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Abstract

In this paper, we explore how LFG analyses as produced by the XLE parser with the En-
glish ParGram grammar can be used in a probabilistic coreference resolution system. So far, such
systems have mainly relied only on information from surface-based NLP tools, reaching reason-
able levels of performance while requiring only small amounts of training data. We compare
these surface-based approaches with a first attempt at an LFG-based coreference system and an-
other system using the treebank-trained probabilistic parser by Charniak. Based on the (limited)
quantity of training data we used, the performance of all three approaches was quite comparable.
However, there are some indications that an XLE-based approach may lead to better results if
trained on larger training sets.

1 Introduction

The XLE parser coupled with the LFG grammars from the ParGram project and the log-linear dis-
ambiguation models developed at PARC (Riezleret al., 2002) is one of the best available parsing
systems – in particular if criteria such as depth of analysis and linguistic motivation are taken into
account. One of the hopes with such a carefully engineered parsing system is that it can improve the
performance of Natural Language Processing (NLP) systems on tasks that have so far been tackled
mainly with linguistically unsophisticated, surface-based approaches. The work in this paper is the
beginning of an exploration of the impact of using XLE analyses for machine learning based coref-
erence resolution. The contribution of XLE on this task is compared with that of two shallower NLP
tools for grammatical analysis, namely Charniak’s parser and a simple part-of-speech tagger.

Coreference resolution (CR) provides an interesting testbed for such a comparative study. On the one
hand, deep linguistic representations have been largely unexplored by researchers working in robust
CR. Thus, most state-of-the-art machine learning systems (McCarthy and Lehnert, 1995; Morton,
2000; Soonet al., 2001) rely on limited and rather shallow knowledge sources. (Some notable ex-
ceptions are (Ng and Cardie, 2002b), and more recently (Uryupina, 2006).1) Often, the only type
of linguistic processing used is part-of-speech tagging and NP chunking. Even at this shallow level
of processing and with limited sets of learning features, these systems have managed to achieve rea-
sonably good performances with F-scores in the 60’s%. This situation is somewhat at odds with the
work of theoretical linguists who have identified numerous linguistic factors bearing on coreference
resolution. It is worth noting in this respect that XLE makes a natural candidate for CR: the type of
representations it outputs (basically, LFG f-structures) indeed gives us access to many of these factors.
An obvious example aregrammatical functions: at the center of the LFG architecture, they have been
also been argued within Centering Theory (Groszet al., 1995) to play a decisive role in constraining
coreference.

On the other hand, there is no guarantee that appealing to deep linguistic systems (and an extended
feature set) for CR is likely to improve compared to a surface-based system. There are two issues
here, one is theoretical, the other more practical. On the theoretical side, CR is ultimately an AI-
complete problem: in the general case, the task involves solving extralinguistic problems for which
even a perfect linguistic oracle would not help; that is, linguistic information gives us onlypartial
insight. While it is true for all sub-tasks of interpretation that humans will fall back on world and

1(Preiss, 2002) compares Charniak and Collins parsers, but the scope of her study is rather limited, since it only deals
with anaphora resolution and is not evaluated on available corpora.



situation knowledge to resolve linguistically underdetermined cases, the situation for CR may be
particularly challenging for linguistic approaches since the space of possibilities left open after con-
sidering linguistic constraints is still quite considerable.2 This in turn raises the follow-up question of
what sorts of linguistic constraints are actually helpful in modeling the data. On the practical side, it
is well-known that for deep linguistic analysis, increased robustness will typically go along with an
increased level of noise in the analyses. So, the open question is what level of processing gives us
the best results. A related question is whether the combination of information from representations
of different depth of analysis will improve things. An interesting aspect of comparing XLE with the
Charniak parser is that these two parsers differ not only in terms of the level of sophistication of their
outputs (phrase structure trees vs. rich feature structures), but also in terms of their efficiency and ro-
bustness. While XLE surely provides more detailed information, this comes at a price: despite some
coverage improvements (e.g., in the form of disambiguation and the “back-off” fragment mode, i.e.,
partial analyses provided for sentences that cannot be parsed completely), XLE is still less robust than
Charniak’s parser.

In anticipation of the results of the present study, we could not so far observe any significant improve-
ments of overall system performance due to the addition of deeper linguistic information sources. For
one thing, this shows that the baseline combination of various surface-oriented information sources
established in machine learning-based work on CR already seems to strike a very effective balance of
robustness and task-relevant quality, which is not easy to outperform – especially on small training
sets. On the other hand, we performed some preliminary meta analyses indicating that larger quanti-
ties of training data and a more carefully designed set of learning features may bring out the strengths
of deeper information sources.

The rest of this paper is organized as follows. We begin by presenting the task of coreference resolu-
tion and the type of machine learning architecture we use to model it. Then, in section 3, we discuss
some of the advantages, as well as some of the potential problems, associated with using XLE for
CR; there, we also briefly describe how we extracted features out of the XLE output representations.
Section 4 presents the experimental set-up. The actual results along with some preliminary analyses
of these results are given in section 5.

