
LINGUISTIC GENERALIZATIONS OVER DESCRIPTIONS

Mary Dalrymple , Ronald M. Kaplan , and Tracy Holloway King
Oxford University Palo Alto Research Center

Proceedings of the LFG04 Conference
University of Canterbury

Miriam Butt and Tracy Holloway King (Editors)

2004

CSLI Publications
http://csli-publications.stanford.edu/

199

Abstract1

LFG encodes linguistic generalizations not in terms of formal relations in a type hierar-
chy, but in terms of relations between descriptions of structures. An LFG functional de-
scription – a collection of equations – can be given a name, and this name can be used to
stand for those equations in linguistic descriptions. In computational treatments, these
named descriptions are generally referred to as templates. The use of templates allows
for linguistic generalizations to be captured. Template definitions can refer to other tem-
plates; thus, a template hierarchy can be drawn to represent inclusion relations between
these named LFG descriptions. Importantly, however, the relation depicted in such a di-
agram shows only how pieces of descriptions are factored into patterns that recur across
the lexicon and does not indicate the formal mode of combination of those pieces.

1 Introduction

A primary goal of syntactic theory is to identify generalizations about classes and sub-
classes of linguistic items, and in doing so to explore and characterize linguistic struc-
ture. A word like yawns belongs to several classes: it is a third-person, singular, fi-
nite, present-tense, intransitive verb. It shares some of these properties with a verb like
coughed, and others with a verb like devours.

Linguistic theories have adopted different views as to how such generalizations should
be captured. Early theories viewed the lexicon as “a kind of appendix to the grammar,
whose function is to list what is unpredictable and irregular about the words of a lan-
guage” (Kiparsky, 1982). Such views were (and are) common among proponents of
transformational approaches to syntax, since important linguistic generalizations were
assumed to be best encoded transformationally, with the lexicon as a catchall for lin-
guistic facts that could not be represented in general terms.

With the advent of constraint-based, nontransformational theories like LFG, this
view of the lexicon changed. Bresnan (1978) observed that the effect of many transfor-
mations is better captured in terms of lexical redundancy rules: for example, the active
and passive forms of a transitive verb, or the base and dative-shifted variants of a di-
transitive verb, are related by lexical rules rather than by syntactic transformations. On
this view, lexical information is no longer merely exceptional, idiosyncratic and there-
fore theoretically uninteresting. Instead, the lexicon and the rules relating lexical items
become a prime locus of syntactic generalizations.

One of the first proposals for explicitly representing lexical generalizations was made
by Flickinger (1987), who represents the lexicon as a hierarchy of word classes. Each
class represents some piece of syntactic information: the word yawns belongs to the
third-person singular present-tense class (like devours, cooks, and so on), the intransi-
tive class (like coughed, hiccup, and so on), and to other classes as well. Classes may
be subclasses of other classes, or may partition other classes along several dimensions:
Flickinger analyzes VERB-TYPE and VERB-FORM as partitioning the class VERB, and
FINITE as a subclass of VERB-FORM.

1This work was supported in part by the Advanced Research and Development Activity (ARDA)’s Ad-
vanced Question Answering for Intelligence (AQUAINT) Program.

200

Subsequent work within HPSG has built on this view. Linguistic generalizations in
HPSG are captured by a type hierarchy, with more specific types inheriting information
from less specific but related types. Construction Grammar (Kay, 1998) assumes a sim-
ilar hierarchy, the constructional hierarchy. On the HPSG view, lexical generalizations
are statable as relations between elements in the type lattice, where different subtypes
represent alternatives, and a type can belong to multiple supertypes. For example, Mal-
ouf (1998) provides the following depiction of a partial type hierarchy of HEAD values:

(1) HEAD

NOUN

C-NOUN GERUND

RELATIONAL

VERB

This diagram represents an AND/OR lattice: the alternative types NOUN and RELATIONAL

are disjunctively specified as different subtypes of the type HEAD. The type GERUND

inherits from two supertypes, NOUN and RELATIONAL, and the information inherited
from all supertypes is conjoined.

Work within LFG, on the other hand, has not appealed to typed feature structures
to encode linguistic generalizations. Instead, LFG encodes lexical generalizations not
in terms of formal inheritance relations between types, but in terms of inclusion rela-
tions between descriptions of structures. An LFG functional description – a collection
of equations – can be given a name, and this name can be used to stand for those equa-
tions in other linguistic descriptions. In computational treatments, these named descrip-
tions are referred to as templates. A description containing a reference to a template is
equivalent to that same description with the named equations, the template’s definition,
substituted for the template reference.

