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Abstract

This paper presents a method to automatically acquire waderage,
robust, probabilistic Lexical-Functional Grammar (LF@yources for Chi-
nese from the Penn Chinese Treebank (CTB). Our starting mthe ear-
lier, proof-of-concept work of Burke et al. (2004) on autdim&unctional)-
structure annotation, LFG grammar acquisition and par&nghinese us-
ing the CTB version 2 (CTB2). We substantially extend andrimep on this
earlier research as regards coverage, robustness, cuadifine-grainedness
of the resulting LFG resources. We achieve this throughr{proved LFG
analyses for a number of core Chinese phenomena; (ii) a newmatic f-
structure annotation architecture which involves an metiate dependency
representation; (iii) scaling the approach from 4.1K ti@eSTB2 to 18.8K
trees in CTB version 5.1 (CTB5.1) and (iv) developing a ndveébank-
based approach to recovering Non-Local Dependencies (NMdD€hinese
parser output. Against a new 200-sentence good standardmiafly con-
structed f-structures, the method achieves 96.00% f-sioréstructures
automatically generated for the original CTB trees and B%0dor NLD-
recovered f-structures generated for the trees output ksi'Biparser.

1 Introduction

Automatically inducing deep, wide-coverage, constra@ted grammars from ex-
isting treebanks avoids much of the time and cost involvethamually creating
such resources. A number of papers (van Genabith et al.,; 1289der et al.,
2000; Frank, 2000; Cahill et al., 2002) have developed nustHor automati-
cally annotating treebank (phrase structure or c(onstijesructure) trees with
LFG f(unctional)-structure information to build f-struce corpora to acquire LFG
grammar resources.

In LFG, c-structure and f-structure are independent lewélsepresentation
which are related in terms of a correspondence functioneptigin ¢ (Kaplan,
1995). In the conventional interpretation, thecorrespondence between c- and
f-structure is defined implicitly in terms of functional astations on c-structure
nodes, from which an f-structure can be computed by a cansgalver.

In one type of treebank-based LFG grammar acquisition agproreferred
to as “annotation-based grammar acquisition”, functimtilemata are annotated
either manually on the entire Context Free Grammar (CF@srautomatically
extracted from the treebank (van Genabith et al., 1999);noa smaller number
of hand-crafted regular expression-based templatessepiag partial and under-
specified CFG rules (Sadler et al., 2000) which are applieditomatically anno-
tate the CFG rules extracted from treebank trees; or, usirsgnaotation algorithm
traversing treebank trees, applying annotations to eadk nba local c-structure
subtree in a left/right context partitioned by the head n@kehill et al., 2002).

An alternative grammar acquisition architecture for LF&erred to as “conver-
sion-based grammar acquisition”, directly induces amdestire from a c-structure
tree, without intermediate functional schemata annatatan c-structure trees. An



algorithm building on this architecture was developed iarkr(2000) by directly
rewriting partial c-structure fragments into correspogdpartial f-structures, using
a rewriting system originally developed for transfer-lwhdéachine Translation.
As opposed to the CFG rule- and annotation-based archigetiiwhich annota-
tion principles are by and large restricted to local treedegith one, this approach
naturally generalises to non-local trees.

One of the challenges in both the annotation- and more dimatersion-based
architectures is to keep the number of f-structure anrtatonversion rules which
encode linguistic principles to a minimum, as their craatitvolves manual effort.
Another challenge is to find automatic f-structure annotdtionversion architec-
tures that generalise to different languages and treebacddangs.

A common characteristic of the work cited above is that al thethods are
applied to English treebanks (Penn-Il, Susanne and APard@lirom which LFG
resources are acquired for English. An initial attempt teed the treebank- and
annotation-based LFG acquisition methodology to Chineda das carried out
by Burke et al. (2004), which applied a version of Cahill et (@004)'s algo-
rithm adapted to Chinese via the Penn Chinese Treebankne&tLDC2001T11)
and was evaluated against a small set of 50 manually cotetrgold-standard
f-structures. The experiments were proof-of-concept amdesvhat limited with
respect to (i) the coverage of Chinese linguistic phenomg@ifahe quality of the
f-structures produced; (iii) parser output producing opipto’ f-structures with
non-local dependencies unresolved; (vi) the size of trebtiek and gold standard.

