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Abstract

We extend discriminant-based disambiguation techniques to LFG gram-
mars. We present the design and implementation of lexical, morphological,
c-structure and f-structure discriminants for an LFG-based parser. Chief con-
siderations in the computation of discriminants are capturing all distinctions
between analyses and relating linguistic properties to words in the string. Our
work is mostly tested on Norwegian, but our approach is independent of the
language and grammar.

1 Introduction

The use of linguistically motivated handwritten grammars in realistic applications
is dependent on the capacity to automatically resolve ambiguities produced by the
grammar. Statistical techniques for disambiguation by parse ranking require train-
ing of the parser on a previously analyzed and disambiguatedcorpus—a treebank.
Quality controlled treebanks that can serve as gold standards cannot be constructed
without considerable manual effort towards ambiguity resolution. Intelligent ways
of minimizing these efforts have been the subject of earlierresearch in the context
of different tasks and formalisms (Carter, 1997; Van der Beek et al., 2002; Oepen
et al., 2004). In our work on treebanking by automatically parsing a corpus with an
LFG grammar, we have employed and further developed such techniques.

In this paper we explain in depth how discriminants can be extended to LFG
grammars and how we have implemented them. The paper is structured as follows.
First we present previous work on discriminants. Then we describe our design of
various types of discriminants for LFG grammars. These willbe illustrated and
motivated with examples parsed with the Norwegian grammar developed at the
University of Bergen within the Parallel Grammar project (Butt et al., 2002). Fur-
thermore, we describe their implementation, i.e. the computation of discriminants
from linguistic structures. Finally, we discuss the presentation and use of discrimi-
nants. TheLFG Parsebanker, a toolkit developed at the University of Bergen in the
TREPIL1 andLOGON2 projects, implements the computation and presentation of
LFG discriminants.

2 Previous Work on Discriminants

Discriminant-based disambiguation was first presented by Carter (1997) as a time-
saving method for treebanking. Carter’s aim was to train a linguistic analyzer for
several domains and tasks, each one requiring a separate analyzed and disam-
biguated corpus. In this context, it is clearly desirable tooptimize the efficiency
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of manual disambiguation. Inspecting full analyses provedto be “a tedious and
time-consuming task”. In contrast, a few lexical or structural properties are often
sufficient to distinguish the one intended analysis from many other analyses. Ex-
amples of properties that involve relatively simple choices are PP attachment, word
senses, and the arity of predicates. Calling such distinguishing propertiesdiscrim-
inants, Carter implemented their identification and presentationin his TreeBanker
tool. He designed various discriminants, including constituents, semantic triples,
word senses, sentence types, and grammar rules used.

In the TreeBanker’s graphical interface, the user can labeldiscriminants as ei-
ther good or bad, or can leave them undecided. Carter defined aset of inferencing
rules based on these decisions. If a discriminant is marked by the user as bad, then
all analyses that contain this property are rejected, whereas if a discriminant is
marked by the user as good, then only analyses that contain itare kept. Thus, the
set of analyses is narrowed down, until only one analysis remains. Furthermore,
a discriminant that is true only of analyses that have already been rejected must
be bad. Conversely, a discriminant that is true of all the still undecided analyses
must be good (assuming there is at least one good analysis). In the cases where a
discriminant is inferred to be either good or bad for all analyses, it loses its dis-
criminatory power, i.e. it is trivial, and hence it need not be presented to the user,
who can thus concentrate on more relevant choices.

Carter pays special attention to “user-friendly” discriminants which are easy for
humans to judge and are prominent in the display. The efficiency of this method, as
compared to presenting all the full analyses to the user, canbe appreciated from the
fact that a combination of a small number of local ambiguities can result in a large
number of analyses. Carter mentions an example with 154 analyses, for which 318
discriminants are computed, yet only two discriminant choices are necessary to
select the correct analysis.

Discriminants have also been used in at least two other projects, both HPSG-
based. In the context of the Alpino project (Van der Beek et al., 2002), a large
treebank was built using manual disambiguation based on Carter’s principles but
with a different design. Lexical discriminants, representing ambiguities that re-
sult from lexical analysis, are always presented to the annotator first, because it is
claimed that lexical decisions are easy to make. Furthermore, constituent discrim-
inants represent alternative groupings of words in constituents, and dependency
triples represent alternative paths in a dependency tree. These can be compared to
our c-structure and f-structure discriminants, which willbe presented in sections
3.2 and 3.3 respectively.

