%�������
87/%���
69/:3(�� H G�J M D�J�;��@:A(�7�%���
4C�:�:�:3(
���0
213(@�
.��������?
87�%���
4��:3(�7�%���
4I�:�:�:A(
���0
213(4��50
6%�������
87/%���
6�/:3(��<;�=�>��?�@:A(4����!���#���!?
����������?��(213() *�() *�:�:�:3(
���0
213(4��50
6%�������
87/%���
6�/:3(��8D���R M2H�N ;�>��2:3(��4%�O�S M ���"!T�@:�:A(
���0
213(4��50
6%�������
87/%���

1�:3(��<;�=�>��?�@:A(4����!���#���!?
������"!�#�$��/%������0��(4U0() *�() *	:�:�:A(
���0
213(4��50
6%�������
87/%���

1�:3(�� , D�J�>��@:A(���./#"!B�2:�:3(
���0
213(4��50
6%�������
87/%���

1�:3(��<V�>�G��?�@:A(��8���"!B�2:�:3(
���0
213(4��50
6%�������
87/%���

1�:3(��8G�F L �@:3(��4���?�@:�:A(
���0
213(4��50
6%�������
87/%���

1�:3(��<;�>�=/J0�@:A(��<C��@:�:A(
���0
213(4��50
6%�������
87/%���
6C/:3(�� L/W�W �?�@:A(��6�".�O/����%��	�
7��0�2:�:3(
���0
213(4��50
6%�������
87/%���
6C/:3(�� H >�G/J�>��2:3(��8X��������@:�:3(
*?(
+-,/M J������	�
���������
)
) &�&�&�*
���0
213(6�"��Y���������
4I�I�U�C�(�� , ;) �"��O�(M O���X�*���(M (@1�I/1"U/:�:3(
���0
213(8X����A
4I�I�U�C0(87�%��?
49/:�:�:3(
���0
213(6�"��Y���������
21�I/1"U�(���D���R�;) �"��O�*���(M (@1�9�9���:�:3(
���0
213(8X����A
21"I�1"U0(87�%��?
4�/:�:�:3(
���0
213(@�
X��/#�S�

1"I/1�U0(�7/%���
21�9/:�:�:3(
���0
213(6�"��Y���������
21�9�9���(���D���R) ����O�*?��(@1�9�9��?(@1�1�1�:�:3(
���0
213(8X����A
21"9�9��0(87�%��?
4�/:�:�:3(
���0
213(6�"��Y���������
21�9�9��?(���D���R) ����O�*?��(M (<Z/1�:�:3(
���0
213(8X����A
21"9�9���(87�%��?
4�/:�:�:3(
���0
213(8������!	�
./%�P�
6Z�I0(����������?��(4Z�9/:�:3(
���0
213(8X����A
4Z�I�(�7�%���
4��:�:�:3(
���0
213(8������!	�
./%�P�

1�1"I�(��8[�D�O�7�[, #"!�!/#�.B��(<Z�9/:�:A(
���0
213(8X����A
21�1�I0(�7/%���
6�/:�:�:A(
) &�&�&�*
���0
213(6�"������%�������#���!?
690(����	�"������������������(<9�(<C/:�:3(
���0
213(6�"������%�������#���!?
6I�Z0(�������(4C0(@1�Z/:�:A(
���0
213(6�"������%�������#���!?
6Z�90(��8�������?��(21"Z0(4I/1�:�:3(
���0
213(6�"������%�������#���!?

1�1"U0(����������/���
���B��(<I�13(<C�9/:�:3(
���0
213(6�"������%�������#���!?

1"Z�\0(�������!/#�$���%��	���0��(<C�9�(<C�Z/:�:3(
���0
213(6�"������%�������#���!?

1"\��0(���&���(<C�Z�(8��\�:�:
*	:A&

Figure 7: tiger_4548: Prolog term: c- and f-structure (details)

mismatches that are comparable to transfer ambiguities in natural language translation. It was reasonable,
therefore, to develop the mapping in an actual transfer environment. Using a tested and integrated system
had the additional advantage that neither a specification language nor the processing routines had to be
developed. The main focus lay on the interface routines and the specification of the mapping.

