
Low-Level Mark-Up and Large-scale LFG Grammar Processing

Ronald M. Kaplan and Tracy Holloway King
Palo Alto Research Center

Proceedings of the LFG03 Conference
University at Albany, State University of New York

Miriam Butt and Tracy Holloway King (Editors)

2003

CSLI Publications
http://csli-publications.stanford.edu/

238

Abstract

It is commonly believed that shallow mark-up techniques such as part-of-speech disambiguation or
low-level phrase chunking provide useful information that can improve the performance of natural
language processing systems, even those that ultimately require deeper levels of analysis. In this
paper, we discuss three types of shallow mark-up: part of speech tagging, named entities, and la-
beled bracketing. We show how they were integrated into the ParGram LFG English grammar and
report on the results of parsing the PARC700 sentences with each type of mark-up. We observed that
named-entity mark-up improves both speed and accuracy and labeled brackets also can be beneficial,
but that part-of-speech tags are not particularly useful.

1 Introduction

It is commonly believed that shallow mark-up techniques such as part-of-speech (POS) disambigua-
tion or low-level phrase chunking provide useful information that can improve the performance of
natural language processing systems, even those that ultimately require deeper levels of analysis.1

This should be the case to the extent that they reduce ambiguity while still preserving the correct POS

or bracketing.
These shallow mark-up techniques typically operate independently of the deeper analysis ma-

chinery. They take input strings in normal orthography and modify those strings by adding diacritic
marks to record information. We discuss three types of shallow mark-up: part of speech tagging,
named entities, and labeled bracketing. These are illustrated in (1)–(3) and will be discussed in de-
tail below.

(1) Part of Speech Tagging

a. I/PRP saw/VBD her/PRP duck/VB.

b. I/PRP saw/VBD her/PRP$ duck/NN.

(2) Named Entities

a. person General Mills /person bought it.

b. company General Mills /company bought it.

(3) Labeled Bracketing

a. [NP-SBJ I] saw [NP-OBJ the girl with the telescope].

b. [NP-SBJ I] saw [NP-OBJ the girl] with the telescope.

1.1 Hypothesis and Experiments

In this paper, we explore the hypothesis that:

Ground-truth shallow mark-up reduces ambiguity and increases speed without decreas-
ing accuracy.

1This research has been funded in part by contract # MDA904-03-C-0404 awarded to Stuart K. Card and Peter Pirolli
from the Advanced Research and Development Activity, Novel Intelligence from Massive Data program.

We would like to thank Stefan Riezler for help in conducting the experiments described here.

239

We tested this hypothesis by applying a combination of an existing broad-coverage grammar and
robust parsing system to four versions of 700 sentences drawn from the hand-annotated Wall Street
Journal treebank constructed at the University of Pennsylvania (Marcus et al., 1994). We compared
parsing speed and accuracy for sentences with the three kinds of mark-up exemplified in (1)–(3)
against a baseline of sentences without any mark-up at all. These experiments aimed at determining
the best-case benefitof different kinds of mark-up in that we make use of the ground-truthannotations
of the WSJ corpus, essentially simulating the fictionalsituation of error-free pre-processors that take
no time at all to run. This provides an upper-bound on the accuracy and time benefitsthat could be
achieved with any practical mark-up technology.

In our experiments this hypothesis is confirmedfor named entity mark-up and there is also some
benefitfor labeled bracketing, but we observed little value for POS tagging. In the conclusion, we
suggest some further refinementsof the experiments to be explored in future work.

1.2 The XLE System

In this paper, we also address the problem of how to modify an existing system of morphological
and syntactic analysis so that it respects the restrictions provided by independent low-level mark-up
components. In our existing system (the XLE grammar development platform (Maxwell and Kaplan
1993)), tokenizing and morphological analysis are performed by finite-statetransductions (Beesley
and Karttunen 2003) arranged in a compositional cascade. The resulting morphological analysis is
presented to an efficientparsing system for broad-coverage LFG grammars, the ParGram grammars
described by Butt et al. (1999, 2002). The basic system organization is shown in (4).