Template definitions can refer to other templates; thus, a template hierarchy similar
to the type hierarchy of HPSG or Construction Grammar can be drawn to represent the
inclusion relations between these named LFG descriptions. Importantly, however, the
relation depicted in such a diagram shows only how pieces of descriptions are factored
into patterns that recur across the lexicon and does not indicate the formal mode of com-
bination of those pieces. The context of the template reference is what determines how
the template definition combines with other parts of a larger description.

In the following, we will present several small template hierarchies and show how
they can be used in the definition of linguistic constraints. For more discussion of com-
putational issues related to the use of templates in grammatical description, see King
et al. (2004).

2 Template definitions

We begin with a simple lexical entry for the verb yawns:

(2) yawns (PRED)=‘yawn SUBJ ’
(VFORM)=FINITE

(TENSE)=PRES

(SUBJ PERS)=3
(SUBJ NUM)=SG

201

This lexical entry contains information that is shared by other verbs. We can define the
templates PRESENT and 3SG to encode this common information:

(3) PRESENT = (VFORM)=FINITE

(TENSE)=PRES

3SG = (SUBJ PERS)=3
(SUBJ NUM)=SG

The template name PRESENT names the functional description consisting of the two
equations (VFORM)=FINITE and (TENSE)=PRES, and similarly for 3SG. With these
definitions the entry for yawns can be rewritten as

(4) yawns (PRED)=‘yawn SUBJ ’
@PRESENT

@3SG

A template reference (or invocation) in a lexical entry or in the definition of another
template, as in ((5) below), is marked by a preceding at-sign “@”. The present-tense
and third-singular templates will be invoked by all similarly inflected verbs, so that the
details of these subdescriptions are specified in one place but effective in many.

We can further subdivide the functional description named by PRESENT into two
more primitive template definitions:

(5) FINITE = (VFORM)=FINITE

PRES-TENSE = (TENSE)=PRES

PRESENT = @FINITE

@PRES-TENSE

These template definitions can be arranged in a simple hierarchy that indicates their in-
terdependencies:

(6) PRES-TENSE FINITE

PRESENT

This diagram records the fact that the PRES-TENSE and FINITE templates are both refer-
enced in (or inherited by) the definition of PRESENT. Similarly, we can also subdivide
the 3SG template as follows:

(7) 3PERSONSUBJ = (SUBJ PERS)=3

SINGSUBJ = (SUBJ NUM)=SG

3SG = @3PERSONSUBJ

@SINGSUBJ

This information can also be represented as a template hierarchy:

202

(8) 3PERSONSUBJ SINGSUBJ

3SG

Finally, we can define a template PRES3SG that combines both tense and agreement
features:

(9) PRES3SG = @PRESENT

@3SG

Putting all these definitions together, our template hierarchy becomes

(10) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRES3SG

and the lexical entry for yawns further reduces to

(11) yawns (PRED)=‘yawn SUBJ ’
@PRES3SG

Thus we see that a number of hierarchically arranged generalizations can be ex-
pressed through a simple set of template definitions. The use of parameterized templates
allows for further generalizations to be captured by factoring out information provided
as an argument to the template. These are discussed next.

3 Parameterized templates

All intransitive verbs in LFG carry a semantic form that indicates the relation denoted
by the verb and also the fact that the verb must appear in f-structures containing the
single governable grammatical function SUBJ. The predicate, of course, differs from
verb to verb, but the SUBJ subcategorization frame is common to all intransitives. We
can define INTRANSITIVE as a parameterized template that expresses the common sub-
categorization. The predicate itself can be provided as an argument that is specified
differently in different lexical entries. This template can be used with all intransitive
verbs:

(12) INTRANSITIVE(P) = (PRED)=‘P SUBJ ’

Whatever argument is provided in an invocation of this template will be substituted for
the parameter to create the description that replaces the template reference. Thus the
description in the original entry for the verb yawns can be equivalently specified as fol-
lows:

(13) yawns @INTRANSITIVE(yawn)
@PRES3SG

203

Arguments to parameterized templates can represent any part of an f-structure descrip-
tion: attributes as well as values and even whole subdescriptions can be parameterized.
Templates can also take multiple arguments. For example, the template for a particle
verb might take the verbal predicate as one argument and the form of the particle as
another:

(14) VERB-PRT(P PRT) = (PRED)=‘P SUBJ, OBJ ’
(PRT-FORM)=c PRT

The few templates we have defined serve to demonstrate the point that templates
interpreted only by simple substitution allow commonalities between lexical entries to
be represented succinctly and for linguistic generalizations to be expressed in a theoret-
ically motivated manner. The parameterized template INTRANSITIVE(P) is shared by
verbs like sneeze, arrive, and many others. The PRES3SG template is shared by verbs
like appears, goes, cooks, and many others. The template PRESENT, used in defining
the PRES3SG template, is also used by verbs like bake, are, and many others.