The preprocessed LFG parse, cf. Figure 8, functions as transfer source format. It is a flat list of
predicate-value pairs in which, for example, the LFG function SUBJ(ect) is represented as a two-place
predicate that takes two f-structure indices as arguments: subj(X,Y)10. The predicate-value list is
transformed step by step into the TIGER target format. The Transfer rewriting rules apply in an ordered
way to the gradually changing set of predicates, which means that the output of a given rule is the input
of the subsequently following rule. The architecture of the grammar file therefore mirrors the order of

10Subj(X,Y) reads as ‘the predicate of f-structure Y is the subject of the predicate of f-structure X’. As common in Prolog,
constants begin with lower case, variables begin with upper case or an underscore.

LFG02 – Zinsmeister et al.: TIGER Transfer

Figure 8: tiger_4548: Detail of the enriched f-structure (Transfer target format)

potential rule application.

Rules Input predicates are on the left-hand side of a rule; output predicates are on its right-hand side.
Input and output predicates are separated by a rewriting symbol, the operator ‘==>’. The most basic
rules simply rewrite the name of the predicate and pass on the values of the arguments unchanged. For
example, the LFG function SUBJ is mapped to the TIGER function SB, the function OBLAGT (the
optional agent in a passive clause) to SBP, respectively. The argument slots are not manipulated, i.e. the
dependency structure is passed on unaltered.

(4) subj(X,Y) ==> sb(X,Y). % subject
oblagt(X,Y) ==> sbp(X,Y). % agent in passives ("von"-phrase)

A predicate on the input side of a rule is deleted from the input set of predicates, and a predicate on
the output side of a rule is added to the output set of predicates. Rules may be contextually restricted by
positive and negative tests. The operator ‘+’ preceding a predicate indicates that the predicate is required
in the input set for the rule to apply although the rule does not affect the predicate itself. A preceding
‘ � ’ triggers a negative test: the rule is applied only if the predicate is absent. For example, in (5), the
LFG function XCOMP is mapped to the TIGER function PD (predicative) only if there is a coindexed
predicate XCOMP-TYPE(X,’copula’). Otherwise, XCOMP is rewritten as the TIGER function OC
(clausal object).

(5) +xcomp_type(Y,’copula’), xcomp(X,Y) ==> pd(X,Y). % predicative
xcomp(X,Y) ==> oc(X,Y). % default

A zero on the right-hand side encodes the empty set, see e.g. (6). In this case, all predicates on the
left-hand side of the rule are deleted from the set of predicates without replacement.11

(6) tt_tree(_,_) ==> 0. % deletion

11The underscore is the common symbol for the anonymous variable in Prolog.

LFG02 – Zinsmeister et al.: TIGER Transfer

Macros and Templates The system allows for the definition of macros and templates—short-hand no-
tations of sets of predicates and transfer rules, respectively. They do not only facilitate rule development
but also the adaptation to changes in either the source or target format. A format change, then, only
requires to adapt a given macro or template but not all occurrences of it in the grammar.

The macro TT_VERB_MORPH in (7), for example, is an abbreviation of the predicates encoding the
information relevant for the mapping of verbal morphology tags. The predicates include TENSE and
MOOD, which are embedded in the verbal TNS-ASP feature; and the corresponding person and number
information which LFG encodes as PERS and NUM embedded in the subject feature (SB).

(7) tt_verb_morph(V,Person,Number,Tense,Mood):=

+tns_asp(V,V1),
+tense(V1,Tense),
+mood(V1,Mood),

+sb(V,V2),
+pers(V2,Person),
+num(V2,Number).

Just like macros are short-hand forms of predicates, templates are short-hand forms of rules. In (8),
the template LABEL2HEAD expands to a rule that maps a c-structure label, FCTR, to a TIGER head
relation, HEAD. The rule passes on the form and index of the surface token. In addition, it introduces a
part-of-speech tag. The input predicates share their first argument, i.e., they are all connected to a specific
feature structure in the input representation. TT-PHI is a pointer that relates c-structural information to
the corresponding f-structure index. It allows one to link the target predicates directly to the dependency
structure.

(8) label2head(Fctr,Arg1,Head,Pos) ::

cat_label(V,Fctr,Arg1), % macro for category label
tt_phi(V,V0), % pointer to f-structure
sff_in(V,Id,Form) % macro for linking of sur-

% face form and surface id
==>
ti_terminal(V0,Head,Pos,Id,Form). % macro for TIGER heads

The actual transfer rules instantiate templates in that all argument slots are filled with constants, see
(9)12. Templates can also encode a sequence of rules. In this case, the grammar compiler expands the
instantiated rule accordingly.

