
TOWARDS A MORE LEXICAL AND FUNCTIONAL
TYPE-LOGICAL THEORY OF GRAMMAR

Miltiadis Kokkonidis
University of Oxford

Proceedings of the LFG07 Conference

Miriam Butt and Tracy Holloway King (Editors)

2007

CSLI Publications

http://csli-publications.stanford.edu/

Abstract

Type-Logical Lexical Functional Grammar is a new, radically lexicalist, and
formally parsimonious theory, in essence a re-incarnation of Lexical Func-
tional Grammar (Kaplan and Bresnan, 1982) in a type-logical formal frame-
work very similar in formal nature to that of Type-Logical Categorial Gram-
mar (Morrill, 1994; Moortgat, 1997). It puts emphasis on having a simple
logical foundation as its formal basis and no empirically unmotivated primi-
tives, representations, and mappings between them. It differs from TLCG in
basing syntactic analyses on functional rather than constituent structure, to
both LFG and TLCG in that it rejects syntactic categories as primitives, and
to LFG in that it rejects c-structure as a linguistically significant representa-
tion and in being radically lexicalist. The present paper presents TL-LFG,
the sequence of developments that lead to it, and its key differences from
LFG.

1 Introduction

Type-Logical Lexical Functional Grammar is a new radically lexicalist and for-
mally parsimonious theory of grammar, deeply influenced by Lexical Functional
Grammar (Kaplan and Bresnan, 1982), but similar in formal nature to Type-Logical
Categorial Grammar (Morrill, 1994; Moortgat, 1997). Its very existence serves as
a reminder that certain associations between theories and formal settings are not
a necessary consequence of their respective nature. LFG is model-theoretical, but
TL-LFG is not. Type-Logical Categorial Grammar, unfortunately, often goes by
the name Type-Logical Grammar, but TL-LFG is a type-theoretical theory of gram-
mar that does not have syntactic categories but grammatical functions as primitives.

TL-LFG is the outcome of a series of developments related mostly to LFG’s
Glue syntax-semantics interface theory (Dalrymple et al., 1993; Dalrymple, 1999,
2001). Developments in Glue have emphasised formal elegance and simplicity,
and this line of development carries over to TL-LFG. TL-LFG, being in essence
LFG encoded in Glue, inherits the formal simplicity and elegance of Glue. Con-
trasting its design with the design of LFG highlights the various redundancies and
unnecessary layers in the latter.

The design of TL-LFG pushes forward the idea that a theory should only have
primitives that are empirically motivated. What is immediately observable is the
written or pronounced word sequence and the meaning it has. What lies in between

†I am thankful to Avery Andrews, Anders Soegaard, Ash Asudeh, Doug Arnold, and Ron Kaplan
for commenting on ideas seen in this paper at LFG 2007 or on other occasions. Special thanks go
to Mary Dalrymple, for her always encouraging and insightful comments and excellent advise. Spe-
cial thanks also to the two editors, Miriam Butt and Tracy Holloway King, whose professionalism,
efficiency, and kindness never seizes to amaze me. This work has been supported by AHRC grant
2005/118667.

is theory-internal and must be justified. TL-LFG, as presented here,1 assumes the
principles of the Montagovian programme for natural language semantics and the
LFG functional structure primitives. These are its foundational stones and what
anyone accepting the theory would have to also consider a solid basis for any fur-
ther development. Given those two elements, syntactic trees and ‘semantic’ pro-
jections as separate levels of representation are considered redundant in TL-LFG.

LFG claims that it is a functional theory based on the fact that it has f-structure
in addition to the tree structures shared by many other theories (c-structure); TL-
LFG claims that it is more functional than TL-LFG because it only relies on f-
structure representations. LFG claims that it is a lexical theory because it deals
with certain phenomena in the lexicon rather than in terms of transformations; TL-
LFG makes the claim that it is more lexical as it deals with the entire syntax in
the lexicon, having no syntactic rules as a formal object as such. These claims do
represent a real difference between the formalisms on some level, but at the same
time the design of TL-LFG offers an opportunity for the consequences of these
differences to be examined in a new light.

The beauty, from a formal perspective, of TL-LFG is that it is based on a simple
logical formal framework. Given that Glue is but a small piece in the jigsaw puzzle
that is the LFG formalism, it is interesting to see that its simplest version to date
(Kokkonidis, 2006), appropriately used, can replace much of the formal machinery
of LFG.

There are two ways in which this paper discusses how one arrives at TL-LFG.
Section 2 explains how the recent developments on the Glue type-system lead to
TL-LFG. Section 3 discusses the differences between TL-LFG and LFG, and how
one can peel off layers of the LFG architecture to get to the core of the theory.
Conclusions are drawn in Section 4.

2 From Glue to TL-LFG

Lexical Functional Grammar was developed in the ’70s by Ron Kaplan and Joan
Bresnan (Dalrymple et al., 1995a). A remarkable fact about LFG is that in the three
decades of use and development of the theory, its formal foundation has remained
remarkably close to what Kaplan and Bresnan (1982) had proposed. While (some-
times significant) extensions and modifications to the theory have been proposed,
the original architectural conception has by and large withstood the test of time.
Moreover, the theory has been used by a diverse group of researchers that have
found it particularly appealing for their line of work.

1In this paper the emphasis is on getting a basic LFG architecture in a type-logical setting. Ar-
gument structure, information structure, phonological structure, and morphological structure are not
discussed, not because they are peripheral, nor because they are problematic, but because widening
the scope of the discussion would not benefit making the basic points the paper intends to make.
These are best made when a simpler LFG (closer to the original c-structure + f-structure proposal) is
considered.

(1) Bill kissed Hillary.