4 Templates and Boolean operators

In LFG, complex descriptions can be conjoined, disjoined, or negated. Since templates
are just names for descriptions, we can also use these operators with templates. For
instance, we could define a template PRESNOT3SG by negating the 3SG template, as
follows:

(15) PRESNOT3SG = @PRESENT

@3SG

The substitutions specified by these invocations produce the following description:

(16) (VFORM)=FINITE

(TENSE)=PRES

(SUBJ PERS)=3
(SUBJ NUM)=SG

The first two lines are the result of expanding the PRESENT template, and the third and
fourth lines are the negation of the expansion of the 3SG template. This template can be
used in the lexical entry of verbs which are present tense but whose subject is not third
person singular (yawn, bake, appear, etc.).

With this addition we have the following template hierarchy:

(17) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRESNOT3SG PRES3SG

This indicates that PRESNOT3SG includes (“inherits”) descriptions from both of its an-
cestors. However, unlike an HPSG type hierarchy, this does not entail that the inherited

204

information is conjoined. For example, in (15) PRESNOT3SG invokes 3SG via nega-
tion. Template sharing is distinct from the mode of combination, which is determined
by the context of the invocation.

For another illustration of this point, suppose that we have defined a parameterized
TRANSITIVE template to be used for verbs like devour:

(18) TRANSITIVE(P) = (PRED)=‘P SUBJ, OBJ ’

This can be combined disjunctively with the INTRANSITIVE template to define a sub-
categorization template for verbs that can appear either with or without an object (eat,
cook, bake, etc.):

(19) TRANS-OR-INTRANS(P) = @TRANSITIVE(P) @INTRANSITIVE(P)

Notice that the parameter for TRANS-OR-INTRANS appears as an argument in the invo-
cations of both INTRANSITIVE and TRANSITIVE. The reference @TRANS-OR-INTRANS(eat)
thus expands ultimately to the disjunction

(20) (PRED)=‘eat SUBJ, OBJ ’ (PRED)=‘eat SUBJ ’

Finally, we can extend the hierarchical template inclusion diagram so that it bottoms
out in particular lexical items, thus showing how generalizations are captured not only
among the templates but also across the lexicon:

(21) 3PERSONSUBJ SINGSUBJ

PRESENT 3SG INTRANSITIVE TRANSITIVE

PRES3SG TRANS-OR-INTRANS

falls bakes cooked

5 Expressing defaults

Default values can be expressed in LFG by means of existential constraints and disjunc-
tion. An existential constraint asserts that a feature must be present in an f-structure but
it does not define the value that the feature must have. Thus the existential constraint
in (22) is satisfied only if the f-structure denoted by has some value for the feature
CASE:

(22) (CASE)

This asserts that some (unspecified) value must be provided by a defining equation for
the f-structure . Otherwise, the existential constraint is not satisfied.

We can disjunctively combine this specification with a defining equation stating that
the f-structure has the feature CASE with value NOM:

(23) (CASE) (CASE)=NOM

205

The first part of the disjunction is satisfied if has some value for CASE provided by
a defining equation elsewhere in the functional description (the existential constraint in
the left disjunct is satisfied). The second part of the disjunction is satisfied if has the
value NOM for CASE (the defining equation in the right disjunct is satisfied). The effect
is that NOM is the default value for CASE: if no other value is defined for that feature,
the value NOM will be installed.

This technique for specifying a default value V for a designator D can be encapsu-
lated in a parameterized template:

(24) DEFAULT(D V) = D D=V

and we can use this to make more obvious the fact that NOM is the default value of CASE:

(25) @DEFAULT((CASE) NOM)

An invocation of this default CASE assignment template could then be a part of the lex-
ical description for a noun in a language with case clitics. If there is no case clitic to
specify a particular case for the noun, the default NOM case will appear.

