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Abstract

This paper proposes a novel description format for c-structure. The explicit phrase structure
rewrite rules are replaced by more general constraints in a tree description language: (weak)
monadic second order logic (MSOL). Exploiting the fact that the MSOL-definable tree languages
correspond to the parse trees of context-free string languages, it can be shown that the gener-
ative capacity of the LFG formalism is not altered. Applying the MSOL-based formulation of
c-structure descriptions to Optimality-Theoretic LFG results in a significant clarification of the
prerequisites for a computationally well-behaved Optimality-Theoretic LFG system.

1 Introduction

This paper has two main parts: in the first part (section 2), a logic-based specification scheme for LFG
is proposed and discussed. The second part (section 3) sketches an application of this specification
format to formal considerations within Optimality-Theoretic LFG. (Kuhn (in preparation) discusses

this application in detail.)

1.1 Motivation

The point of departure for the generalized tree description format proposed here is the following: In
the LFG formalism, the formally exact specification of c-structure is done by context-free rewrite
rules (with generalized right-hand sides, including regular predicates like Kleene closure, etc.). Using
context-free rule specification has the obvious advantage that computational results for this class can
be transferred straightforwardly to the c-structure part of LFG parsing. (The regular expressions on
the right-hand sides of rules can be reduced to standard context-free rules too.)

However, the rewrite-rule-based specification of c-structural regularities places fairly strong limi-
tations on the generality of principles that are expressible from the point of view of syntactic theory.
As a consequence, many theoretical generalizations over possible c-structures (and the c-structure/f-
structure relation) have had no explicit correspondent in the formal specification of an LFG grammar.
For example, the c-structure part of the IP and I’ rules is ultimately specified like in (1) or in a sim-
ilar way; these rules obey (extended) X-bar categorial principles, but the principles are not formally
expressed. In other words, the absence of nonsensical rule like (2) appears to be purely accidental.

(1) IP — ({DP|INP|PP|CP|IP|S})(I'
" — () (VP)
@ D - ({N][VP}HP
In (3), a number of non-trivial sets of principles are listed that have been assumed in LFG.

(3) a.  X-bar categorial generalizations
(e.g.: only maximal projections are allowed in specifier of XP)
b.  Endocentricity (every lexical category has an extended head)
c.  Annotation principles (e.g.: specifiers of functional projections are discourse functions)
d.  OT constraints like Alignment constraints
Since the actual formal c-structure specification in the LFG formalism rests on simple rewrite
rules, there has been a tacit assumption: Theoretical principles generalizing over c-structure, like the

ones in (3), are somehow “compiled into” the actual c-structure rules. In the long run, this situation is
not fully satisfactory for a formally rigorous constraint-based/description-based approach.
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There are several conceivable ways for trying to make c-structure-level generalizations formally
explicit:

1. Macro/template devices in the description language
2. A meta specification scheme using (multiple) inheritance hierarchies
3. C-structure principles as filters on trees

4. A “constructive” tree description logic

The first option — the use of macro/template devices in description language — has been applied in
grammar writing efforts like the ParGram project (compare (Butt et al. 1999b, sec. 13.2), Butt et al.
(1999a, 2003)). The XLE grammar development system for the LFG formalism? provides a number
of different such devices (meta categories, rule macros, f-annotation templates, parametrized rules).
(4) indicates how such devices can be used to make generalizations explicit and re-usable: MaxPr 0]
is a meta category, FCat Spec (for “functional category’s specifier position”) is a macro that can be
used in various rules.

(4) MaxProj {CP|]IP]S|DP]NP]|APZ}.
FCatSpec = MaxProj: (C {SUBJ|TOPIC|FOCUS}H)=I.
CP --> ( @FCatSpec ) Cbar.
IP --> ( @FCatSpec ) Ibar.

The primary motivation for these techniques comes from large-scale grammar development, where
the generality of rule formulation is just one criterion which has to be traded off against robustness,
coverage of rare and little studied constructions and other “grammar engineering” factors. Hence the
macro devices are not necessarily the best choice for formalizing linguistic principles on theoretical
grounds: While (Kuhn 1999b) shows that the concept of parametrized rules (using complex category
symbols) can be exploited to implement a more general rule set for X-bar theory (compare (5) and
figure 1), there are still limitations to the approach.

(5) XPL_C] --> YP: (CDF)=!; Xbar[ C]: ~=L.
Xbar[ C] --> X[_.C]: "=1; YP: (CGF)=1;*.

In particular, the situations in which the principles hold still need to be stipulated; no axiomatic
formulation of the principles is provided.

The second option for expressing c-structure generalizations is the use of (multiple) inheritance
hierarchies. The best-known application of this technique are the “Immediate Dominance Schemata”
of Head-driven Phrase Structure Grammar (HPSG, compare (Pollard and Sag 1994, sec. 1.5)). An
approach that uses some related ideas for LFG was sketched in Kuhn 1999a; Clement and Kinyon
(2003) propose a meta specification scheme for LFG, based on Tree-Adjoining-Grammar (TAG).
Generally, a meta specification approach requires an augmentation of the representational system in
order to be able to refer to rule elements (like, for instance, the syntactic head) throughout the various
principles. This is to a certain extent against the spirit of LFG, which avoids extending representations
if there is a way of reaching the same explanatory effect based on more powerful descriptions of the
same simple representations. Thus, let us explore a different alternative in the context of this paper.

As a third option, one could formalize c-structure principles as filters on c-structure trees (similar
as Completeness and Coherence for f-structure). This would require a tree description language (but

hwwy. parc. confistl/groups/nltt/xlel
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X_F _C_B -->
{ eo _F =+ "FP--> (GP) (F) "
_B =2
(X[ +f,any,2]: ("DF)=!;) "speci fier"
(X[_F, _C1]: ~=!}) "head"
| e _F=-f "L --> (L) (FP) "
_B=1
(X[_F,_C0]: ~=I3) "head"
(X[ +f,any,2]: (TG)=!;) "conpl enrent "
| e: _B=1; "X --> (X)) (LP) "
(X[_F,_CO0]: “=l) "head"
(X[-f,_C2]: ~=1;) "cohead" }.

