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Abstract

We discuss a two-stage disambiguation technique for linguistically precise broad-coverage gram-
mars: the pre-filter of the first stage is triggered by linguistic configurations (“optimality marks”)
specified by the grammar writer; the second stage is a log-linear probability model trained on corpus
data. This set-up is used in the Parallel Grammar (ParGram) project, developing Lexical Functional
Grammars for various languages. The present paper is the first study exploring how the pre-filter
can be empirically tuned by learning a relative ranking of the optimality marks from corpus data,
identifying problematic marks and relaxing the filter in various ways.

1 Background

1.1 Linguistically precise grammars in NLP

In recent years, parsing based on large manually developed grammars that are directly informed by
linguistic theory has made significant progress towards broad-coverage application. Efficient processing
platforms for parsing and generation are available (in our context in particular the XLE system (Kaplan
et al. 2002) for Lexical-Functional Grammar — LFG); advanced profiling techniques and tool support
for grammar development are available (Oepen and Carroll 2000, King et al. 2004); effective fallback
strategies have been established to achieve robustness while still taking advantage of the high depth of
analysis (Riezler et al. 2002). The high initial cost of theory-driven manual grammar development pays
off when grammars for new languages are added to a family of grammars, as syntactic theory often
gives clear indications as to which parts of the rule system will carry over from an existing grammar and
which parts have to be rewritten; the most effective methodology thus relies on multilingual grammar
development based on clear cross-linguistic grammar writing conventions, as, e.g., practiced in the LFG-
based Parallel Grammar (ParGram) project (Butt et al. 2002, 1997) and the Grammar Matrix approach
(Bender et al. 2002) in the Head-driven Phrase Structure Grammar (HPSG) framework. The resulting
grammars are particularly suited for application contexts requiring great depth of analysis (like language
understanding systems with a reasoning component) and/or reversible grammars for parsing/generation
(like high-quality machine translation or computer-aided language learning).

1.2 Disambiguation: a two-stage approach

Theory-driven grammar development typically leads to grammars that overgenerate only mildly, since
lexical subcategorization information is taken into account and the grammatical constructions can be re-
stricted by rich feature constraints. In other words, most of the parses that a grammar assigns to a string
are linguistically justified. Nevertheless, due to the underspecified nature of natural language, ambigu-
ity rates for non-trivial sentences are considerable: most disambiguation decisions cannot be made on
strictly grammatical grounds, but involve some contextual or world knowledge. To ensure portability
of the grammars across domains, hard-wiring such non-grammatical decisions in the grammar code is
generally avoided. This justifies the need for sophisticated disambiguation techniques to complement the
linguistic grammar in parsing.

Contrary to the situation in grammar writing, the most effective way of building a disambiguator is
to exploit empirical, corpus-driven techniques. For constraint-based formalisms like LFG and HPSG,
the use of log-linear probability models applied on fully or partially labeled training corpora has been
established as a powerful, general machine learning technique (Johnson et al. 1999, Riezler et al. 2002,
Kaplan et al. 2004, Toutanova et al. 2002). The log-linear models are typically trained using a large,
schematically constructed set of learning features that check for structural and lexical configurations and
co-occurrences in the linguistic representations. Trimming the features of the log-linear model is an



engineering task separated quite clearly from the grammar writing task. Hence, there is a clear concep-
tual split between grammar writing, driven by linguistic theory, and disambiguator development work,
involving advanced machine learning techniques. However, in the ParGram project, it has proven highly
productive to assume an intermediate stage between the two components — a linguistically motivated
pre-disambiguation filter. Motivation comes from both ends:

(1) Linguistic motivation: Beyond the strict grammatical rules and principles that are encoded in the
grammar proper, there is a considerable number of soft principles that the grammar writer is well aware
of when working on a linguistic construction. For instance, many “rare” constructions should only be
appealed to in analysis when there is no “canonical” analysis of a string.*

Translating soft constraints into carefully conditioned hard grammatical constraints in order to keep
up the two-way conceptual split often yields unintelligible, error-prone rules; it also goes against the
idea of a theory-driven grammar development as it hides a clear intuitive explanation in a technically
complicated rule. Leaving the soft constraints entirely out of the grammar writing picture, hoping that
some constellation of the learning features will pick them up, is unsatisfactory, too. At the point when
the linguist is working on a construction, s/he is best aware of the linguistically salient interactions, and
it takes almost no extra work to encode the soft constraint explicitly.