(9) label2head(’ADV’,’std’,hd,’ADV’). % standard adverbs

fctr2head(’ADV’,hd,’PWAV’). % interrogative and
% relative adverbs

label2head(’PAdv’,’std’,hd,’PROAV’). % pronominal adverbs

fctr2head(’PAdv’,hd,’PWAV’). % interrogative and
% relative pronominal
% adverbs

12LABEL2HEAD and FCTR2HEAD differ only with respect to the category label. FCTR2HEAD generalizes over the value
of Arg1. LABEL2HEAD can express FCTR2HEAD if its second argument is instantiated with the anonymous variable. In this
case any value of Arg1 matches the input requirements. Since it turned out to be less efficiently processed, the grammar rules
make no use of this encoding option.

LFG02 – Zinsmeister et al.: TIGER Transfer

Structure of the Grammar The transfer component applies the rules in the order of specification, i.e.
the transfer grammar mirrors the mapping process. Each compiled rule is called only once in the mapping
process and is then applied to all predicates that match the rule input requirements. The grammar is
organized in seven main parts:

(i) Redundant predicates are deleted. E.g. the subject feature of adjectives in LFG has no correspon-
dence in the TIGER format13. It is therefore deleted and will not interfere with the mapping process.

(ii) For more efficient processing, all set-valued features are rewritten as relational predicates. The
rule in (10) introduces X_ADJUNCTwhich is a temporary predicate in the sense that it is neither present
in the transfer input nor in the transfer output. It is both, introduced and subsequently deleted in the
process of transfer.14

(10) +adjunct(V,V1), in_set(V2,V1) % set-valued
==> x_adjunct(V,V2). % relational

adjunct(_,_) ==> 0. % deletion

(iii) Grammatical functions that are encoded in the LFG f-structure are mapped to target predicates.
In many cases the predicate names are just rewritten and the functional structure is passed on unchanged,
e.g. subj(V,V1) ==> sb(V,V1).

(iv) Syntactic categories and syntactic heads are mapped in combination with part-of-speech and
morphology tags. More specific rules thereby precede more general rules. If not all functional structure
is part of the input, the mapping inserts structure, see Section 3.5 for a more detailed discussion of this.

(v) A repair section follows after the mapping proper. It includes rules that map temporary predi-
cates on target predicates. For instance, the temporary head of finite auxiliaries HD_AUX is mapped on
the (more general) target head function HD. The section also includes rules that ‘repair’ target format
notation. For example, the TIGER format distinguishes between prepositional modifiers of nouns and
other noun modifiers. The former are labelled ‘modifier of the noun to the right’ (MNR) whereas the rest
is uniformly labelled ‘noun kernel element’ (NK). It is much simpler to map all noun modifiers alike and
only to check for the specific case at the end of the mapping process, cf. (11).

(11) nk(V,V1),+ti_cat(V1,’PP’) ==> mnr(V,V1). % prepositional
% modifier of noun

The mapping rules are followed by two further rule sections. (vi) Robustness rules check for all
functional labels and terminals whether they are integrated in the dependency structure – which is a nec-
essary prerequisite for the canonical postprocessing convertion to the TIGER column format. If necessary
a fragment relation is inserted. (vii) Finally, all non-target predicates are deleted.

3.5 Transfer Phenomena

In contrast to natural language transfer, TIGER Transfer leaves the surface string unchanged. The task is
to map a limited set of grammatical features into another limited set of grammatical features. Although
there are many trivial cases, the format conversion is more complex than a simple mapping of two
feature sets. Due to differences in representation chosen for particular linguistic phenomena, there are
mismatches that are comparable to ‘transfer ambiguities’ in natural language translation (for the latter
see e.g. Kameyama et al. 1991, Emele et al. 2000).

13In the case of attributive adjectives, for instance, the subject points to the modified head noun.
14Doug Arnolds (p.c.) made us aware of the drawbacks temporary predicates might have if they are used in a large grammar.