The LinGO Redwoods project (Oepen et al., 2004) was aimed at building a
dynamic treebank as a testbed for grammar development. Since grammar devel-
opment presupposes frequent automatic reparsing of a corpus, automatic redisam-
biguation is highly desirable. This was achieved by storingthe annotator’s dis-
criminant choices and reapplying them when reparsing. To our knowledge, LinGO
Redwoods was the first project to closely integrate treebanking and grammar de-
velopment in this way. Properties related to constituents (i.e. use of a grammar rule



over a specific substring), lexical items (part of speech), semantics (primary pred-
icate) and node labeling were used as discriminants. With the help of a suitable
tool for identifying and presenting these discriminants, an annotator performance
of about 2000 sentences per week was achieved.

In all work with discriminants, Carter’s rules for narrowing down the set of
analyses based on the annotator’s choice of discriminants,as well as his rules for
narrowing down the set of discriminants so that only the nontrivial ones are kept,
are essential. But even though, by means of Carter’s rules, enough discriminant
choices will eventually lead to a single analysis, this analysis is not necessarily the
correct one. There may be no correct analysis among the ones that the parser pro-
duced, or a wrong discriminant choice could have eliminatedthe correct analysis.
To assist the annotator in making the right choices, a sophisticated, user-friendly
tool that identifies and presents discriminants together with specific analyses is in-
dispensable. Both the TreeBanker and the discriminant tools used in Alpino and
LinGO Redwoods aim to provide such assistance in the contextof the grammars
and parsers they operate with. However, the types of discriminants, their compu-
tation, and even their presentation are not universal, but depend on the grammar
formalism, the parser, and on user-oriented and system-oriented design choices.
To our knowledge, there has been no previous work on designing discriminants for
LFG grammars and implementing them for an LFG-based parser such as the Xerox
Linguistic Environment (XLE) (Maxwell and Kaplan, 1993).

3 Designing Discriminants for LFG

The number of analyses of realistic sentences provided by a grammar may run into
the thousands. In such cases, disambiguation by the sequential inspection of in-
dividual structures is prohibitively time consuming. XLE provides packed c- and
f-structures which are compact representations of all the information in all analy-
ses. In XLE’s native interface it is possible to disambiguate interactively by choos-
ing between alternatives indicated in the packed structures. While an important
property of packed structures is that they are concise from acomputing standpoint
(Maxwell and Kaplan, 1993), this property is nevertheless of little help towards
efficient manual disambiguation, since for sentences with multiple ambiguities,
packed structures may become too unwieldy for a human to copewith. Disam-
biguation with discriminants does not suffer from the complexity issue that packed
structures have, since each discriminant is local and may bechosen independently
of all others.

There are often a large number of elementary properties thatare not shared by
all analyses, such as local c-structure node configurationsand labels or f-structure
attributes and values. Any such elementary property is a candidate for being a dis-
criminant, for all such properties actually discriminate between analyses. However,
in many cases it is impossible for a human disambiguator to pick out such elemen-
tary properties in isolation. In order for them to be reliably recognizable as proper-



ties of the intended analysis, they must be related to words in the string. This is a
crucial point in the design of discriminants.

The present work on discriminants is focused on how they may be defined and
used in an optimal way for LFG grammars. Discriminants should be designed so as
to automatically identify all possible distinctions between analyses and make these
recognizable to the annotator. It is important that the discriminants contain enough
information to make it possible to uniquely identify them, but little enough infor-
mation that they remain elementary local properties. The graphs representing the
c-structure and f-structure must be fully traversed to find all possible distinctions
between structures. We have defined four major types of discriminants for LFG
grammars: lexical discriminants, morphological discriminants, c-structure discrim-
inants and f-structure discriminants.

3.1 Lexical and Morphological Discriminants

We agree with Van der Beek et al. (2002) that lexical ambiguities are often the
easiest to resolve. Two types of discriminants are meant to aid in resolving lexical
ambiguities: lexical discriminants and morphological discriminants.

A lexical discriminantis a word form with its lexical category. Consider the
Norwegian sentence in example (1) and its two c-structures in figure 1.

(1) Glade
Glad

fisker
fish

svømmer.
swim/swimmer

“Glad fish swim.” / “Glad ones fish a swimmer.”

ROOT

IP

NP

AP

A

glade

N

fisker

I’

Vfin

svømmer

PERIOD

.

ROOT

IP

NP

AP

A

glade

I’

Vfin

fisker

S

VPmain

NP

N

svømmer

PERIOD

.