In the present paper, we address these concerns and presamtfatructure
annotation architecture and a new annotation algorithnCfanese, which:

e combines aspects of both the annotation-based and camvdrased archi-
tectures described above;

e generates proper f-structures rather than proto-f-sirastby resolving NLDs
for parser output;

e scales up to the full Penn Chinese Treebank version 5.1 (I0DEP01U01),
whose size is more than 4 times of that of CTB2;

e is evaluated on a new extended set of Chinese gold-standgdndctures for
200 sentences.

2 Automatic F-Structure Annotation of CTB5.1

2.1 Chinese LFG

Research on LFG has provided analyses for a considerableearunhf linguistic
phenomena in Indo-European, Asian, African and Native Acaarand Australian
languages. However, Chinese is a language drasticallgreiff from such lan-
guages as English, German, French etc. which are often tus fof attention.

Developed jointly with PARC.



The most distinctive linguistic properties of Chinese dievery little inflectional
morphology encoding tense, number, gender etc., resuttititge almost complete
absence of agreement phenomena familiar from Europeandgeg; (i) lack of
case markers, complementisers etc., which often caustcigrand semantic am-
biguity; (iii) the tendency towards omission of constitteeif they can be inferred
from the context, which includes not only subject and obggguments, but also
predicates and other heads of phrases, in some cases.

Though the main purpose of this paper is to address the tedhasue of au-
tomatically inducing f-structures from the Penn Chinesebank, an LFG account
for various phenomena and constructions in Chinese is @quesite. Work ad-
dressing Chinese issues within LFG formalism has beenechaut for a limited
number of phenomena. For example, Fang (2006) providesheaf@nalysis for
the verb copy construction in Chinese; Huang and Mangio8@x)loffers an LFG
account of post-verbalf%/DE” construction; Her (1991) presents a classification
of Mandarin verbs by the subcategorised grammatical fanstiwithin LFG. In
our research , we adopt some existing theoretical LFG aisalgat also provide
our own solution to other Chinese core phenomena and disputanstructions
due to the lack of standard LFG account for thérfio give a flavour of what the
Chinese LFG likes look, below we illustrate the c-structinees represented in the
CTB and our analyses with the corresponding f-structuresafoumber of core
linguistic phenomena characteristic of Chinese.

Classifiers are common in Chinese (and some other Asian languages) tin tha
they cooccur with numerals or demonstrative pronouns tatcthings or persons
(nouns) or indicate the frequency of actions (verbs). Twipea unified interpre-
tation of classifiers, we treat a classifier as a grammatigattfion modifying the
head noun (or verb) rather than for example as a featurehatido the determiner

or head noun/verb, for the following reasons:

e classifiers have content meaning: standard classifiers asié¥/meter”,
“/ Jrikilogram”, “Jffi/bottle” relate to distance, weight, volume, etc. and
individual classifiers indicate prominent features of tlo&im they modify,
for example 42/BA’ which is derived from “handle” is used as a classifier
for objects with a handle, as in (1).

L — &8 /7
one CLS chair
‘one chair’

e classifiers can function as the head within a phrase, as.in (2)
(2 41 =
hit three CLS
‘hit three times’

2Rather than providing a fully adequate LFG account in theouy analysis is compromise and
conservative in some respects for the practical reason ansidering tree representations in the
CTB.



¢ classifiers can be modified by adjectives, as in (3).

(3) — K i R
one big bowl/CLS rice
‘a big bowl of rice’

Figure 1 illustrates the CTB representation of a classifieithe corresponding
schematic f-structure. A noticeable difference is thatdbterminer (DT) takes a
quantifier phrase (QP) as its complement in the CTB consiittree, whereas in
our f-structure the determiner and quantifier are paralietfions both specifying
the head noun predicate.

4) x H A FE
these five CLS student
‘these five students’

NP - -
/\ PRED ‘&’
DP NP DET [PRED JX}
/\ |
DT QP NN PRED A
| | QUANT .
ix CD CLP azn: NUMBER [PRED ﬂi]
the | | student - :
f A
five CLS