Therefore the XLE grammar development platform employed in the ParGram project has been in-
tegrated with a soft constraint mechanism inspired by the strict constraint ranking system of Optimality
Theory (OT) (Frank et al. 2001). The mechanism is conceptually quite simple: for particular structural
configurations in the linguistic representation, an optimality mark or OT constraint can be introduced
(e.g., for the occurrence of a topicalized object). Each optimality mark is assigned a polarity, i.e., defin-
ing it as preferred or dispreferred. Furthermore, all marks used in a grammar can be ordered in a relative
ranking (where several marks can be given the same rank position). When the parser is applied, optimal-
ity mark instances are collected in a multiset and can then be used as a filter on the readings produced
by the system. Following the ranking order, each mark will filter out readings that have fewer instances
than the reading with the maximal instances (for preference marks) or more instances than the reading
with the fewest instances (for dispreference marks). The readings of a sentence that pass all marks and
are still left in the end are called “optimal”, the readings that are filtered out are called “suboptimal”.?

Experience showed that without a (potentially temporary) filtering mechanism for uncommon con-
structions, grammar writing would be considerably harder (King et al. 2004).

(2) Technical motivation: The log-linear models applied in empirical training of the disambiguator
are a discriminative technique, involving the computation of the gold standard analysis as well as all
alternative solutions (Johnson et al. 1999); furthermore, parameter estimation is an iterative process that
passes the training data multiple times. Hence, to keep the process tractable on medium-size to large
training corpora, the set of competing analyses has to be limited. Using only the analyses that pass a
linguistically motivated prefilter is a very desirable set-up.

1 Awareness of such linguistic interactions goes back to Panini’s work, and in recent years, ways of including soft-constraint
mechanisms in formal grammar formalisms have been explored, particularly in the framework of Optimality Theory (Prince
and Smolensky 1993) or in probabilistic grammar models (Manning 2003).

2For example, the parser may assign four readings to a sentence. Reading one has the multiset { C'1, C'1, C2 } of optimality
marks, reading two has the multiset { C'z, C2, Cs }, reading three { C';, C1, C2 }, and reading four { C;, C;, Cs, Cs }. Let
us furthermore assume that the marks are ranked C'; > C2 > C', and that all have positive polarity, i.e., they are preference
marks. In evaluation, C'; is considered first. Readings one, three, and four have two marks of C'; each, whereas reading two
has none. Therefore reading two is filtered out at this step. For the remaining readings, C'» is considered next. Reading four
doesn’t include any C's marks, so it is filtered out. For the final mark C's, there is no difference between the remaining readings
(one and three — both have no C's mark). Hence, there are two optimal readings: readings one and three.



2 Methodology

In this section, we discuss out experimental methodology at a conceptual level, a more detailed descrip-
tion and the results follow in section 3.

2.1 Trimming the linguistic pre-filter

In past work on the ParGram grammars, both the introduction of OT marks and the specification of
their relative ranking was done manually. This is problematic since the various marks affect phenomena
that were integrated into the grammar at different development stages, and often the appropriate relative
ranking can only be determined empirically. Moreover, the question of whether or not a particular mark
should be active in the two-stage filter architecture we described is also hard to answer in isolation. (But
note that the structural specification and the polarity of the candidate marks are aspects about which the
grammar writer can make an informed decision.) 3

This paper is the first systematic study applying empirical methods in order (i) to determine the
ranking of the OT marks, and (ii) to decide which marks should be left out of the first disambiguation
stage. It has been part of this study to explore measures for the quality of a particular specification of the
pre-filter. We present results for the German grammar from the family of ParGram grammars. Some of
the results of our experiments are surprising and provide some interesting insights in the workings of the
two-stage filter architecture.

While the technical results we report in this paper make reference to project-specific details of our
system architecture, we believe that many of the higher-level observations will carry over very well to
other projects involving a linguistically motivated core module that is applied in a broader context of
empirically tuned system components.

2.2 Measuring the quality of the pre-filter

The fact that the component we are interested in here is a pre-filter in the context of a two-stage system
has special consequences for quality assessment. It is not necessary that the pre-filter remove all incorrect
readings — since it is followed up by a sophisticated second disambiguator. On the other hand, it is

3Let us consider the following sentences as examples that illustrate the way dispreference and preference marks work, but
that also show that they sometimes prove problematic:

1) Der Journalist stellt ihn ihr gegeniber.
The journalist put him her opposite.

