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Abstract

LFG-DOP (Bod and Kaplan, 1998, 2003) provides an appealisgvar
to the question of how probabilistic methods can be incafsat into linguis-
tic theory. However, despite its attractions, the standaodel of LFG-DOP
suffers from serious problems of overgeneration becaysk i@unable to
define fragments of the right level of generality, and (b)asmo way of
capturing the effect of anything except simple positivestaaints. We show
how the model can be extended to overcome these problems.

1 Introduction

The question of how probabilistic methods should be incorporated into linguistic
theory is important from both a practical, grammar engineering, perspeetid
from the perspective of ‘pure’ linguistic theory. From a practical pahtview
such techniques are essential if a system is to achieve a useful bréadteiage
and avoid being swamped by structural ambiguity in realistic situations. From
a theoretical point of view they are necessary as a response to thenaeloé
probabilistic factors in human language behaviour (see e.g. Juraf3@g, for a
review).

Bod and Kaplan (1998, 2003) provide a very appealing and peveuasswer
to this question in the form of LFG-DOP, where the linguistic representatibns o
Lexical Functional Grammar (LFG) are combined with the probabilistic methods
of Data Oriented Parsing (DOP). The result is a descriptively powentiedyr, and
elegant fusion of linguistic theory and probability. However, it suffeosf two
serious problems, both related to generative capacity, which have duot thfit the
model overgenerates. This paper shows how these problems carrberoge

The paper is structured as follows. Section 2 provides backgrounoldirding
the basic ideas of DOP. Section 3 describes the Bod and Kaplan (B&K) model,
and introduces the first problem: the problem of defining DOP fragments véth th
right level of generality. Section 4 shows how this problem can be owezc&ec-
tion 5 describes the second problem (which arises because LFG-R@Mmdnts
effectively encode only simple, positive, LFG constraints) and showstwan be
overcome. Section 6 discusses some issues and potential objections.

2 Tree-DOP

The central idea of DOP is that, rather than using a collection of rulesingars
and other processing tasks employ a databageagmentsproduced by decom-
posing a collection of normal linguistic representations (e.g. trees drawm dr

"We are grateful to the participants at LFG07 in Stanford, Ca, for insightid stimulating
discussion, in particular: Joan Bresnan, Aoife Cahill, Grzegorz ChiayjRon Kaplan, Jonas Kuhn,
and Louisa Sadler.
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treebank). These fragments can be assigned probabilities (e.g. based on their rel-
ative frequency of appearance in the fragment database). Parsiniggainvolves,
in effect, finding a collection of fragments which can be combined to derive it,
i.e. provide a representation for it. These representations are aspigiedtbilities
based on the probabilities of the fragments used. This general appraaciof
course, be realized in many different ways, via different choicessitlrepresen-
tation, different decomposition operations, etc. So, standardly, spegi®lyDOP
model involves instantiating four parameters: (i) representational basge¢om-
position operations; (iii) composition operation(s); and (iv) probability nhode
Specified in this way, Tree-DOP, the simplest DOP model, involves:

(i) atreebank of context free trees, such as Figure 1;
(i) two decomposition operationg®Xoot and Frontier:;
(i) a single composition operatior:eftmost Substitutign
(iv) a probability model based on relative frequency.

Fragments are produced from representations such as Figure 1 bgtamd
position operationsRoot and Frontier:

(i) Root selects any node and makes it the root of a new tree, erasing all other
nodes apart from those dominatedrhy

(i) Frontier chooses a set of nodes (other than the root) and erases all subtrees
dominated by these nodes.

Intuitively, Root extracts a complete constituent to produce a fragment with a new
root. For example, the fragments in Figure 2 can be produced from thie trég
ure 1 by (possibly trivial) application adRoot. Frontier deletes part of a fragment
to produce an ‘incomplete’ fragment — a fragment with a new frontier contain
ing ‘open slots’ (i.e. terminal nodes labeled with a non-terminal categosyin a
Figure 3.

Leftmost Substitutiomvolves substituting a fragment for the leftmost open
slot. Figure 4 exemplifies one of the several ways in which a representditiGm
likes Santan be derived.