Figure 1: Implementation of general X-bar scheme using parametrized rules (Kuhn 1999b)

note that the M functor for referring to a c-structure node’s mother already exists in standard LFG).
To my knowledge, such a c-structure filtering mechanism has not been explored for standard LFG. Let
us here follow the forth option (which is somewhat related to the previous one): using a “constructive”
logic-based specification of trees instead of the explicit rewrite rules?

2 Logic-based c-structure specification

2.1 Thetreedescription logic

As an alternative to the procedurally grounded notion of context-free rewrite rules for c-structure
description, let us explore the use of formulae in (Weak) Monadic Second Order Logic (MSOL)
for describing the set of possible c-structure trees. MSOL is an extension of classical first-order
logic including variables ranging over one-place (=monadic) predicates (or, equivalently, over sets®)
and quantifiers over these variables. (6) illustrates the general shape of MSOL formulae (it is not
particularly meaningful):

6 (VX)(Vz,y)[z,y € X = (z <"y Vy <* z)]

Using the dominance relation <* (which can be defined within MSOL, compare Rogers 1998)# (6)
says that for all sets X of tree nodes, for any two nodes z, y from that set, either z dominates y or y
dominates x (note that the <* relation includes the reflexive case of a node dominating itself). If we
used this sample formula as a general grammatical principle, it would force all trees to be somewhat
degenerate since it only allows for nonbranching chains of nodes.

Let is look at an LFG example of constraints on c-structure: Endocentricity requires every cate-
gory to have an extended head, where the concept of an extended head requires a very careful defini-
tion (for more background on Endocentricity compare (Bresnan 2001, sec. 7.2)). As (7) shows, the
extended head requirement can be formulated straightforwardly in MSOL, using an ExtHd predicate,
which requires further elaboration.

2In the context of his categorial grammar-based discussion of LFG, Muskens (2001) proposes a logic-based c-description
formalism too. In the present paper however, | try to provide a formalization that differs only minimally from standard LFG.

31n weak monadic second order logic, the variables range over finite sets only.

4Furthermore, we can assume an immediate dominance relation <, non-reflexive domination <%, and a precedence
relation <.
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(7) Endocentricity: every lexical category has an extended head
(Vz)[LexCat(z) — [(Jy)[ExtHd(y, z)]]

In (8) we see the definition of extended head that (Sells 2001, 115) provides. This concept can be
formalized as in (9), still leaving open how we formalize co-projection of two nodes (CoProj(z, y)).

(8) Extended Head (formulation of Sells 2001, 115)
X is an extended head of Y if X is a lexically filled category, X corresponds to the same f-
structure as Y, and every node that dominates X and is not dominated by Y also dominates Y.

(9) MSOL definition of the extended head relation
ExtHd(z,y) = LexFilled(z) A CoProj(z,y)A
(V2)[(z<at z A=(y<t 2)) = 24T 9]
(10) LexFilled(z) = (Jy)[Terminal(y) A z <™ y]

There are at least two conceivable ways of defining the CoProj predicate®

(11)  (a) CoProj(z,y) = ¢(z) = é(y)
(b) CoProj'(z,y) = (3IP)[Connected(P)Azx,y € PA
(Vz1,22)[(21,22 € P A 21 <29) = ¢(z1) = P(22)]]

Variant CoProj’ (11b) includes the additional constraint that the co-projecting c-structure nodes are
connected by a sequence of c-structure nodes all of which are mapped to the same f-structure. This
excludes the case in which mapping to the same f-structure arises as an effect of independent f-
structure unification, as it may arise in the following schematic configuration:

@ xe
(tF)=4 =
vooX
A 12 (tF)=1
— X ZP

Using the simpler CoProj definition (11a) in the definition of extended head (9) would make YP an
extended head of ZP, i.e., it would make this c-structural concept even less local than one ususally
assumes it to be. So, presumably (11b) is the formalization that we want.

In section 2.3, we will come back to the differences between (11a) and (11b) when we address
the specification of the c-structure/f-structure relation in an MSOL-based framework. We will see
that the concept as defined in (11a) exceeds the generative power of standard LFG (i.e., it could not
be expressed in full generality within the standard LFG formalism); we will also see how the MSOL
formulation is ruled out by straightforward restrictions on simultaneous descriptions of c-structure
and f-structure.

The extended head example shows that a precise formulation of principles on c-structure is very
important. From the prose definition in (8) it is not obvious that the literal interpretation of this
definition is not expressible in standard LFG.

SConnected holds of a set of tree nodes iff it is a connected subgraph of a tree (compare e.g., (Morawietz and Cornell
1999)): Connected(P) = (Vz,y,2)[(xr € PAy € PAz <t zAz<t y) = 2z € P]
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2.2 Someimportant propertiesof Monadic Second-order Logic

MSOL has been explored in detail in work on formal language theory (compare e.g. Gécseg and
Steinby 1997). It has been used in formal work on syntactic formalisms, in particular for the for-
malization of heavily tree-based theories of syntax (e.g., Rogers 1997, 1998, 2001, Morawietz and
Cornell 1999).

The following properties make it particularly attractive for linguistic formalisms:

e Decidability. This guarantees that the trees described by a formula can be effectively con-
structed.

e The class of tree sets definable with MSOL coincides with the class of parse trees for generated
by context-free grammars.

e Possibility of compiling tree automata. The relation between MSOL expressions and trees
(viewed as tree automata) is comparable to the relation between regular expressions and finite-
state (string) automata. This means that logical tree descriptions can stay at a general abstract
level, while it is ensured that a precise computational model can be compiled out.

The following subsections provide an illustration of the last point. To appreciate the usefulness
of automata compilation, it is instructive to draw a parallel between the MSOL/tree automata relation
and the relation between regular expressions and finite-state string automata, which is familiar from
basic automata theory.