Figure 1: Two analyses for example (1), the left one corresponding to ‘Glad fish
swim’, the right one to ‘Glad ones fish a swimmer’



In this example, bothfiskerandsvømmermay be either a noun or a verb, and
because of this there are two quite different c-structures.The entire c-structures
need not be examined, however, since determining the lexical category of either
of these words is enough to determine which c-structure is the intended one. The
relevant subtrees containing preterminal and terminal nodes for example (1) are
shown in figure 2. Table 1 illustrates the representation of lexical discriminants for
this example.

N

fisker

Vfin

fisker

N

svømmer

Vfin

svømmer

Figure 2: Subtrees defining lexical discriminants for example (1)

Table 1: Representation of lexical discriminants for example (1)

‘fisker’: N
‘fisker’: Vfin
‘svømmer’: N
‘svømmer’: Vfin

The lexical category specified in the discriminant is sometimes simply the tra-
ditional part of speech (e.g. N), sometimes a more fine-grained category (e.g. Vfin).
Whatever preterminal node label occurs in the subtree will be the category in the
discriminant.

Sometimes a word form may be ambiguous between different lexemes or be-
tween different forms of one lexeme within the same part of speech. This is the case
in the present example. Even after the category N has been chosen by selecting the
first discriminant in table 1, the word formfiskermay still be an inflected form of
the nounfisk “fish” or of the nounfiske“fishing”. Since lexical discriminants are
not sufficient for the disambiguation of lexical ambiguities, we also define mor-
phological discriminants. Amorphological discriminantis a word with the tags it
receives from morphological preprocessing. The two morphological analyses for
the nounfiskerare illustrated in figure 3, which shows a simplified version of the
sublexical trees not usually displayed by XLE. The morphological discriminants
for this example are represented as in table 2.

Table 2: Morphological discriminants forfiskerin example (1)

fisk+Noun+Masc+Indef+Pl
fiske+Noun+Neut+Indef+Pl



N

BASE

fisk

SUFF

+Noun

SUFF

+Masc

SUFF

+Indef

SUFF

+Pl

N

BASE

fiske

SUFF

+Noun

SUFF

+Neut

SUFF

+Indef

SUFF

+Pl

Figure 3: Two morphological analyses forfisker

Neither lexical nor morphological discriminants alone aresufficient for the full
disambiguation of lexical ambiguities. As shown in the above examples, lexical
discriminants cannot distinguish between different word forms that have different
features and/or base forms but the same lexical category. Inthis example, full lexi-
cal disambiguation could have been achieved through selecting only morphological
discriminants. This is not always the case, however, since not all words go through
morphological preprocessing. For some words, morphosyntactic features may be
directly encoded in the lexical entry. Therefore both lexical and morphological dis-
criminants are necessary for lexical disambiguation. There are also cases where
lexical ambiguities remain after all lexical and morphological discriminants have
been chosen; we will return to these in section 3.3.

3.2 C-structure Discriminants

C-structure discriminantsare important for the disambiguation of syntactic am-
biguities. Their design aims at selecting an elementary local property of a tree.
They are therefore based on minimal subtrees, a minimal subtree being defined as
a mother node and her daughters. Since identical subtrees may occur more than
once in the same analysis, these need to be related to the substring that they dom-
inate. Example (2) involves two different PP attachment choices, as shown in the
c-structure trees in figure 4. The substring which is relevant for the disambiguation
of this example is shown with its bracketing in example (3). The simple break-
down of the substring into its immediate constituents is shown in the unlabeled
bracketing in (3a), and the two different PP attachments areshown in the labeled
bracketings in (3b) and (3c).

(2) Vi
We

fanget
caught

fisk
fish

med
with

stang.
fishing-rod

“We caught fish with a fishing rod.”

(3) (a) [ [ fisk ] [ med stang ] ]

(b) [VPmain [NP fisk ] [PP med stang ] ]

(c) [NP [N fisk ] [PP med stang ] ]



ROOT

IP

PRONP

PRON

vi

I’

Vfin

fanget

S

VPmain

NP

N

fisk

PP

P

med

NP

N

stang

PERIOD

.

ROOT

IP

PRONP

PRON

vi

I’

Vfin

fanget

S

VPmain

NP

N

fisk

PP

P

med

NP

N

stang

PERIOD

.

Figure 4: Two PP attachments for example (2)

C-structure discriminants are of two subtypes. An unlabeled top-level bracket-
ing of a constituent substring is aconstituent discriminant. A top-level bracketing
of a constituent substring labeled by the rule which inducesthat bracketing is arule
discriminant. The c-structure discriminants for this example are shown in table 3.