(2)

S

NP VP

N V NP

Bill kissed Hillary

- - f:

 PRED p: ‘kiss〈SUBJ, OBJ〉’
SUBJ s:

[
PRED ‘bill’

]
OBJ o:

[
PRED ‘hillary’

]


One area that had been problematic for some time for LFG was its syntax-semantics
interface. A first difficulty lay in the fact that f-structure consists of unordered
attribute-value pairs, whereas traditional compositional semantics was carried out
on the nodes of trees with ordered children nodes. Although this issue had been
addressed, one way or the other, early approaches did not deal in detail with the
issues raised by interactions between scope and bound anaphora, or non-clausal
quantification scopes arising from complex NPs and from intensional verbs with
NP complements (Dalrymple, 1999). Glue was a particularly elegant proposal for
the syntax-semantics interface in LFG. The developments outlined here brought
enough encoding power to Glue to enable it to encode the information necessary
for its purposes directly; TL-LFG is essentially Glue encoding f-structure informa-
tion.

2.1 Early Glue (Dalrymple et al., 1993, 1995b)

Glue (Dalrymple, 1999, 2001) is a theory of the syntax-semantics interface based
on linear logic (Girard, 1987). It was originally designed to solve the problem of f-
structure-based compositional semantics for LFG. Developments in the following
years were in various directions. One was the expansion of the fragment which the
Glue syntax-semantics interface theory covers. Another was the expansion of the
range of theories of grammar Glue was proposed as the syntax-semantics interface
for: LTAG (Frank and van Genabith, 2001), HPSG (Asudeh and Crouch, 2002),
CG (Asudeh and Crouch, 2001), and CFG (Asudeh and Crouch, 2001). A third
direction was formal simplification. This was quite remarkable in light of the above
two developments that one would assume would bring in additional requirements
which in turn would necessitate enrichment after enrichment of the formalism with
whatever added complexity such developments would come with.

As was the case with LFG, the foundational intuitions behind Glue have changed
very little since its first appearance. In the case of LFG, changes and additions to
the framework have not, overall, resulted in a simpler formal framework. Changes
and additions in LFG, such as functional uncertainty, were motivated by the need
to provide a means to enable the theory to deal with phenomena in a better way,
so this statement is not meant as a criticism. But it is interesting to note that while

Glue analyses broadening its empirical coverage have been constantly appearing
over the years, Glue followed a path constantly heading towards simplification.

The original Glue system (G0) of Dalrymple et al. (1993) was quickly super-
seded by the simpler system later introduced by Dalrymple et al. (1995b). The
system presented there (G1) did away with G0-style rules and the use of the linear
logic ‘!’ (“of course!”) modality.

The ‘!’ modality was used in the G0 Glue system for specifying argument
mapping principles such as the following:

(3)
!(∀f. ∀X.∀Y.

(((f SUBJ)σ = X)⊗ ((f OBJ)σ = Y))(
(agent((f PRED)σ, X)⊗ theme((f PRED)σ, Y)))

This would be used together with the semantic contributions from the three words
in (1) to give its meaning.

(4)

[‘Bill’] :
sσ = bill,

[‘kissed’] :
∀X.∀Y. (agent(pσ, X)⊗ theme(pσ, Y)((fσ = kiss(X,Y)),

[‘Hillary’] :
oσ = hillary.

While Dalrymple et al. (1993) use the ‘!’ modality for their argument mapping
principles, they also show, in a footnote, how this usage can be avoided. According
to that analysis, adopted subsequently in G1, the lexical entries for the three words
in (1) would simply make the following three semantic contributions in G0 with no
need for argument mapping rules:

(5)

[‘Bill’] :
sσ = bill,

[‘kissed’] :
∀X.∀Y. (sσ = X)⊗ (oσ = Y)((fσ = kiss(X,Y)),

[‘Hillary’] :
oσ = hillary.

Notice that given some f-structure f , in G0, its semantic projection fσ is its
meaning. This changes in G1. Compare (5) with (6). In G1, meanings are not
assigned to semantic projections but associated with them through the ‘ ’ relation.
Another difference was that as the mapping rules of Dalrymple et al. (1993) were
abandoned by the time G1 was proposed, the ‘!’ modality was not made part of the
G1 logic. This simplified the Glue formalism considerably.

(6)

[‘Bill’] :
sσ bill,

[‘kissed’] :
∀X.∀Y. (sσ X)⊗ (oσ Y)((fσ kiss(X,Y)),

[‘Hillary’] :
oσ = hillary.

In G0, semantic projections were meanings. In G1, ‘semantic projections’ were
(not particularly interesting) feature structures. While in most cases, they have no
internal structure and are simply empty, the ‘semantic projection’ of a noun phrases
with a generalised quantifier would have a VAR and a RESTR attribute both having
a feature structure that happens to be empty as their value. Given that two empty
feature structures (functions from attributes to values) are always equal and two
feature structures with only two empty feature structure valued features VAR and
RESTR are also equal, there appears to have been a slight formal oversight in the
move from G0 to G1 in this regard (Mary Dalrymple 2005, personal communi-
cation). One way to solve this problem would be to assume that for each f its
semantic projection fσ has an implicit copy of its PRED feature and that if fσ has
VAR and RESTR attributes their values are f-structures that also contain a copy of
the PRED feature but also a feature VAR OR RESTR having the value ‘var’ and ‘rest’
respectively.2

The reason why G1 ‘semantic projections’ are feature structures is that Dalrym-
ple et al. (1995b) wanted to be able to talk about a variable (entity) and a restrictor
(truth value) associated with an f-structure, but did not want to introduce VAR and
RESTR features in f-structure as they are semantic in nature, whereas f-structure
is a syntactic structure.3 In G0, there never was such a thing as a VAR or RESTR

attribute, but there was no analysis for noun phrases containing determiners and
common nouns either.4

(7) Every boy loves a girl.
2A much simpler way of using these attributes but not G1/G2-style ‘semantic projections’ would

be to have f-structures with a single VAR or RESTR feature outside their corresponding f-structure f
with it as their value, instead of having VAR and RESTR as features of f . This solution was inspired by
a combination of work on TL-LFG and one of the different solutions Kokkonidis (2007b) discusses
for eliminating semantic projections.