Figure 1: The CTB tree and our f-structure analysis of thesifeer

DE Phrases are formed by the function word?/DE” attached to various cat-
egories, such as possessive phrases, noun phrases,vadgutses or relative
clauses. DE has no content other than marking the precediras® as a mod-
ifier of NP. Different from the original f-structure annatat algorithm and the
50-sentence gold-standard f-structures developed indBetril. (2004), we choose
the content word rather than DE as head of the modifier, beclhe other words
in the modifier phrase will depend on the head, and moreoveh&no content
and thus may be omitted in examples such as (5a). Therefooeirianalysis we
treat DE as an optional feature attached to the modifier an@ifeed in Figure 2.
What is noticeable here is that the grammatical functiorhef@E-phrase in (5b)
is an attributive modifierADJuNCT) while in (6) it is a possessor(s9, even
though the constituent structures are the same for bothtadiliee absence of any
case marking. The difference is in fact lexical and due tohkad word of the
adjunct which is a common noun (NN) in (5), and the head worthefpossessor
which is a proper noun (NR) in (6).

BEI-Constructions are commonly considered approximately equivalent to pas-

sive voice in English. However we do not treadfBEI” as just a passive voice



(5) a. Kk Mt miH
large scale project

NP - "
/\ PRED ‘l)ﬁ\H’

NP NP PRED AR

PN |
AD|JP N|P NN ADJUNCT ADJUNCT {[PRED }\}}

|

JJ NN xiH DE -

| | . project L -
N
large scale

b. K KL HiH
large scale DE project
‘a large-scale project’

NP
PRED IRH?
DNP NP PRED R
/\ |
NP DEG NN ADJUNCT ADJUNCT [PRED )\}
N | |
ADJP NP g5 JiH DE +
| | DE project
JJ NN
| |
KN
large scale
(6) k= 45
ZhangSan DE book
‘ZhangSan'’s book’
NP PRED ‘4
/\ s
DNP NP poss |PRED K=
N | DE  +
NP DEG NN
| | |
NR K
| DE book
kK=
ZhangSan

Figure 2: The CTB tree and our f-structure analysis of DEapar

feature, in that it also introduces the logic subject in kiBtgl constructions as in
(7), similar to the preposition “by” in the English passivenstruction. Further-
more, we do not analyse it as a subject marker, as short-Bidtieations as in
(8) will be subjectless, where BEI marks nothing. And rattiemn treating it as
a preposition, though the analysis can be argued for fronearétical point of



view, it does not always indicate passive voice, as in (9gnelthe embedded verb
is intransitive. In line with Her (1991), we treat BEI as alverThe advantage
of this analysis is that it provides a unified account for edusel verbs, where
verbs in BEI sentences have the same subcategorisatioedramthose in their
BEIl-less corresponding sentences. Her (1991) treats BBl @gotal construc-

tion, where BEI requires an object and a non-finite VP complgimHowever, this

is somewhat different from the CTB representation, wheré tBkes a sentential

complement. Both constructions are acceptable in Chindég®ut the presence
of a complementiser. For practical purposes, we acceptdeerépresentation in
CTB and hence BEI requires a closed complemeiMP) in our f-structure, as

exemplified in Figure 3.

(7) X4 Hds #e Ik 2g
these data BEI| ignore
‘These data were ignored by me.

IP - -
/\ PRED ‘#(SuBJ,comp)’
NP VP PRED “Hdii’
SUBJ . 1
DP/\NP LB/\IP DET [PRED J&LB]
D|T N|N %|§i NP/\VP [PRED 2% (SUBY OBY)’
ﬁtﬂﬁ ﬁﬁl'}}*‘ BEI | cCOMP | SUBJ {PRED ?&:}
the;edat; PN wv NP 0BJ
| | —_ L L ]
& 2wz -NONE-*T*
I ignore
(8) fib # #&%T —EH
he BEI award the top prize
‘He was awarded the top prize.
P [PRED ‘#(suBJ, cOMPY’ 1
NP/\VP SUBJ [PRED ‘M’{’}
| /\ PRED  ‘#% T (SUBJOBJ, OBL_TH)'
PN
SB VP SUBJ [PRED ‘pro’}
it CoMP
e OBJ
BElI VvV NP NP (At
| == OBL_TH [PRED *—.-%4,{}
?’}Z]” -NONE-* NN L -
award
—% R
top prize

Figure 3: The CTB tree and our f-structure analysis of BEiatauction



9) % R BT
cat BEI mouse escape ASP
‘The cat let the mouse escape.