Excursion: regular expressions and finite-state (string) automata. Regular expressions and
finite-state string automata are descriptively equivalent. So, generalizations about different dimen-
sions of strings can be stated as separate regular (sub-)expressions, which can then be combined by
regular expression operations such as intersection. Since the regular expression formalism is closed
under these operations, we can be sure that a single finite-state automaton for computational applica-
tion can be compiled from the resulting complex expressions.

This description technique makes it possible to formulate linguistic principles and their mutual
relationship in a very general way, not having to worry about details of interaction in the formulation
of the principles. The “compilation” into a usable computational device can be taken care of in a
general mechanism.

A simple abstract example for a regular expression involving the intersection of two “principles”
is given in (13).6 (14) shows the compiled-out automaton (which in this case is extremely simple, so
the reader can verify that intersection of the regular expressions has the effect of producing the same
language).

(13) Regular expression:
[(a*|a b) c] & [7* b 7¥]

(14) Finite-state automaton:
a b c

®The *?” in the regular expression refers to an arbitrary symbol; ‘&’ is the intersection operation, *|” is union/disjunction.
“*’ is the Kleene star for zero to n repetitions, the brackets are used for grouping.
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MSOL and finite-state tree automata. Having seen the regular expression/finite-state string au-
tomata relation, let us look at MSOL formulae and their relation to a generalization of finite-state
automata: finite-state tree automata. Like in the previous situation, we find that (complex) formulae
in MSOL are descriptively equivalent to tree automata. (We cannot go into a proof of this relation —
the reader is referred to Gécseg and Steinby 1997, for example.)

Let us look at tree automata a little more closely. There are various sub-types of finite-state tree
automata. For our purposes it suffices to consider bottom-up tree automata, which are defined as in
(15).

(15) Definition: Bottom-up finite-state tree automaton

<A7 27 ap, Fa Oé>:
A: finite set of states;
3 alphabet of node labels (including terminals and nonterminals);

ap € A: initial state;
F C A: setof final states;

o state transition function a(by,...,bg, N) =¥,
where k > 0,by,...,b,,0' € A,N € X;
b1,...,by are the present states for k daughters of a node with label N;

b’ is the new state of the automaton.

In figure 2, an example bottom-up tree automaton is seen, including a sample derivation for the
tree we get for Ann knew Bill left.

A= {(10,(11,0,2,&3,&4,&5,&6};
¥ = {S, NP, VP, V, Ann, Bill, knew, left};

Sample derivation
F = {ag}: P

a3,a5,S) = ag,
as,as,VP) = as.

| | | |
An‘n“1 kne‘wa2 Bil‘l“1 Ief‘ta2

.ao .ao .ao .ao

( Sae
a(ap,Bill) = ay,
a(ag,knew) = aq, \V/Pas
a(agp,left) = ag, S
a(a1,NP) = ag, Ngas
a(a2 ,V) = O4, NP3 \/a4 NPas V‘a4
a(aq,VP) = as,

(

(

«

Figure 2: Example of a bottom-up finite-state tree automaton, including a sample derivation

A bottom-up tree automaton is very much like classical finite-state automata accepting the possible
strings of terminal/nonterminal symbols on a tree branch from leaf to root. (So we could envisage a
classical automaton traversing the left-most branch in the tree in figure 2, accepting ‘Ann NP S’,
as it goes through states ag, a1, a3, ag. The classical finite-state automaton would have transitions
afag,Ann) = a1, a(a1,NP) = a3, and a(a3,S) = ag (!).) What is special about tree automata is
that we have to think of them as initially running several such branch acceptance processes in parallel.
As we move from the leaves towards the root, more and more of the parallel processes get merged,
using a special type of state transition a(by,...,bx, N) = b': in such a transition, &k “subprocesses”
(which have to be in state b; through by, respectively) are merged into a single process, reading (or
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writing) a nonterminal symbol N. The resulting single process is then in state ’. The effect of this
process merger is to accept a local subtree with mother category N and & daughters each of which
has already been accepted bottom-up. So the sample tree diagram in figure 2 should be read as a trace
of four parallel subprocesses, each starting in state ag at one of the leaves, which are then merged at
various levels. The single remaining process ends in final state ag, which is a sign that the tree we see
is accepted by the tree automaton.

Due to the descriptive equivalence of MSOL and tree automata, we can assume a mechanical
procedure that will produce tree automata for any MSOL formulae (i.e., in particular the complex
conjunction of all grammatical principles that we want to assume). That means we do not actually
have to think about which state transitions we will need in order to keep track of certain non-trivial
dependencies between tree nodes (such as the extended head relation discussed above).

As pointed out above, this is very similar to the process of compiling complex finite-state automata
from a linguistically perspicuous collection of regular expressions, as it is familiar from applications
of finite-state technology for morphological analysis or shallow syntactic grammars.

2.3 Therelation between c-structure description and f-structure description

If we want to apply MSOL for the description of LFG’s c-structure we also need to adjust the expres-
sion of f-structure constraints, which are classically provided as annotations in the rewrite rules of an
LFG grammar.

There are at least two possibilities:

1. We could use MSOL also to specify f-structure and c-structure/f-structure correspondence.
MSOL can be used to describe graph languages and the relation between two graphs.

2. We could keep up standard LFG concept of f-annotations, using the standard ¢-projection and
making only reference to the node itself or its mother node (i.e., using only 1 and | relative to a
given c-structure node).

The second option will lead to a hybrid system of MSOL formulae and subexpressions in the standard
LFG feature logic.

Although the first option avoids a hybrid specification system and is thus presumably superior on
aesthetic grounds, let us for now follow the second approach. The advantages of this second choice are
that the specifics of the LFG f-description language can be directly inherited: the distinction between
defining and constraining equations, the special interpretation of disjunction and negation, the treat-
ment of functional uncertainty, closed sets, etc. All these characteristic would have to be reconsidered
if we followed the first option, potentially leading to a notion of f-structure with quite a different char-
acter. For the second option, which is a minimal alteration of the original LFG formalism, it is fairly
straightforward to show expressive equivalence with standard LFG, as | will indicate in section 2.4.