LFG02 – Zinsmeister et al.: TIGER Transfer

Ambiguous Predicates A simple example was introduced in Section 3.4, the mapping of XCOMP to
PD or OC, depending on the value of the feature XCOMP. A more complex case is the translation of the
predicate ADJUNCT. It is a very general function in the German LFG and corresponds to three different
TIGER functions, i.e., it is three-fold ambiguous. The conditions for resolving the ambiguity are not
encoded in a specific feature, but have to be found independently. In (12), ADJUNCT is mapped to
the function ‘genitive attribute’ (AG) if the embedding predicate is a noun (marked by NTYPE) and the
embedded predicate has a case feature with the value gen(itive) – unless it is an attributive adjective
(ATYPE attributive). Other ADJUNCTs within nouns are mapped to ‘noun kernel element’ (NK).
The default mapping of ADJUNCT is to the function ‘modifier’ (MO).15

(12) +ntype(V,_), +case(V1,’gen’), % required context
-atype(V1,’attributive’), % negative condition
x_adjunct(V,V1),
==>
ag(V,V1). % ’genitive attribute’

+ntype(V,_), x_adjunct(V,V1) % other noun modifiers
==>
nk(V,V1). % ’noun kernel element’

x_adjunct(V,V1) % default: modifiers of
==> % verbs and adjectives
mo(V,V1). % ’modifier’

Some ambiguities cannot be resolved by the transfer component. For example, TIGER distinguishes
two potential functions of prepositional phrases in predicative constructions, see (13). PPs with an
abstract meaning, i.e. idiomatic chunks, are analyzed as predicatives (PD), all other PPs as modifiers
(MO). Transfer provides only the function MO here. The adaptation to the specific TIGER edge label has
to be done manually after transfer, e.g. with the (semi-automatic) ANNOTATE tool.

(13) a. PP functions as predicative:
Sie ist auf der Hut (‘She is on her guard’)

b. PP functions as modifier:
Sie ist im Garten (‘Sie is in the garden’)

Structural Changes There are ‘head switch’ transformations in natural language translation in which
the head of the source structure becomes a dependent element in the target structure and a former depen-
dent element becomes the head of the constituent. In Example (14), like is the matrix predicate which
subcategorizes the infinitive come. In the corresponding German example in (15), komme is the main
predicate which corresponds in meaning to the English embedded infinitive, come. The meaning of like
is expressed by the adverb gern ‘gladly’ that modifies komme.

(14) I like to come

(15) Ich komme gerne
I come gladly

In the mapping of LFG to TIGER representations, there are constellations that resemble head switch.
Figure 5 in Section 3.1 shows how the two systems represent the concept ‘head of a clause’ differently.
In the German LFG, on the one hand, the main verb is always the main predicate of the clause. Since

15ADJUNCT is mapped to the temporary predicate X_ADJUNCT, cf. Section 3.4

LFG02 – Zinsmeister et al.: TIGER Transfer

temporal (or passive) auxiliaries do not have lexical meaning on their own, they co-project with the main
verb on f-structure. In TIGER, on the other hand, the finite verb is analyzed as the head of the clause,
independent of whether the verb is a main verb or an auxiliary. Accordingly, in analytic tenses, like
perfect, the finite auxiliary is the clausal head and the main verb becomes the head of an embedded
function OC (‘clausal object’). The mapping has to reorganize the verbal heads and insert additional
structure. The restructuring is guided by c-structural information.

The natural language mapping of Example (14) to Example (15) does not only affect the hierarchical
structure but also the distribution of the arguments: The subject of the predicate like in English becomes
the subject of the predicate komme in German. A more explicit case of argument rearrangement is given
in the mapping of Example (16) to Example (17). The German verb kennenlernen is translated compo-
sitionally into the expression get to know in English. The mapping splits the arguments of kennenlernen
and relates the subject (sie/they) to the structurally higher verb get and the object (sich/each other) to the
structurally embedded verb know.

(16) (Er glaubt,) dass sie sich kennenlernten
he thinks that they REFL got_to_know

(17) (He thinks) that they got to know each other

Sometimes, arguments have to be rearranged in grammar mapping, as well. If you go back to Fig-
ure 5, again, you see that the German LFG treats all arguments the same: both the subject (SUBJ) and
the indirect object (OBJ2) belong to the main predicate on f-structure. TIGER, in contrast, distinguishes
between subjects and all other arguments. Only the subject is always dependent of the finite head. The
other arguments are dependent on the main predicate; if the main predicate is embedded, the arguments
are embedded as well, cf. the main predicate geglaubt and the indirect object (DA). Argument rearrange-
ment is encoded in the repair section of the transfer grammar.