Standard references on DOP include, for example, Bod and Scha)(Bod (1998), and the
papers in Bod et al. (2003). All of these contain presentations of D@e-
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Figure 3: Fragments produced by tReontier operation

The following define a very simple probability model for this version of GOP.

| fil

1) P(fi) =
> I
root(f)=root(f;)

n

2) Pd) =[]P(£)

=1

2Simple, and one should add, inadequate. This model is based on réiatjuency estimation,
which has been shown to be biased and inconsistent (Johnson, 20@2nber of alternatives have
been proposed, e.g. assuming a uniform derivation distribution @uoaret al., 1999), backing-off
(Sima’an and Buratto, 2003), and held-out estimation (Zollmann, 2084jhing in what follows
depends on the choice of probability model, however.
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Figure 4: Fragment composition

3) P(R) = P(d;)
j=1

Equation (1) says that the probability associated with a fragryfiestthe ratio of

the number of times it occurs compared to the number of times fragments with the
same root category occur. (2) says that the probability of a particutasation d

is the product of the probabilities of the fragments used in deriving it. (& gt

the probability associated with a representation (tree) is to be found by summing
over the probabilities of its derivations.

Apart from its obvious simplicity, this version of DOP has numerous attrac-
tions. However, from a linguistic point of view it suffers from the limitationgio#
underlying linguistic theory (context-free phrase structure grammad) farthis
reason does not provide a satisfactory answer to the question of lobahplistic
and linguistic methods should be combined. A much better answer emerges if DOP
techniques are combined with a richer linguistic theory, such as1FG.

3 LFG-DOP

The idea of combining DOP techniques with the linguistic framework of LFG was
first proposed in Bod and Kaplan (1998) (see also Bod and Kapl@8;20ay,
1999; Bod, 2000b,a; Hearne and Sima’an, 2004; Finn et al., 2006, Ziib).

As one would expect given the framework, representations are triples f),
consisting of a c-structure, an f-structure, and a ‘correspondémuetion ¢ that
relates them (see Figure %).

Decomposition again involves thigoot and Frontier operations. As regards
c-structure, these operations are defined precisely as in Tree-Dinver, the
operations must also take account of f-structure andttieks: (i) when a node is
erased, alp-links leaving from it are removed, and (ii) all f-structure units that are
not ¢-accessible from the remaining nodes are erds€ii) In addition, Root

SAttempts to adapt DOP for other grammatical formalisms, notably HPSGdedNeumann
(2003), Linardaki (2006), and Arnold and Linardaki (2007).

“Discussion of the key ideas of LFG can be found in e.g. Bresnan J1Datymple et al. (1995),
Bresnan (2001), and Dalrymple (2001).

SA piece of f-structure ig-accessible from a nodeif and only if it is ¢-linked ton or contained
within a the piece of f-structure that ¢slinked ton.
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Figure 5: LFG-DOP Treebank representation.

deletes all semantic form®RED features) that are local to f-structures which
are linked to erased nodes. (i¥yontier also removes semantic forms from f-
structures corresponding to erased nodes.

The intuition here is (a) to eliminate f-structure that is not associated with the
c-structure that remains in a fragment, and (b) to keep everything elseptekat
a fragment should containRrRED value if and only if the c-structure contains the
corresponding word. Thus, from the representation in Figurébt will produce
(inter alia) fragments corresponding to the NBamandKim and the VRikes Kim
as in Figure 6. The cases 8mandKim are straightforward: all other nodes,
and the associateg-links have been removed; the only f-structures thatgre
accessible are the valuessaiBjandoBJrespectively, and these are what appear in
the fragments. The case of the \fiees Kim is slightly more complex: deleting the
S and subject NP nodes does not afteetccessibility relations, because the S and
VP nodes in Figure 5 arg-linked to the same f-structure. However, deleting the
subject NP removes therED feature thesusJvalue, as required by (iii). Notice
that nothing else is removed: in particular, notice that person-numbemafmm
about the subject NP remains.

Applying Frontier to Figure 6 €) to deleteKim will produce a fragment cor-
responding tdikes NR as in Figure 7. Againg-accessibility is not affected, so
the only effect on the f-structure is the removal of #reDfeature associated with
Kim, as required by (iv).