“The journalist confronted him with her.’

) Weil  er ihr gegeniber arrogant war, verliert er Sympathie.
Because he her opposite arrogant was, loses he sympathy.

‘Since he was arrogant towards her, he is losing sympathy.’

?3) Weil  er Frau Merkel gegeniiber Schwachsinn erzahlte, verliert er Sympathie.
Because he Ms Merkel opposite  nonsense told, loses he sympathy.

‘Since he told nonsense to Ms Merkel, he is losing sympathy.’

In examples 1 and 3, ambiguity arises due to the fact that gegeniiber can be a separable verb particle, a preposition, a
postposition or an adverb. This ambiguity can be (at least partly) resolved by the OT marks VerbParticle, which is a preference
mark, and Ppost, which is a dispreference mark. In example 1, VerbParticle correctly filters out the readings where gegeniiber
is analyzed as an adverb or postposition, keeping only the parse where it is analyzed as a separable verb particle as optimal.
In example 2, gegeniiber is analyzed as a postposition. This analysis survives the filtering by VerbParticle and Ppost because
no alternative analysis of gegeniiber is available. In example 3, gegeniiber is wrongly analyzed as a preposition, because Ppost
makes its intended analysis as a postposition suboptimal. Realistically, the fine-tuning between instances parallel to 2 vs. 3 can
only be done taking corpus frequencies into account.



highly undesirable if the pre-filter accidentally removes the correct reading, since this would make a
data point unusable for the second stage. One might describe this as a task in which recall is of greatest
importance, and precision should be traded off for recall; but in order to do justice to the special setting,
we will call the relevant measures “filter fidelity” and “filter efficiency”. “Filter fidelity” is defined as the
proportion of sentences for which the OT mark ranking under consideration keeps the correct reading
among the optimal reading(s). The intuition behind “filter efficiency”, on the other hand, is to measure
the proportion of readings among all incorrect readings of a sentence which are discarded by the OT mark
ranking as suboptimal. Concretely, we calculate it as the quotient of the number of readings discarded
by the filter divided by the total number of readings minus one.* Filter fidelity is our main criterion and
it should be as close as possible to 100%, but filter efficiency does have a certain importance as well, of
course, since filtering a maximum of bad readings while losing a minimum of good readings is the goal
of this whole enterprise. As a combined quality measure, we therefore provide a weighted F-score where
filter fidelity is weighted more strongly than filter efficiency. °

2.3 Corpus-based learning of a ranking

Our experiments start out with the manually specified OT mark ranking in the German grammar. An
obvious technique to try out is to learn a ranking automatically from corpus data for which the correct
reading has been labeled. The filter quality with the learned ranking can then be compared against the
manual ranking and a uniform ranking (giving all marks the same rank).

For corpus-based learning of the OT ranking, one could in theory apply the classical Constraint
Demaotion Algorithm from the OT literature (Tesar and Smolensky 1998); however, due to the variation
in the data the algorithm might not converge. Therefore we transform the classical discrete constraint
ranking into a continuous numerical ranking for the purpose of learning. This allows us to apply robust
learning algorithms like the Gradual Learning Algorithm (GLA) proposed by Boersma (1998), which is
related to the perceptron algorithm. In learning, the system’s current numerical ranking (with some noise
added to determine each constraint’s particular rank) is used in order to disambiguate a sentence from
the training data. When the predicted solution does not match the gold standard analysis, all constraints
ranked too low are promoted by a small increment (controlled by the so-called plasticity parameter); all
constraints ranked too high are demoted. The noise added in application has the effect that constraints
with a similar ranking can “swap” their relative rank, which leads to variation in the data, as it is often
observed. This variant of OT is thus often called Stochastic OT.

2.4 Augmenting the set of OT marks

We also performed an additional experiment besides learning a ranking for just the OT marks specified
by the grammar writers: we explored how pre-filter quality is affected if we systematically augment the
existing set of OT marks to ensure that for common disambiguation decisions, sufficiently fine-grained
distinctions in the OT marks are available. It is conceivable that for certain decisions, the OT mark set is
too “sparse” to produce a reliable result, whereas a richer OT mark set might behave in a more balanced
way. This is because in stochastic OT, competing marks may form clusters in the numerical ranking, and
the addition of new constraints may have the effect of making such a cluster more stable.®

“4At the LFG Conference in Bergen we presented figures that were based on a slightly different definition of filter efficiency,
namely the quotient of the number of readings discarded by the filter divided by the total number of readings. Since this initial
definition prevents filter efficiency from taking 1.0 as a value and it is highly dependent on the total number of readings for a
given sentence, our new definition is more appropriate.