Having decided that f-descriptions will continue to be in the form of annotations to c-structure
categories, we need a way of combining them with the new logic-based tree descriptions. In LFG-
grammatical MSOL formulae, f-annotation predicates will have a special status: (16). They can either
be one-place predicates, describing just the f-structure projected from a single node, or they can be
two-place referring to a node and its c-structural mother.

(16) The notion of f-annotation predicates in MSOL formulae

a.  Treedescriptions can only make indirect reference to f-structure: by including f-annotation
predicates
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b. In the definition of f-annotation predicates, the only reference to tree node variables may
be as the argument of the ¢ projection (and possibly other projections).

Examples for f-annotation predicates and their definition in terms of classical LFG feature logic are
given in (17).

(17) a.  NumSing(z) = (¢(z)NUM) = SING
b. SubjEmbed(z,y) = (¢(z) suBd) = ¢(y)
c. AdjunctEmbed(z,y) = &é(y) € (¢(z) ADIUNCT)
d. CoHead(z,y) = ¢(z) =¢(y)

For MSOL-based tree description, the f-annotation predicates are treated as unanalyzed asser-
tions, similar to other descriptive category predicates like Nominal(z). The definitions in (17) are not
resolved until a trees have been constructed according to the tree description predicates.

Using only ¢(x) and ¢(Mx) references in f-annotation predicates. An additional condition on
the two-place f-annotation predicates has been left implicit so far. In standard LFG f-annotations, we
normally refer to the node’s f-structure and the mother node’s f-structure only. For ¢(x) and ¢(Mx)
there are the short-hand metavariables | and 1. If we want to keep up this restriction, we should
assume the following meta constraint on f-annotation predicates:

(18) Meta constraint on two-place f-annotation predicates P:
P(z,y) > z<y

As a consequence of this, more general f-annotation predicates spanning larger tree-structural con-
figurations are excluded. In particular, this excludes the seemingly simpler version of the CoProj
predicate (11a) discussed in section 2.1. Version (11b) on the other hand can easily be made compat-
ible with this restriction (and restriction (16)), by replacing the final equation (¢(z) = ¢(z2)) with a
call of CoHead as defined in (17): CoHead(z, 22)

As it turns out, there is no way of encoding the effect of the (11a)-based formulation in full
generality using the f-annotations of a classical LFG grammar. It is not possible to keep track of
arbitrarily many non-local coprojection configurations. So, it is appropriate to rule out (11a) by the
restrictions in this section.

Definition of the c-structure/f-structure analyses in MSOL-based LFG. We can now see how the
valid c-structure/f-structure analyses for a given string has to be defined based on the new description
format. There are two steps:

1. The set of c-structure candidates is obtained by constructing the set of trees that are a model for
the MSOL grammar formula, conjoined with an MSOL description of the terminal string.” The
f-annotation predicates are ignored in this step (i.e., they are assumed to be satisfiable).

2. For each c-structure candidate, the f-annotation predicate terms from all tree nodes are con-
joined and resolved, instantiating the node variables to particular nodes from the tree model;
then the f-constraints are resolved as in standard LFG. The Completeness and Coherence con-
dition are applied as normal.

"We will shortly address one additional condition.
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Note that of course, step 2. may exclude many (or all) of the original trees, to the extent that they
do not support any consistent (and complete/coherent) f-structure.

The set of c-structure candidates constructed in step 1. may be infinite in the general case. This is
analogous to the situation in standard LFG, where a context-free grammar could generate an infinite
number of trees over a given string. By assuming the non-branching dominance condition (offline
parsability; Kaplan and Bresnan 1982, 266), the number of actual c-structure candidates is reduced to
finitely many, excluding configurations like the following:

(19) * XP
YP
XP

AN

The non-branching dominance condition (offline parsability) can be expressed as an MSOL axiom
schema:

(20) Non-branching dominance axiom schema

(VX) [NonBranchChain(X)
= (Va,y)[z,y € X A (Apep P(2) © P(y)) = = =y]]

where

e P is the set of all category and f-annotation labels used in the grammar formula

e NonBranchChain(X) = (Vz,y)[z,y € X — (z<*y Vy <* z)]
ANz, y)[z,y € X Az <ty — (V2)[z <t 2 = (2 a* y Vy <* 2)]]

Hence, simply postulating axiom (20) for all MSOL-based LFG grammars will guarantee decid-
ability of the parsing problem for the new description format.

2.4 Equivalencewith LFG expressiveness

Based on the hybrid specification of c-structure (using MSOL) and f-structure (using standard LFG
feature descriptions) discussed in the previous section, we can convince ourselves pretty easily that
the MSOL-based variant of the LFG formalism is neither more nor less expressive than standard LFG,
i.e., the following equivalence holds:

(21) Class of standard LFG languages = class of MSOL-based LFG languages

For a given standard LFG grammar, we can construct an equivalent MSOL grammar, and vice
versa. If we are given a standard LFG grammar, we can formulate MSOL formulae for each rewrite
rule by directly describing the local tree configurations, using the immediate dominance relation «
and precedence (<).8 The f-annotations for each daughter category can be expressed directly, using

8Regular expressions on the right-hand side of LFG rules can also be captured fully by MSOL. For example, the Kleene
star in the rewrite rule ‘NP —DET ADJ* N’ can be captured by saying:
(Vz)NP(z) = (Fy1y2Y)[DET(y1) Az <yt AN(y2) Az <y2 A(V2)z €Y - <12 AADJ(2) Ay1 < 2 < y2]
(This formulation assumes that ‘DET ADJ* N’ is the only right-hand side for NP; if there were more possible right-hand
sides, a disjunction over all of them would have to be used.)
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f-annotation predicates which conform to (16) and (18), since the original annotations make only ref-
erence to 1 and |, and there are only finitely many different f-annotations in a standard LFG grammar.