Table 3: C-structure discriminants for the PP attachments in figure 4

fisk || med stang
VPmain→ NP PP

NP→ N PP

The top row in this table shows the representation of the constituent discrimi-
nant corresponding to the bracketed string in (3a). Insteadof indicating the bracket-
ing by enclosing the constituents in square brackets, the constituents are separated
by two vertical bars. The second and third rows of the table illustrate the repre-
sentation of rule discriminants, with the second row corresponding to (3b) and the
third row corresponding to (3c). The representation of rulediscriminants is simply
expressed as a grammar rule, but this rule must be interpreted as the labeled brack-
eting of the string in question. Since rule discriminants are always displayed in a



table cell underneath the corresponding constituent discriminant, it is always clear
which substring the rule applies to.

Both types of c-structure discriminants can be useful: sometimes it is possible
for an annotator to decide on the labeling as well as the bracketing, while in other
cases one may wish to commit to a bracketing but not to a certain labeling. In the
case in table 3, however, the constituent discriminant is actually trivial. Since both
analyses share this constituent structure, the bracketing[[fisk] [med stang]] does
not discriminate between analyses.

3.3 F-structure Discriminants

A c-structure may project more than one f-structure. In example (4), the constituent
hver timemay function as eitherOBJ or ADJUNCT.

(4) Vi
we

spiser
eat

hver
every

time.
hour

“We eat every hour.”

F-structure discriminantsare based on partial paths through f-structures. For f-
structures it is not so apparent as for c-structures how to make local properties eas-
ily identifiable in discriminants, since the string is not represented in the f-structure.
Therefore, the design of f-structure discriminants crucially exploits PRED values,
which typically provide the most direct connection to wordsin the string. An f-
structure discriminant is a minimal path through the f-structure from aPREDvalue
to anotherPRED value or to an atomic value, a minimal path being one that does
not cross any intermediatePREDvalues and does not contain cycles.
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Figure 5: Simplified f-structures for example (4)

Table 4 represents some relevant f-structure discriminants for the example in
figure 5. The empty brackets in thePRED values show the arity of the predicate.
The first discriminant may thus be read:the two-place predicate ‘spise’ has an



object whosePREDvalue is ‘time’, while the second discriminant may be read:the
one-place predicate ‘spise’ has a set of adjuncts, one of which has thePREDvalue
‘time’. ThePREDattributes themselves are omitted in the discriminants forbrevity.

Table 4: Some f-structure discriminants for example (4)

‘spise<[],[]>NULL ’ OBJ ‘time’
‘spise<[]>NULL ’ ADJUNCT > ‘time’

The path in an f-structure discriminant is, however, not always fromPREDvalue
to PRED value. The wordbarn in example (5) is ambiguous between singular and
plural, and the morphology tells us that not by assigning different morphological
subtrees but by assigning a single tagSPrepresenting both singular and plural. For
this single tag, the rules in the grammar assign two different values, as shown in
the packed f-structure in figure 6, where parentheses surround the alternate values
for the number attribute. Since there are neither lexical nor morphological discrim-
inants in cases like this, we must let f-structure discriminants describe paths from
PREDvalues to atomic values, as shown in table 5.

(5) Vi
We

liker
like

barn.
child-SG/PL

“We like child/children.”
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Figure 6: Simplified packed f-structure for example (5)

Table 5: F-structure discriminants with atomic values forbarn

‘barn’ NUM sg
‘barn’ NUM pl



Moreover, as mentioned earlier, not all words go through morphological pre-
processing. Some words receive multiple features directlythrough a disjunction
in the lexicon. An example isden, which can either be a demonstrative meaning
“that” or an article meaning “the”. A simplified partial lexical entry for this word
is shown in example (6).

(6) den D {(↑SPEC DET DET-TYPE) = demon
| (↑SPEC DET DET-TYPE) = article}

Since both have the category D (determiner) there are no lexical discriminants,
and since this word does not go through morphological preprocessing, there are no
morphological discriminants either. This ambiguity can therefore only be resolved
in the f-structure. Two of the f-structure discriminants for denare shown in table 6.

Table 6: F-structure discriminants with atomic values forden

‘den’ DET-TYPE demon
‘den’ DET-TYPE article

The previous two cases have shown the necessity of allowing f-structure dis-
criminants based on a minimal path from aPREDvalue to an atomic value. Since in
general we do not know what atomic values will provide the only means of resolv-
ing an ambiguity for any grammar and any language, we have to allow every path
from a PRED value to an atomic value to be a discriminant candidate. Thisgives
rise to a very large number of discriminants with a high degree of redundancy. Nev-
ertheless, the disadvantage of the large number of discriminants is outweighed by
the assurance of having discriminants for all possible distinctions.3 Furthermore,
the number of redundant discriminants quickly diminishes as discriminant choices
are made.