3.6 Postprocessing Steps

After the renaming and restructuring procedures illustrated in the preceding sections, further small mod-
ifications complete the mapping LFG – TIGER.

Morphology Tags Currently the TIGER treebank format supports only one slot for morphology tags.
In LFG, the morphological features are distributed on different predicates, e.g. gend(V,’Masc’),
case(V,’Nom’). They are collected during the transfer process. A Perl script subsequently joins all
morphological features belonging to one token into one string. The morphology mapping could have
been integrated in the transfer grammar, as well. But it would have slowed down the transfer procedure
considerably.16

TIGER Column Format The output of the transfer proper is a Prolog file. A canonical postprocessing
step (implemented in Prolog) converts the Prolog file, cf. Figure 9, into the TIGER column format, cf.
Figure 10.

Tokenizer Modifications Furthermore, certain string manipulations of the tokenizer used in LFG pars-
ing have to be undone. These string manipulations involve certain punctuation marks (commas surround-
ing embedded clauses), upper and lower case (sentence-initial), hyphenated compounds, and quotation
marks. Hyphenated compounds such as CDU-Frauen ‘CDU women’ are split into two tokens by the LFG

16Because the system does not allow for variables ranging over predicates.

LFG02 – Zinsmeister et al.: TIGER Transfer

TI−FORM herrscht, TI−MORPH 3.Sg.Pres.Ind, TI−POS VVFIN, TI−SFF−ID 117HD−OUT

TI−FORM hier, TI−POS ADV, TI−SFF−ID 60HD−OUT

AVPTI−CAT
MO−OUT

TI−FORM ., TI−POS Dollar., TI−SFF−ID 195PU−OUT

TI−FORM Demokratie, TI−MORPH Fem.Nom.Sg.*, TI−POS NN, TI−SFF−ID 169NK−HD−OUT

NPTI−CAT
SB−OUT

SENTENCE−ID tiger_4548, TI−CAT S−1

Figure 9: Transfer target format of tiger_4548

#FORMAT 3
#BOS 4548 102 947689949 1%% LFG 4548
hier ADV - HD 502
herrscht VVFIN 3.Sg.Pres.Ind HD 500
Demokratie NN Fem.Nom.Sg.* NK 501
. $. - - 0
#500 S - - 0
#501 NP - SB 500
#502 AVP - MO 500
#EOS 4548

Figure 10: TIGER column format of tiger_4548

tokenizer, and analyzed accordingly by both the LFG morphology component and the transfer algorithm.
In contrast, the TIGER annotation scheme treats hyphenated compounds as one token, therefore requiring
adjustments after transfer. Concerning punctuation, the tokenizer problems are more difficult to solve.
Typically, commas surround embedded clauses, but the second comma is omitted if the embedded clause
immediately precedes the sentence final punctuation. However, in order to avoid different rule versions
of embedded clauses (with and without second comma), the LFG tokenizer provides for additional com-
mas in front of the sentence final punctuation mark. These additional commas have to be deleted after
transfer. Quotation marks in German may enclose phrases and chunks as well as arbitrary sequences of
words (non-constituents). They can even cross sentence boundaries. Hence stating a rule that deals with
at least the most common types of quotation is nearly impossible. Therefore the LFG tokenizer deletes
quotation marks and the postprocessing procedure has to recover them. All those modifications are dealt
with mainly by a string comparison done directly after transfer. It compares transfer output strings to
the original input sentences before LFG parsing. In case of faulty output, missing elements are inserted
or superfluous ones deleted as appropriate. The repaired structures are then checked and, if necessary,
completed by the human annotator using the semi-automatic ANNOTATE tool.

Redundant Information As already mentioned in Section 3.1, certain non-branching category pro-
jections are not represented in the TIGER format. This points to another specific feature of the TIGER

annotation format, namely the tendency to avoid redundancy. To illustrate this feature, see the graphs of
the example tiger_4548 shown in two different versions in Figure 11. The first tree is the current output
version of TIGER Transfer as presented so far. The second tree shows the actual TIGER version: all nodes
dominating just one daughter node have been omitted. This is motivated by the fact that the missing in-
formation is redundant in the sense that it can be inserted automatically. Furthermore, the annotation
task becomes easier if the structure is less complex and less nodes have to be checked and corrected by
the human annotator. Finally, since the structure is flatter, bigger parts of a tree can be displayed on the
screen. In TIGER Transfer the respective projections are deleted in the course of the postprocessing.