2 The task of coreference resolution

2.1 Task definition

Coreference Resolution is the automatic detection of text spans in a document that share the same
referent in the real world, forming classes of coreferent text spans. Each individual text span is
typically known as amention; a class of coreferent mentions is called achain, referring to or describing
oneentity. The present study is concerned with one particular case of coreference, namelynominal
coreference.3 As an illustration, the result of applying CR to the following discourse (from the ACE

2Note that the type of corpora typically used for training CR systems may make this problem even more acute: the
annotations of the MUC and ACE corpora (from the Message Understanding Conferences and the Automatic Content Ex-
traction program, respectively) are often debatable from a linguistic point of view, often stretching the notion of coreference
to include phenomena that semanticists would not regard as coreference (e.g., nominal prediction and apposition). (See (van
Deemter and Kibble, 2000) for a detailed discussion of the MUC scheme.) Hence in training the systems may have trouble
detecting those linguistic generalizations thatdoexist for coreference in the narrower, linguistic sense.

3For some recent work on event and abstract entity coreference, see (Byron, 2002).



corpus) in (1a) is given in (1b):

(1) a. [Clinton]m0 told [National Public Radio]m1 that [his ]m2 answers to questions about
[Lewinsky]m3 were constrained by [Starr]m4 ’s investigation. [[NPR]m5 reporter
Mara Liasson]m6 asked [Clinton]m7 ”whether [you]m8 had any conversations with
[her]m9 about [her]m10 testimony, had any conversations at all.”

b. {Clintonm0 , hism2 , Clintonm7 , youm8}e0 ,
{National Public Radiom1 , NPRm5}e1 ,
{Lewinskym3 , herm9 , herm10}e2 ,
{Starrm4}e3 ,
{NPR reporter Mara Liassonm6}e4

Thus illustrated, the task involves two main steps: (a) the identification of referring mentions,4 and
(b) the partitioning the set of mentions into chains for various entities, i.e. the resolutionper se. In
this paper, we concentrate on the latter task.

2.2 CR as a machine learning problem

Like in other areas of NLP, the last decade of research in coreference resolution has seen an important
shift from rule-based systems to systems applying machine learning (ML) techniques (Mitkov, 2002).
An important appeal of the latter systems of course lies in their robustness, an important precondition
for their integration into larger NLP systems, such as Information Extraction, Question Answering, or
Summarization systems.

In a ML setting, the task of coreference resolution is recast as a learning problem, typically aclassifi-
cationproblem. Specifically, the standard approach for task (b) as addressed in section 2.1 proceeds
in two distinct steps (McCarthy and Lehnert, 1995; Morton, 2000; Soonet al., 2001; Ng and Cardie,
2002b,a). For the first step, abinaryclassifier is trained that determines whether or not apair of nom-
inal mentions is coreferential. (If the classifier is probabilistic in nature, it will provide a probability
for a pair of mentions being coreferential.) In application, this classifier is applied to (in principle) all
pairs of nominal mentions from a document. The task for the second step is to use the pairwise coref-
erentiality information from step one to construct a consistent partition over the entire set of mentions
into chains. Although any clustering algorithm could in principle be used for this, the predominant
approach is to make the assumption that a coreferent chain of mentionsmi1 ,mi2 ,mi3 , . . . ,mik can
be effectively detected by relying only on (the coreferentiality classification of) pairs of textually ad-
jacent mentions from that coreference chain, i.e.,〈mi1 ,mi2〉 and〈mi2 ,mi3〉 . . .〈mik−1

,mik〉. (Note
that this leaves out the coreferentiality status of〈mi1 ,mi3〉, for instance.)5 In other words, the chain is
constructed from a sequence of direct “links” in the text. This means roughly that CR is implicitly re-
duced toanaphora resolution(i.e., the task by which an anaphoric expression is bound to its (unique)
antecedent).6

4Depending on the corpus, these are often restricted to a set of predefined named entities, such asPERSON, LOCATION,
ORGANIZATION, etc.

5A notable exception is (Kehler, 1997) who uses Dempster’s rule of combination to induce a partition from the pairwise
classifications.

6Note however that in a chain{ John, he, his, John, he }, the second mention ‘John’ is constructed as linked to ‘his’.



The most common technique for determining the links for building a chain is for each mention to go
backwards in the text, pairing it with preceding mentions, until a pair is hit that is classified as coref-
erential by step one. (If a probabilistic classifier is used, a probability threshold can be used – e.g.,
threshold0.5 to make it equivalent to a non-probabilistic classifier.) This technique is called “Closest-
First” selection (e.g., (Soonet al., 2001)). An alternative is to compare the (probabilistic) classifier
scores for pairs from a larger text window, picking the highest-scoring pair (above a threshold, typ-
ically 0.5) to form the link. This is called “Best-First” selection ((Morton, 2000; Ng and Cardie,
2002b)). Other points of divergence exist between these systems, but they mainly concern the feature
set that is used and the sample selection, i.e., the choice of actual training data from the vast number
of possibilities arising from arbitrary combination of mentions in the text.7 Some systems also use
separate classifiers for different types of mentions (e.g., pronouns and proper names) (e.g. (Morton,
2000)), instead of using a single classifier.