*The exact definition is Fg = (1 + 8°) 7525245 3 being set to 0.5.

®To anticipate the experimental results however, we could not observe the effect of getting a more relaxed filter by providing
a larger set of interacting OT marks.



In a pilot study, we thus established OT tableaux containing the OT marks employed in the German
ParGram LFG and ran the GLA on these. This allowed us to identify OT marks which were reranked
particularly often and/or which were regularly both demoted and promoted. Two such marks were Objln-
Vorfeld” and LabelP.8 After inspection of a certain number of sentences where these OT marks made the
correct reading(s) suboptimal, we introduced new, more fine-grained OT marks such as ObjPersPronoun
(which disprefers the interpretation of personal pronouns as objects) and Subjindef (which disprefers
the interpretation of indefinite noun phrases as subjects), hoping these would allow to make the correct
reading(s) optimal for more sentences.

In order to be able to control whether this is effectively the case, we established two sets of tableaux:
the first one, henceforth the “all marks” set, contains both the 59 original and the 54 additional, newly
introduced OT marks; the second one, henceforth the “original marks” set, contains only the original
marks. Both sets were in turn split up into a training and a test set, so that we can examine how well
rankings learned from the training sets generalize to unseen data.

We then ran the GLA on the training portions of both the “all marks” set and the “original marks”
set. For training, we used a “traditional” GLA setting, i.e. a setting where the effective numerical rank of
an OT mark diverts from its grammatical rank within a normal distribution due to added noise and where
marks making wrong predictions are demoted or promoted on the numerical scale by a constant called
plasticity (cf. Boersma (1998)).

In order to evaluate the resulting rankings, we used a variant of the GLA without any noise interven-
ing at evaluation time. This allowed us to evaluate the resulting numerical rankings as if they were strict
relative rankings, which is the type of ranking used in XLE. Moreover, the application of this variant of
the GLA to the data allows us to identify marks that, even with an “optimal” OT mark ranking, cause
correct readings to be evaluated as suboptimal. In this sense, it is not only a tool for the evaluation of OT
mark rankings as a whole, but it can also be used to evaluate how reliable single OT marks are.

2.5 Relaxing the filter

An important additional step in our experiments (based both on the “original marks” and based on “all
marks”) was the attempt to modify an existing set of marks and ranking in order to increase filter fidelity
— without decreasing filter effectiveness too much. Besides learning a more adequate ranking, this could
be achieved in the following ways: (1) deactivating certain OT marks, such that their filtering effect is
removed, and (2) grouping together constraints with a very similar rank. For step (1), it is important to
identify appropriate marks for deactivation. In the pre-filter scenario, marks that are typically involved
in “highly contingent disambiguation decisions” (i.e., decisions that may turn out one way or the other)
should be excluded from the set, since they will eliminate the correct solution in relatively many cases.
To identify marks for deactivation we explored two strategies: (a) inspecting the results obtained with the
GLA variant without noise given a ranking obtained through a training run and to deactivate the marks
that caused wrong predictions and (b) automatically deactivating a certain proportion of marks being
associated with ranks at the lower side of the numerical scale.

For step (2) — grouping of similarly ranked constraints — we used various threshold values represent-
ing the minimal distance that two marks have to be away from each other in order to be attributed to
distinct groups with distinct ranks.®

"ObjInVorfeld disprefers the interpretation of case-ambiguous noun phrases in the vorfeld, i.e. the position in front of the
finite verb in verb-second clauses, as objects in sentences such as [np—susy Hans ] sieht Maria ‘John sees Mary’ vs. [np—oBJ
Hans ] sieht Maria ‘John, Mary sees’.

8LabelP disprefers the interpretation of a noun phrase as a close apposition to another noun phrase in sentences such as Hans
stellt [np—oBJ das Auktionshaus Ebay ] vor ‘Hans presents the auction house Ebay’ vs. Hans stellt [xp— ops das Auktionshaus
] [np—oBJ¢ Ebay ] vor ‘Hans presents the auction house to Ebay’.