2.2 A New F-Structure Annotation Algorithm for CTB

The f-structure annotation method developed in Cahill gf24102) & Burke et al.
(2004) builds on the CFG rule- and annotation-based amthite By and large
the algorithm works on local treebank subtrees of depth egaigalent to a CFG
rule)3 In order to annotate the nodes in the tree, the algorithrritipag each
sequence of daughters in the local subtree into three sectieft context, head
and right context. Configurational information (left orrigposition relative to the
head), category of mother and daughter nodes, and Penamieinctional labels
(if they exist) on daughter nodes are exploited to annotaties with f-structure
functional equations. The annotation principles for Ceéi Burke et al. (2004)
are fairly coarse-grained. However configurational andgaial information from
local trees of depth one only is not always sufficient to deiee the appropriate
grammatical function (GF), as for example for DE-phraséguife 2). This means
disambiguation of GFs for Chinese may require access tedkixiformation (com-
mon or proper noun in Figure 2) and more extensive contekit@mmation beyond
the local configurational and categorial structure.

In Cahill et al. (2002) & Burke et al. (2004), for each treee fkstructure equa-
tions are collected after annotation and passed on to aragristolver which pro-
duces an f-structure for the tree. Unfortunately, as erplhin Cahill et al. (2002),
the constraint solver’'s capability is limited: it can hamelquality constraints, dis-
junction and simple set-valued feature constraints. Hewet (i) fails to generate
an f-structure (either complete or partial) in case of dadhetween the automati-
cally annotated features; and (ii) does not provide subsiomgonstraints to dis-
tribute distributive features into coordinate f-struetsir

In order to avoid the limitations of the constraint solvergdan order to exploit
more information for function annotation from a larger atthan within the local
tree, instead of indirectly generating the f-structurefuiactional equations anno-
tated to c-structure trees, we adopt an alternative appradwich transduces the
treebank tree into an f-structure via an intermediate dégecy structure, directly
constructed from the original c-structure tree, as showkigares 4 & 5.

The basic idea is that the=| (or the equivalenty(n;)=¢(n;) equations in
Figure 4) head projections in the classical LFG projectiainigecture allow us to
collapse a c-structure tree into an intermediate, unlabelependency structure as
in Figure 5. The intermediate unlabelled dependency streigs somewhat more
abstract and normalised (compared to the original c-stradree) and is used as
input to an f-structure annotation algorithm, which is siemgand more general
than the conventional f-structure algorithms (Cahill et2002; Burke et al., 2004),

3Though it also uses some non-local information.



directly operating on the original, more complex and vadestructure trees.
The new f-structure annotation architecture is illusttaite Figure 5, and in-
cludes two major steps:

I. First, we extract all predicates from the (local) c-stwe tree, using head-
finding rules similar to that used in Collins (1999), adape€hinese data
and CTB5.1. Collapsing head-branches along the headetimjdines, the
c-structure configuration is projected to an intermediathelled depen-
dency structure, augmented with CFG category and ordemiaton inher-
ited from the c-structure.

Il. Second, we use high-level annotation principles exjpigiconfigurational,
categorial, functional as well as lexical information frahe intermediate
unlabelled dependency structure to annotate grammatiocatibn and other
f-structure information (to create a labelled dependennyctire, i.e. an
LFG f-structure).

IP:n1 PRED ‘I’
TN PRED R R
NP:n2 P:n3 SUBJ
N | ’| ADauncT {fg{PRED ‘ééi??’}}
NN:n4 NN:n5 VA:n6
%zNM
economygrowth rapi
¢-correspondence: f-structure
¢(n1)=p(n3)=p(n6)=f1 (fi PRED="ILJE"  (f1 SUB)=f>
$(n2)=p(nS)=f, (f2 PRED="KJE  (f2 ADJUNCT)=f3
d(n4)=f3 (fs PRED=" &3¢

Figure 4:¢-projection from c-structure to f-structure

By abstracting away from the ‘redundant’ c-structure nadesur intermedi-
ate dependency representations, the annotation priecigle apply to non-local
sub-trees. This allows us to disambiguate different GFslamger context and re-
sort to lexical information. As a more abstract dependdikeystructure is used
to mediate between the c- and f-structure, the algorithmaydwgenerates an f-
structure, and there are no clashing functional equati@using the constraint
solver to fail. Moreover, the intermediate dependencycsting can easily handle
distribution into coordinate structures by moving and tgting the dependency
branch associated with distributive functions. Furtheendinite approximations
of functional uncertainty equations resembling paths af-local dependencies
also can be computed on the intermediate dependency s&rdotithe purpose of
NLD recovery (this will be presented in section 3). Finally,order to conform
to the coherence condition and to produce a single connégtiedcture for every
CTB tree, a post-processing step is carried out to checkadiigins and to catch
and add missing annotations.