An issue with these selection strategies as just described is that there is no treatment for mentions
in the text that introduce a new referent (i.e., which form the beginning of a new chain). One could
use an additional classifier that will say for each mention whether or not it is anaphoric and use the
described linking technique only for mentions that are anaphoric (see e.g., (Ng and Cardie, 2002a)).
As an alternative solution, (Morton, 2000) changes the original classification task from step one in
such a way that non-anaphoric elements are included in the training data as being coreferential with
an artificial dummy element. In application, a mention will start a new chain if the dummy element is
the most probable antecedent.

2.3 Model used in this study

In this preliminary study, we used the set-up proposed by (Soonet al., 2001), which is arguably one of
the simplest architectures: it uses a simple sample selection method and a “Closest-First” clustering.
The actual training and test procedures for this system are explained below. The main difference with
the original Soonet al system is in the type of machine learners we used. While (Soonet al., 2001)
use Decision Trees, we use maximum entropy (aka, log-linear) models (Bergeret al., 1996). More
specifically, our coreference model takes the following form, where the classesYES andNO stand for
“corefer” and “don’t corefer”, respectively;mi andmj are two mentions,fi are the features of the
model andλi their associated parameters:

P (YES|〈mi,mj〉) =
exp(

n∑
i=1

λifi(〈mi,mj〉, YES))

∑
c∈{YES,NO}

exp(
n∑

i=1
λifi(〈mi,mj〉, c))

(2)

Parameters were estimated using the limited memory variable metric (LMVM) algorithm imple-
mented in the Toolkit for Advanced Discriminative Modeling (Malouf, 2002).8 We regularized our
model using a Gaussian prior of variance of 1000 — no attempt was made to optimize the prior for
each data set. Maxent models are well-suited for the coreference task, because they are able to handle
many different, potentially overlapping learning features without making independence assumptions.

7Because coreference is a very “rare” relation, looking at all possible pairs of mentions yield a very skewed class
distribution.

8Available fromtadm.sf.net .



Previous work on coreference using maximum entropy includes (Kehler, 1997; Morton, 1999, 2000).9

For the LFG audience, it may be interesting to note that there is a close parallelism between the Maxent
approach and Optimality Theory (compare also (Johnson, 1998; Goldwater and Johnson, 2003)): one
can can think of OT as a restricted class of a binary classifiers, where the learning features are called
OT constraintsand a tableau ofn candidates corresponds ton classifier decisions. For the coreference
task, the OT input would be a particular mention for which we seek an appropriate “linking point”,
i.e., preceding mention. Each candidate is a pair of the input mention and a potential antecedent. Now
harmony evaluation – based on the constraint violation profile of the candidates and the ranking in
the grammar – will determine the harmony for each candidate and output the most harmonic one as
the winner, i.e., the predicted link. The main difference between OT and the more general Maxent
model used in our work is that OT assumes astrict rankingof the constraints: that is, lower-ranked
constraints are not allowed to “gang up” to beat an higher-ranked constraint. The weighting of the
parameters in the Maxent model (= the “strength” of the violable “constraints”) is less restricted so
that ganging-up effects can happen.

The training and testing procedures proposed in (Soonet al., 2001) are as follows. For training, the
text is scanned from left to right and for each anaphoric mentionα: (i) a positive instanceis created
betweenα and itsclosestantecedentmi, (ii) negative instancesare created betweenα and all the
(non-coreferential) mentionsmj intervening betweenα andmi.

Once trained, the classifier is used to build coreference chains in the following way. For each mention
mi in the text, the preceding text is scanned from right to left, generating pairs ofmi with each of its
preceding mentionsmj . Each such pair is submitted to the classifier, which returns a number between
0 and1 representing the probability of the two mentions to be coreferential. (Soonet al., 2001) use
“Closest-First” clustering, which means that the process terminates as soon as the first coreferring
mention (i.e., one with probability> 0.5) is found or the beginning of the text is reached.

2.4 Potential limitations of the classification approach

There are at least two potential limitations to the classification approach, both related to the very
strong independence assumptions. First, the classifier considers antecedent candidates independently
from each other, since only asinglecandidate pair is evaluated at a time. An alternative allowing
different NP candidates to be directly compared is to use aranker; this option is explored for pro-
noun resolution by (Denis and Baldridge, 2007). A second possible limitation has to do with the
clustering used: the “Closest-First” and “Best-First” selection algorithms are extremely greedy. They
assume that coreference decisions for chain building are independent from one another (McCallum
and Wellner, 2003). To take a simple example, consider the following set of mentions{Mr Clinton,
Clinton, he}. Under a pairwise classification scenario, the decision regarding the pair〈Clinton, he〉
is done independently from the decision regarding the pair〈Clinton, Mr Clinton〉, although this ear-
lier decision is likely to provide important information for the second decision (e.g., thatClinton is a
male). An attempt to solve this problem is provided by (Morton, 2000) and relies on using a discourse
model. But this approach is again likely to be greedy, since mistakes made at the beginning are likely
to propagate.