%Such a grouping can “relax” the pre-filter in the following way: assume two dispreference marks C';,C's end up with



3 Experiments

3.1 Data

For our experiments, we parsed the 40,020 sentences of the Release 1 of the TiGer Corpus®® with a variant
of the German ParGram LFG (Dipper 2003) into which we had integrated the new, more fine-grained OT
marks and in which the evaluation of almost all OT marks had been deactivated.'* Out of 40,020 TIGER
sentences, 23,962 received a full parse.*? The resulting f-structure charts (packed f-structure represen-
tations) were matched against the f-structure charts previously derived from the TiGer graph annotation
(Forst 2003a,b); OT mark profiles corresponding to the f-structure charts produced by the grammar were
established, the TiGer-compatible readings being marked as target winners in them. Since the matching
of the grammar output against the TiGer-derived representations is very time-intensive when the num-
ber of different analyses contained in the two f-structure charts involved (or at least in one of them) is
very high, we had to limit the maximum number of matches performed between individual analyses to
10,000.13 By doing this, we obtained 6,418 OT mark profiles, associated with the sentences for which a
proper subset of all parses is compatible to the TiGer-derived f-structure charts. (The granularity of the
TiGer annotation is not sufficient to always determine one single parse as the correct one.) Sentences
for which all analyses were compatible with the TiGer-derived representations had to be discarded, since
there would be nothing to be learned from OT tableaux associated with sentences of this kind.

An example of an OT mark profile obtained this way is the one associated with the following sen-
tence:

(4) AnlaB fir all das gab aus Schweizer Sicht das neue Osterreichische Abfallwirtschaftsgesetz.

rise  for all that gave from Swiss view the new Austrian waste management law
‘From the Swiss point of view, it was the new Austrian waste management law that gave rise to all
that.”

reading AdvAttach Obj ObjCommon ObjDef ObjNoSpec

Al 0 1 2 1 1

A2 0 1 2 0 2

A3 0 1 2 0 2

A4 0 1 2 1 1
A5-B1 1 1 1 0 1

[] A5-B2 0 1 1 0 1
A6-B1 1 1 1 1 0
A6-B2 0 1 1 1 0

Table 1: Sample OT mark profile for sentence (4)

similar, but distinct, decreasing ranks. Without grouping, all readings with a C'; mark would be filtered out, independent of
their C'» marking, whereas after grouping a reading with a C'; and no C's mark is treated like one with a C'z and no C'; mark.

Ohttp://www.ims.uni-stuttgart.de/projekte /TIGER/TIGERCorpus/

The OT mark GuessedMassNoun was kept active, as its deactivation would have led to such an enormous increase in the
numbers of readings produced by the grammar that the matching mentioned below would not have been feasible for most
sentences.

2The grammar version employed was not chosen for its coverage but for its adherence to ParGram f-structure decisions
which are reflected in the TiGer-derived representations. Moreover, the newly introduced OT marks caused a slight slow-down
of the grammar, which caused additional timeouts wrt. other grammar versions.

B3This means that sentences for which the product of the number of analyses in the grammar output and the number of
analyses in the TiGer-derived representations was greater than 10,000 were discarded.



The directly resulting 6,418 OT mark profiles, which correspond to the “all marks” set, were ran-
domly split up into a trainings set of 5,755 and a test set of 663. Then we created the “original marks”
set, by replacing all values in the columns of the newly introduced OT marks by zero, and split it up into
a trainings set of 5,755 profiles and a test set of 663 along the same lines as the “all marks” set.

3.2 Training and first results

The 5,755 OT mark profiles of both the “all marks” trainings set and the “original marks” training set
were input to an implentation of the GLA that allows for multiple target winners. The learning was
performed with a plasticity of 0.2 and in 10 iterations over the whole training set, each datum being
considered 5 times. The result of these training runs were two different numerical OT mark rankings,
one for the “all marks” set and another one for the “original marks” set.