3One could argue that the PRED features carrying an f-structure’s ‘semantic form’ also have a
semantic flavour to them. Then the reason for not having VAR and RESTR attributes in the f-structure
is that they are only needed by Glue; having ‘semantic projections’ as separate structures means that
they only appear in Glue analyses and can be ignored by those working with other parts of LFG.

4Kokkonidis (2005, 2007b) demonstrates how such an analysis can be obtained without using
those attributes; this analysis would have been expressible in G0 too, which would mean that the
change from G0-style semantic projections to G1-style ‘semantic’ projections would not have been
necessary.

(8)

S

NP VP

Det N V NP

Every boy loves Det N

a girl

- - f:


PRED ‘love〈SUBJ, OBJ〉’

SUBJ s:
[

SPEC ‘every’
PRED ‘boy’

]
OBJ o:

[
SPEC ‘a’
PRED ‘girl’

]


- - fσ :
[]

sσ :
[

VAR
[]

RESTR
[]] oσ :

[
VAR

[]
RESTR

[]]

(9)

[‘every’] :
∀H.∀R.∀S.
(∀X. ((sσVAR) e X)(((sσRESTR) t R(X)))
⊗

(∀Y. ((sσ e Y)) ((H t S(Y)))
(

(H t ∀x.R(x)→ S(x)),

[‘boy’] :
∀X. ((sσVAR) e X)(((sσRESTR) t boy(X))

[‘loves’] :
∀X.∀Y. (sσ e X)⊗ (oσ e Y)((fσ t love(X,Y)

[‘a’] : ∀H.∀R.∀S.
(∀X. ((oσVAR) e X)(((oσRESTR) t R(X)))
⊗

(∀Y. ((oσ e Y)) ((H t S(Y)))
(

(H t ∃y.R(y) ∧ S(y)),

[‘girl’] :
∀Y. ((oσVAR) e Y)(((oσRESTR) t girl(Y))

2.2 G2: The First Type-logical Glue System (Dalrymple et al., 1997)

A further development was placing Glue on a type-logical setting with System F
(Girard, 1989) as its basis (Dalrymple et al., 1997). The type-theoretic notation
of this new system, G2, was neater, more concise and more readable than the no-
tation of it predecessor, G1. Although, originally introduced in an effort to relate
Glue to Categorial Grammar approaches, its popularity grew quickly to the point
of replacing G1.

(10)
[‘every’] :
“λR. λS.∀x. S(x)→ R(x)” : ∀H. ((sσVAR)e((sσRESTR)t)⊗ (sσe(H)(H

[‘boy’] :
“λx. boy(x)” : (sσVAR)e((sσRESTR)t

[‘loves’] :
“λ(x, y). loves(x, y)” : sσe ⊗ oσe(fσt

[‘a’] :
“λR. λS.∃y. S(y) ∧R(y)” : ∀H. ((oσVAR)e((oσRESTR)t)⊗ (oσe(H)(H

[‘girl’] :
“λy. girl(y)” : (oσVAR)e((oσRESTR)t

At the core of the type-logical approach to the syntax-semantics interface is
the Curry-Hoard isomorphism (Howard, 1980) linking logics to the λ-calculus and
type systems. The original Curry-Howard isomorphism was between proofs in
intuitionistic logic and (well-typed) λ-terms of the simply-typed λ-calculus. The
simply-typed λ-calculus has a type system that mirrors propositional intuitionistic
logic. The G2 type system mirrors a higher-order logic with two sorts (e and t) but
with various restrictions on quantification.

Using the terminology of the type-logical setting, the core idea behind the Glue
theory of the syntax-semantics interface is that each atomic semantic contribution
is assigned an appropriate syntax-semantics interface type. Given a word sequence,
each typed atomic semantic contribution it makes is picked up and placed into Γ,
the Glue typing context for that word sequence. A Glue implementation, in turn,
finds all distinct (up to α-equivalence) normal-form terms M that have the target
syntax-semantics type T for the word-sequence:

Γ `M : T

(where Γ and T are given, and M is one of a number of possible compositions of
type T of the atomic meanings in Γ).

2.3 First-Order Glue (Kokkonidis, 2007b)

Kokkonidis (2007b) proposed a first-order system (G3). The design of G3 does
not rely on the ad-hoc restrictions and extensions Dalrymple et al. (1997) placed
on System F to obtain G2; it is exactly what it appears to be: a first-order linear
type system. While being formally simpler, G3 is also significantly more powerful
than its predecessor due to its ability to encode arbitrarily complex hierarchical
structures (using functions in the syntax for individuals).

The first step towards TL-LFG, however, comes from the alternative analyses
of common nouns Kokkonidis (2007b) proposed that did not use VAR and RE-
STR attributes. These attributes were the most prominent example of some de-
gree of structure in the so-called “semantic projections” that came with G1 and
G2. These attributes could have been included in the f-structure but they were
considered semantic in nature, therefore foreign to f-structure. Without internal
structure, G1/G2-style “semantic projections” had no reason for existence. If f-
structures were used directly, not only would the formalism be conceptually sim-
pler, but the formal problem of non-uniqueness of ‘semantic structures’ mentioned
earlier would have also been avoided. There would still be a formal complication
as f-structures are complex formal objects that are not related directly to what the
syntax of first-order logic individuals describes. This is why Kokkonidis (2007b)
proposed a mapping from f-structures to simple atomic labels. These labels are
the constants that can appear in expressions that can be arguments to base types in
First-Order Glue.