9In the context of XLE, Maxent models have been used by (Johnsonet al., 1999) and (Riezleret al., 2002) for parse
selection.



3 Incorporating XLE information

In this section, we motivate the use of XLE for CR by examining a simple example taken from the
ACE corpus (from the Automatic Content Extraction program). We also come back to some potential
issues that arise when using a deep parser such as XLE. Finally, we discuss the strategy used to extract
features from XLE output representations.

3.1 Motivation

The main advantage given by using XLE lies in the richness of the output representations returned by
this parser. These representations are rich enough to give us (at least indirect) access to many of the
relevant factors identified by linguists as influencing anaphora resolution. In particular, they provide
us with morpho-syntactic information (via gender, number, person, and case attributes), syntactic
information (via grammatical functions and f-structure configurations10), as well as shallow lexical
semantics (in the form of animacy, count/mass attributes). As is well-know, an interesting aspect of
grammatical functions (GFs) is that they are also correlated to some degree with salience, therefore
also giving some partial access into pragmatics. Thus, certain GFs (e.g., subjects) often make more
likely antecedents than others. Furthermore, certain “transitions” over GFs (e.g. subject-subject,
subject-object) are also potentially useful for coreference in giving us shallow access to discourse
structure: parallelism (or contrast) can to a certain extent be captured at the level of grammatical
functions. For these reasons, GFs (along with f-structure “paths”) will provide most of the features in
this pilot study.

To show the importance of GFs for CR, consider the following example from the ACE data:

(3) [He]knew [Brosius]was coming off a bad year, and he knew Brosius would be in line to
make a decent salary.

In the context of this example, the pronounhe could be resolved to two mentions, namely either
Brosius or the preceding pronounHe. Based on surface-based features alone, the pronoun is likely
to be resolved toBrosius, since this expression is the closest mention corresponding to the same type
of named entity (i.e., a person). Access to the XLE analysis in figure 1 provides us with information
that may lead to a better prediction. Intuitively, the first pronominal mention is more “salient” than
than the proper name; this is encoded grammatically by the fact that that mention is the subject of
the main clause. Note that there is also a parallelism effect here, since the same subject is maintained
across clauses. Features based on grammatical functions and transitions over grammatical functions
appear to have a potential for correcting some of the mistakes that would be made by simply relying
on surfacy features.

3.2 Potential Issues

However, there are a number of places where things can go wrong when using the outputs of deep
parsing systems such as XLE. For one thing, statistical disambiguation potentially introduces a level

10In LFG, binding principles are stated in terms of the notion off -command, a relation which is defined directly over
f-structures.



"He knew Brosius was coming off a bad year, and he knew Brosius would be in line to make a decent salary."

'know<[21:he], [90:come]>'PRED
'he'PRED21SUBJ

'come<[68:Brosius], [183:off]>'PRED
'Brosius'PRED68SUBJ

'off<[248:year]>'PRED
'year'PRED

'bad'PRED350ADJUNCT

'a'PREDDETSPEC248

OBJ

183

OBL

90

COMP

42

'know<[441:he], [511:would]>'PRED
'he'PRED441SUBJ

'would<[532:be]>[489:Brosius]'PRED
'Brosius'PRED489SUBJ

'be<[562:in]>[489:Brosius]'PRED
[489:Brosius]SUBJ

'in<[489:Brosius], [624:line]>'PRED
[489:Brosius]SUBJ

'line'PRED624OBJ562
XCOMP-PRED

532

XCOMP

511

COMP

'make<[659-SUBJ:null_pro], [710:salary]>'PRED
'null_pro'PREDSUBJ

'salary'PRED

'decent'PRED812ADJUNCT

'a'PREDDETSPEC710

OBJ

659

ADJUNCT

[42:know]<s463395

Figure 1: XLE output for sentence (3)

of noise by potentially filtering out correct analyses. This is likely to affect us, since here we only
consider the uniquemost probableparse for each sentence (rather than the whole parse forest or
even then best parses). Second, XLE simply fails to produce output for some sentences. In our
experiments, we found no parse for4.3% and5.1% in training data and in test data, respectively.11

By comparison, note that Charniak parser only missed less than0.1% in both the training data and the
test data.12 Also of interest is the fact that the XLE parser outputs “fragment” parses for a significant
number of the parsed sentences:24.4% in training data and24.7% in test. This in turn raises the
following questions: (i) for XLE, to what extent will the additional precision gained by using the XLE
representations be able to out-weigh the noise, and (ii) more generally, are the richer outputs still more
useful than shallower, but more robust, representations?