The composition operation will not be very important in what follows. For
the purpose at hand it can be just the same as that of Tree-DOP, with dwo pr
visos. First, we must ensure that substitution of a fragment at a noderyees
¢-links and also unifies the corresponding f-structures. Second, quéreethe f-
structure of any final representation we produce to satisfy a numbeld@fanal
well-formedness conditions, specificallpiquenesscompletenesandcoherence
in the normal LFG sense (e.g. Dalrymple, 2001, pp35-39). Similarly, fopthe
pose of this discussion we can assume the probability model is the same &g used
Tree-DOP®

8In fact, a small extension of the probability model is need@nimpletenessannot be checked in
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Figure 7: An LFG-DOPFrontier fragment

What is of central concern here is that the fragments producefloby and
Frontier are highlyundergeneraloverspecific). In particular, the fragment for
Samis nom the fragment folKim is acg and in the fragment folikes NPthe
direct object NP is third person and singular.

This will lead to under-generation (under-recognition). For exampld|litat
be possible to use thRBoot fragments forSamandKim in Figure 6 in analyzing
a sentence like (4) whet€m appears as a subject, aBdmas an object, because
they have the wrong case marking. Similarly, it will not be possible to use the
Frontier fragment in Figure 7 to analyze (5), since it requires d¢iss to be 3rd
person singular, whichs themetc. are not.

the course of a derivation, but only on final representations, somich will therefore be invalid.
The problem is that the probability mass associated with such represesiatiost. Bod and Kaplan
(2003) address this issue by re-normalizing to take account of thisdvyasibability mass.

" Another way of thinking about this problem is as an exacerbation of tHegmoofdata sparsity
an approach like this will require much more data to get an accurate pifttine contexts where
words and phrases can occur. Data sparsity is one of the most iperaas difficult problems for
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Figure 8: OvergenerdDiscard fragments

(4) Kim likes Sam.
(5) Sam likes them/us/mel/you/the children.

To deal with this problem, B&K introduce a further operatidhscard, which
produces more general fragments by erasing featus.card can erase any
combination of features apart fromRED, and those features whose valugs
correspond to remaining c-structure nodes. As regards the fragi8aniand
Kim, this means everything except theebcan be removed, as in Figured.(In
the case ofikes Kimin Figure 6 €), this means everything can be removed except
for the value ofPRED and theoBJ (and itsPRED), see Figure 8k). In the case of
likes NPin Figure 7, it means everything can be removed excepeEpand the
oBJ(however, though theBJremains, the features it contains can be deleted), see
Figure 8 €).

Clearly, such fragments a@ver-general (under specific). For example, the
fragment forKim in Figure 8 @) will be able to appear as subject of a non-third
person singular verb, as in (6); the fragmentslifars NPandlikes Kimwill allow
non-third singular subjects (and subjects marked accusative), anctmadnt for
likes NPwill also allow a nominative object, as in (7).

(6) *Kim were happy.
(7) *Them likes we.

To deal with this, B&K propose a redefinition of grammaticality: rather than
regarding as grammatical anything which can be given an analysis, theyran
utterance as grammatical if it can be derived without ughgard fragments. For
words with relatively high frequency (including common names sudKimsand
Samand verbs such dikes) this is likely to work. For example, every derivation
of examples like (6) and (7) is likely to involvBiscard fragments, so they will
be correctly classified as ungrammatical. Equally, (4) will have a Béard

statistical approaches to natural language.



derivation, and be correctly classified as grammatical, so lorjrasappears at
least once as a subject, aBdmappears at least once as an object, and (5) will have
a nondiscard derivation so long abkesappears with a sufficiently wide range of
object NPs.

The reason this can be expected to work for high frequency wordstifotha
such words the corpus distribution represents the true distribution (i.e. larthe
guage as whole). Unfortunately, most words ao# high frequency, and their
appearance in corpora is not representative of their true distributiofactnit is
guite common for more than 30% of the words in a corpus to appear only once —
and of course this single occurrence is unlikely to reflect the true poterfitine
word8

For example, in the British National Corpus (BNC) the ndebauche§gmoral
excesses’) appears just once, as in (8), where it wilhbe Thus, the only way
to produce (9) will be to use ®iscard fragment. But (8) and (9) are equally
grammatical.