However, this is not the only way things can be done. TL-LFG is based on
the type system of First-Order Glue and encodes f-structures in it (Kokkonidis,
2007a). The basic idea is this: there is a finite number of attributes such as SUBJ,
OBJ etc. In LFG, an f-structure is a (potentially partial) function from attributes to
values. For every partial function fp there is a corresponding total function ft such
that ft(x) = fp(x) if fp is defined for x and ft(x) = ⊥ otherwise, where ⊥ is a
special element of the range of ft not in the range of fp. This total function can be
represented as a tuple whereby each position corresponds to a particular attribute
and its value is the value of the attribute. In terms of first-order logic syntax for
individuals, it can be represented as an N-ary function applied to its N-arguments.
For an example, the f-structure value of a CASE feature for a noun that has either
accusative or dative case in a language with cases NOM, ACC, GEN, DAT would
look something like this:5

fstr(⊥,⊥, . . . ,
casemarking︷ ︸︸ ︷
−, β,−, δ , . . . ,⊥,⊥).

Given the commutativity of linear logic (order-insensitivity with regards to the
premises), and the importance of word order in natural languages, the question
of how word-order constraints are captured arises. Inspiration for an answer can
readily come either from the Prolog implementation of Definite Clause Grammars

5The analysis of Dalrymple et al. (2006) is used here.

(difference lists) or (the option taken here) from the basic setup of chart parsing
(spans) (Kokkonidis, 2007a).

2.4 Instant Glue (Kokkonidis, 2006)

An ability to express word-order constraints in terms of simple features and an
ability to encode arbitrarily nested feature structures brought First-Order Glue par-
ticularly close to being able to function as the basis for a grammar formalism, rather
than as just the syntax-semantics interface. However, something was missing still:
unification-based underspecification.

The Instant Glue implementation of Glue was based on a simple type system
(G3i) that only inhabited types with normal-form λ-calculus terms (Kokkonidis,
2006). That type system was chosen as the formal foundation for TL-LFG, both
because of its normal-form property, but also because it is based on unification
rather than quantification.

What this made possible is worth noting. Just like its predecessors,6 the origi-
nal First-Order Glue system, G3, as defined by Kokkonidis (2007b) only has uni-
versal quantification. But even if it did include existential quantification it would
not be quite what one would want as the formal foundation for a type-logical LFG.

Let us first see what cannot be expressed without existential quantification.

(11) 0 Every 1 boy 2 loves 3 a 4 girl 5

The typing context for the above example would look similar to what one gets
in First-Order Glue, except that instead of s, o, f , etc.7 being labels for f-structures
they would be the actual f-structures encoded in First-Order Glue. The question
is then what is the target type. In Glue, it is tf where f is the label of a pre-
built f-structure. In TL-LFG, f is not pre-constructed; it is meant to be built up as
part of the concurrent syntactic analysis / semantic composition process. So there
are no concrete values (except for the span and even for that in an incremental
processing scenario the end point would be unknown). The natural solution would
be to have existentially quantified variables as values for every attribute with an
unknown value. But then, the actual value used would be subject to existential
abstraction and therefore unavailable at the end of the derivation. So the entire
functional syntactic analysis would just go to waste.

Unification provides a simple and elegant solution. In G3i, all variables are
free and equated with values, including other variables, on demand, using an as-
signment function that is updated throughout the course of the derivation. While
the premises can be straightforwardly interpreted as having all the variables in their

6Existential quantification was considered as an option in the early days of Glue, and was even
used in an analysis, but a dispreferred one.

7There would actually also be a number of intermediate structures, but that is a detail with respect
to the present discussion.

((Intro.)

Γ, X : T ` E : T ′

Γ ` λX.E : (T (T ′)

((Elim.)

Γ1 ` A1 : T ′1 . . . ΓN ` AN : T ′N
F : T1 (. . .(TN+1,Γ1, . . . ,ΓN ` F A1 . . . AN : TN+1[σ]

[T1[σ]=T ′1[σ], . . . ,TN [σ]=T ′N [σ], and TN+1 is a base type.]

where σ is some total function
from variables to individual denoting expressions

such that for any variable V , σ(V) 6= V .

Figure 1: TL-LFG (G3i) Type-Inference Rules

types implicitly universally quantified, the interpretation of the variables in the tar-
get type is a bit more open ended. Both an interpretation assuming implicit uni-
versal quantification and another one assuming implicit existential quantification
are possible, and both are useful. All uninstantiated8 variables of the target type as
originally specified can be thought of as universally quantified and all instantiated
ones as existentially quantified.

(12)

[‘every’] :
“λR. λS.∀x. S(x)→ R(x)” : (es(ts)((es(tα)(tα

[‘boy’] :
“λx. boy(x)” : es(ts

[‘loves’] :
“λ(x, y). loves(x, y)” : es(eo(tf

[‘a’] :
“λR. λS.∃y. S(y) ∧R(y)” : (eo(to)((eo(tβ)(tβ

[‘girl’] :
“λy. girl(y)” : eo(to

Kokkonidis (2007b) investigated the two opposing trends with regards to hav-
ing the ‘⊗’ connective (tensor) in Glue, explained to what extend Glue analyses can
avoid using it, but, targeting the second-order aspect of G2, chose to take a neutral
stand with regards to whether the tensor should be included or excluded. Based on
that discussion, I will assume the tensor to not be necessary for the purposes of ei-
ther Glue or TL-LFG. This assumption leads to a simpler system. While a version
of Instant Glue that includes the tensor exists, the version without it (Figure 1) is
as simple as a first-order type system for Glue gets.

8A variable V is instantiated iff there is an X such that (V,X) ∈ σ∗ and X is a non-variable.

3 Differences with LFG

TL-LFG aims to be a simpler theory than LFG. That is a rather ambiguous state-
ment. Formal simplicity does not necessarily come with ease of expressing lin-
guistic facts and generalisations. It has been a priority for the LFG community to
have intuitive representations and ways of expressing constraints. TL-LFG tries to
build on this tradition, pushing even further both formal simplicity and ease of use.