As a concrete illustration of these issues, consider the case of grammatical functions and the problem
of their identification. GFs can potentially be identified (or at least approximated) using representa-
tions reflecting various levels of processing. But crucially, the shallower the processing is, the higher
the recall of the identification will be, but the lower its precision will be. Thus, GFs in English
at least can be first approximated in terms of part-of-speech (POS) contexts: for instance, subjects
are often found before a verbal form, objects after a verbal form, while obliques tend to occur after
preprositions. While entirely robust, this strategy of solely relying on linear order is prone to make
many errors. For instance, some embedded NPs will be wrongly identified as subjects (say, in relative
clauses), while others will be wrongly treated as obliques (say, in PP modifying a head noun). Some
of these errors will be handled by going one level up in terms of linguistic processing, and using actual
phrase structure configurations to capture GFs: e.g.,[S [ NP VP]] vs. [S [VP [ NP]]] for the
subject/object contrast. While more reliable, these representations are harder to obtain with precision:
these sorts of configurations are more reliable, but they are not error-free: e.g., the first NP in a dative-
shift construction will be wrongly treated as a direct object. At the end of the spectrum, in XLE GFs

11We used one of the latest releases of XLE (June 18, 2006) and of the English grammar (December 5, 2005). The parser
was used with its default parameters.

12We used the August 16, 2005 version (ftp.cs.brown.edu/pub/nlparser/ ); we also used the default parame-
ters.



can be simply read off the output as attributes, but the problem here is that they might not always
be available.13 There is no general answer to the question how the trade-off between robustness and
quality will affect a particular practical performance task.

A possible issue we are facing for the more linguistically sophisticated approaches lies in the set of
learning features: too small a feature set might not give us enough to properly model the data. We
are likely to suffer from this problem, since we only focus on GFs and GF paths here. One of the
main goals of the present study was to set up the machinery for incorporating rich linguistic learning
features in the CR task. There is a large space of sophisticated features and feature combination that
should be carefully explored.

In our experiments we are also only doing manual feature selection (i.e., filtering of the vast number
of feature combinations that are possible), which is typically inferior to automatic feature selection
techniques.

Finally, there are some potential issues of a more fundamental kind. We mentioned the AI-completeness
point in the introduction already. For a linguistics-rich approach this means that even perfect syntactic
information may have a limited effect on performance. Since the various linguistic factors involved in
coreference resolution are not sufficient for specifying a deterministic procedure, it is not necessarily
the case that the richer linguistic information sources (with the unavoidable noise in the output of any
parser) can add task-relevant information that is not already accessible in a more surface-oriented ap-
proach. Surface-oriented approaches may actually have an advantage picking up patterns correlating
to extra-linguistic factors, without an intermediate representation that may add noise.

A further potential issue has to do with the size of the training data: for the surface-oriented learning
features used in most machine-learning based work on CR, learning curves show that already a rel-
atively small quantity of training data already provides sufficient information to acquire the relevant
generalizations. Performance figures tend to plateau when adding more training data. Now, if more
sophisticated features (and in particular combinations of features) are used, it is quite possible that
considerably larger training sets would be required to pick up certain patterns. In our experiments, a
number of features that appear interesting from a theoretical point of view were only instantiated in
very few training examples; so, data sparsity issues are likely to influence the results.

Somewhat related to the previous two issues, we may note that the CR task is of a somewhat peculiar
nature: a considerable proportion of the coreference linking decisions are almost trivial, some of
the remaining decisions follow clear linguistic patterns, but a fairly large proportion is controlled
by a highly complex interaction of constraints. Thus, a surface-oriented approach has a fair chance
of getting up to a certain level of performance and will even get some of the hard cases right (“by
chance”, so to speak). Ideally, a more sophisticated approach should keep up the quality of the simple
technique for the easier cases, but avoid some of the errors for the harder ones. However due to
the complex interactions of factors, picking up certain valid deeper patterns may have the effect of
breaking a favorable behavior in certain other cases, which may overall balance out the gain from
deeper insights.14

13Note a final advantage of XLE: since GFs are not tied in LFG to particular structural configurations, the strategy used
for their identification will work for other languages.

14For instance, a surface-based system will typically exclude person-shifts as shown fore0 (Clinton) in (1). But a more
sophisticated system may pick up circumstances under which theyare possible. It is quite likely however that this pattern
will overgenerate to some extent, thus leading to misclassifications in cases considered almost trivial with a surface-based
system.



Data-set train test
BNEWS 216 51
NPAPER 76 17
NWIRE 130 29

Table 1: # of documents

Dataset train test
BNEWS 3740 950
NPAPER 2453 615
NWIRE 2724 608

Table 2: # of sentences

Dataset train test
BNEWS 10086 2608
NPAPER 11410 2504
NWIRE 10868 2630

Table 3: # of mentions

3.3 From the XLE output to learning features

How do we extract information from XLE output for creating our features? Among the various for-
mats available, XLE outputs its analyses in Prolog, where c-structure subtrees and f-structure con-
straints are represented as lists of Prolog facts. (The mapping functionφ from c- to f-structure is also
captured this way.) This is illustrated in figure 2, which is the output for sentence (3).