(4)Original System

input string

tokenizer (FSM)

morphology (FSM)

LFG grammar

f-structure c-structure

Integrated System

original string POS tagging
mark-up named entities

input string labeled
bracketing

tokenizer (FSM)
NE converter

morphology (FSM)
POS filter

LFG grammar
labeled bracketing filter
named entity sublexical rules

f-structure c-structure

2 Integrating Low-level Mark-Up

We confront the following issue: how can a system definedto operate on ordinary sentences be ex-
tended to handle input with diacritical mark-up so that the set of syntactic analyses is limited to those
consistent with the specifiedmark-up. This devolves into two questions:

(5) a. How does the mark-up move through the sequence of components so that it reaches the
level at which its constraints are imposed?

b. How are those constraints imposed?

240

In this section we discuss the integration of POS tagging, named entities, and labeled bracketing
into the ParGram English grammar used by the XLE system.

2.1 Part of Speech Tagging

POS tags are not relevant to tokenization, but the tokenizing transducer must be modifiedso that the
POS tags do not interfere with the other patterns that the tokenizer is concerned with (commas, quotes,
etc.).2 The proper effect of a POS tag is to reduce the number of outputs from the morphological
analyzer. Consider the words likes and walks in (6a), which have the POS mark-up in (6b) (other
POS tags are not shown in (6b)).

(6) a. She likes to go on walks.

b. She likes/VBZ to go on walks/NNS .

The morphological analyzer normally would produce two outputs for each of these words (plural
noun and third-person singular verb) of which only one is appropriate in this context, the verbal in-
terpretation for likes and the noun interpretation for walks.

Obtaining the desired behavior requires a specificationof the morphological output sequences
that are consistent with a given POS tag. In this case, we must specify that VBZ is consistent with
+Verb +Pres +3sg but not compatible with +Noun, and that NNS is consistent with +Noun +Pl but not
+Verb. This is done by a mapping table that states legal correspondences between POS tags and the
morphological analyzer tags. Some sample mappings between the WSJ Penn Treebank tags and our
morphology tags are shown in (7). Some POS tags correspond to more than one set of morphological
tags, e.g. NNS in (7).

Given this mapping table, we produce a finite-statemachine that filtersthe normal output of the
morphological transducer. The filteringmachine, for example, allows pairs of lemmas and morpho-
logical indicators to be followed by VBZ if and only if the indicators are compatible with the allow-
able sequences drawn from the table. Thus the indicator +Noun is not allowed in front of VBZ. The
filteringmachine also maps the POS tags to epsilon, so that they do not appear in its output. This
machine is then put in a cascade with the tokenizer and morphological analyzer. The overall effect
is that the tags in the input are preserved by the tokenizer, pass through the morphological analyzer,
and then cause incompatible morphological-indicator sequences to be discarded. Thus only the con-
textually appropriate interpretations of likes and walks survive, and these are all that the syntactic
grammar has to operate on.

2A tokenizer splits a string into words or tokens. Minimally, this involves splitting off punction marks. In our system,
tokenization also involves determining which words should be lower cased (e.g., sentence initial words are optionally
lowered cased). Finally, our tokenizer deals with haplology; for example, it optionally inserts commas before sentence
periods. A sample input string with some possible tokenizations is shown in (i). Note that tokenizers can produce multiple
outputs for a single input string; the tokenization used by the grammar to parse the sentence in (i.a) is that in (i.b).

(i) a. Input string:
They walked the dog, a poodle.

b. Splitting, decapping, haplology:
they walked the dog , a poodle , .

c. Splitting, decapping:
they walked the dog , a poodle .

d. Splitting, haplology:
They walked the dog , a poodle , .