The results of these two training runs are summarized in table 2.

original marks all marks
ranking filter filter |weighted | filter filter |weighted
employed fidelity | efficiency | F-score |fidelity |efficiency | F-score

after 10
iterations GLA | 81.9 84.9 82.5 78.3 87.2 79.9
uniform ranking | 82.7 83.3 82.8 77.2 84.1 78.5
original manual | 80.5 84.8 81.3

ranking

Table 2: Results of GLA learning on test sets

As can be seen from the figures, the ranking of the OT marks does not play a major role. Although the
automatically learned ranking performs better than the manually determined ranking originally used in
the German ParGram LFG, both in terms of filter fidelity (81.9% vs. 80.5%) and filter efficiency (84.9%
vs. 84.8% ), the improvement from the latter to the former is very slight. Also, we have to state that, for
the “original marks” set, the automatically learned ranking performs worse than a uniform ranking, i.e.
a ranking where all marks are equally strong, in terms of filter fidelity (81.9% vs. 82.7%), even if filter
efficiency is better (84.9% vs. 83.3%). The weighted F-score we employ confirms this picture (82.8%
vs. 82.5%).

Comparing the results for the “original marks” set and the *“all marks” set, the observation is that
although the additional marks allow for a better filter efficiency, they have a negative effect on filter
fidelity. This result is a bit disappointing, because initially, we had hoped to improve both filter efficiency
and filter fidelity by providing the new marks. At the same time, it is not all that surprising, since the
more OT marks are used for disambiguation, the more difficult it is, of course, to maximise filter fidelity.

As to the rankings’ ability to generalize from the training data to the unseen test data, we can see
in table 3 that both the figures themselves and the patterns observed above are comparable between the
training sets and the test sets.

3.3 Relaxing the filter

Given that the filter fidelity we achieved with the learned ranking hardly exceeded 80%, we thought of
ways of relaxing the OT filter in order to increase this value. At the same time, filter efficiency was not
supposed to be affected too badly.

Inspecting (and deactivating) “problematic” OT marks: The first approach we took was to inspect
the OT marks that, even with the automatically learned ranking, caused correct readings to be evaluated



original marks all marks

ranking filter filter |weighted| filter filter |weighted
employed |fidelity | efficiency | F-score |fidelity |efficiency | F-score
after 10

iterations GLA | 80.2 85.4 81.2 78.0 87.3 79.7
uniform ranking | 81.8 82.7 82.0 76.7 83.7 78.0
original manual | 79.6 85.2 80.7

ranking

Table 3: Results of GLA learning on training sets

as suboptimal. Examples of these were, as in the pilot study mentioned in 2.4, ObjIinVorfeld and LabelP.
Apparently, even the newly introduced OT marks did not allow us to counterbalance them in cases where
they caused wrong predictions, which leads us to the opinion that these OT marks, instead of being
evaluated in the pre-filter step, should be integrated into the log-linear model as properties. As such, they
can contribute to choosing the correct reading in the final disambiguation step, where, moreover, they
can interact with other properties, such as the ones that weigh subcategorization frames.

Another category of OT marks that still made wrong predictions were robustness OT marks such as
AdvAttach and MassInPl. The purpose of these OT marks is mainly to disprefer fall back rules that are
implemented for cases where lexical information is lacking and, as a consequence, they interact tightly
with this kind of information. Due to missing or erroneous information in the lexicons, it can happen that
they make wrong predictions, although they are fairly reliable in all other cases. We deactivated most of
these OT marks, i.e. those which caused relatively many wrong predicions, but they can potentially be
reactivated once the lexicons they interact with have been improved.

As a reaction to the inspection of the “problematic” OT marks, a variant of the data was created
where these marks are deactivated. We henceforth call this set of data the “unproblematic marks” set.

“Translating” the numerical rankings into strict rankings: For use in XLE, the numerical rank-
ings obtained from GLA learning have to be “translated” into strict rankings in which marks may be
grouped as equally strong. The easiest way of doing this is, of course, to have one group for each distinct
numerical ranking. However, this may not be the most appropriate method of “translating” a numerical
ranking into a strict ranking, because it completely ignores the information contained in the distance
between two rankings. A possible alternative is to group all OT marks whose ranking have a distance
smaller than a given threshold. This way, the number of groups of equally ranked OT marks is reduced,
which should allow for better generalisation, and, more importantly, some of the information contained
in the distance between rankings is taken into account. We experimented with groupings of this kind
with thresholds 2.0 and 5.0.

The resulting rankings were then applied to both the “original marks” data set and the “unproblematic
marks” set. The results are shown in table 4.