For a given MSOL-based grammar specification, a classical LFG can be obtained by first convert-
ing the MSOL description into an equivalent tree automaton (which can be done due to the equivalence
discussed in section 2.2). The f-annotation predicates are treated as unanalyzed labels, similar to the
category labels. The resulting tree automaton (compare (15) and figure 2) can be converted into a
rewrite grammar by introducing a non-terminal category for each state and constructing the produc-
tions for the non-terminals by using all state transition terms that have the corresponding state as
their target. Now, the f-annotation predicates can be converted into standard LFG f-annotations. The
meta-constraint on f-annotation predicates (18) in MSOL-based LFG ensures that we can express the
annotations in standard LFG.

Since in standard LFG and in MSOL-based LFG, the f-constraints are resolved in the same way,
the equivalence at the rewrite rule level that we just sketched is all that is needed to show that equiva-
lence (21) holds.

2.5 Discussion: Increased generality of descriptions

As the previous section showed, the expressive power of the LFG formalism is not increased by
moving to MSOL-based c-structure desciptions (we have descriptive equivalence). So what is the
benefit of the new format?

The answer is that we can now express principles generalizing over c-structure as explicit con-
straints that would otherwise have required a significantly blown-up representation. (Now, the
compiled-out tree automata will contain the fine-grained distinctions, but these tree automata have
a purely technical status; our theory is formulated at the level of MSOL tree descriptions.)®

This formalization expands the description-based spirit of LFG to c-structure specification (re-
placing a slightly derivational residual). With the hybrid system, the important computational proper-
ties of standard LFG carry over to the new system.

Computational considerations. Presently, the possibility of compiling out tree automata for an
MSOL grammar formula is solely viewed as a theoretical tool, guaranteed by equivalences holding
for the class of tree languages. But it may also be possible to devise computational procedures that
perform the compilation for actual grammar specifications. There is a computational tool for such
compilations, which was originally developed for hardware verification: the MONA system Klarlund
and Moller (2001), Morawietz and Cornell (1999). As the experiments by Morawietz and Cornell
show, the size of the tree automata gets extremely large when applied to non-trivial grammar for-
mulae, at least in the heavily tree-based theoretical framework they were investigating. However, it
may be possible to exploit properties of the special case of LFG grammar formulae to facilitate the
compilation.

Potential further directions. While the focus on equivalence with standard LFG in the present
paper motivated the use of a hybrid description system, it would be very interesting to explore a
purely MSOL-based description of both c-structure and f-structure. A comparison with the hybrid
approach may reveal interesting aspects of LFG and feature grammars in general.

A further application of the generalized tree descriptions, besides in the formalization of theoretical principles holding
on c-structure and the c-structure/f-structure mapping, might be treebank annotation principles as proposed by (Frank 2000).
The framework discussed in the present paper could be used as a formal basis for Frank’s generalized f-structure annotations.
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3 An application: constraint specification in OT-LFG

Besides the application within classical LFG, the MSOL-based formulation of c-structure descriptions
results in a significant clarification of the specification of computationally well-behaved OT-LFG sys-
tems. Kuhn’s (2002, 2003) proof of the decidability of optimization for a suitably restricted OT-LFG
system (based on Kaplan and Wedekind’s (2000) context-freeness results) relies on OT constraints
being “expressible local to a c-structure subtree”. The relevant “locality” criterion is hard to pin down
rigorously without a general tree description language: e.g., non-local dependencies are allowable
as long as the information can be percolated through the tree using a finite set of category symbols.
By demanding that all OT constraints are expressed in MSOL we get a very clear characterization of
the “locality” criterion, and the context-free-grammar-guided decidability proof becomes much more
perspicuous.

Section 3 of this paper attempts to present the computational issues addressed in the decidability
proof of Kuhn (2002, 2003) in an accessible way and sketches the application of the logic-based c-
structure specification proposed in the previous section in the context of this proof (compare Kuhn (in
preparation)).

3.1 A brief introduction to OT-LFG

/FP\ PRED ‘read(s,0)’
NP F suBJ [ PRED ‘PRO’
N T
she F VP o83 [PRED ‘PRO’ { *Op-Spec}
| |
will v/ orQ
T TNS  FUT
\Y NP
I T
read what
FP
_—
PRED ‘read(x.y)’ 7 NP |:(
PRED ‘PRO’ Awhat =) PRED ‘read( s, 0)
PERS 3 NP = SUBJ [PRED ‘PRo’]
NUM - SG PN PRED ‘PRO’
x T~ * - *
PRED ‘THING’ she F V‘P 0BJ Q { *OB-HD, *STAY }
oP Q v W‘ill \V4 TOPIC ]
TNS FUT I TNS EUT
. Y
FP read
_—
NP F
it & Fp PRED ‘read(s, o)’
NP = suBJ [ PRED ‘PRO’ |
wi L,
AN | PRED ‘PRO . .
she \<P OBJ 0 { *STAY, *STAY }
v/ TOPIC ] L]
! TNS FUT Evalie,s )
M
read
Input ®; Geng,,,,,: candidates constraint
Pt Bin (c-structure, f-structure) profile

Figure 3: The OT-LFG architecture: a graphical overview

Figure 3 provides a graphical overview of OT-LFG as originally proposed by Joan Bresnan (e.g., in
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Bresnan 2000) and discussed in detail in (Kuhn 2003). A general underlying LFG-style grammar de-
fines the set of possible candidate representations. For a given input (a partially specified f-structure),
the actual candidate set is defined as those c-structure/f-structure pairs for whose f-structure is sub-
sumed by the input structure, without adding any semantic information.

The competing candidates are compared in terms of the violations of OT constraints that they
incur. A (violable) OT constraint is a description of a subconfiguration (c-structure/f-structure, or a
combination of both) of the candidate representations.

In figure 3, the constraint violation for each candidate are shown as a multiset of violation marks
for the constraints Op-SPEC, OB-HD and STAY.1® The language-specific ranking of the constraints
determines which of the candidates is the most harmonic realization, making it the predicted gram-
matical realization of the underlying input.

3.2 Undecidability for unrestricted OT and the basis of a decidable system

The set-up of a syntactic OT system just sketched makes it possible to have an infinite number of
competing candidates in a specific candidate set. As we will see, this is not in itself an unsolvable
computational problem, but it can lead to a problem if the system is not otherwise restricted in a
suitable way. We discuss the problem in the following; the solution of (Kuhn 2003), which is also
assumed here, will be to allow for infinite candidate sets, but demand that constraints are not arbitrarily
powerful.