3.1 From words to meanings in TL-LFG and LFG: An architectural
comparison

LFG comes with a modular architectural design, based on separate representations
(projections), linked through correspondence functions. While Figure 1 does not
mention all the various different projections that have been assumed in the litera-
ture, it already gives a picture of the architectural complexity of LFG as described
by Dalrymple (2001) (where f-structure was the only input to semantics in the
analyses presented 9 as intended originally by Kaplan and Bresnan (1982)).

TL-LFG’s architecture is a much more light-weight theory. In TL-LFG there
is only one intermediate layer between a sequence of words and their meanings:
atomic meanings with their syntax-semantics interface types.

LFG+Glue TL-LFG

• input: word sequence

• π: a mapping from strings to
c-structure.

• c-structure

• φ: a mapping from c-structure
to f-structure.

• f-structure

• σ: a mapping from f-structure
to ‘semantic’ structures

• meanings and Glue types

• output: meanings

• input: word sequence

• meanings and TL-LFG types

• output: meanings

Table 1: Layers in LFG+Glue and TL-LFG

9Of course, Dalrymple (2001) does not fail to mention the understanding that other projections
could be contributing to the semantic composition process. But the simplified picture the concrete
examples of LFG syntax-semantics analyses in her book present is in line with the level of detail for
the comparison between TL-LFG and LFG in the present paper.

3.2 No c-structure

Whether TL-LFG has phrase-structure rules and/or Immediate Dominance / Linear
Precedence rules is an interesting question. The easy answer is to say that it does
not; the unificational first-order Glue type-system that is its formal basis does not
include such ID/LP rules. But this does not mean TL-LFG has no way of express-
ing the constraints such rules are used to express.

LFG as originally presented by Kaplan and Bresnan (1982) came with the fol-
lowing phrase structure rules for English:

(13)

S → NP VP
(↑ SUBJ) =↓ ↑=↓

VP → V
(

NP
(↑ OBJ) =↓

)(
NP

(↑ OBJ2) =↓

)(
PP

(↑ (↓ PCASE)) =↓

)(
VP’

(↑ VCOMP) =↓

)
NP → Det N

↑=↓ ↑=↓

(14) John snores.

The relevant lexicon entries for (14) assuming this old c-structure analysis together
with a standard (G2) Glue analysis (with first-order logic as the semantic represen-
tation language) are:10

‘John’ NP (↑ PRED) = ‘JOHN’
[john] : e↑σ

‘snores’ V (↑ PRED) = ‘SNORE (SUBJ)’
[λx. snore(x)] : e(↑SUBJ)σ

(t↑σ

The TL-LFG grammar that expresses this analysis consists of two lexical entries
but no separate syntactic rules: all grammatical knowledge resides in the lexicon.
The emphasis is on having few but effective primitives. Grammatical functions
such as SUBJect and OBJect are primitives in TL-LFG and so are the semantic
concepts of entity and truth value. ‘John’ makes a semantic contribution corre-
sponding to a particular entity, john, and ‘snore’ one corresponding to a function
taking an entity x and returning a truth value (true or false, depending on whether
x is snoring or not).

10For the purpose of illustrating differences of the frameworks in practice, a simplistic view of
syntax and semantics will be sufficient; any additional level of detail would complicate analyses at
least equally for the two frameworks and, I claim, not more for TL-LFG than for LFG.

(15) ‘John’︸ ︷︷ ︸
j

‘john′ : ej

(16) s ‘snores’︸ ︷︷ ︸
f

‘λx. snore(x)’ : es(tf where f =
[

SUBJ s
]f
p

On the left-hand side one finds a schematic representation for the ORTHography
and SPAN attributes. The one for ‘snores’ states that its SUBJect s is expected to
precede it. Note that if we take the orthography, the SVO constraint, and the mean-
ing with its type (function from entities to truth values) as observable facts, the only
appearance of a theory-specific primitive is the SUBJ feature. This schematic repre-
sentation for spans possibly augmented with explicit linear-precedence constraints
corresponds to LFG’s linear precedence constraints.

The other point to be made here is that the specification of word-order con-
straints used bears some resemblance to LFG’s phrase structure rules. The word-
order constraint for ‘snores’ is closely associated with the ‘S → NP VP’ rule of
(13) as found in early LFG work (Kaplan and Bresnan, 1982). However, it lacks
any mention of syntactic categories, only being concerned with the essential facts
of word-order: the subject must precede the verb ‘snore’. The stipulation that the
subject is an NP in LFG is redundant given the f-structure and semantic type in-
formation available, i.e. that the semantic type of the subject is e, and also its
f-structure has ⊥ as the value of its FORM feature meaning that it is not a preposi-
tional phrase. In TL-LFG the concept of a noun phrase, just like that of a noun, is
a concept definable in terms of its semantic and functional primitives.

One advantage of the TL-LFG approach is that it relieves the grammar writer
from the burden of an additional layer of specification. It also provides a more
abstract view of constituent structure that represents exactly what is necessary for
determining the semantics. The LFG examples in this paper have been using a
rather dated theory of c-structure. In more recent work Inflectional Phrases would
be making their appearance, and in the works of some authors Determiner Phrases.
The point is that if updating the theory of c-structure does not affect f-structure or
semantic composition, c-structure is a redundant intermediate step from the word
sequence input to semantics and vice versa. There are cases where updating the
theory of c-structure will affect the syntax-semantics interface, namely when the
grouping of words changes as this will normally mean that the semantics has to
change, and it is exactly this fact that TL-LFG captures.

If the details of c-structure are not important for the syntax-semantics interface,
they have no place in TL-LFG, which aims to be a minimalist theory of grammar.
It has been one of the key ideas of LFG that a functional structure representation (a
feature structure providing information about grammatical functions such as SUBJ

and OBJ) is to be maintained in addition to a constituent structure one (a tree repre-
senting the phrase structure of the input string). It is easy to claim that TL-LFG is
a more ‘functional’ theory than LFG because it only has f-structure as its syntactic
representation.