3.4 Discriminant Anchors

Each type of discriminant is designed so that it relates linguistic properties to words
in the string in order to make it easy to recognize the desiredproperties. However,

3There are marginal cases where two differing c-structures or f-structures will have no discrim-
inants, but these cases are very unlikely to occur with a realgrammar. In concrete terms, the two
(sub-)c-structures A→ B → A → X and A→ B → A → B → A → X are different but cannot be
distinguished by discriminants; it is easy to see that all other cases are extensions of this example.
A simple example of two differing f-structures that cannot be distinguished by (our) discriminants
is given by the following pair:





A 1x

B
[

1
]





and
[

A x

B x

]

. All other non-cyclic examples have in common

with the given minimal one that the tree expansions of both f-structures are identical, that is, the
f-structures only differ in whether two attributes share their values or have (distinct) values with
identical expansions. The situation with f-structures containing cycles is somewhat more compli-
cated, but comparable.



the same word or substring may occur more than once in the samestring. In order to
allow the correct identification, and hence, disambiguation, of identical substrings,
discriminants areanchoredto their string positions in terms of character count
(which for technical reasons is the least problematic to calculate).

Consider the repeated wordfisker in example (7). If we did not take string
position into account, these two occurrences of the same word form would result
in identical discriminants. By anchoring the discriminants in string positions as
illustrated in table 7, identical substrings can always be disambiguated correctly.
The anchors10 and31 refer to the position of the first character in the wordfisker
in its two occurrences.

(7) De
you/they/the/that

store
big

fisker
fish.N/fishing.N/fish.V

spiser
eater.N/eat.V

de
the/that

små
small

fisker.
fish.N/fishing.N/fish.V

“The big fish eat the small fish.”/ “The small fish, the big fish eat.”/ “Those
big fish eat the small fish.”/etc.

Table 7: Anchored morphology discriminants for the wordfiskerin example (7)

10 ‘fisker’: N
10 ‘fisker’: Vfin
31 ‘fisker’: N
31 ‘fisker’: Vfin

In some cases, a single anchor is not sufficient to ensure thatdiscriminants that
should be distinct actually are distinct. Consider again example (7), and assume
that the noun discriminants have been chosen for both occurrences offisker. Since
Norwegian is a V2 language, we are still left with an ambiguity as to which NP is
theSUBJand which is theOBJ. The f-structure discriminants shown in table 8 have
two anchors. The first anchor refers to the position of the verb spiserwhich projects
thePREDvalue ‘spise<[],[]>NULL ’. The second anchor refers to the position of the
nounfiskerwhich projects thePRED value ‘fisk’. Doubly anchored discriminants
are those which are paths fromPREDvalue toPREDvalue.

Table 8: Doubly anchored f-structure discriminants for example (7)

17:10 ‘spise<[],[]>NULL ’ SUBJ ‘fisk’
17:31 ‘spise<[],[]>NULL ’ SUBJ ‘fisk’
17:10 ‘spise<[],[]>NULL ’ OBJ ‘fisk’
17:31 ‘spise<[],[]>NULL ’ OBJ ‘fisk’



4 Calculation of Discriminants

Discriminants are calculated on the basis of packed c- and f-structures, which are
internally represented as directed (not necessarily acyclic) graphs, where each node
is labeled with the context (the set of solutions) for which it is valid. This means
that the c- and f-structures for a given solution may be recovered by discarding all
nodes whose context does not contain that solution. It is, however, crucial to note
that neither the discriminants themselves nor the algorithm that computes them
depends on the solutions being packed; the algorithm uses packed solutions solely
for efficiency reasons and could easily be modified to operateon unpacked c- and
f-structures.

In XLE a context is represented as a set of (compatible) choices. The choices
corresponding to a packed structure are organized inAND/OR graphs, and each
solution corresponds to a maximal selection of compatible choices. A maximal
selection can be characterized as a choice of a maximal path in eachAND branch of
the choice tree. Non-maximal selections correspond to setsof solutions.4 A typical
choice graph looks like figure 7, where∧ = AND and∨ = OR, and a possible
selection corresponding to a single solution is given by(a2,c1,e1,b2), wherec1 is
redundant. The graph encodes 12 solutions.