The schematic example in figure 4 illustrates the computational problem that infinite candidate
sets may pose without further restrictions on the formalism. (For a formally precise discussion of
the issue, see Kuhn 2003, ch. 4.) Let us assume (i) that we have an underlying candidate generation
grammar that licenses recursive structures like the Y-trees in figure 4. Moreover (ii), there is some
high-ranking constraint (C,) which we find to be violated in “small” structures, participating in the
recursive construction.

S
S T
S T XY Z
XYz 1. AYB )
A A B /Y\B

<

Y
A
Ci[Ce]  [Ci]Ce]  [Ci]Cyf
il el el Bl il [

Figure 4: Schematic depiction of the intuitive problem with infinite candidate sets

Now we have to decide whether or not there is a way of avoiding the violation of C; — one
possibility is to look at larger recursive structures. The constraint violation might be triggered by the
“small” structures and could possibly go away. Let us furthermore say that the violation does not go

©Grimshaw’s definitions for these constraints are the following (compare Grimshaw 1997, 374):
OP-SPEC  Syntactic operators must be in specifier position.
OB-HD (Obligatory Head) A projection has a head.
STAY Trace is not allowed.

For their translation into the OT-LFG framework, see (Bresnan 2000) and (Kuhn 2003, ch. 4).
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away within the first n larger candidates we look at, using the recursion. Now the issue is: if there are
infinitely many larger structures using the recursion, can we ever be sure that the C; violation cannot
be avoided?

One may ask whether this type of problem is of any linguistic relevance for Optimality-Theoretic
syntax. Maybe we could restrict the set of allowable candidate generation grammars, excluding re-
cursion without a reflex in f-structure (which would make the problem disappear)? However as | will
argue in the following subsection, this is not a viable option if we are interested in providing a for-
malization of the core idea of the Optimality-Theoretic approach, which is to derive cross-linguistic
grammatical differences as an effect of constraint reranking. There is linguistic support for infinite
candidate set.

3.2.1 Linguistic motivation for infinite candidate sets

Obviously, there can be no direct empirical support for the need of an infinite candidate set: there will
always be just a finite set of winners (typically just a single winner). However, if we find a systematic
OT explanation that relies on ranked constraints operating on a subset of candidates which are related
to each other since they include more or fewer instances of otherwise unlimited recursion (which has
no f-structure reflex), this will be a good indication that infinite candidate sets should not be excluded
a priori.

The use of stacked functional projections in the extended projection architecture of Grimshaw
(1997) is such an example. On top of the lexical VP projection, an arbitrary number of stacked
FP projections is allowed (two of which will correspond to the classical IP and CP projections). If
we translate this to an LFG setting, all of the functional categories will act as f-structure co-heads
(following Bresnan 2001, ch. 6-7), so there is no f-structural nesting corresponding to the stacking
in c-structure. This means that we will indeed get infinitely many candidates for any candidate set
involving a lexical verb, as indicated in figure 5.

VP [PRED ‘laugh{ s ) ]
T

SUBJ [ PRED ‘PRO’ |
TNS FUT

PRED ‘laugh(x)’ _— SUBJ [ PRED ‘PRO’ |
PRED ‘PRO’ NP F
5 TNS FUT
GF1 PERS 3 she F VP
NUM SG
TNS FUT

Fp [PRED ‘laugh({ s )’ ]
| T~
will laugh

SUBJ [ PRED ‘PRO’ |
TNS FUT

E lPRED ‘laugh{ s )’ ]

T
that NP F
N T~
she F VP

| T~
will laugh

Figure 5: Infinite candidate set for a given f-structure due to stacking of functional projections
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In Grimshaw’s analysis, the assumption of not just zero, one, or two, but arbitrarily many func-
tional projections is justified by the derivation of English data with embedded clauses including an
operator (compare Grimshaw 1997, 399ff). Constraint interaction leads to a winner (for English)
which actually includes three functional projections. This indicates that a prior stipulation of a maxi-
mal depth for functional projection stacking (while technically still possible, using 3 or 4 as the limit)
goes against the explanatory impact of the OT approach.

Structure (22) shows what would be the LFG correspondent of the input that Grimshaw (1997,
399ff) assumes; (23) presents a sequence of candidates for this input (only the c-structure is shown).
In general, we should think of all candidates in OT-LFG as arising simultaneously in an abstract
competition that does not involve the actual generation of the candidates in a cognitively real device.
However, for pedagogical reasons this particular example presents the candidates in a sequential way,
along with the tableau of candidates considered “so far”. The sequence of presenting the candidates
follows the order of increasing recursive stacking, suggestive of the abstract example given in fig-
ure 4. This should suggest that it is not a computational possibility to do the candidate generation
first (for an infinite set of candidates!) and check the constraint violations afterwards; a concrete algo-
rithm will have to interleave the two abstract processes of (i) candidate generation and (ii) constraint
marking/harmony evaluation. For more details on example (22)/(23), see (Kuhn 2003, 185ff).*

(22) Input
[ PRED  ‘say(X.y)’ T
PRED ‘PRO’
GFy PERS 3
| NUM  SG .
[ PRED ‘laugh(x)’ T
PRED ‘PRO’
GFy PERS 3
GFo NUM  SG .
PRED ‘U.N.C.
MOD
[ OoP + ]
TNS  FUT
L L Jy J
(23) a. o
L w o)
w & T >
Sld|alg
a | O |0 |wm
[ip she will [vp laugh u.n.c.]] *
FP
/\
NP F
. P e
She said ... she F VP
/\
VP PP
will laugh  under no circumstances
b. s
Wi gl
wiwm|IT| >
S|d|a|g
o | OO |wm
[1p she will [vp laugh u.n.c.]] *
[xp u.n.c. [1p she will [vpr]] * * *