More specifically, these representation encode: (i) the character offsets of each token, (ii) the c-
structure projections for each token as well as the mapping from each subtree to its f-structure node,
and finally (iii) the constraints associated with each f-structure node (i.e., a full description of the
f-structure). The way we were able to map each mention to its corresponding f-structure was first
unpacking the different Prolog facts into various data structures, then mapping the different tokens
making up the mention to their corresponding surface forms in the XLE representation. Once identi-
fied, the different surface forms could be mapped to an actual f-structure node (and to the associated
set of AVMs). In the case of multi-word mentions, the highest node in the graph, i.e., the node
corresponding to the maximal projection, was used. Each mention is furthermore associated with a
f-structure path from the main (i.e., ROOT) f-structure to its f-structure node.

4 Experimental setup

In order to evaluate the contribution of XLE for the coference task, we ran comparative experiments
with various feature sets extracted from analyses provided by the three different “syntactic” analyzers
with different depths of processing and degrees of robustness: (i) a part-of-speech tagger (we used
OpenNLP Maxent POS tagger), (ii) a Penn Treebank trained phrase structure parser (namely, the
Charniak parser), and (iii) XLE parser, which is a full-blown implementation of LFG.

4.1 Corpus and evaluation

For training and evaluation, we used the datasets from the ACE corpus (Phase 2). This corpus is
composed of three parts, corresponding to different genres: broadcast news transcripts (BNEWS),
newspaper texts (NPAPER), and newswire texts (NWIRE).15 Each of these is split into atrain part
and adevtest part. We used thedevtest material only once, namely for final testing. Progress
during the development phase was estimated only by using cross-validation on the training set for the
NPAPERsection. Statistics for the different datasets are given in tables 1-3.

In our experiments, we restricted ourselves to thetrueACE mentions, i.e., rather than trying to identify
candidate phrases for coreference resolution automatically (task (a) addressed in section 2.1), we

15The mentions in ACE2 are restricted to7 types of entities:FACility, GPE(geo-political entity),LOCation,ORGanization,
PERson,VEHicle, WEApons.



Figure 2: XLE Prolog (abbreviated) output for sentence (3)



relied on the gold standard phrases/mentions marked manually in the corpus annotation. We made
this decision because our focus is on comparing features between different knowledge sources, rather
than on building a full-fledged resolution system. It is worth noting that previous work tends to
be vague about mention detection: details on mention filtering or providing performance figures for
identification are rarely given.

Following common practice in coreference resolution, we report our main results in terms of Recall-
Precision at the level of chains partitioning the set of all mentions in the text. In particular, we use
the model-theoretic metric proposed by (Vilainet al., 1995). This method operates by comparing the
equivalence classes defined by the resolutions produced by the system with the gold standard classes:
these are the two “models”. Roughly speaking, the scores are obtained by determining the minimal
perturbations needed to transform one model into the other model. Recall is computed by trying to
transform the predicted chains into the true chains, while precision is computed the other way around.

4.2 Feature sets

Overall, we actually used four systems, based on four different feature sets. In our baseline feature set,
we used features obtainable from shallow processing; the corpus was preprocessed with the OpenNLP
Toolkit16, which includes a sentence detector, a tokenizer, and a POS tagger. These features include
NP type features for the anaphor candidate and the antecedent candidate (i.e., whether the mention
is a pronoun, a proper name, a definite description, etc.),locality features (encoded in the form of
various distance features),morpho-syntactic agreementfeatures (i.e., gender, number, and person
compatibilities),semantic compatibility features (this is captured in terms of the named entity types),
salience-based features (e.g., number of times a mention has been seen in the previous context), as well
a number ofad hoc featuresfor specific NP types (e.g., string matching, apposition and acronym).
These features are summarized in table (4.2).

In addition to the simple features described above, we used various composite features by “crossing”
some of the basic features above. For the baseline feature set, we simply combined distance features
with the type of the anaphor (e.g., pronoun, definite NP, proper names).

The second feature set expands on the baseline by encoding more linguistically-motivated features
(mainly features appromixating GFs), but which are based solely on the outputs of the POS tagger.
The third feature set incorporates features that use the output of Charniak, while the fourth feature set
includes features derived from the XLE output. With both parsers, we used the unique most probable
parse for each sentence. These new features fall into four main categories:GF, GF transitions,
Binding, andSyntactic context. They are presented in detail in the form of templates in table 4.2.

In addition to these base features described above, we added composite features of the following types:
(i) distances and GFs, (ii) distances and syntactic context of the antecedent candidate, (iii) distances
and binding, (iv) anaphor type and syntactic embedding of the antecedent candidate, and (v) distances,
anaphor type, and syntactic context of the antecedent.

16Available fromopennlp.sf.net .