There is substance to the claim. It was the original intent of Kaplan and Bres-
nan (1982) that f-structure be the sole input to semantics. This is true for TL-LFG,
but not necessarily for LFG. If it were then LFG f-structure would encode all im-
portant syntactic relations Glue needs to have available. That is the case with
relations such as SUBJ, OBJ, etc. but not necessarily, for instance, with modifica-
tion relations. The LFG approach, of dumping adjuncts in a set feature helps keep
the f-structure for a modified phrase very similar to that of the same phrase with
the modification removed. The LFG approach has a positive impact with regard
to complexity of grammar writing as the description of functional constraints that
are not influenced by the presence of modifiers does not need to make special pro-
visions in order to work when modifiers happen to be present. However, in LFG,
convenience comes at a high price: f-structure does not encode syntactic relations
relating to modification.11 So, it encodes some grammatical relations but not all
and can not be the sole input to semantics. It is able to capture the difference
between ‘John likes Mary’ and ‘Mary likes John’, but not the difference between
‘a fake golden gun’ and ‘a golden fake gun’. The current LFG view that this is
acceptable is questionable, especially for a theory that claims to put emphasis on
functional structure. TL-LFG is more ‘functional’ because its f-structure captures
such syntactic relations.

Moreover, the TL-LFG analysis of scoping modification (Kokkonidis, 2007c)
achieves having a sufficiently detailed f-structure representation without loosing
the elegance and simplicity of LFG’s f-structures. Trivial as it may seem, the key
is using a more basic data-structure, lists, that unlike LFG sets, do not disregard
the order in which modifiers are encountered in the input.

TL-LFG also comes with the claim that it is more ‘lexical’ than LFG because
it does not have at its formal foundation phrase-structure rules or ID/LP rules. This
is indeed true as one can see in (18), the lexical specification for ‘snores’ in raw
TL-LFG lacking the syntactic sugar of the appealing presentation used in (16) and
elsewhere in this paper. Indeed, that specification brings to mind theories such as
Type-Logical Categorial Grammar where radical lexicalism reigns supreme and no
phrase-structure rules as such exist. Yet can this also be said about the syntac-
tically sugared version of TL-LFG used in (16)? Arguably, there is no separate
syntactic rule as such. What is expressed on the left-hand side of the lexical entry
is simply a constraint that applies to that particular lexical entry. Also the syntactic
sugar for span specifications is only a way of expressing certain constraints in a
more intuitive way; syntactically sugared TL-LFG is the same theory as TL-LFG,

11This is the case in prominent places of the LFG literature inviting criticism and solutions (An-
drews and Manning; Andrews, 1993; 2004), but not a weakness of LFG as such. My impression is
that when it comes to theory, there are strong voices supporting a simplified version of f-structure
and more use of the inverse φ mapping, and when it comes to grammar engineering, LFG f-structure
is much more detailed and autonomous. My criticism is directed towards LFG with insufficiently de-
tailed f-structures. LFG-based grammar engineering (at least amongst the members of the ParGram
community) tends to put the same kind of emphasis on f-structure that TL-LFG does and if one takes
that version of LFG as the standard one then much of this criticism is inapplicable as such and should
rather be seen as support for that approach to the role of f-structures in LFG.

much the same way as choosing not to display spans in a grammar when using
a chart parser or difference lists in Prolog DCGs is a matter of presentation and
convenience rather than of essence.

(17) 0 John 1 snores2

(18)

‘snores’ ‘λx. snore(x)’ : es(tf

where f =

 SPAN

[
START start
END ∇+ 1

]f
p

ORTH ‘snores’


f

p

,

s =


SPAN

[
START start
END ∇

]f
p

ORTH

. . .


f

p

, and

where∇ is the current position in the word sequence.

The line of division between radical lexicalism and having phrase structure
rules (or an equivalent) is pretty thin in TL-LFG. While TL-LFG follows, at the
formal foundation level, the paradigm of radical lexicalism as found in, say, Type-
Logical Categorial Grammar, the pretty straightforward (and familiar from chart
parsing and/or Prolog DCGs) syntactic sugar that hides the underlying representa-
tion for the word sequence and positions within it allows for syntactic constraints
to be expressed in a way that combines the best aspects of both CG and LFG ap-
proaches.

3.3 No ‘semantic’ forms and no ‘semantic’ projections

Developments within Glue have lead to the term ‘semantic projection’ being used
(in G1 and G2) for rather uninteresting feature structures. Their intended use in G2
was just that they would distinguish between e/1 and t/1 base types of different
f-structures. There is nothing semantic about them – different random numbers
would do. Moreover, they fail to be unique as explained earlier. What so-called
semantic projections were meant to do is import syntactic information of a very
abstract nature (relations between distinct parts of an f-structure) into the Glue
type system. In TL-LFG, there are no intermediaries; f-structures themselves are
arguments to the syntax-semantics interface base-type constructors.

The incorporation of Glue into LFG meant also that the role of LFG’s ‘seman-
tic forms’ changed. In early LFG, ‘semantic forms’ had a clear syntax-semantics
interface role. In current LFG with Glue, semantic constructors (the elements of
the typing context with their corresponding meaning) have taken up the most es-
sential roles of ‘semantic constructions’, not leaving much semantic substance to
‘semantic forms’.

Investigating the role of these no-longer semantic ‘semantic forms’ reveals
three facts: (i) they are used in relation to syntactic completeness and coherence;

(ii) they are used to make the f-structure containing them unique; (iii) they are used
for presentation reasons. None of the above three roles has anything to do with
semantics. In TL-LFG, it is clear where the semantics is specified; it is not in the
functional syntactic structures but on the meaning side of semantic contributions
(the left hand-side of the colon, the right-hand side being the syntax-semantics
interface type).