“The PURE-EP constraint is defined as follows (Grimshaw 1997, 394): “No adjunction takes places to the highest
node in a subordinate extended projection; and no movement takes place into the highest head of a subordinate extended
projection.” For the other constraints, compare footnote 10.
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FP
’/\
PP F
- \
under no circumstances /FP\
She said ... NP F
. Y
she F VP
¥
VP
will laugh
c.
A I -
26|65
[1p she will [vp laugh u.n.c.]] *
[xp u.n.c. [Ip she will [VP]] * * *
[Xp u.n.c. will [IP she [Vp]] **
FP
//\
PP F
- /\
under no circumstances F FP
- ‘- /\
She said ... will NP F
. -
she VP
¥
VP
—_
laugh
d. o
w | w| g
| 2T %
2|6|0| 6
[tp she will [vp laugh u.n.c.]] *
[xp u.n.c. [tp she will [ve]] * *
[xp u.n.c. will [tp she [ve]] | * **
[ ] [cp that [xe u.n.c. will [rp she [vp]ll] **
FP
&
/\
F FP
’/\
that PP F
She said ... u. no circs. F FP
\- —
will NP F
. -
she VP
¥
VP
—_
laugh

Note that the ultimate winner with its three levels of stacked FPs avoids all violations of high-ranking
constraints, in contrast to the “smaller” candidates candidates considered “earlier on”. The winning

candidate only violates the low-ranking STAY constraint.

3.2.2 Decidability despite infinity of the candidate set

The example in the previous subsection showed that from the point of view of linguistic modeling,
infinite candidate sets should not be excluded a priori. As it turns out, infinity of the candidate set is
not a problem by itself. As long as there are finitely many equivalence classes of candidates to deal
with, the problem will be manageable. (Kuhn 2003) presents a decidability proof for OT generation
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based on a constraint concept in which all constraints are anchored in a local tree configuration. This
makes it possible to discard infinitely large equivalent classes of candidates as impossible winners and
leaves only a finite set for comparison.

The construction is based on the following result of Kaplan and Wedekind (2000): Genera-
tion from a given f-structure (within classical LFG) produces a context-free language. Kaplan and
Wedekind present a construction that exploits the strict f-structural constraints imposed by the goal
of generating from a particular f-structure. These constraints are folded into the c-structure symbols,
creating a large but finite set of category symbols that take over the role of all f-structural restric-
tions in a normal LFG grammar (for the particular given f-structure for which strings are generated).
Ultimately, no f-annotations are needed anymore, and we get a context-free grammar that generates
exactly those strings which the original LFG grammar accepted for the given f-structure.

f-structure ®

PRED ‘laugh({ suBJ)’
suBJ [PRED ‘MARY’]U

TNS FUT

! Specialized grammar KW (G, ®)

' (v SUBJ) = v,
LFG grammar G ) 1, S Fpa (vs PRED) =*MARY’
FP— (NP) F | " (v PRED) =*LAUGH((v SUBJ))’

(tsuB)= 1=| x
F— ) & N (v SUBJ) = v,
= - FP:U:{( } —

vs PRED) =“John’

\)v.i.ll F (1TNS)=FUT 2 PRI'E;D') _ (v PRED) =
laugh V (1PRED)= 8 - -
ud (T‘Iaughz(TSUBJ»’ NP:vS:{ ‘John’ } F':v:{ ‘laugh{(v SUBJ))’}

Figure 6: lllustration of the construction of Kaplan and Wedekind (2000)

Figure 6 provides a schematic illustration of Kaplan and Wedekind’s construction (see their paper
or (Kuhn 2003, ch. 6) for details). Given an LFG grammar G and an f-structure ®, a specialized
context-free grammar is constructed which we may call KW (G, ®). The augmented c-structure
categories in this grammar have the form XP:v,, . ., :I'. T encodes a set of instantiated f-constraints
percolated bottom-up.1? The consistency of all the f-constraints that are percolated up to the root
symbol (and Completeness/Coherence) is checked by a selective introduction of productions for a
new start symbol. (This is feasible since the existence of a fixed ® guarantees that there is a finite set
of possible f-constraint instantiations for the grammar.)

Kuhn (2000, 2003) exploits the “K W construction” for showing that generation-based optimiza-

tion in OT-LFG is decidable, based on two assumptions:

1. Each candidate’s f-structure is identical to the OT input (modulo addition of a bounded amount
of information);

2. All OT constraints can be anchored local to a c-structure category.

2The expressions following the first colon — v, ¢ — are used to fix the instantiation of the metavariables 1, | to specific
paths taken from @ (such as the empty path, or the path suBJ, or cCOMP SUBJ etc., in large f-structures); all possible
combinations of such fixed instantiations are created.
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For the locality restriction, there has not been a fully satisfactory formulation so far. The logic-based
formulation of tree constraints brought forward in section 2 of the present paper will actually fill this
gap.

Technically, Kuhn’s (2003) application of the KW construction for OT-LFG involves an addi-
tional step of transforming the LFG grammar used for candidate generation (G jnqi0;) iNto a version
that includes explicit markings of locally incurred constraint violations as part of an expanded c-
structure category format. We may refer to the result of transforming a grammar in this way as
Oc(@Q).

When the KW construction is applied to O¢(Ginvior) for a candidate generation LFG
grammar Giuie and an underlying input f-structure ®;,, we get a context-free grammar
KW (Oc(Ginviot), Pin) (this is illustrated schematically in figure 7). This resulting context-free
grammar may still include recursive rules (thus generating infinitely many strings). But the struc-
tures created by traversing a chain of recursive rules are at most as harmonic as a smaller candidate
already generated (this is a consequence of having encoded all local constraint violations in the cate-
gory symbols). So there is an effective way of generating the full set of winners. (In well-behaved OT
systems this will be a small finite set, but even if there are infinitely many candidates for the optimal
constraint profile, we get a context-free grammar that produces exactly those winners.)