(8) [H]e ...shook Paris by his wild debauches on convalescent.leave
(9) His wild debauches shook Paris.

Similarly, the verbgo debaucH'to corrupt morally’) andto hector(‘talk in a bul-
lying manner’) appear several times, but never with a first person Igingubject:
So analyzing (10) and (11) will requitRiscard fragments, and they will be clas-
sified as ungrammatical. But both are impeccabile.

(10) I never debauch anyone.
(11) I never hector anyone.

In short: there is a serious theoretical problem with the way LFG-DOR frag
ments are defined. WithouRiscard, the fragments arendeigeneral, and the
model undergenerates, e.g. it cannot produce (4) and (5). Thedéar need for
a method of producing more general fragments via some operatioiiikerd.
However, as formulated by B&KDiscard produces fragments that areergeneral,
and the model overgenerates, producing examples like (6) and (7)e B&i's
attempt to avoid this problem via a redefinition of grammaticality does not help,
we need to consider alternative approaches. The most obvious beingdsemp
constraints on the waliscard operates (cf Way, 1999).

8Baroni (to appear) notes that about 46% of all words (types) in the writtet of the British
National Corpusq0 million tokens) occur only once (in the spoken part the figure is 35%, |dvugr
still abovel/3). Of course, the BNC is not huge by human standards: listening tolspé@ormal
rates (say, 200 words per minute) for twelve hours per day, one vadwarer more than half this
number of tokens each ye&@00 x 60 x 12 x 365 = 52,560, 000). But Baroni also observes that
the proportion of words that appear only once seems to be largely indepeof corpus size.

°A number of participants at LFGO7 suggested alternative approacsesi ton ‘smoothing’,
rather thanDiscard (see also Hearne and Sima’an (2004)). Suppose, we have seanjee pame
Alina just once, markediom (Alina,...). We ‘smooth’ the corpus data, by treatiddina,.. as
an ‘unseen event' (e.g. we might assign it a count ). We can generalize this to eliminate



4 Constraining Discard

The problem with B&K'’s formulation ofDiscard— the reason it produces over-
general fragments — is that it is indiscriminate. In particular, it does not distin
guish between features which are ‘inherent’ to a fragment (that ispgratically
necessary’ given its c-structure), and those which are ‘contextuatoatingent’
given its c-structure and are simply artifacts of structure that has been afadin
by the decomposition operations. The former must not be discarded ifev® ar
avoid overgeneration; the latter can, and in the interest of generalitydstaudis-
carded. Consider, for example, the fragmentlikes NPin Figure 7. Intuitively,
thePErRandNuUM features on the object NP are just ‘contextual’ here — they sim-
ply reflect the presence of a third person singular NP in the origina¢sepitation.
On the other hand, theask feature on the object is grammatically necessary, as
are thePER NUM andcAsEfeatures on the subject NP (given that the velltkes).
Similarly, with fragments for NPs lik§amandKim: PERandNUM features seem
to be grammatically necessary, lmaseE seems to be an artefact of the context in
which the fragments occur (while with a fragment &breall three features would
be grammatically necessary).

One approach would be to look for general constraint®aeard, e.g. to try
to identify certain features as grammatically ‘essential’ in some way, and immune
to Discard (i.e. like PREDfor B&K). While appealing, this seems to us unlikely to
be sucessful, and certainly no plausible candidates have been midpose