6 Templates and Phrase Structure Annotations

Since templates simply stand for pieces of functional descriptions, it is also possible
to use templates in annotations on phrase structure rules, to capture recurring gener-
alizations in the specification of the relation between c-structure configurations and f-
structures. There is no difference in the way templates are defined or invoked when they
are used in phrase structure rules; functional annotations in phrase structure rules can
simply be replaced with a template reference.

To take an example, suppose that every adjunct in the grammar must be annotated
with both its grammatical function and an ADJUNCT-TYPE feature, e.g., (26).

(26) VP V ADVP*
= (ADJUNCT)

(ADJUNCT-TYPE)=VP-ADJ

This can be rewritten using a parameterized template:

(27) VP V ADVP*
= @ADJUNCT(VP-ADJ)

where the ADJUNCT template expands to:

(28) a. ADJUNCT(P) = (ADJUNCT)
@ADJUNCT-TYPE(P)

b. ADJUNCT-TYPE(P) = (ADJUNCT-TYPE)=P

206

Coordination is another instance where templates are useful for capturing general-
izations over phrase-structure annotations. In NP coordination, the conjuncts must be
labelled not only for their relation to the f-structure of the coordination () but also
for information as to how the person and gender features of the conjuncts are resolved.
Instead of repeating this set of equations for each conjunct, a template can be invoked
which contains all of the relevant annotations.

(29) a. NP NP+ CONJ NP
@NP-CONJUNCT = @NP-CONJUNCT

b. NP-CONJUNCT =
@CONJ-PERS

@CONJ-GEND

The templates CONJ-PERS and CONJ-GEND are then defined so as to impose the proper
constraints on feature resolution in coordinate structure. Adopting the theory of feature
indeterminacy and feature resolution proposed by (Dalrymple and Kaplan, 2000), the
person and gender features are represented as sets of markers, and resolution is accom-
plished by the set-union implied by specifying subset relations on those marker sets:

(30) CONJ-PERS = (PERS) (PERS)
CONJ-GEND = (GEND) (GEND)

Thus, templates can be used to capture generalizations across functional descriptions
not only within the lexicon but also within phrase structure annotations.

7 Conclusion

We have observed that templates can play the same role in capturing linguistic general-
izations as hierarchical type systems in theories like HPSG. An important difference is
that templates are simply a notational device for factoring descriptions, not part of a for-
mal ontology. Template invocations are interpreted solely as instructions to substitute
the named descriptions into other descriptions and do not require a more elaborate math-
ematical characterization. They are simply a means of collecting together and reusing
linguistically significant collections of descriptions.

Templates differ from hierarchical type systems in two ways. First, parameterized
templates allow for templates to be systematically specialized in particular ways. Sec-
ond, since templates are just ways of naming descriptions, they can participate in Boolean
combinations of descriptions involving disjunction, conjunction, and negation. These
two differences may make it easier and more intuitive to express linguistic generaliza-
tions in comparison to hierarchical type systems.

References

Bresnan, Joan. 1978. A realistic transformational grammar. In Morris Halle, Joan Bres-
nan, and George A. Miller (editors), Linguistic Theory and Psychological Reality.
Cambridge, MA: The MIT Press.

207

Dalrymple, Mary and Ronald M. Kaplan. 2000. Feature indeterminacy and feature res-
olution. Language 76(4), pp. 759–798.

Flickinger, Daniel P. 1987. Lexical rules in the hierarchical lexicon. Ph.D. thesis, Stan-
ford University.

Kay, Paul. 1998. An informal sketch of a formal architecture for Construction Grammar.
In Proceedings of the Conference on Formal Grammar, HPSG and Categorial Gram-
mar. Saarbrücken. URL www.icsi.berkeley.edu/ kay/cg.arch.ps.

King, Tracy Holloway, Martin Forst, Jonas Kuhn, and Miriam Butt. 2004. The feature
space in parallel grammar writing. Research on Language and Computation. In press.

Kiparsky, Paul. 1982. Word-formation and the lexicon. In F. Ingemann (editor), Pro-
ceedings of the 1982 Mid-America Lingistics Conference.

Malouf, Robert. 1998. Categories, prototypes, and default inheritance. In Proceedings
of the Joint Conference on Formal Grammar, Head-Driven Phrase Structure Gram-
mar, and Categorial Grammar, pp. 207–216. Saarbrücken.

208