Feature type Feature Name Description
NP type ANA PRO T if mi is a pronoun; else F

ANA SPEECHPRO T if mi is a speech pronoun; else F
ANA REFL PRO T if mi is a refl. pron.; else F
ANA PN T if mi is a PN; else F
ANA DEF T if mi starts withthe; else F
ANTE PRO T if mj is a pronoun; else F
ANTE PN T if mj is a PN; else F
ANTE DEF T if mj starts withthe; else F
ANTE INDEF T if mj starts witha(n); else F

Locality S DIST binned values for S distance betweenmi andmj

NP DIST binned values for NP distance betweenmi andmj

Morphosynt. NUM AGR T if mi andmj agree in number; else F
Agreement GEN AGR T if mi andmj agree in gender; else F;
Salience ANA M CT # of timesmi has been seen
String match STR MATCH T if the strings ofmi andmj match; else F
Semantic NE AGR T if mi andmj correspond the same NE; else F
Agreement ANTE NE & ANA GEN the NE ofmj and the gender ofmi

Quotes ANA IN QUOTES T if mi is within quotation marks; else F
ANTE IN QUOTES T if mj is within quotation marks; else F

Acronym ACRONYM T if one NP is an acronym of the other; else F
Apposition APPOSITION T if mi is an apposition ofmj ; else F

Figure 3: Baseline feature set

5 Results and Analysis

This section presents the results of our various experiments, as well as some initial elements of anal-
ysis. Table 5 summarizes the results of our main experiment on the three ACE datasets.

The results tell us a number of things. First, the addition of the new features appears to yield a small
drop in overall f-score; the differences are however not statistically significant (atp < .01) for any
of the feature sets. Second, the actual pattern found for the different feature sets is that the addition
of the new features produces a gain in recall, but this gain is accompanied by a corresponding drop
in precision. From our statistical testing, we however found that although the decreases in precision
were significant for all the features (atp < .01), the increase in recall is significant only with the XLE
features. How do we interpret these results? One can start by considering more closely the different
types of errors made by the new systems. One can break down the types of mistakes made by a CR
system into three categories: (i)missingmentions (i.e., mentions that are not treated as anaphoric when
they should),spuriousmentions (i.e., mentions that treated as anaphoric when they should not), (ii)
(correctly identified anaphoric) mentions that arewrongly resolved. The first two categories concern
the (non-)anaphoricity of a mention, while the third one concerns the resolutionper se. Also note that
the first category only affects recall (these are the false negatives), the second category only affects
precision (these are the false positives), while the latter affects both. Looking first at the distributions
of the different types of mistakes in the baseline, one first finds that almost 2/3 of the recall mistakes
are due to missing anaphoric mentions (the other third is due to wrong resolutions). On the precision
side, one finds the opposite pattern: only 1/3 of errors are due to spurious anaphora. As for the effect
of the new features, one finds that 2/3 of the recall error reduction comes from a reduction of the
missing anaphora; that is, only 1/3 comes from rectifying wrong resolutions.

Looking at the actual predictions, one finds that the XLE features allow the system to identify new,



Feature Type Feature Name Description
GFs ANA SUBJ mi has subject POS context/tree config./SUBJ attr.

ANA OBJ mi has object POS context/config./OBJ attrib.
ANA OBL mi has oblique POS context/tree config./OBL attr.
ANTE SUBJ mj has subject POS context/tree config./SUBJ attr.
ANTE OBJ mj has object POS context/tree config./OBJ attr.
ANTE OBL mj has oblique POS context/tree config./OBL attr.

GF BOTH SUBJ mi andmj are both subjects
Transitions SAME GR mi andmj have the same GF
Binding C-/F-COMMAND mj c-/f-commandsmi

Context ANTE PATH SUFFIX N lastn nodes (n in {1,2,3}) in mj ’s FS/tree path17

ANA PATH SUFFIX N lastn nodes (n in {1,2,3}) in mi’s FS/tree path
ANTE PATH LN binned value for number of nodes inmj ’s FS/tree path

Figure 4: New feature templates

BNEWS NPAPER NWIRE Overall
Feature Set R P F R P F R P F R P F
Baseline 53.4 84.0 65.3 55.8 84.3 67.1 51.6 80.5 62.9 51.6 80.5 62.9

Tagger 54.5 80.6 65.156.6 81.0 66.653.2 78.7 63.553.2 78.7 63.5
Charniak 55.6 79.8 65.556.1 80.3 66.154.8 80.0 65.0 54.8 80.0 65.0
XLE 56.2 76.8 64.958.8 77.1 66.8 55.2 76.0 63.955.2 76.0 63.9

All 57.6 76.4 65.7 57.9 76.9 66.056.3 76.1 64.8 56.3 76.1 64.8

Figure 5: Results for the 3 ACE datasets

more subtle coreferential configurations, but these features tend to be unreliable. To give an il-
lustration of this tendency, note for instance that one finds more correct long distance resolutions,
but at the same time one also finds errors showing number and gender mismatches (e.g.,〈he, she〉,
〈he,Mrs.Anderson〉).