We think this is not an accident. Rather, the difficulty of finding general con
straints onDiscard is a reflection of a fundamental feature of f-structures, and
LFG: the fact that f-structures do not record the ‘structural sdufcpieces of f-
structure. This is in turn a reflection of an important fact about naturglLiage —
one for which constraint based formalisms provide a natural expresbitrinfor-
mation at one place in a representation may have many different strucuraés
(in the case of agreement phenomena, many sources simultaneouslsidecdior

the need forDiscard: we simply hypothesize similar unseen events for all possible attribute-valu
combinations. This is an interesting approach, but (a) it will overgéaeaamd (b) we will still be
unable to reconstruct any idea of grammaticality. To see this, considen¢haill also treatAlina
marked plural Alina,;) as an unseen event, and presumably assign it the same cd\limtaas.. We

will now be able to derive Aline run(so we have overgeneration). Moreover, the same arguments
that we used to show the inadequacytkcard as a basis for a notion of grammaticality apply here,
equally (e.g. if we try to identify ungrammaticality with ‘involving a smoothealfiment’). Notice it

is not the case that grammatical sentences will receive higher probalpiktych an account: suppose
that the probability oNP runis the same or higher thalfe saw NPit is likely that the probability
assigned to Alina run will be the same or higher thae saw Alina (We are especially grateful to
Ron Kaplan, Jonas Kuhn, and Grzegorz Chrupata for stimulating digecusn this point.)

Oway (1999), suggests it might be possible to classify features as ‘lesicatructural’ in some
general fashion (so the presence of ‘lexical’ features in fragmentddabe tied to the presence
of lexical material in c-structures in the same wayP&ED). He suggesteER andNUM might be
lexical, andcASE might be structural, but notice that there are cases whesE is associated with
particular lexical items (e.g. pronouske her), and wherePERandNUM values are associated with
a particular structure (e.g. subject of a verb with a third person singeflaxive object, such adP
criticized herself).



example, thevuMm:pl feature that will appear on the subject NPs in the following:

(12) These sheep used to be healthy.

(13) Sam’s sheep are sick.

(14) Sam’s sheep used to look after themselves.
(15) These sheep are able to look after themselves.
(16) Sheep can live in strange places.

In (12), this feature is a reflex of the plural determiner; in (13) it is alteduhe
form of the verb &re); in (14) it is a result of the reflexive pronoun; in (15) it comes
from all these places at once; in (16) it is tlesencef an article that signals that
the noun is plural.

Thus, instead of trying to find general constraints, we propose thatdae @
tion of generalized fragments should be constrained by the existenceapfvweh
will call ‘abstract fragments’. Intuitively, abstract fragments will eneaaforma-
tion about what is grammatically essential, and so provide an upper bouihe on
generality of fragments that can be produced’hycard. We will call this gener-
alizing operatiorcDiscard (‘constrainedDiscard’). Furthermore, we propose that
the knowledge underlying such abstract fragments be expressecesingl LFG
grammar rules.

Formally, the key insight is that it is possible to think of a grammar and lexicon
as generating a collection of (often very general) fragments, by catisiguthe
minimal c-structure that each rule or lexical entry defines, and creatilitgks
to pieces of f-structure which are minimal models of the constraints on the right-
hand-side of the rule. We will call fragments produced in this way ‘basstrabt
fragments’.

For example, suppose that, in response to the problems discussedabove,
postulate the rules and entries in (17). These rules can be interpretexdtso a
generate the basic abstract fragments in Figure 9.

(17) a. S— NP VP
(TsuBJ casB=nom =]
b. VP— V NP
=] (ToBJ casBP=acc
c. Kim NP (fNnum)=sg
(TPER=3
d. she NP (INUM)=sg
(TPER=3

(TcAsE)=nom
e. her NP (INum)=sg

(TPER=3

(Tcasp)=acc

"Notice that we do not follow the normal LFG convention whereby the atesen f-structure
annotation on category is interpreted &s|’: absence of annotation means exactly an absence of
f-structure constraints. Notice also that this means we are treatingt¢berespondence as a partial
function in abstract fragments: in Figure 9 (a) the NP is not linked to atguiture.
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Figure 9: Basic abstract fragments generated by the grammar rules in (17)

Formally speaking, these are fragments in the normal sense, and theg can b
composed in the normal way. For example composing Figulg &d Figure 9f)
will produce the ‘derived’ abstract fragment in Figure H). (This in turn can be
composed with Figure 9 to produce Figure 1(bj. The idea is that such frag-
ments can be used to put an upper bound on the generality of the fragments p
duced byeDiscard, by requiring the latter to be ‘licensed’ by an abstract fragment.