IPe--__

NP-TMP<. NP-TPC<«,  NP-SBJe«. VP*:’\
N \/’ | /\ \ | /
NT  NT-~ PN--~ NN NN~ VA-~
| | | | | |
NE A RS IV gy ok RaE
past five years GuangXi economygrowth  rapid

IP:VA: il J#E - _
PRED B!
PRED ED#
NT:Fi4E PNy ‘NN:% ADJUNCT .
NP NFELF NP:PN77§ NP NT”;U{-% ADJUNCT PRED ﬂt}}
NT:d 2 NN:Z 5%
TOPIC [PRED W*7P
PRED R
SUBJ
ADJUNCT PRED ééal}}
() Predicate Extraction (1) Function Annotation

Figure 5: The new f-structure annotation architecture foBC

Our new annotation algorithm is somewhat similar in spwoitiie conversion
approach developed in Frank (2000), However in Frank (28Q@0yorithm the
mapping of c-structure to f-structure is carried out in otepausing a tree/graph
rewriting system. Our method enforces a clear separatitwndes the intermediate
unlabelled dependency structure (predicate identifioptmd function annotation.
Predicate identification maps c-structure into an unlaldetlependency represen-
tation, and is thus designed particularly for a specific tgp&reebank encoding
and data-structures. In contrast, function annotatioedsmplished on the depen-
dency representation which is much more compact and n@etathan the origi-
nal c-structure representation, hence the function ationteules are simpler and
the architecture minimises the dependency of the annataties on the particular
treebank encoding.

2.3 Experimental Evaluation

Similar to Cabhill et al. (2002) & Burke et al. (2004), our nemnatation algorithm
is evaluated both quantitatively and qualitatively.

We apply the f-structure annotation algorithm to the whol®6.1 with 18,804
sentences. Unlike the CFG- and annotation-based predesé€ahill et al., 2002;
Burke et al., 2004), the new algorithm guarantees that 1008tedreebank trees
receive a single, connected f-structure.



For the purpose of qualitative evaluation, we selected 2a@esices from CTB-
5.1 for which the f-structures are automatically producgabr annotation algo-
rithm, and then manually corrected them to construct a gtaddard set in line
with our Chinese LFG analyses presented in Section 2.1. #tina quality is
measured in terms of predicate-argument-adjunct (or dkyey) relations. The
relations are represented as triptesation(predicate, argument/adjunct), fol-
lowing Crouch et al. (2002). The f-structure annotatioroéthm is applied to two
different sets of test data: (i) the original CTB trees, andrées output by Bikel's
parser (Bikel and Chiang, 2000) trained on 80% of the CTBE&d, exclusive
of the 200 gold-standard sentences. Table 1 reports thésegainst the new
200-sentence set of gold-standard f-structures.

\ \ CTB Trees \ Parser Output Trees |
Precision Recall F-Score| Precision Recall F-Score
Preds Only| 93.68 94.93 94.30 73.55 65.05 69.04
All GFs 95.25 96.75 96.00 84.00 71.77 77.40

Table 1: Quality of f-structure annotation

Table 1 shows that given high-quality input trees, the neyer@thm produces
high quality f-structures with f-scores of around 94%-9686 freds-only and all
GFs, respectively. The corresponding scores drop by 20%-@4solute on parser
produced trees.

3 Recovery of Chinese Non-Local Dependencies for Parser
Output

The drastic drop in the results on parser output trees islyndime to labelled
bracketing parser errors, but also because Bikel's paaset host state-of-the-art
treebank-based broad-coverage probabilistic parsees dot capture non-local
dependencies (or ‘movement’ phenomehas a result, the automatically gener-
ated f-structures produced from parser output trees ate-psiructures, as they
only represent purely local dependencies. In this secti@present a postprocess-
ing approach to recover NLDs on the automatically generptetb-f-structures.