241

(7) Mapping POS Tags to Morphological Tags
POS tag Morphological tag(s) Interpretation
IN +Prep preposition

+Conj +Subord subordinating conjunction
JJR +Adj +Comp comparative adjective
NNS +Noun +Pl plural noun

+Noun +SP noun that can be singular or plural (sheep)
+Abbr plural abbreviation
+Num +Fract +Pl plural fraction
+Meas measure phrase

VBG +Verb +PresPart present participle
+Verb +Prog progressive verb
+Aux +Prog progressive auxiliary

VBN +Verb +PastPart past participle
+Verb +PastBoth past participle or past tense

VBZ +Verb +Pres +3sg present third singular verb
+Aux +Pres +3sg present third singular auxiliary

WRB +Adv +IntRel interrogative or relative adverb

2.2 Named Entities

Next consider named entities, multi-word sequences that refer to particular entities, such as people
or companies.3 The named entities appear in the text as XML mark-up, as in (8).

(8) company General Mills /company bought it.

The tokenizer was modifiedto include an additional tokenization of the strings whereby the material
between the XML mark-up was treated as a single token with a special morphological tag on it, as
in (9a). Here the underscore represents the literal space occurring in the middle of the named-entity.
As a fall back mechanism, the tokenization that the string would have received without that mark-up
is also produced, as in (9b).

(9) a. General Mills +NamedEntity bought it .

b. General Mills bought it .

The morphological analyzer was then modifiedto allow the additional morphological indicator
+NamedEntity to pass through. The lexicon was extended to recognize that indicator and to provide
suitable f-structure features for it (e.g., person, number, proper). The grammar was changed to allow
that indicator to follow nouns. In addition, an optimality mark (Frank et al. 2001) was used to prefer
the named entity reading over the other reading when possible; when a parse cannot be built with the
named entity reading, then the other tokenization is tried. A skeletal f-structure for (9a) is shown in
(10).

3Common nouns, such as dates and numbers, can also be marked up as named entities, but we did not use these in our
experiments. The technique for integrating these named entities into the system would be identical to that described here
for proper nouns, although the lexical entries for these tags would assign slightly different features.

242

(10) PRED buy SUBJ, OBJ

SUBJ PRED General Mills

OBJ PRED pro

TENSE past

Note that the subject predicate in (10) contains the single form ‘General Mills’. This single multi-
word predicate helps in parsing both because it means that no internal structure has to be built for the
predicate, which improves the speed, and because predicates that would otherwise be unrecognized
by the grammar can be parsed (e.g., Cie. Financiere de Paribas), which improves the coverage.

2.3 Labeled Bracketing

Labeled brackets are treated much like POS tags, except that they must be preserved through the
morphology so that they can be interpreted as constraints on the LFG grammar. The grammar was
modifiedso that it parses the labeled brackets as part of the c-structure. These brackets not only
force the material between them to be constituents, but they also dictate which c-structure categories
are possible. For example, the NP-SBJ label only allows NP constituents. This bracketing helps to
eliminate attachment ambiguities. A sample labeled bracketed sentence is shown in (11), and the c-
structure of the bracketed NP is shown in (12). Additional examples of labeled bracketing are shown
in (13).

(11) [NP-SBJ A record date] hasn’t been set.

(12) NP

LSB CAT[NP] NP RSB
[NP-SBJ]

a record date

(13) a. [NP-SBJ Lloyd’s] only recently reported [NP its financialresults for 1986].

b. [NP-SBJ The hall’s few computers] are used mostly [VP to send [NP messages]].

c. [NP-SBJ Moody’s Investors Service Inc.] said [SBAR [NP-SBJ it] lowered [NP the debt
ratings of certain long-term debt held by [NP-LGS this company]]].

In addition, the lexical entries for the labels use inside-out function application to specify the
grammatical function of the constituent. For example, the entry for NP-SBJ in (14) specifiesthat the
f-structure corresponding to that constituent must be a SUBJ.

(14) NP-SBJ CAT[NP] (SUBJ).

The categories chosen for this experiment and their corresponding grammatical function constraints
are shown in (15). These categories were chosen because they encode core grammatical functions.
Note that the lexical entries for these labels will also constrain the c-structure of the constituent, as
described above.