LFG grammar G
FP - (NP F
) (tsuBy=4 1=| f-structure ®
o= T(E)i TF‘Pi oT PRED ‘laugh({ suBJ )’
N - constraints SUBJ [PRED ‘MARY']
will  F  (1TNS)=FUT ! NS FUT v
laugh V (1PRED)= /) p
‘laugh{(tsuBJ))’ / K
[ - = .
“local OT” grammar OT(G) Speciatized grammar KW (OT(G), ®)
. . . -7 (v SUBJ) = wg
FP:(0,1,0) = (NP:(0,3,2)) F': (1,1,0) / . - o ey
(TSU BJ):J, T:\L / S— FP'<0’ L, 0>'U' (v PR(ED) F:FBUGH((/ZR;UBJ))'
Fi1,1,00 =  (Fi0,0,0)) FP:(0,1,0) ' 0 om)
T:i T:‘L — FP:(O, ]., O)ZU: (vs PRED) ;‘Jon’ } —
will F:(0,1,0) (TTNS)=FUT ) o ey =) ey =
IaUgh V:<O7 07 0> (TPRED): NP(O, 1, 1)-’03- John F':(2,0,1):: Iaugh(.(.v.suBJ))
‘laugh{(tsuBJ))’

Figure 7: lllustration of the decidability construction for OT-LFG generation

Summing up the result of (Kuhn 2003, ch. 6), the specialized grammar KW (OT'(G), ®) is guar-
anteed to generate the optimal OT candidates in its non-recursive part. This guarantees decidability
of generation-based optimization.3

3.3 Theconstraint locality condition

As was pointed out above, the constraint locality condition assumed in the decidability proof of (Kuhn
2003) has had no fully satisfactory formulation so far. Under the assumption that OT constraints have

131t does not guarantee decidability of the recognition/parsing problem for expressive optimization systems. This requires
further assumptions about contextual recoverability or a bidirectional optimization scheme (Kuhn 2003, sec. 6.3).
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one of the implicative forms in (24), the generation construction sketched in the previous section can
be formulated.

) a N = N
S s’

where N, N’ are descriptions of nonterminals of Ginyior; S,S’ are standard LFG f-
annotations of constraining equations with 1 as the only f-structure metavariable.

b. N = N'
e e
p M o p! M o

S S!

where N, N', M, M’ are descriptions of nonterminals of G j,i01; N, N' refer to the mother
in a local subtree configuration, M, M refer to the same daughter category; p, p’, o, o’ are
regular expressions over nonterminals; S, S’ are standard f-annotations as in (24a).

However, for non-trivial c-structural OT constraints, a conversion of the c-structure representation
had to be assumed, prior to formulating the constraints. An example from (Kuhn 2003, 97) is given
in (25).

(25) IPccxhy vs. IPcexhn: c-commanding extended head yes/no

c’ — C  IPccxhy

c — IPccxhn
IPccxhy  —  (XP)  I'cexhy
IPccxhn - —  (XP)  I'cexhn
I'ccxnn  — (1) (VP)
l'cecxny — (1) (VP)

As has been noted, even non-local conditions can be encoded, using a GPSG-style slash feature as
part of the c-structure categories. But at the same time this reveals a certain problem: it is not entirely
transparent what the actual limitations are that are imposed by the constraint locality condition.

Although reformulations of the c-structure rules along the lines of (25) could be devised for a
given construction and given OT constraints, there has been no mechanical way of getting from the
constraint formulation to the required representation.

3.4 Usingalogic-based formulation of constraints

A (MSO) logic-based formulation of OT constraints resolves the issue addressed at the end of the

previous section. OT constraints can be formalized as MSOL formulae with a free variable (ranging

over tree nodes). F-structure constraints can be included, using the hybrid specification technique
discussed in section 2.3.1 (26) is an example of an MSOL-based formulation of the constraint OB-

HD, making use of the ExtHd predicate defined above and a predicate XBar0 that can be defined in an
obvious way.

(26) OB-HD (Bresnan 2000, (21))
Every projected category has a lexically filled [extended, JK] head.

ObHd(z) = —XBar0(z) — [(Jy)[ExtHd(y, z)]]

10T constraints addressing f-structure may include only constraining equations.
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For the decidability construction discussed in section 3.2.2, the full cross-product of local con-
straint (non-)violations can now be expressed by a disjunction of such open formulae C;(x); we can
use this disjunction to introduce “constraint violation label” predicates (n1,ne,...,ng)(x), where
n; € {0,1} (multiple violations of the same constraint will always originate from different nodes).

(27) (Ci(z) ACa(z) A .. Ck( ) (0, ,0)(»"3)\/
(=C1(z) A Ca(z) A ())H< 70()V

(=C1(z) A =Ca(z) A ... Cy(z)) < ( -5 0)(z)v

(=C1(2) A =Co(@) A ... ~Ci(x)) > (1,1, 1)(z)

The constraint violation labels defined in this way can be used directly to control the generation of
“non-recursive” trees in the KW -construction step.

So, we can conclude that the MSOL-based constraint formulation clarifies the formal precondi-
tions for decidability of optimization to a great extent: Any constraint expressible as an open formula
C;(z) of MSOL will be usable in an OT-LFG system without jeopardizing decidability of OT gener-
ation. For nonlocal dependencies it is no longer necessary to manually construct a c-structure level
representation like the one in (25) that takes care of the step-by-step relationship. The theoretical
results on the relation between MSOL and tree automata (and thus the tree skeleton of context-free
string languages) ensure that there will be a way of compiling out the grammar.®

4 Conclusion

In the first part of this paper (section 2), | argued that MSOL-based tree descriptions make it possi-
ble to express theoretical principles generalizing over c-structure in a direct descriptive way (which
is not possible under the standard LFG characterization of c-structure). If the relation between c-
structure and f-structure is realized by a hybrid description scheme (inheriting the standard LFG fea-
ture logic for f-structural constraint resolution), descriptive equivalence of standard LFG and the new
c-description format follows in a fairly straightforward way. As the second part of the paper illustrated
(section 3), open formulae in MSOL provide an elegant way of characterizing the locality condition
of OT-LFG constraints, which is required to guarantee decidability of generation-based optimization
with infinite candidate sets. A more thorough discussion is provided in Kuhn (in preparation).
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