Just as in our first results (cf. subsection 3.2), we observe that the ranking has only a little influence
on the results. Nevertheless, filter fidelity can be improved slightly by grouping marks whose ranks
are not very distant, whithout filter efficiency being affected considerably. Taking the figures from the
training data into account (which are not displayed here), the conclusion could be that a grouping with
a threshold value of 5.0 performs best, since it basically achieves the same filter fidelity as the uniform
ranking, while allowing for a slightly higher filter efficiency.

More importantly, table 4 shows that the deactivation of “problematic” marks can increase the filter
fidelity considerably. We achieve a filter fidelity of about 96%, while still discarding more than 62% of
the readings as suboptimal.2* This set-up also yields the highest weighted F-score of all our experiments:

4This can arguably be considered an underestimation, because the effect of the OT mark GuessedMassNoun, mentioned in



original marks unproblematic marks
ranking filter filter |weighted| filter filter |weighted
employed |fidelity | efficiency | F-score |fidelity |efficiency | F-score
after 10
iterations GLA | 81.9 84.9 82.5 95.9 62.2 86.5
grouped with
threshold 2.0 | 82.4 84.8 82.9 96.2 62.1 86.7
grouped with
threshold 5.0 | 825 84.7 82.9 96.2 62.1 86.7
uniform ranking | 82.7 83.3 82.8 96.1 60.3 85.9

Table 4: Results of disambiguation with “original marks” and “unproblematic marks”, marks being
grouped according to different methods

86.7%.

Deactivating portions of the OT marks according to their ranks: An alternative approach to dis-
activating “unreliable” OT marks we experimented with was to discard a certain proportion of the marks
corresponding to the ranks at the lower end of the numerical scale. We ran this experiment for both the
“original marks” set and the “all marks” set, deactivating the lower 50% of the OT marks. The resulting
variants of the data are henceforth called “upper 50% original” and “upper 50% all” respectively.

Tables 5 and 6 show the effect of discarding the lower 50% of the two OT mark sets. (The ranking
used is the one obtained after 10 iterations of the GLA.)

original marks upper 50% original
filter filter |weighted | filter filter |weighted
fidelity |efficiency | F-score |fidelity |efficiency | F-score
81.9 84.9 82.5 99.5 41.3 77.6

Table 5: Results of disambiguation with “original marks” and “upper 50% original”

all marks upper 50% all
filter filter |weighted | filter filter |weighted
fidelity | efficiency | F-score |fidelity |efficiency | F-score
78.3 87.2 79.9 97.0 50.5 81.9

Table 6: Results of disambiguation with “all marks” and “upper 50% all”

Filter fidelity is greatly improved by this strategy, but unfortunately, there is a high price to be paid
in terms of filter efficiency. In both settings, it drops to 50% or even less. Given that the filter fidelity for
the “upper 50% all” set is comparable to the filter fidelity for the “unproblematic marks” set, but that the
filter efficiency for it is considerably lower than for the “unproblematic marks” set, we conclude that it is
a better strategy to identify problematic marks and then deactivate them than just to deactivate a certain
proportion of the lower ranked marks.

subsection 3.1 as well, is not taken into account here, although it cuts down the number of readings considerably.



4 Discussion and conclusions

We presented a sequence of experiments exploring ways of empirical tuning for the first stage of a dis-
ambiguation architecture for linguistic grammars. This pre-filter is triggered by configurations that the
grammar writer specifies as OT marks and uses a relative ranking among the marks. A somewhat surpris-
ing result is that training the constraint ranking on corpus data does not lead to a noticeable improvement
over the use of a uniform ranking. However, it is very effective for identifying and deactivating marks
that tend to exclude the correct readings in some cases. Both results are of course directly related to
the somewhat unusual application context of the disambiguation routine as a pre-filter: if it were used
as the only filter, one should certainly rely on a learned ranking to maximize filter effectiveness, and
the OT marks that are problematic in the pre-filter scenario might well play an important role. For the
given two-stage scenario however, our systematic empirical exploration showed that filter fidelity can be
maximized most effectively by removing unreliable marks.

In future work, we plan to explore in more detail the technique of deactivating certain marks from the
ranking automatically, among other things by combining this technique with the approach of grouping
similarly ranked constraints together. Moreover, we will evaluate the effect of pre-filter variants on the
training of the log-linear model used as the second disambiguation stage.