More precisely, we require that, for a fragmehtif cDiscard(f) produces
fragment f;, then there must be some abstract fragmgntvhich licensesf,
which for the moment we take to medp ‘frag-subsumesy,;. We will say that an
abstract fragmenf, frag-subsumea fragmentf; just in case:

1. the c-structures are isomorphic, with identical labels on corresponduhes;
and

2. theg-correspondence df, is a subset of the-correspondence of; (recall
that¢-correspondences are functions, i.e. sets of pairs); and

3. every f-structure inf, subsumes (in the normal sense) the corresponding
f-structure off,;.12

12This desciption glosses over a small formal point: normal fragmemisizoan f-structure with
a single root. For abstract fragments this will not always be the case.eXample, a rule like
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To see the effect of this, consider tii&@ot and Frontier fragments in Fig-
ure 11 ), (d) and ), and the abstract fragments that would license possible ap-
plications of Discard to them, in Figure 114), (c) and €).

The abstract fragment in Figure 14) (will license the discarding ofER and
NuM from the object slot of Figure 1Dy, but will not permit discarding 6fENSE
information, or information about theAsE of the subject or object, a’PErR and
NUM information from the subject. Thus, we will have fragments of sufficient
generality to analyze (18), but not (19):

(18) Sam likes them/us/me/the children. [=(5)]
(19) *Them likes we. [= (7)]

Similarly, the abstract fragment in Figure 1 Will license generalized fragments
for Kim from which cASE has been discarded, but will not allow fragments which
from whichPEROr NUM information has been discarded. Thus, as we would like,
we will be able to analyze examples whedtin is an object, but not where it is,
say, the subject of a non-third person singular verb:

(20) Kim likes Sam. [= (4)]
(21) *Kim were happy. [= (6)]

On the other hand, the abstract fragment in Figure€l W{ll not permit any fea-
tures to be discarded froher, which will therefore be restricted to contexts which
allow third person singular accusatives:

S —NP VP (without any constraints) should produce an abstract fragmitim¢-structure consisting
of three nodes, each associated with a separate, empty, f-structure.
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Figure 11:Root, Frontier, and abstract fragments

(22) Sam likes her.
(23) *Her likes Sam.

5 General Constraints

The previous section has shown how one source of overgeneratidreavoided.

A second source of overgeneration arises from the fact that, whileviges a
reasonable model of normal c- and f-structure constraints (i.e. defijugtions),
an LFG treebank is only a poor reflection of other kinds of constraint, reega-
tive constraints, functional uncertainty constraints, existential constrand con-
straining equation$® A treebank is a finite repository of positive information, and
cannot properly reflect negative constraints, constraints with potentidihjite

13See Dalrymple (2001) for discussion and exemplification of such @inttr
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scope, or constraints whose essential purpose is information ‘chéckimghis
section we will show how the approach of the previous section can bededen
to address this source of overgeneration. For reasons of spaasilvi@us on
functional uncertainty constraints and negative constraints.

As an example of a functional uncertainty constraint, consider the nelukto *
topicalized constituents. Suppose the treebank contains representitéxasm
ples like (24) and (25).

(24) Her, Sam likes.
(25) Her, we think Sam likes.

As things stand, it will be possible to produce a fragment like Figure 12 {&H

by deleting the structure corresponding3am likegand discarding a number of
features likeTENSE, which are not relevant here). Notice it will be possible to
compose any complete sentence with this, and so derive ungrammatical example
like the following, in which the topicalized constitueheér is not linked to any
normal grammatical function.

(26) *Her, Sam likes Kim.

In a normal LFG grammar, examples like (26) are excluded by including a
functional uncertainty constraint on the rule that produces topicalizadtstes'*

(27) S— NP S

(TTopPi)=| =]
(TcomP* GF)=]

As things stand, the LFG-DOP model is unable to prevent examples like é2&) b
derived: there is no way of capturing the effect of anything like an uatgy
constraint.