3.1 NLDs in Chinese

Non-local dependencies in CTB are represented in terms pfyetategories (ECs)
and (for some of them) coindexation with antecedents, ampd#ed in Figure 6.
Following previous work for English and the CTB annotatiammeme (Xue and
Xia, 2000), we use “non-local dependencies” as a cover temalf missing or

“The original parser does not produce CTB functional tadieeibf which the f-structure annota-
tion algorithm takes advantage (if they are present). Tmreshe CTB functional tags, we retrained
the original parser to allow it to produce CTB functionalgas part of its output.



dislocated elements represented in the CTB as an emptyocgt@gth or without

coindexation/antecedent), and our use of the term remagjnestic about fine-
grained distinctions between non-local dependenciesrdiawhe theoretical lin-
guistics literature.

Table 2 gives a breakdown of the most frequent types of engiggories and
their antecedents. According to their different linguigbroperties, we classify
these empty nodes into three major types: null relative quos, locally mediated
dependencies, and long-distance dependencies (LDDs).

| | Antecedent POS Label  Count] Description |
1 WHNP NP *T* 11670 | WH traces (e.g. *OPH [H &R H*T* 1) LA)
2 WHNP  *OP* 11621 | Empty relative pronouns (e.§0P* 1 [H & 5 it 1LA)
3 NP *PRO* 10946 | Control constructions (e.gX H AV*PRO* li)
4 NP *pro* 7481 | Pro-drop situations (e.gpro* /3 & i ) f) ) 1)
5 IP IP T+ 575 | Topicalisation (e.gf&AIfEm, ALI*T*)
6 WHPP PP *T* 337 WH traces (e.g. *OPA [1*T* 5 4E 31 [X)
7 WHPP  *OP* 337 | Empty relative pronouns (e.§0P* A LI % 4EH1[X)
8 NP NP * 291 | Raising & Bei constructions (e.g&k Al 1#¢HERR* #41)
9 NP NP *RNR* 258 | Coordinations (e.giil*RNR* FIsZ K1)
10 CLP CLP *RNR* 182 | Coordinations (e.gli*RNR* 4 +17,70)
11 NP NP *¥T* 93 | Topicalisation (e.g#izK #f*T* Jk=22K)

Table 2: The distribution of the most frequent types of engatiegories and their
antecedents in CTB5.1.

Null Relative Pronouns (Table 2, rows 2 & 7) themselves are local dependen-
cies, and thus are not coindexed with an antecedent. Butntiegljate non-local
dependencies by functioning as antecedents for the dislbcanstituent inside a
relative clausé.

Locally Mediated Dependencies are non-local in that they are projected through
a third lexical item (such as a control or raising verb) whinlolves a dependency
between two adjacent levels and they are therefore bound@ibik type encom-
passes: (Table 2, row 8) raising constructions, and stetanstructions (passivi-
sation); (row 3) control constructions, which include twiffatent types: a generic
*PRO* with an arbitrary reading (approximately equal to ximessed subjects of
to-infinitive and gerund verbs in English); and a *PRO* with dé& reference
(subject or object controf.

Long-Distance Dependencies differ from locally mediated dependencies, in that
the path linking the antecedent and trace might be unbounde®s include the
following phenomena:

SNull relative pronouns in the CTB annotation are used tdmiisiish relative clauses in which an
argument or adjunct of the embedded verb ‘moves’ to anothstipn from complement (appositive)
clauses which do not involve non-local dependencies.

SHowever in this case the CTB annotation does not coindexatussl (trace) with its controller
(antecedent) as the *PRO* in Figure 6.
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Figure 6: NLD example of sentenc@People) don’t want to look for and train new
writers who have potential.the CTB tree and the corresponding f-structure



Wh-traces in relative clauses, where an argument (Table 2, row 1) aured]
(row 6) ‘moves’ and is coindexed with the ‘extraction’ site.

Topicalisation (Table 2, rows 5 & 11) is one of the typical LDDs in English,
whereas in Chinese not all topics involve displacementhag/s in example (10).

(10) b FKKR 4w £
Beijing autumn most beautiful
‘Autumn is the most beautiful in Beijing.’

Long-Bei construction as described above, takes a sentential complement which
possibly involves long-distance dependencies, as in elea(tf).

(11) 2%y e ¥g Ik A 77
John BEI Mary send somebody hit ASP
‘John was hit by somebody sent by Mary.’

Coordination is divided into two groups: right node raising of an NP phrase
which is an argument shared by the coordinate predicatdde(®a row 9); and
the coordination of quantifier phrases (row 10) and verbedgds as example (12),
in which the antecedent and trace are both predicates asiblyotake their own
arguments or adjuncts.