243

(15) Labels Used in Labeled Bracketing
Label F-structure Role in clause

constraint
NP (OBJ) direct object

(OBJ-TH) secondary object
NP-SBJ (SUBJ) subject
S-NOM-SBJ (SUBJ) clausal subject
SBAR-SBJ (SUBJ) clausal subject
SBAR-NOM-SBJ (SUBJ) clausal subject
NP-LGS (OBL-AG) demoted subject of passive
S-NOM-LGS (OBL-AG) demoted clausal subject of passive
ADJP-PRD (XCOMP) predicative adjective
ADV-PRD (XCOMP) predicative adverb
NP-PRD (XCOMP) predicative nominal
PP-PRD (XCOMP) predicative prepositional phrase
S-PRD (XCOMP) predicative clause
S-NOM-PRD (XCOMP) predicative clause
SBAR-PRD (XCOMP) predicative clause

C-structure constraint only (no f-structure constraint):
NP-EXT, NP-TMP
SBAR, SBAR-TMP, SBAR-ADV
PP
VP

2.4 The Combined System

POS tagging, named entities, and labeled bracketing can be combined in the input, as in (16). As
described above, the POS tags (VBZ, VBN) are filteredbefore the grammar parses the marked up
input, and the named entities (company /company) are processed then as well, while the
labeled brackets ([NP-SBJ]) are filteredby the grammar.

(16) [NP-SBJ company American Cyanamid Co. /company] has/VBZ n’t been/VBN
bought/VBN .

The integrated system is diagramed in (17), repeated here from (4). A preprocessing step has been
added to insert the shallow mark-up into the input string, the FSTs have been altered to filter the
POS tags and the named entities, and the grammar has been slightly modifiedto parse the labeled
bracketing and the named entities tags. As with the original system, the output of the integrated
system is the usual LFG c-structure and f-structure analyses of the input string.

244

(17) Integrated System

original string POS tagging
mark-up named entities

input string labeled
bracketing

tokenizer (FSM)
NE converter

morphology (FSM)
POS filter

LFG grammar
labeled bracketing filter
named entity sublexical rules

f-structure c-structure

3 Accuracy of the Integrated System

We have shown how this kind of information can be integrated into a deep parsing system. That
raises the question, is this information (POS, labeled brackets, named entities) reliably available, and
if so, does it actually help? We firstdiscuss the issue of reliability and then whether the gold standard
mark-up helped with ambiguity, speed, and accuracy in our system.

3.1 Gold Standard Mark-Up

For the our initial experiment which is reported here, we used gold standard shallow mark-up. For
the POS tagging this was obtained by extracting the POS tags from the UPenn WSJ treebank. Since
this corpus was hand annotated, the POS tags are assumed to be correct. The gold standard for the
named entities was created by the authors. To bootstrap our gold standard, we used an in-house ver-
sion of Fact Finder, a finite-statenamed entity recognizer developed at PARC. Names of companies,
organizations, and people were marked. The gold standard for the labeled bracketing was extracted
from the UPenn WSJ treebank. As discussed above, a subset of the brackets were chosen to reflect
core grammatical functions.

The reasoning behind using this gold standard mark-up was that if perfect shallow mark-up does
not improve ambiguity and speed without sacrificingaccuracy, then automatically produced mark-up
is bound to fail. In the paragraphs below, we briefly discuss issues with using automatically produced
shallow mark-up (also see section 4.2).

Many POS taggers are available, but for English they have about 96% accuracy when run on
sentences drawn from the same corpus as the taggers are trained on. An error rate of 1 tag every
20 words is probably not acceptable, since on average there would be one tagging error in every 20
word sentence. Thus the utility of this requires a tagger that guarantees 100% recall of the correct tag
even if it must provide several alternative outputs in cases where it might otherwise make an error.
It remains to be seen whether this is sufficientto have the desired effects on processing efficiency
and on reducing ambiguity.