As regards negative constraints, in Section 4 we expressed factssalfiject
verb agreement witlikesby means of a positive constraint requiring its subject to

¥In (27), GFis a variable over grammatical function names, sucbmsandsusJj andCcomP*
is a regular expression meaning any numbecofps (including zero).comp is the grammatical
function associated with complement clauses. Thus, the constraintagtfue NP’s f-structure to
be theosJ (or suBy, etc.) of its sister S, or of a complement clause inside that S, or a coraptem
clause inside a complement clause (etc).



be 3rd person singular. This still leaves the problem of agreement fer faims.
For example, we must excludi&e appearing with a 3rd person singular form, as
in (28).

(28) *Sam like Kim.

This can be expressed with a disjunction of normal constraints, but thenatosal
thing to say involves a negative constraint, along the lines of (29) (whichlgimp
says that the subject tike must not be third person singular). The existing appa-
ratus provides no way of encoding anything like this.

(29) like V —( (IsuBJPER=3 (ISUBJNUM)=sg )

In fact, apparatus to avoid this sort of overgeneration is a straightfdrese:
tension of the approach described above.

e \We add to fragments a fourth component, so they become 4-tuples:
(c,®, f, Constr), whereConstris a collection of ‘other’ (i.e. non-defining)
constraints.

e For basic abstract fragments the element&'ofistr are the ‘other’ con-
straints required by the corresponding rule or lexical entry.

e Combining abstract fragments involves unioning these sets of constraints.

e Licensing a fragment involves adding these constraints to the fragment (i.e.
fragments inherit the Constraints of the abstract fragment that license} the

e The composition process is amended so as to include a check that these con-
straints are not violated (specifically, we require that, in addition to normal
completeness and coherence requirements, the f-structure of amgpread
sentation we produce must satisfy all constraint€'imstr).

The idea is that, given a grammar rule like (29), any basic abstract fragmen
for like will include a negative constraint on the appropriate f-structure, whith w
be inherited by any derived abstract fragment, and any fragment ttia¢risby
licensed. So, for example, the most genetBfscard fragment forNP like Kim
will be as in Figure 13. While it will be possible to adjoin a 3rd person singular
NP to the subject position of this fragment, this will not lead to a valid final repre
sentation, because the negative constraint will not be satisfied. Thaseavould
hope, we will be able to derive (30), but not (31).

(30) They like Kim.
(31) *Sam like Kim.

Similarly, the rule in (27) will produce abstract fragments which contain the un
certainty constraint given, and these will license normal fragments likertHag-
ure 14. Again, the only valid representations which can be constructith wht-
isfy this constraint will be ones which contain a ‘gap’ corresponding tartheiC.
That is, as one would like, we will be able to produce (32), but not (33):

(32) Her, Sam (says she) likes.
(33) *Her, Sam (says she) likes Kim.
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Figure 13: Fragment incorporating a negative constraint

[ fo
S h COMP* GF)=
/\X’7 PRED ‘PRO { (o )=}
NP . S TOPIC NUM  sg
\
Her\// PER 3
~_ A CASE acc ]

Figure 14: Fragment incorporating an uncertainty constraint

6 Discussion

The proposals presented in the previous sections constitute a relatieéghtitr-
ward extension to the formal apparatus of LFG-DOP, but they are ogenumber
of objections, and they have theoretical implications of wider significance.

One kind of objection that might arise is a result of the relatively minor phe-
nomena we have used for exemplification (case assignment and persdemn
agreement in English). This objection is entirely misplaced. First, becauas, in
LFG context, similar problems will arise in relation to any phenomenon whose
analysis involves f-structure attributes and values. More generally, sipribdr-
lems of fragment generality will arise whenever one tries to generalize OP a
proaches beyond the context-free case, e.g. to deal with semantibste gen-
erally still, analogues of the problems we have identified with fragment giégera
and capturing the effect of ‘general’ constraints on the basis of a finlteation
of example representations will arise with any ‘exemplar’ based approach

A second source of objections might arise from the fact that we hawséac

1At least, this is the case if one wants to preserve the idea that a treebasigtsaf representa-

tions in the normal sense. In the approach to semantic interpretation in B€2Rled in Bonnema

etal. (1997) these problems are avoided at the cost of not usingniemggresentations in the normal
sense. Rather than having semantic representations, the nodes afé¢raesotated with an indica-
tion of how the semantic formula of the node is built up from the semanticd@aof its daughters,

and hence how it should be decomposed. The ‘fragment generalitiylem is sidestepped by ex-
plicitly indicating on each and every node how its semantic representatioiddb® decomposed as
fragments are created.



on the problem of overgeneration: one might object (a) that in a praaticallan-
guage engineering, setting this is not very important, and (b) that in alglisba
tic setting, such as DOP, overgeneration can be hidden statistically (e.auseec
ungrammatical examples get much smaller probability compared to grammatical
ones).