LFG02 – Zinsmeister et al.: TIGER Transfer

0 1 2 3 4 5 6 7 8

500 501

502

503

Hier

ADV

−−

herrscht

VVFIN

3.Sg.Pres.Ind

Demokratie

NN

Fem.Nom.Sg.*

.

$.

−−

Hier

ADV

−−

herrscht

VVFIN

3.Sg.Pres.Ind

Demokratie

NN

Fem.Nom.Sg.*

.

$.

−−

HD NK

AVP NP

S

MO HD SB

S

MO HD SB

Figure 11: TIGER graph with and without non-branching nodes

4 Results

The German LFG Grammar analyzes on average 50.1% of the sentences, roughly 70% thereof are as-
signed a correct parse17. The sentences that are parsed contain 16.0 words on average and the average
parsing time is 8.29 sec/sentence. Without using the OT filter mechanism a sentence gets 35,577 analyses
on average (median: 20). After OT filtering, the average number of analyses drops to 16.5 (median: 2),
cf. Dipper (2000). About 2,000 sentences of the TIGER corpus have been annotated by LFG parsing.

Although there are limits to the corpus coverage, the application of the grammar in annotation seems
useful, in particular when combined with another annotation method. High quality treebanking requires
at least two annotation passes for each sentence, and a comparison step. If one of the passes is classical
manual annotation and the other pass is based on a full-depth grammar, the strength of the two techniques
are combined, leading to a more consistent overall result.

5 Outlook

In the last section, we will discuss potential extensions to the LFG-based annotation: (i) partial analyses
(‘fragments’); (ii) morphology and lemma annotation; (iii) consistency checks. All three application
tasks would benefit from a coverage extension of the grammar, an outline of which we will discuss at the
very end of this paper.

Partial analyses For the annotation of new sentences a feature of the XLE system can be exploited,
the ‘Fragment mechanism’. This mechanism allows for every sentence to get at least a partial analysis.
Hence the LFG-based annotation is no longer restricted to 35% of the corpus.

The fragment mechanism works as follows. A sentence is first parsed as usually; only if it does
not get an analysis, XLE reparses the sentence. In this second parse XLE only tries to construct certain
constituents, specified in advance by the grammar writer, e.g. NP[std], PP[std] (ordinary NPs and
PPs). Typically those constituents are maximal projections as defined in the grammar. Hence they are
not chunks but may be complex and even recursive; an adjacent relative clause, e.g., is always part of
the respective NP-fragment. Other constituents that are suited for fragments are subordinate clauses
(adverbial and subcategorized), since their left and right boundaries are marked clearly.

First experiments with fragments were very promising. For instance, noun chunks were analyzed
with a precision of 89% and a recall of 67%; prepositional chunks were found with a precision of 96%

1710% of the sentences failed because of gaps in the morphological analyzer; 6% failed because of storage overflow or
timeouts (with limits set to 100 MB storage and 100 seconds parsing time). 10% of the parsed sentences were not evaluated
wrt. the correct analysis because they received more than 30 analysis after OT-filtering.

LFG02 – Zinsmeister et al.: TIGER Transfer

(ignoring PP-attachment for the evaluation) and a recall of 79%, cf. Schrader (2001).
The partial analyses yielded by the fragment mechanism would have to be mapped into partial anal-

yses in the TIGER format and subsequently completed by human annotators supported by the tool AN-
NOTATE. In this scenario, TIGER Transfer has to be modified to deal with partial input and output.

Annotation of morphology It is planned in the TIGER project to add an annotation of morphology and
lemma information to the sentences annotated syntactically so far; new sentences will be annotated with
all information types. For this task the LFG grammar can be exploited easily. Each LFG analysis of a
sentence automatically contains morphology and lemma information. The transfer already provides for
a mapping of the respective tags.
There is is even a straightforward way to supply additional morphology and lemma information for
sentences already annotated with syntactic structure, without having to disambiguate the parses again
manually. Parts of the annotation of a sentence (e.g. predicate-argument structure, adjunct attachment)
are transformed into Prolog terms. The sentence is parsed as usual and all analyses are stored in the
Prolog export format. A test routine then picks out the analysis corresponding to the Prolog terms
derived from the annotation. Thus the already existing annotation replaces the manual disambiguation
step. Now the morphology and lemma information of the selected analysis is converted to the TIGER

format. This way, large parts of the already annotated corpus can be automatically enriched by the LFG
grammar with new information.