Although the performances are fairly similar for all the new systems, there is however one dataset
where XLE seems to be better than the baseline, namely theNPAPERdataset.18 Interestingly, it is also
on this the corpus that XLE shows the best parsing performances (especially in training), with only
3% (against an average is4.3%) of parses missing and18.7% of fragment parses (against an average
is 24.4%) for training, and2% (against an average is5.1%) of parses missing and23% of fragment
parses (against an average is24.7%) for test. This would suggest that there is a correlation between
the amount of sentences given a full parse and the coreference performances.

A similar conclusion emerges from looking at learning curves for this dataset. These are given for
the three feature sets on the in figure 6. These curves are encouraging for XLE in suggesting that this
system would benefit the most from additional training data; indeed, it is the only curve among the
three that does not appear to converge. This indicates that as speculated in section 3.2, the deeper
approaches may benefit more from larger training sets than the surface-oriented approaches.

A final, interesting question is whether the systems did differently for different types of mention.
Here, we consider three main types, namely mentions that are headed by a pronoun, a proper name
(PN), or a common noun (CN). The results below are given in terms of a slightly different evaluation

18The difference is not statistically significant however.
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Figure 6: Learning curves for theNPAPERdataset

scheme, namely these areanaphora resolutionscores. Roughly, one looks at individual links rather
than comparing the entire chains.19 Under this metric, recall is the number of mentions (of the given
type) that are correctly resolved divided by the total number of anaphoric mentions (of that same
type). And precision is the number of mentions (of the given type) that are correctly resolved divided
by the number of mentions that are resolved. The results for the different mention types are given in
table 7.

These results are rather inconclusive: the Charniak features seem to make a stronger contribution with
pronouns, while the XLE features yield improvements with proper and common nouns. Note that the
general low scores for the latter type is explained by the fact that our system does not incorporate a
lot of lexical semantic information, which is so critical for these (e.g., definite descriptions).

6 Conclusions and Future Work

By way of various experiments, this study has compared the use of feature sets encoding various
depths of linguistic processing for the task of robust coreference resolution. We have in particular
compared three main feature sets, extracted from a simple POS tagger, Charniak parser, and the XLE
parser. The main conclusions are as follows. The addition of the new features gives rise to an increase
in Recall, but don’t lead to an overall increase in f-score. We take this to indicate that the new features
permit the detection of more coreference configurations, but the extra information is not reliable yet.
XLE seems to offer a better improvement potential than Charniak or the POS tagger, but only when it

19This type of evaluation is coarser than Vilain’s metric in that it misses potential “implicit” links (cf. coreference is an
equivalence relation), but it makes it easier to compare different NP types.



BNEWS NPAPER NWIRE

NP type R P F R P F R P F
Pronouns
Baseline 67.8 77.0 72.1 67.2 74.8 70.8 60.6 70.8 65.3
Tagger 68.0 76.9 72.1 65.7 72.8 69.1 61.5 71.3 66.0
Charniak 69.2 77.1 72.9 65.2 72.0 68.4 67.4 74.2 70.6
XLE 67.2 75.6 71.1 65.2 66.9 66.1 63.0 69.1 65.9

PNs
Baseline 47.6 84.6 60.9 56.6 87.6 68.8 58.2 87.8 70.0
Tagger 48.4 84.8 61.6 56.5 87.6 68.7 58.6 87.9 70.3
Charniak 49.3 84.7 62.3 56.5 87.3 68.6 58.6 87.7 70.2
XLE 50.5 82.7 62.7 57.6 86.6 69.1 59.6 83.5 69.6

CNs
Baseline 27.8 86.0 42.0 25.6 89.3 39.8 27.4 75.9 40.2
Tagger 30.9 64.5 41.8 27.3 61.6 37.8 30.7 63.8 41.5
Charniak 30.3 57.5 39.7 27.0 62.6 37.7 30.2 65.9 41.4
XLE 33.7 51.7 40.8 30.4 54.0 38.9 33.2 61.0 43.0

Figure 7: Results per mention types

achieves good parsing performances. XLE also seems more likely to benefit from additional training
data.

In section 3.2, we speculated about a lot of potential issues that may preclude a straightforward im-
provement of the surface-oriented CR techniques by simply adding more linguistically sophisticated
knowledge sources. Presumably several of them do hold true. By setting up a flexible system for
integrating linguistic resources, we established a basis for further explorations of the interactions.

There are various natural ways to extend this work. First, by using the unique most probable parses,
our experiments have not used the two parsing systems to their full potentials. For instance, one would
like to take advantage of the “packed” representations provided by XLE, instead of just using a single
parse. Second, a lot of extensions are possible regarding feature design: we only scratched the surface
in considering only GFs and GF paths. Third, there are more effective ways of combining the different
feature sets, instead of just adding them together in a unique model; a better alternative would be to
use ensemble models. Finally, there is also the possibility that more “global” models and less greedy
search strategies will make better use of the rich features extracted from the deep parses.
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