Therefore it is not surprising that ‘semantic forms’, one of the most important
concepts of LFG, is not part of TL-LFG. For presentation reasons having a feature
such as ORTH seems more appropriate. The following section discusses complete-
ness and coherence in TL-LFG and LFG; in TL-LFG the resource sensitivity of the
formalism guarantees those principles without stipulation and the syntax-semantics
interface types are instrumental in that. That leaves ‘semantic forms’ a single role
in LFG, important for LFG to work, but not related to semantics: distinguishing
between different f-structures. Again this is something different arbitrary numbers
would achieve equally well.

TL-LFG was inspired by the elegance of the Glue syntax-semantics interface.
Two pieces of formal machinery of LFG called ‘semantic’ (‘semantic’ projections
and ‘semantic’ forms) are reducible to distinct but otherwise arbitrary numbers.
The need for such formal hacks stems from the fact that f-structures and semantic
projections have no direct connection to the word sequence they correspond to. In
TL-LFG, f-structures have this direct connection in the form of the span feature (or
an equivalent in terms of difference lists).

3.4 Completeness and Coherence

Completeness and Coherence are two very fundamental and important principles
in LFG. However, these principles are not intrinsic to the formal framework. Noth-
ing in the formal setup stops the syntactic rules of (13) from forming f-structures
examples (19)–(21). There needs to be a piece of stipulation, the Completeness
Principle, in order to mark example (20) as ungrammatical. There needs to be an-
other piece of stipulation, the Coherence Principle, in order to mark example (21)
as ungrammatical.

(19) John likes Mary.

(20) * John likes.

(21) John snores Mary.

While there is nothing objectionable about linguistic principles, the nature of
Completeness and Coherence as additional pieces of stipulation shows that some-
thing was missing from the formal framework proper. In TL-LFG, (syntactic and
semantic) Completeness and Coherence are automatically enforced due to the re-
source sensitivity of the Glue type system (Dalrymple et al., 1993). They are a
consequence of the overall setup and type-logical formal foundation of the theory,
rather than something that had to be added to it.

4 Conclusions

TL-LFG rejects the bulky formal (and theoretical) machinery LFG comes
with, but not the importance LFG attaches to functional structure and functional
constraints. Indeed it attaches more importance to f-structure than LFG and claims
to be a more ‘functional’ theory as a result.

A very obvious argument in support of this claim is on the basis of TL-LFG
having no c-structure representation. But if that is the case, the sceptic may wonder
whether this is so simply because f-structure was turned into a kind of c-structure
with features as is the case for HPSG.

If one concentrates on the structural organisation of a TL-LFG f-structure, it
becomes obvious that this is not the case. TL-LFG f-structures have, in general,
the same structural organisation as their corresponding LFG f-structures which in
turn is quite different from that of their corresponding c-structure trees (in general
f-structures are more flat).

As for what information goes into f-structures, the crucial addition to f-structure
is the span attribute. Responding to a possible criticism that span information in
the f-structure is a way of importing c-structure information into f-structure reveals
interesting facts about both TL-LFG and LFG.

Spans relate to the word-sequence, not to any tree-structured analysis of it.
They help relate the f-structure to the word-sequence in a simple and intuitive way.
It is the span information that helps distinguish between the f-structures of the two
occurrences of ‘the’ in a sentence like ‘The coach praised the players’. If instead of
encoding this relation in the f-structure itself, an LFG-style correspondence func-
tion was used for that purpose, there would need to be some other way of distin-
guishing between them. Indeed this could come from the semantics (uniqueness of
‘semantic forms’ for example), but it is not at all clear why this would be a better
approach.

Moreover, the f-structure would have to contain this information. A correspon-
dence function from f-structures to semantic structures would not help. This is why
‘semantic forms’ guaranteed to be non-equal even when their semantic content is
the same are a part of f-structures in LFG. This discussion relates to why G1/G2
‘semantic projections’ fail to serve their purpose and why even if the obvious step
of moving the ‘semantic form’ into the ‘semantic projection’ would not be a good
idea.

TL-LFG, not only does not need to import c-structure information into f-structure
in the guise of the SPAN feature,12 it also keeps semantic information out of the f-
structure. LFG distinguishes itself on the basis of using separate representations for
linguistically different kinds of information, yet it had semantic information inside
a syntactic structure. Moreover, had this not been the case, i.e. had semantic forms

12The main reason TL-LFG does not need to add c-structure information into its f-structures is
that LFG f-structures tend to already contain enough information to distinguish between f-structures
corresponding to different word sequences. This is due to the fact that LFG performs a number of
checks at the level of f-structure, just like TL-LFG.

been placed inside semantic projections, in the most straightforward manner pos-
sible, the whole system would collapse because it would be unable to distinguish
between f-structures that were meant to be different but in the absence of PRED fea-
tures would be equal. This would be a direct consequence of doing the right thing,
with respect to the projection architecture, and relying on a correspondence func-
tion rather than embedding the semantic information inside the f-structure using a
feature (as is now the case).

While it was never the intent of this paper to challenge the projection archi-
tecture of LFG as such, it seems that suspiciously much depends on the PRED

attributes and their ‘semantic form’ features inside f-structure to keep the LFG
system together. One important role they play is in setting the subcategorisation re-
quirements for Completeness and Coherence. In many ways, the f-structure PRED

features have a syntax-semantics interface role. However, unlike the case with TL-
LFG, in LFG there is nothing in the formal foundation of the theory that guaran-
tees the Completeness and Coherence principles. In TL-LFG the resource-sensitive
type-logical formal foundation of the theory does exactly that without further stip-
ulation.

Returning to the claim that TL-LFG is more ‘functional’, the argument that this
is so because c-structure disappears has a certain immediate appeal, but the essence
is in examining the role and function of f-structure in the two theories. In TL-LFG
it is there to capture any and all grammatical relations that would be important for
the semantics; in LFG it captures some but not all of them.