With syntactic brackets, there is a somewhat different problem, since there is no standard online
technology that provides a syntactically useful phrase-chunker. Still, this integration is helpful for
doing experiments on manually labeled treebanks, such as the Penn Tree bank (Marcus et al. 1994).
However, even with these, only certain bracketings are compatible with the LFG grammar. In our
initial experiment, we extracted constituents which indicated core grammatical relations from the

245

Penn treebank (see section 2.3).
There are a number of named entity findersavailable, some are stochastic while others use finite-

state technology. As mentioned, to bootstrap our gold standard, we used an in-house named-entity
recognizer, the Fact Finder. Fact Finder is extremely fast and, unlike most other named entity recog-
nizers, it can produce ambiguous output, as in (18). This is ideal for a preprocessing step in a system
that includes deeper levels of analysis.

(18) person company General Mills /company /person

We have not made a detailed evaluation of this version of Fact Finder or of other entity finders.How-
ever, we conducted one run of our grammar on a non-gold standard version of the Fact Finder output.
The results still showed an improvement over the unmarked strings. As such, we are optimistic that
for at least some domains, such as newspaper texts which contain many complex proper nouns, using
an entity finderas a preprocessor will improve accuracy and speed.

3.2 Results

To test the accuracy and speed of the gold-standard shallow mark-up, we ran four test suites on
the integrated grammar. The firstwas the unmarked strings corresponding to the sentences in the
PARC700 test set (King et al. 2003). This is a subset of the sentences in Section 23 of the UPenn
WSJ treebank, the standard testing section. The second test suite was comprised of these same strings
with gold-standard named entity mark-up. The third was these same strings with gold-standard POS

tagging extracted from the UPenn WSJ treebank. Finally, the forth was these same strings with gold-
standard labeled bracketing also extracted from the UPenn WSJ treebank.

We compared the resulting f-structures with the PARC700 dependency bank to determine how
accurate the results were. We separated out the result for sentences that receive full parses from those
that receive FRAGMENT parses, parses that are produced by the fall-back robustness mechanisms of
XLE and the grammar.4 In general, full parses are more accurate than FRAGMENT parses, since the
grammatical relations that would have connected the FRAGMENTs together are not recovered.

(19) Results on the PARC700 (WSJ)
%Full parses Solutions Best f-score Time %

Unmarked 76 482/1753 82/79 65/100
Named Entities 78 263/1477 86/84 60/91
POS tag 62 248/1916 76/72 40/48
Labeled 65 158/774 85/79 19/31
bracketing
Note: the scores with / are full parses/all parses

The table is to be read as follows. Consider the firstrow which describes the parse results for the
unmarked-up strings (i.e., the input to the original system).

4The FRAGMENT grammar allows the input to be analyzed as a sequence of well-formed chunks. These chunks are
specifiedby the grammar, for example Ss, NPs, PPs, and VPs. These chunks have both c- and f-structures corresponding to
them. Any token that cannot be parsed as one of these chunks is parsed as a TOKEN chunk. The TOKENs are also recorded
in the c- and f-structures. The grammar has a fewest chunk method for determining the correct parse. For example, if a
string can be parsed as two NPs and a VP or as one NP and an S, the NP-S option is chosen. For an example FRAGMENT

parse from the XLE analysis of the WSJ Penn Treebank, see Riezler et al. 2002.

246

When parsing the PARC700, 76% of these strings got full parses.5 That is, they have both
a spanning c-structure and a well-formed f-structure. This is a measure of coverage for our
hand-written, corpus-independent grammar.

The full parses had an average of 482 solutions; many of the sentences had relatively few so-
lutions while a few had a very large number of solutions. If full and FRAGMENT parses are
considered, the average number of solutions was 1753. This is a measure of ambiguity for the
parses.

The average best f-score for full parses was 82, while that for all of the parses was 79. The
best f-score is the average of precision and recall for grammatical relations (e.g., SUBJ, OBJ)
for the parse of each sentence that best matched the gold-standard. This is our measure of parse
accuracy.

The time for parsing all of the sentences was set at 100% for the unmarked strings. The full
parses accounted for 65% of this total time. The time for all-parse processing is always higher
because of the additional effort required by our fall-back robustness techniques.

The other rows of the table show the results for input with named entities, with POS tagging, and
with labeled bracketing. We discuss these in turn.