As regards (a), the appropriate response is that a model which oeseges
is generally one which assigns excessive ambiguity (which is a pervasitséem
in practical settings). Sag (1991) gives a large number of plausible deamip
relation to subject-verb agreement, he notes that the followingigambiguous,
but will be treated as ambiguous by any system that ignores subject-gere-a
ment: (34) presumes the existence of a unique English-speaking Fremaehmag
the programmers; (35) presumes there is a unique Frenchman among tisé Eng
speaking programmers.

(34) List the only Frenchman among the programmers who understantstEng
(85) List the only Frenchman among the programmers who understandtiznglis

Similarly, a system which does not insist on correct linking of Topics willtt(86)
and (37) as ambiguous, when both are actually unambiguous (ino8&mmust
be associated witbontributed in (37) it must be associated wittppears because
contributerequires, andliscoverforbids, a complement witto):

(36) Tothem, Sam appears to have contributed it.
(37) Tothem, Sam appears to have discovered it.

As regards (b), it is important to stress that the problem of overgenerasio
we describe it has to do with the characterization of grammaticality (i.e. the char-
acterization of a language), and grammaticality simply cannot be identified with
relative probability (casual inspection of almost any corpus will revealynsim-
ple mistakes, which are uncontroversially ungrammatical, but have muchrhighe
probability than perfectly grammatical examples containing, e.g., rare words)

A third objection would be that in avoiding overgeneration, we have also lost
the ability to deal with ill-formed input (robustness). But there is no reasion w
the model should not incorporate, in addition to ‘constraifgstard’, an uncon-
strained operation like the original B&Riscard. Notice that this would now give
a correct characterization of grammaticality (a sentence would be grammétical
and only if it can be derived without the use of unconstraifeetard fragments).

A fourth, and from a DOP perspective very natural, objection would ke th
these proposals in some sense violate the ‘spirit’ of DOP — where an important
idea is exactly to dispense with a grammar in favor of (just) a collection of frag-
ments. A partial response to this is to note that to a considerable degreeatthe so
of grammar we have described is implicit in the original treebank. For example,
the set of c-structure rules can be recovered from the treebank blysripacting
all trees of depth one. This will produce a grammar without f-structuretcaimts,
and abstract fragments with empty f-structures and constraint sets, iwlkeicactly



equivalent to the original B&K model. Taken as a practical proposal famg
mar engineering, the idea would be that one can begin with such an urainedtr
model, and simply add constraints to these c-structure rules to rule outoesey
tion. This can clearly be done incrementally, and in principle, the full rahg&G
rule notation should be available, so this should be a relatively straightfc @l
natural task for a linguist. It should be, in particular, much easier than grétin
normal grammar.

However, it is also possible to take the proposal in a different way, réteo
cally’, as describing an idea about linguistic knowledge, and human lgegua-
cessing and acquisition. Taken in this way, the suggestion is that a sjheaskat
her disposal two knowledge sources: a database of fragments (inrthalridOP
sense), which one might think of as a model of grammatical usage, andna gra
mar (an abstract fragment grammar) which expresses generalizatienshege
fragments, which one might take to be a characterization of something like gram-
matical competence. Notice that on this view: (i) the grammar as such plays no
role in sentence processing (but only in fragment creation, i.e. off:lijiig¢)xhe
task of the learner is only secondarily to construct a grammar (the primdey tas
is the creation of the fragment database — learning generalizations ovés #his
secondary task); (iii) the grammar does not generate or otherwisegiyetigrac-
terize the language (this is achieved by the fragment database with the ¢tiompos
operation), rather its job is to license or legitimize the fragments in the fragment
database. Taken in this way, the model is an enrichment of the standaré&pOP
proach.
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