References

Bender, Emily M., Dan Flickinger, and Stephan Oepen. 2002. The grammar matrix: An open-source
starter-kit for the rapid development of cross-linguistically consistent broad-coverage precision gram-
mars. In John Carroll, Nelleke Oostdijk, and Richard Sutcliffe (eds.), Proceedings of the Workshop
on Grammar Engineering and Evaluation at the 19th International Conference on Computational
Linguistics, pp. 8-14, Taipei, Taiwan.

Boersma, Paul. 1998. Functional Phonology. Formalizing the interactions between articulatory and
perceptual drives. PhD thesis, University of Amsterdam.

Butt, Miriam, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and Christian Rohrer. 2002. The
Parallel Grammar Project. In Proceedings of COLING-2002 Workshop on Grammar Engineering and
Evaluation, Taipei, Taiwan.

Butt, Miriam, Tracy Holloway King, Maria-Eugenia Nifio, and Frederique Segond. 1997. A Grammar-
Writer’s Cookbook. CSLI Publications.

Dipper, Stefanie. 2003. Implementing and Documenting Large-scale Grammars — German LFG. PhD
thesis, IMS, University of Stuttgart. Arbeitspapiere des Instituts fir Maschinelle Sprachverarbeitung
(AIMS), Volume 9, Number 1.

Forst, Martin. 2003a. Treebank Conversion — Creating a German f-structure bank from the TIGER
Corpus. In Proceedings of the LFGO03 Conference, Saratoga Springs. CSLI Publications.

Forst, Martin. 2003b. Treebank Conversion — Establishing a testsuite for a broad-coverage LFG from the
the TIGER Treebank. In Proceedings of the EACL Workshop on Linguistically Interpreted Corpora
(LINC ’03), Budapest.

Frank, Anette, Tracy H. King, Jonas Kuhn, and John Maxwell. 2001. Optimality Theory style constraint
ranking in large-scale LFG grammars. In Peter Sells (ed.), Formal and Empirical Issues in Optimality-
theoretic Syntax, pp. 367-397. Stanford: CSLI Publications.



Johnson, Mark, Stuart Geman, Stephen Canon, Zhiyi Chi, and Stefan Riezler. 1999. Estimators for
stochastic “unification-based” grammars. In Proceedings of the 37th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL’99), College Park, MD, pp. 535-541.

Kaplan, Ronald M., Tracy H. King, and John T. Maxwell. 2002. Adapting existing grammars. The XLE
approach. In Proceedings of the COLING-2002 Workshop on Grammar Engineering and Evaluation,
Taipei, Taiwan.

Kaplan, Ronald M., Stefan Riezler, Tracy King, John T. Maxwell 111, Alexander Vasserman, and Richard
Crouch. 2004. Speed and Accuracy in Shallow and Deep Stochastic Parsing. In Proceedings of the
Human Language Technology Conference and the 4th Annual Meeting of the North American Chapter
of the Association for Computational Linguistics (HLT-NAACL’04), Boston.

King, Tracy Holloway, Stefanie Dipper, Annette Frank, Jonas Kuhn, and John Maxwell. 2004. Ambigu-
ity management in grammar writing. Research on Language and Computation 2:259-280.

Manning, Christopher D. 2003. Probabilistic syntax. In Rens Bod, Jennifer Hay, and Stefanie Jannedy
(eds.), Probabilistic Linguistics, pp. 289-341. Cambridge, MA: MIT Press.

Oepen, Stephan, and John Carroll. 2000. Parser engineering and performance profiling. Natural Lan-
guage Engineering 6:81-97.

Prince, Alan, and Paul Smolensky. 1993. Optimality theory: Constraint interaction in generative gram-
mar. Technical Report Technical Report 2, Rutgers University Center for Cognitive Science.

Riezler, Stefan, Dick Crouch, Ron Kaplan, Tracy King, John Maxwell, and Mark Johnson. 2002. Parsing
the Wall Street Journal using a Lexical-Functional Grammar and discriminative estimation techniques.
In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL’02),
Pennsylvania, Philadelphia.

Tesar, Bruce B., and Paul Smolensky. 1998. Learnability in Optimality Theory. Linguistic Inquiry 29:
229-268.

Toutanova, Kristian, Christopher D. Manning, Stuart M. Shieber, Dan Flickinger, and Stephan Oepen.
2002. Parse disambiguation for a rich HPSG grammar. In First Workshop on Treebanks and Linguistic
Theories (TLT2002), pp. 253-263.