∧

∨

a2

∨

c2

∨

d1 d2

c1

∨

e1 e2

a1

∨

b1 b2

Figure 7: Choice tree with a highlighted path to a single solution

The solutions encoded in a choice graph can easily be enumerated (and thus
ordered) using a depth-first multi-traversal of the graph, and a given context can
thus be mapped to a bit vector that encodes solutions that arecontained in the
context by ones and solutions not contained in the context byzeros. For easier
processing, all node contexts in the packed structures are converted to solution bit
vectors.

As a first step in the calculation of discriminants, the packed graphs are tra-
versed, and all relevant local properties are computed, each of them being associ-

4Note that not every solution set can be represented by a selection of compatible choices.



ated with the context in which it is valid. These local properties (together with their
contexts) are calleddiscriminant candidates.

Since we want to keep apart discriminant candidates with identical local prop-
erties that are related to different positions in the sourcestring, we also record the
string position from which the local property originates (the anchor of the discrim-
inant). This is straightforward for c-structure discriminants calculated on the basis
of c-structure graphs (lexical, morphological and c-structure discriminants) since
c-structure lexical nodes are directly associated with string positions. In the case
of f-structure discriminants, however, one first has to identify the c-structure node
the semantic form of the predicate was projected from. The discriminant anchor is
then given by the string position associated with the leftmost lexical node below
that node.

If discriminant candidates originating from different parts of the graph have
identical patterns (i.e. express the same local properties) and have the same an-
chors, we combine them into one new discriminant candidate whose context is
the union of the original candidates’ contexts. Many of the calculated discriminant
candidates may be trivial, as their local properties might be valid for all solutions.
Removing these trivial discriminant candidates yields theset of proper discrimi-
nants.

Let us consider a simple example. In figure 8, we see the packedc-structure
and the choice tree for the four-way ambiguous string in example (8).

(8) Det
that.D/it.PRON/it.PRONexpl

regnet.
rain/rained/calculated

“That rain.” / “It calculated.” / “That (one) calculated.” /“It rained.”

ROOT

[a1]

DP

D

det

NP

N

regnet

PERIOD

.

[a2-a3]

IP

[b1]

PRONP

PRON

det

I’

Vfin

regnet

[a3]

PRONexpl

det

[b2]

DP

D

det

∨

a1 a2

∨

b1 b2

a3

Figure 8: Packed c-structure and choice tree for example (8)

Following the algorithm outlined above, we obtain the c-structure rule and con-
stituent discriminant candidates in table 9. All the rule discriminant candidates are



different, thus each of them is a proper discriminant. The associated constituent
discriminants, however, are trivial, since the contexts ofidentical candidates add
up to the context containing all solutions. A grouping of theresulting discrimi-
nants by identical constituents is presented in table 10. Note that despite the name
rule discriminant, this kind of discriminant is computed exclusively on the basis of
the structures, while access to the grammar rules that assigned those structures is
not required.

Table 9: C-structure rule and constituent discriminant candidates for example (8)

anchor labeled bracketing substring bracketing context solution vector

1 ROOT→ DP PERIOD det regnet| . a1 1000
1 ROOT→ IP PERIOD det regnet| . a2−a3 0111
1 DP→ D NP det| regnet a1 1000
1 IP→ PRONP I’ det| regnet b1 0100
1 IP→ DP I’ det| regnet b2 0010
1 IP→ PRONexpl I’ det| regnet a3 0001

Table 10: Grouping of c-structure discriminants for example (8)

anchor discriminant # of solutions solution vector

1 det regnet| . (4) 1111
1 ROOT→ DP PERIOD 1 1000
1 ROOT→ IP PERIOD 3 0111
1 det| regnet (4) 1111
1 DP→ D NP 1 1000
1 IP→ PRONP I’ 1 0100
1 IP→ DP I’ 1 0010
1 IP→ PRONexpl I’ 1 0001

The lexical and morphological discriminants are also computed from the c-
structure. In table 11 the lexical discriminant candidatesfor example (8) are shown.
Two of the discriminant candidates (those in boldface) haveidentical patterns and
anchors, so they must be combined to give a proper discriminant.

The computation of morphological discriminants, too, is based on the packed
c-structures; this time, however, the sublexical subtreesof the c-structures are con-
sidered. Each morphological feature (including the base form) of an analyzed word
gives rise to a branch of a sublexical subtree. A candidate for a morphological dis-
criminant is then the concatenation of the base form and all features that can be read
off of the sublexical nodes for a given word (or, equivalently, for a given anchor
position) and solution.