Named Entities (% full: 78; soln: 263/1477; f-score: 86/84; time: 60/91)
The named entity mark-up was the most successful of the three types of mark-up. Full coverage
increased in that the number of full parses went from 76% to 78%. In addition, ambiguity dropped
so that there were only 263 average solutions for the full parses. The accuracy also increased in that
the f-score for full parses went from 82 to 86 and from 79 to 84 for all parses; these are substantial
gains. Finally, there was a modest improvement in speed in that parsing the entire 700 sentences took
only 91% of the time that parsing the unmarked strings did. We see these benefitsbecause expensive
and erroneous analyses of the internal structure of named entities are avoided.

POS Tagging (% full: 62; soln: 248/1916; f-score: 76/72; time: 40/48)
The POS tagging was not as successful. In particular, the number of full parses fell significantly
from 76% to only 62% and the accuracy of these parses also decreased as witnessed by the average
f-score of 76 for the full parses, compared to 82 for the unmarked strings. The only improvements
came from ambiguity for the full parses and from speed. The speed for the POS tagging was about
half of that for the unmarked strings. In the results presented here, we used full POS tagging. That
is, every word was marked for POS. In future work, we hope to explore whether using only partial
tagging, such as just verbs and nouns, would work better in that it would decrease the time and the
ambiguity without hurting coverage or accuracy.

Labeled Bracketing (% full: 65; soln: 158/774; f-score: 85/79; time: 19/31)
The situation with the labeled bracketing was better than that of the POS tagging. The worst result
was that coverage decreased from 76% full parses to only 65% full parses. However, the ambigu-
ity decreased to only an average of 158 solutions for full parses, compared with 482 for unmarked
strings, and the average best f-score for full parses increased to 85%. Even with the decline in cov-
erage, the f-score for all parses remained at 79, the same value as for unmarked strings, suggesting

5Current coverage of the grammar is over 80%; this improvement should benefitboth unmarked strings and ones with
shallow mark-up.

247

that the increased number of FRAGMENT parses still retained, or even slightly improved, in accu-
racy. This was accomplished with a dramatic improvement in speed in that the labeled bracketed
sentences took only a third of the time of the unmarked strings. Thus, if speed is important and an
overall f-score comparable to the much slower unmarked parsing is acceptable (and if a reliable and
efficientpre-processor for labeled bracketing is available), this kind of mark-up may be very useful.

4 Conclusions and Discussion

Our results show that further experiments need to be done as to the ultimate feasibility of integrating
low-level mark-up into deep parsing. In particular, we saw that there was an immediate gain both
in speed and accuracy from named entity mark-up, and there was a speed gain for labeled bracket-
ing without serious degradation of accuracy. However, POS tagging, even when using gold standard
mark-up, resulted in a significant loss in coverage and accuracy in that the number of full parses
dropped from that of unmarked strings. An interesting additional experiment would be to determine
what combination of types of shallow mark-up are best; for example, we could combine named en-
tities with POS tagging of verbs.

4.1 Fall-back Techniques

One area for improvement is findingbetter fall-back techniques when the low level mark-up fails.
Whenever the grammar cannot create an analysis which is compatible with the mark-up, the system
uses a fall-back technique. These fall-back techniques involve a second parsing pass and hence can
significantlyslow the overall parsing time.

In the case of the named entities, the fall-back technique is to use the output of the tokenizer that
ignores the named entity mark-up entirely; these two outputs were seen in (9). In our experience so
far, this works quite well, in part because it is needed relatively rarely.

The fall-back for the labeled bracketing may also be working relatively well, as witnessed by
the relatively low ambiguity rate even when all the parses are considered (158/774 vs. 482/1753 for
unmarked strings). When the grammar cannot create a well-formed analysis for a labeled bracketed
sentence, it uses the grammar’s general robustness mechanism of building well-formed FRAGMENTs
(see fn. 4 and Riezler et al. 2002). Note that each FRAGMENT may contain labeled brackets that are
correctly parsed. At this point, we have not investigated the effect of the labeled bracketing on the
FRAGMENT grammar in depth, and so there may be ways in which to decrease the ambiguity of
the FRAGMENT parses further. In particular, unlike named entities, the labeled brackets are always
parsed, even in the FRAGMENTs; that is, they are always part of the c-structure tree. The grammar
cannot try an alternative where just the unmarked string is parsed. It is unclear whether being able
to do this would be an advantage or not.