Traditional phrase structure rules and the immediate dominance part of imme-
diate dominance / linear precedence rule system are not a part of LFG and neither
is the syntactic category system of LFG. Linear precedence rules are. In TL-LFG,
all grammatical knowledge resides in the lexicon which makes it more ‘lexical’
than LFG. However, a bit of TL-LFG syntactic sugar hides low-level details of
spans and gives a way of specifying spans and linear precedence constraints in an
intuitive manner. To the extent that such constraints can be factored out of the lex-
icon TL-LFG could be seen as having rules and even constructional meaning. The
point is that this is more a matter of presentation and convenience than theoretical
essence.

Neither being more ‘functional’ nor being more ‘lexical’ mean much in them-
selves. It is TL-LFG’s formal simplicity and parsimony combined with some of
the best aspects of LFG that give these comparisons substance. Starting with the
syntax-semantics interface and then building the details of the syntax based on a
very successful theory lead to a re-incarnation of that theory in a different formal
setting which was but a small fragment of the original theory’s formal arsenal. Not
only is the formal framework now simpler, but so is the conceptual framework: ac-
counting for the facts involves fewer theory-internal concepts and representations,
something achieved without complicating the part of the original theory preserved
in the new theory. Finally, the new type-logical formal framework captures linguis-
tic intuitions that the original framework left to stipulation.

References

Andrews, A. D. and Manning, C. D. 1993. Information-spreading and levels of rep-
resentation in LFG. Technical Report CSLI-93-176, CSLI, Stanford University.

Andrews, Avery D. 2004. Glue Logic vs. Spreading Architecture in LFG. In
Christo Mostovsky (ed.), Proceedings of the 2003 Conference of the Australian
Linguistics Society.

Asudeh, Ash and Crouch, Richard. 2001. Glue semantics: A general theory of
meaning composition. Talk given at Stanford Semantics Fest 2, March 16, 2001.

Asudeh, Ash and Crouch, Richard. 2002. Glue semantics for HPSG. In Frank van
Eynde, Lars Hellan and Dorothee Beermann (eds.), Proceedings of the 8th In-
ternational HPSG Conference, Stanford, CA., CSLI Publications.

Dalrymple, Mary (ed.). 1999. Semantics and Syntax in Lexical Functional Gram-
mar: The Resource Logic Approach. MIT Press.

Dalrymple, Mary. 2001. Lexical Functional Grammar. Syntax and Semantics Se-
ries, No. 42, Academic Press.

Dalrymple, Mary, Gupta, Vineet, Pereira, Fernando C.N. and Saraswat, Vijay.
1997. Relating Resource-based Semantics to Categorial Semantics. In Pro-
ceedings of the Fifth Meeting on Mathematics of Language (MOL5), Schloss
Dagstuhl, Saarbrücken, Germany, an updated version was printed in (Dalrym-
ple, 1999).

Dalrymple, Mary, Kaplan, Ronald M., Maxwell, III, John T. and Zaenen, Annie
(eds.). 1995a. Formal Issues in Lexical-Functional Grammar. Stanford, CA:
CSLI Publications.

Dalrymple, Mary, King, Tracy Holloway and Sadler, Louisa. 2006. Indeterminacy
by underspecification. Poster presented at the LFG06 Conference.

Dalrymple, Mary, Lamping, John, Pereira, Fernado C.N. and Saraswat, Vijay.
1995b. A deductive account of quantification in LFG. In Kanazawa Makoto,
Christopher J. Pinón and Henriette de Swart (eds.), Quantifiers, Deduction and
Context, Center for the Study of Language and Information, Stanford, Califor-
nia.

Dalrymple, Mary, Lamping, John and Saraswat, Vijay. 1993. LFG semantics via
constraints. In Proceedings of the Sixth Meeting of the European ACL, pages
97–105, European Chapter of the Association for Computational Linguistics,
University of Utrecht.

Frank, Anette and van Genabith, Josef. 2001. GlueTag: Linear Logic based seman-
tics construction for LTAG — and what it teaches us about the relation between

LFG and LTAG —. In Proceedings of the LFG01 Conference, CSLI Publica-
tions.

Girard, Jean-Yves. 1987. Linear logic. Theoretical Computer Science 50, 1–102.

Girard, Jean-Yves. 1989. Proofs and Types. Cambridge University Press.

Howard, William A. 1980. The formulae-as-types notion of construction. In J.R.
Hindley and J.P. Selden (eds.), To H.B. Curry: Essays on combinatory logic,
lambda calculus and formalism, Academic Press, conceived in 1969. Sometimes
cited as Howard (1969).

Kaplan, Ronald M. and Bresnan, Joan. 1982. Lexical Functional Grammar: A for-
mal system for grammatical representation. In Joan Bresnan (ed.), The Mental
Representation of Grammar Relations, pages 173–281, MIT Press.

Kokkonidis, Miltiadis. 2005. Why glue your donkey to an f-structure when you can
constrain and bind it instead? In Miriam Butt and Tracy Holloway King (eds.),
Proceedings of the LFG05 Conference, CSLI Publications.

Kokkonidis, Miltiadis. 2006. A Simple Linear First-Order System for Meaning
Assembly. In Proceedings of the Second International Congress on Tools for
Teaching Logic, Salamanca, Spain.

Kokkonidis, Miltiadis. 2007a. Encoding LFG f-structures in the TL-LFG type sys-
tem. In Proceedings of the Second International Workshop on Typed Feature
Structure Grammars, Tartu, Estonia.

Kokkonidis, Miltiadis. 2007b. First-Order Glue. Journal of Logic, Language and
Information To appear in print. DOI: 10.1007/s10849-006-9031-0.

Kokkonidis, Miltiadis. 2007c. Scoping and Recursive Modification in Type-
Logical Lexical Functional Grammar. In Proceedings of the 12th Conference
on Formal Grammar, to appear.

Moortgat, Michael. 1997. Categorial Type Logics. In Johan van Benthem and Alice
ter Meulen (eds.), Handbook of Logic and Language, Elsevier.

Morrill, Glyn. V. 1994. Type Logical Grammar: Categorial Logic of Signs. Dor-
drecht: Kluwer.