Table 11: Lexical discriminant candidates for example (8)

anchor lexical rule context solution vector

1 ‘det’ : D a1 1000
1 ‘det’ : PRON b1 0100
1 ‘det’ : D b2 0010
1 ‘det’ : PRONexpl a3 0001
5 ‘regnet’ : N a1 1000
5 ‘regnet’ : Vfin a2−a3 0111

The wordfiskerin example (9) is ambiguous between a verb and a noun. Thus,
the wordfisker has two morphological analyses, which surface in the sublexical
subtrees in figure 9. We can read off the two discriminant candidates in table 12.

(9) Jeg
I

fisker.
fisherman.N/fish.V

“I am fishing.” / “I, (a) fisherman.”

[1]

[a1]

ROOT

IP

PRONP

PRON

jeg

jeg

I’

Vfin

BASE

fiske

SUFF

+Verb

SUFF

+Pres

[a2]

ROOT

AppP

PRON

jeg

jeg

NP

N

BASE

fisker

SUFF

+Noun

SUFF

+Masc

SUFF

+Indef

SUFF

+Sg

Figure 9: Packed c-structure including sublexical nodes for example (9)

It is important to bear in mind that only those words that are assigned mor-
phological features via XLE’s morphology module will have nontrivial sublexical
subtrees and thus potentially give rise to morphological discriminants. Readings of
ambiguous words which are directly listed in the LFG lexiconcan still be disam-
biguated using lexical discriminants if their lexical categories are different.



Table 12: Morphological discriminant candidates for example (9)

anchor morphology context solution vector

5 fiske+Verb+Pres a1 10
5 fisker+Noun+Masc+Indef+Sg a2 01

To exemplify the computation of f-structure discriminants, we consider the sen-
tence in example (4) and its f-structures in figure 5. The relevant parts of the packed
f-structure are shown in figure 10. In the packed f-structure, attribute values are an-
notated with the choices for which they are valid. This sentence is ambiguous,
as apparent from choicesa1 and a2, the ambiguity being manifest solely in the
f-structure. An attribute in a packed structure may have more than one possible
value, but the choices for those values have to be mutually exclusive, such that
only one value or no value remains for each single solution. In such cases, for ex-
ample the alternativePRED values indexed bya1 and a2 in figure 10, the set of
values is enclosed in parentheses.















































PRED

(

a1 ‘spise<[1:vi],[2:time]>NULL ’
a2 ‘spise<[1:vi]>NULL ’

)

SUBJ
1

[

PRED ‘vi’
PRON-TYPE pers

]

OBJ a1

2







PRED ‘time’

SPEC

[

QUANT
[

PRED ‘hver’
]

]







ADJUNCT

{

a2

[

2
]

}

TOPIC
[

1
]















































Figure 10: Simplified partial f-structure for example (4)

Applying the algorithm for f-structure discriminants, we obtain the candidates
in table 13, which are all proper discriminants.

5 Display and Use of Discriminants

As mentioned above, a large number of discriminants may be computed for a sen-
tence. This guarantees that there will be enough discriminants for virtually every
distinction between structures, so that full disambiguation can always be achieved.



Table 13: F-structure candidates for example (4)

anchor f-structure path context solution vector

0 _TOP ‘spise<[],[]>NULL’ a1 10
0 _TOP ‘spise<[]>NULL’ a2 01
4 ‘spise<[],[]>NULL’ SUBJ ‘vi’ a1 10
4 ‘spise<[],[]>NULL’ TOPIC ‘vi’ a1 10
4 ‘spise<[],[]>NULL’ OBJ ‘time’ a1 10
4 ‘spise<[]>NULL’ SUBJ ‘vi’ a2 01
4 ‘spise<[]>NULL’ TOPIC ‘vi’ a2 01
4 ‘spise<[]>NULL’ ADJUNCT ‘time’ a2 01

By considering every node in the c-structure and f-structure and filtering out those
that are the same for every analysis, one essentially obtains all discriminants. If, in
spite of computing all discriminants, several analyses areleft but no discriminants,
then, disregarding marginal cases like those discussed in footnote 3, there must be
a spurious ambiguity in the grammar and the analyses must be identical.