In contrast to the named entities and labeled bracketing, we have not found a good fall-back
mechanism for the POS tags. In one attempt, we created a version of the grammar that allowed the
grammar to ignore the POS tag restrictions if no parse could be found that obeyed them. Although
this improved the accuracy to be roughly that of the unmarked strings (since effectively it allowed
the grammar to parse the unmarked string), the time was extremely slow, slower than parsing the
unmarked strings. We thus abandoned this approach. One possibility to then consider is to use par-
tial POS tagging instead of full POS tagging in hopes that there will be a set of POS tags that improve
ambiguity and time while not hurting accuracy.

248

4.2 On-the-fly Mark-up

If these results are favorable, the question remains whether on-the-fly mark-up, as opposed to mark-
up extracted from a manually annotated treebank, can be used without erroneously eliminating cor-
rect parses. Some initial experiments with named entity mark-up indicate that automatic named en-
tity mark-up still improves results over unmarked strings. As such, we are very optimistic about
integrating named entity mark-up into the system.

In contrast, POS tagging is less likely to be successful. Its success will depend on whether there
is some combination of tags, e.g., nouns and verbs, which give reasonable coverage with improved
accuracy and ambiguity and on whether these tags are the types that POS taggers can assign with
very good accuracy. This is particularly important because we have not yet found a good fall-back
mechanism for when POS matching fails.

Finally, we are also optimistic about labeled bracketing, given the speed and accuracy we ob-
served in these experiments. However, we know of no chunker or parser that can produce the type
of input we need with enough accuracy, and the speed of that pre-processing might also be a serious
component of overall cost. In other words, producing the mark-up itself is a serious issue. Thus, our
current primary use for labeled bracketing is to test the accuracy of our grammar. That is, if we find
a full parse for a given bracketing, we can be relatively certain that the grammar has assigned the
sentence a correct f-structure.

References

K. Beesley and L. Karttunen. 2003. Finite-State Morphology. CSLI Publications.

M. Butt, H. Dyvik, T.H. King, H. Masuichi, and C. Rohrer. 2002. The Parallel Grammar
Project. Proceedings of COLING2002, Workshop on Grammar Engineering and Evaluation
pp. 1-7.

M. Butt, T.H. King, M.-E. Niño, and F. Segond. 1999. A Grammar Writer’s Cookbook. CSLI
Publications.

A. Frank, T.H. King, J. Kuhn, and J.T. Maxwell III. 2001. Optimality Style Constraint Ranking
in Large-scale LFG Grammars. In P. Sells (ed.) Formal and Empirical Issues in Optimality
Theoretic Syntax. CSLI Publications.

T.H. King, R. Crouch, S. Riezler, M. Dalrymple, and R. Kaplan. 2003. The PARC700 depen-
dency bank. In Proceedings of the EACL03: 4th International Workshop on Linguistically
Interpreted Corpora (LINC-03).

M. Marcus, G. Kim, M.A. Marcinkiewicz, R. MacIntyre, A. Bies, M. Furguson, K. Katz, and
B. Schasberger. 1994. The Penn treebank: Annotating Predicate Argument Structure. In
ARPA Human Language Technology Workshop.

J.T. Maxwell, III and R. Kaplan. 1993. The interface between phrasal and functional con-
straints. Computational Lingusitics, 19:571–589.

S. Riezler, T.H. King, R. Kaplan, R. Crouch, J. Maxwell, and M. Johnson. 2002. Parsing the
Wall Street Journal using a Lexical-Functional Grammar and Discriminative Estimation Tech-
niques. Proceedings of the Annual Meeting of the Association for Computational Linguistics,
University of Pennsylvania.

249