(12) A Al 5353 2: A\ H *RNR* BB
I and he respectively go to company and *RNR* hospital
‘I went to the company and he went to the hospital respegtivel

Pro-drop cases (Table 2, row 4) are prominent in Chinese because subject and
object functions are only semantically but not syntaclycedquired. Nevertheless,

we also treat pro-drop as a long-distance dependency aiiigle the dropped
subjects can be determined from the general (often inteesgalf context.

3.2 NLD Recovery Algorithm for CTB

Among these NLD types, LDDs cover various linguistic pheram and are the
most difficult to resolve. Inspired by Cabhill et al. (2004) wecover long-distance
dependencies at the level of f-structures, using autoaibtiacquired subcate-
gorisation frames and finite approximations of functionatertainty equations
describing LDD paths from the f-structure annotated CTBhilCat al. (2004)'s
algorithm only resolves certain LDDs with known types ofedents (OPIC,
TOPIC_REL andrFocusg. However as illustrated above, except for relative clause
the antecedents in Chinese LDDs do not systematically spored to types of
grammatical function. Furthermore, more than half of alpgrcategories are not
coindexed with an antecedent due to the high prevalenceoefifmp in Chinese.

“In this case, the ‘pro’ will be resolved by anaphora resohuth a later processing stage.



In order to resolve all Chinese LDDs represented in the CTénmwdify and sub-
stantially extend Cabhill et al. (2004)’s algorithm as folk

1. We extract LDD resolution paths linking reentrances in f-structures au-
tomatically generated for the original CTB trees. To be#stecount for all
Chinese LDDs represented in the CTB, we calculate the pilitlyabf p
conditioned on the GF associated with the tra¢@stead of the antecedent
as in Cabhill et al. (2004)). The path probabiliB(p|t) is estimated as Eq. 1
and some examples of LDD paths are listed in Table 3.

count(p,t)
P(p|t) = 1
| Trace (Path) Prob. |
ADJUNCT(]TOPIC_REL) 0.9018
ADJUNCT(TCOORD TOPICREL) 0.0192
ADJUNCT(NULL) 0.0128
OBJ(TTOPIC_REL) 0.7915
OBJ(TCOORD COORD OB} 0.1108
SUBJNULL) 0.3903
SUBJJTOPIC_REL) 0.2092

Table 3: Examples of LDD paths

2. We extract the subcat frame#or each verbal formw from the automatically
generated f-structures and calculate the probability cbnditioned onw.
As Chinese has little inflectional morphology, we augmeastwiordw with
syntactic features including the POSwafthe GF ofw, so as to disambiguate
subcat frames and choose the appropriate one in a partiootdext. The
lexical subcat frame probability(s|w, w_feats) is estimated as Eq. 2 and
some examples of subcat frames are listed in Table 4.

count(s, w,w_feats)

P(s|lw,w_feats) = (2)

Yo count(s;, w,w_feats)

3. Given the set of subcat framedor the wordw, and the set of paths for
the tracet, the algorithm traverses the f-structuféo:

- predict a dislocated argumehat a sub-f-structuré by comparing the
local PRED:w t0 w's subcat frames

- t can be inserted &t if h together witht is complete and coherent
relative to subcat frame



| Word:POS-GF(Subcat Frames)  Prob. |

45 :VE-adj_rel([subj, obj]) 0.6769
£ :VE-adj_rel([subj, comp]) 0.1531
£ :VE-adj_rel([subj]) 0.0556
:VE-comp([subj, obj]) 0.4804
5 :VE-comp([subj, comp]) 0.2587
4 :VE-top([subj, comp]) 0.4397
£ :VE-top([subj, obj]) 0.3510

Table 4: Examples of subcat frames

- traversef inside-out starting fromi along the pathp
- link t to its antecedent if p's ending GFa exists in a sub-f-structure
within f; or leavet without an antecedent if an empty path faxists