Consistency checks The method sketched in the preceding paragraph can also be used to perform
consistency checks. Especially in the domain of part-of-speech tags, human annotators easily overlook
errors. However, for a high quality corpus such as the TIGER treebank, correct part-of-speech tags
are as important as correct structures. Likewise for application such as TIGERSearch (a query tool
for the TIGER corpus), it is often necessary to rely on part-of-speech information, e.g. when looking
for postnominal adverbs as in Hans selbst ‘Hans himself’. The flat annotation style applied in TIGER

makes this point even more important. In TIGER there is no structural property (node, label) in an NP
differentiating between, e.g. a determiner, an attributive adjective, and the head noun. The only difference
is their part-of-speech tags ART, ADJA, NN/NE, respectively.

As sketched above, information such as predicate-argument-structure of the existing annotation will
be mapped to Prolog terms thus abstracting from part-of-speech tags. The sentence is parsed and disam-
biguated automatically, and the transfer generates the TIGER representation format. This way, part-of-
speech tag errors will be detected automatically.

Coverage extension Furthermore the annotated corpus could be exploited for extending the coverage
of the grammar – this would of course improve the results of the mentioned tasks performed with the
grammar. With these applications in mind, it would be justified to aim particularly at systematic extension
of coverage with respect to the given corpus.

There are two ways in which it is realistic to expect a possible coverage extension, now that the an-
notated TIGER corpus is available. The first strategy relies on ‘classical’ grammar writing, i.e., involving
a linguist who identifies missing rule parts or lexicon entries. When this technique is applied, trying to
extend a grammar that already has a relatively broad coverage, a predominant problem is the detection
of unintended interactions. How can one exclude that a rule modification required for a given sentence
cause the grammar to break down on a number of other sentences? Only if a sufficient amount of realistic
sentences is used for a comparative test can modifications be accepted with reasonable confidence.

Here, the treebank can be used as a test suite in regression testing. While any collection of sentences
can be used to compare the grammar behavior before and after a modification, only the annotation of

LFG02 – Zinsmeister et al.: TIGER Transfer

the correct analysis will guarantee the desired grammar behavior. (In very short, unambiguous sentences
this is less of a problem, but when realistic sentences change from eighty to sixty readings, inspection of
the solutions would be required to make sure that the twenty readings lost are irrelevant.) Technically,
the TIGER-derived test suite used in grammar development will be a list of strings annotated with target
structures in a similar way as proposed in Kuhn (1998) (we use a slightly different scheme now, in
which XLE’s export representation is compared with the stored target representation). In essence, the
annotation structures will specify predicate-argument structure and modifier attachment (as mentioned
above), but leave further details open to the grammar.

Let us now turn to the second strategy we would like to experiment with for extending coverage with
respect to the TIGER corpus. The basic idea turns on the fact that a high-quality symbolic grammar has
to be highly restricted when it is applied to unseen text, in order to avoid that overgeneration leads to
a proliferation of readings per sentence. For instance, the subcategorization frames listed in the verb
lexicon are kept very restricted, although parsing failures are often due to missing frames for a known
verb. But the alternative of relaxing such restriction would require some external control of the additional
readings that would arise.

With the target annotation present in the TIGER corpus, this external control is actually in place. So,
when the grammar is used to reparse the corpus, it makes sense to relax some of the strict conditions
encoded in the lexicon and rules. The larger set of readings arising for each sentence will be cut down
immediately by allowing only parses that meet the annotated predicate-argument structure (again using
the test suite). Thus, not only sentences that are covered by the ‘classical’ grammars could be reparsed
successfully, but hopefully also some significant proportion of previously uncovered sentences.

Ultimately, one could run training experiments with the statistical model of Riezler et al. (2000)
over the relaxed grammar. The TIGER corpus would serve as ‘complete data’, i.e. supervised training
material, so the relaxed grammar could then also be applied on unseen sentences with external control
over the readings (in this case the external control is exerted by the statistical model). Evaluating such
an experiment can be expected to be highly revealing about the information sources required for a large-
scale unification grammar.

References

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. 2002. The TIGER Teebank.
In Proceedings of the Workshop on Treebanks and Linguistic Theories, Sozopol.