However, the annotator usually does not need to use all discriminants in the
disambiguation process. In fact, in many cases just a few discriminant choices are
needed to select the correct analysis amongst many. There isoften considerable
redundancy, because many discriminants are not independent of others. In order to
make the annotator’s choices easier, it is therefore interesting to at least rank and
perhaps also filter the discriminants that are presented to the annotator. Annotators
will choose those that are the easiest and most useful to them. Our system keeps
track of which discriminants are chosen. With this information, the display can
be optimized so that, for instance, discriminants which areoften chosen can be
displayed first, and those that are not needed can be hidden from the display. Much
work is still to be done in this area since it must be based on considerable testing
in actual practice.

We have developed a toolkit that computes all discriminantsand which is a
testbed for optimizing their display.XLE-Web is a web-based interface to XLE
with packed c- and f-structures and discriminants. TheLFG Parsebanker is like
XLE-Web, but also stores analyses and discriminant choices, and supports search in
the stored analyses. For further details on this work, we refer to earlier publications
(Rosén, Meurer, and De Smedt, 2005; Rosén et al., 2005; Rosén, De Smedt, and
Meurer, 2006).

We currently display lexical and morphological discriminants first for several
reasons. It has been pointed out that lexical ambiguities are often easier to decide
on than others (Van der Beek et al., 2002; Oepen et al., 2004).Annotator decisions
on lexical ambiguities also tend to be very reliable decisions, since they require
little knowledge of the grammar. Decisions on lexical ambiguities are likely to be



safer than decisions on syntactic ambiguities because lexical and morphological
discriminants contain such a small amount of information. Furthermore, decisions
on lexical ambiguities are highly likely to be reapplicableon reparsing with a new
version of the grammar, since part of speech changes and changes in morphological
analysis will be rare.

With respect to syntactic ambiguities, different branchings are very intuitive
(at least for linguists) and require little knowledge of thegrammar. In many cases,
branchings are quite independent of the grammatical theoryused. For these rea-
sons, we present both constituent and rule discriminants tothe annotator.

Although not every discriminant is equally easy to decide on, the human dis-
ambiguator usually has enough choices of where to begin disambiguation that this
does not really matter. Even though discriminant choices can be made indepen-
dently, the discriminants themselves are not always independent. Choices also nor-
mally cause the resolution of other, dependent local ambiguities, making the disam-
biguation process even more efficient. Furthermore, a discriminant’s applicability
does not depend on the grammar, but only on the structures, sothat discriminants
can often be reused in an incremental parsebanking approach.

Discriminants can be exploited in various ways. The first andforemost applica-
tion is in efficient manual disambigation to supplement the automatic parsing of a
corpus, an approach also known as parsebanking. Parsebanking offers quality ben-
efits over the manual construction of a treebank, including the avoidance of formal
errors, consistency within the treebank and consistency with a grammar.

Another use of discriminants is in stochastic parse disambiguation. This ap-
proach uses properties of c- and f-structures as feature functions to train a stochastic
parse ranking model (Riezler et al., 2002). XLE has propertytemplates that can be
used for this purpose. We have done experiments using our discriminants instead of
the property templates. Preliminary testing of these two approaches has provided
results that are better for discriminants than for propertytemplates (Oepen et al.,
2007).

6 Conclusion

In creating discriminants for LFG grammars, we have been guided by two impor-
tant design principles. One principle is that enough discriminants must be com-
puted to distinguish between all analyses. This means that all nodes in both c-
structures and f-structures must be examined for possible discriminant candidates.
The other main principle is that all distinctions must be represented in such a way
that an annotator can easily relate them to words in the string. This ensures that
disambiguation can be achieved quickly and efficiently.

Another important consideration has been our objective of making our method-
ology language and grammar independent. Our independence from particular lan-
guages and grammars follows from our approach which only builds on formal
properties of representations. It would be possible to extend our design of LFG



discriminants to other projections. Although the Norwegian grammar has an MRS
projection, and discriminants could be calculated on MRS properties, we have cho-
sen not to do so. Since all LFG grammars have both c-structures and f-structures,
complete disambiguation on these levels will be possible for any grammar and
language.

One consequence of computing discriminants for all distinctions between rep-
resentations is the large number of resulting discriminants. Often, however, indi-
vidual structural differences are not independent of otherdifferences. Rather than
trying to eliminate some redundant discriminants by exploiting language specific
interdependencies in their computation, we prefer to handle redundancy in their
presentation. We have begun work on discriminant presentation in the context of
theLFG Parsebanker, but this will be the focus of future research on how annota-
tors use the tool. With the help of theLFG Parsebanker, the discriminants make it
feasible to create large parsebanks for languages that havea broad coverage LFG
grammar, something that until now has been impossible in practice because of the
difficulty of disambiguating.
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