4. Rank all resolution candidates according to the prodfistibcat frame and
LDD path probabilities (Eq. 3).

m

P(s|lw,w_feat) x H P(plt;) (€))
j=1

As described in Section 3.1, besides LDDs, there are twa oghes of NLDs
in the CTB5.1, and their different linguistic properties ynm@quire more fine-
grained recovery strategies than the one described so farthdfmore, as the
LDD recovery method described above is triggered by disémtaubcategoris-
able grammatical functions, cases of LDDs in which the tiaget an argument
in the f-structure, e.g. aRDJUNCT or TOPIC in relative clauses or a nuMRED in
verbal coordination, cannot be recovered by the algoritimmorder to recover all
NLD types in the CTB5.1, we develop a hybrid methodology. Tilerid method
involves four strategies (including the one described o fa

e Applying a few simple heuristic rules to insert the emp#ED for coordi-
nations and null relative pronouns for relative constartdi The former is
done by comparing the part-of-speech of the local predscael their argu-
ments in each coordinate; and the latter is triggered baGR/NCT_REL in
our system.

e Inserting an empty node with G&uBJ for the short-bei construction and
control & raising constructions, and relate it to the upleeel suBJ or
0BJ accordingly.

e Exploiting Cabhill et al. (2004)'s algorithm, which conditis the probabil-
ity of LDD path on the GF associated with the antecedent rathen the
trace, to resolve the wh-trace in relativisation, inclgdihe ungovernable
GFsTOPICandADJUNCT.



e Using our modified LDD resolution algorithm to resolve theegning types.

3.3 Experimental Evaluation

For the experiments on NLD recovery, we use the first 760lastiof CTB5.1,
from which 75 double-annotated files (1,046 sentences) sed as test data, 75
files (1,082 sentences) are held out as development datke tiveiother 610 files
(8,256 sentences) are used as training data. Experimentsaeied out on two
different kinds of input: first on CTB gold standard treespgted of all empty
nodes and coindexation information; second, on the outpastof Bikel's parser.

We use the triple dependency relation encoding in the etratuanetric for
NLD recovery. In the trace insertion evaluation, the traxeepresented by the
empty category, e.goBJ % #it/look for, NONE) in Figure 6; and in the antecedent
recovery evaluation, the trace is realised by the prediohtee antecedent, e.g.
oBJ( & #it/look for, 11: 5 hwriter).

Table 5 shows the performance of the NLD recovery algoritigairsst (i) the
CTB5.1 test set given the trees stripped of all empty noddscaimdexation and
(i) output trees by Bikel's parser. Table 6 gives the resaftf-structure annotation
for parser output after NLD resolution evaluated against 200-sentence gold
standard, which shows 2.3% and 2.6% improvement of preg-odasure and
all-GFs measure respectively over the proto-f-struct(ifable 1).

CTB Trees Parser Output Trees
Precision Recall F-Scorel Precision Recall F-Score
Insertion 92.86 91.45 92.15| 67.29 62.33 64.71
Recovery| 84.92 83.64 84.28| 56.88 52.69 54.71

Table 5: Evaluation of NLD trace insertion and antecedecivery

\ +NLD res. \ Precision Recall F-Score\
Preds Only| 71.91 70.81 71.36
All GFs 80.41 79.61 80.01

Table 6: Evaluation of proper f-structures from NLD-resml\parser output

4 Conclusions and Future Work

We have reported on a project on inducing wide-coverage Lpfeoximations for

Chinese from the CTB5.1. Our new two-stage annotation tactuire provides an
interface transducing c-structure trees to f-structufdse method avoids some of
the limitations of the CFG rule- and annotation-based nuetiidhe more general



annotation principles operating on intermediate unl&detlependency representa-
tions allow us to scale the method to the whole Penn Chinesbank and guar-
antee that every constituent-tree in the CTB5.1 can ders@ngplete f-structure.
The separation of function annotation from the determamatif the unlabelled de-
pendency representations minimises the dependency ofittetidnal annotation
principles on the particular treebank encoding and datetsires. Our f-structure
annotation algorithm is motivated by Chinese; however,aiigé parts it is less
language-dependent than the CFG-rule- and annotatie@dbagthods of Cahill
et al. (2002) & Burke et al. (2004). As the method exploitoiniation from a
larger context, including non-local trees and lexical imation, it may also benefit
less configurational languages which exhibit relativebefivord order, with mor-
phology rather than phrasal position determining funetiooles. Finally, the non-
local dependency recovery method captures ‘moved’ comstis and produces a
full-fledged f-structure from parser output.

Areas of current and future research include further extenithe gold-standard
and examining more kinds of constructions and linguistiergimena particular to
Chinese. We will also investigate ways of closing the gapvbenh the perfor-
mance of CTB trees and parser output trees, including inpggearsing result for
Chinese.
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