Brants, Thorsten. 1999. Tagging and Parsing with Cascaded Markov Models – Automation of Corpus Annotation,
volume 6 of Saarbrücken Dissertations in Computational Linguistics an d Language Technology. Saarbrücken,
Germany.

Dipper, Stefanie. 2000. Grammar-based Corpus Annotation. In Proceedings of LINC-2000, pp. 56–64, Luxem-
bourg.

Dipper, Stefanie. to appear. Implementing and Documenting Large-scale Grammars – German LFG (working
title). PhD thesis, IMS, University of Stuttgart.

Emele, Martin, Michael Dorna, Anke Lüdeling, Heike Zinsmeister, and Christian Rohrer. 2000. Semantic-based
Transfer. In Verbmobil: Foundations of Speech-to-Speech Translation, pp. 359–376.

Frank, Anette, Tracy H. King, Jonas Kuhn, and John Maxwell. 2001. Optimality Theory Style Constraint Ranking
in Large-scale LFG Grammars. In Peter Sells (ed.), Formal and Empirical Issues in Optimality-theoretic Syntax,
pp. 367–397. Stanford: CSLI Publications.

LFG02 – Zinsmeister et al.: TIGER Transfer

Kameyama, Megumi, Ryo Ochitani, and Stanley Peters. 1991. Resolving Translation Mismatches with Infor-
mation Flow. In Proceedings of the 29th Annual Meeting of the Association for Computational Linguistics
(ACL’91), Berkeley, CA.

King, Tracy Holloway, Stefanie Dipper, Annette Frank, Jonas Kuhn, and John Maxwell. to appear. Ambiguity
Management in Grammar Writing. Journal of Language and Computation.

Kuhn, Jonas. 1998. Towards Data-intensive Testing of a Broad-coverage LFG Grammar. In Bernhard Schröder,
Winfried Lenders, Wolfgang Hess, and Thomas Portele (eds.), Computers, Linguistics, and Phonetics between
Language and Speech, Proceedings of the 4th Conference on Natural Language Processing – KONVENS-98,
pp. 43–56, Bonn. Peter Lang.

Kuhn, Jonas. 2001. Generation and parsing in Optimality Theoretic syntax – issues in the formalization of OT-
LFG. In Peter Sells (ed.), Formal and Empirical Issues in Optimality-theoretic Syntax, pp. 313–366. Stanford:
CSLI Publications.

Lee, Hanjung. 2001. Markedness and Word Order Freezing. In Peter Sells (ed.), Formal and Empirical Issues in
Optimality-theoretic Syntax, pp. 63–128. Stanford: CSLI Publications.

Lezius, Wolfgang. 2002. Ein Werkzeug zur Suche auf syntaktisch annotierten Textkorpora. PhD thesis, IMS,
University of Stuttgart.

Maxwell, John, and Ron Kaplan. 1989. An Overview of Disjunctive Constraint Satisfaction. In Proceedings of
the International Workshop on Parsing Technologies, Pittsburgh, PA.

Plaehn, Oliver, and Thorsten Brants. 2000. Annotate – An Efficient Interactive Annotation Tool. In Proceedings
of ANLP-2000, Seattle, WA.

Riezler, Stefan, Detlef Prescher, Jonas Kuhn, and Mark Johnson. 2000. Lexicalized Stochastic Modeling of
Constraint-based Grammars using Log-linear Measures and EM Training. In Proceedings of the 38th Annual
Meeting of the Association for Computational Linguistics (ACL’00), Hong Kong, pp. 480–487.

Schrader, Bettina, 2001. Modifikation einer deutschen LFG-Grammatik für Partial Parsing. Studienarbeit.

Skut, Wojciech, Brigitte Krenn, Thorsten Brants, and Hans Uszkoreit. 1997. An Annotation Scheme for Free
Word Order Languages. In Proceedings of ANLP-97.

Heike Zinsmeister Stefanie Dipper
zinsmeis@ims.uni-stuttgart.de dipper@ims.uni-stuttgart.de
IMS IMS
University of Stuttgart University of Stuttgart
Azenbergstr.12 Azenbergstr.12
Postfach 10 60 37 Postfach 10 60 37
D-70049 Stuttgart D-70049 Stuttgart
Germany Germany

Jonas Kuhn
jonask@mail.utexas.edu
Department of Linguistics
1 University Station, B5100
University of Texas at Austin
Austin, TX 78712-1196
USA

