
F-STRUCTURE TRANSFER-BASED STATISTICAL

MACHINE TRANSLATION

Yvette Graham Josef van Genabith Anton Bryl

Dublin City University

Proceedings of the LFG09 Conference

Miriam Butt and Tracy Holloway King (Editors)

2009

CSLI Publications

http://csli-publications.stanford.edu/

317

Abstract

In this paper, we describe a statistical deep syntactic transfer decoder that

is trained fully automatically on parsed bilingual corpora. Deep syntac-

tic transfer rules are induced automatically from the f-structures of a LFG

parsed bitext corpus by automatically aligning local f-structures, and induc-

ing all rules consistent with the node alignment. The transfer decoder out-

puts the n-best TL f-structures given a SL f-structure as input by applying

large numbers of transfer rules and searching for the best output using a

log-linear model to combine feature scores. The decoder includes a fully

integrated dependency-based tri-gram language model. We include an ex-

perimental evaluation of the decoder using different parsing disambiguation

resources for the German data to provide a comparison of how the system

performs with different German training and test parses.

1 Introduction

In this paper, we describe a statistical deep syntactic transfer decoder used as the

transfer component of a Transfer-Based Machine Translation (TBMT) system to

transfer source language (SL) deep structures to the target language (TL). Deep

syntactic transfer rules are induced automatically from the functional structures

of a Lexical Functional Grammar (LFG) (Kaplan and Bresnan, 1982; Bresnan,

2001; Dalrymple, 2001) parsed bitext corpus. Firstly, local f-structures are au-

tomatically aligned, before all rules consistent with the node alignment are in-

duced automatically. The transfer decoder applies large numbers of transfer

rules to the input SL f-structure and searches for the best TL output f-structure

using a log-linear model to combine feature scores.

The paper is structured as follows: in Section 1, we give our motivation for

using deep syntax in MT, Section 2 describes the architecture of deep syntactic

Transfer-Based MT, Section 3 describes the main focus of this paper, statistical

transfer between source and target deep syntactic structures, in Section 4, we

give an experimental evaluation of the transfer decoder in the context of a hybrid

system that uses LFG functional structures (f-structures) as the intermediate

representation for transfer, training and testing the system using two different

disambiguation models for the German data for German to English translation,

and Section 5 gives our plans for future work.

2 Motivation

In TBMT, among the different types of intermediate structures used for trans-

fer are deep syntactic structures. For example, Bojar and Hajič (2008) use

the Functional Generative Description (FGD) (Sgall et al., 1986) Tectogram-

matical Layer (T-layer), labeled ordered dependency trees, while Riezler and

Maxwell (2006) use the LFG f-structure, an attribute-value structure encoding

of bilexical labeled dependencies.

318

Deep syntactic structures are more language independent than other repre-

sentations used for MT such as surface form strings and phrase-structure trees,

and therefore should provide a better means of forming generalizations about

how to translate from one language to another. For example, automatic trans-

lation between very distant language pairs can require complex re-ordering of

words between source and target. For many languages incorrect word order in

TL output results in one of two problems; the output is either (i) ungrammati-

cal or (ii) grammatical with incorrect meaning. Since the permitted word order

of a sentence in many languages is strongly influenced by the dependency re-

lations between the words of the sentence, explicitely including these relations

in the translation model should help produce correct TL word order, especially

when translating between very distant language pairs. In addition, using a lan-

guage specific generator designed to generate from structures in which these

relations between words are explicitely represented could also help to produce

better quality output with respect to word order.

As well as dependency relations, many theories of deep syntax also include

morphological analysis, so that words in the surface form are represented in the

deep syntactic structure in lemma form with a set of features encoding grammat-

ical information, like case, person, number, tense, etc. Explicitly representing

this grammatical information may be important for translation from morpho-

logically poor languages into morphologically richer ones. For example, when

translating from English into German the red wine has at least three possible

translations: der rote Wein, den roten Wein and dem roten Wein. In this exam-

ple, the value of the feature case in the TL needs to be known in order to choose

the correct morphological inflection of the determiner der and adjective rot. If

the case of the noun in the English phrase is established this information should

help select the best phrase in German. Including this grammatical information

present in the source and target deep syntactic structure should therefore help

produce the correct morphology in the TL.

3 Deep Syntactic Transfer-Based MT

Deep Syntactic Transfer-Based MT is composed of three parts; (i) parsing to

deep syntactic structure, (ii) transfer from SL deep structure to TL deep struc-

ture and (iii) generation of TL sentence (Figure 1). Each stage in the three stage

pipeline architecture could be carried out using fully automatically learned (sta-

tistical) resources, hand-crafted resources or a hybrid of statistical and hand-

crafted resources. For example, for parsing Riezler and Maxwell (2006) use

hand-crafted grammars in addition to automatically learned disambiguation mod-

els. The parsing step in their system is therefore a hybrid of hand-crafted and

statistical methods. For transfer, they use mostly automatically induced trans-

fer rules as well as some hand-crafted rules. In addition, they carry out hand-

319

Figure 1: Deep Syntax Transfer-Based MT Pipeline Architecture

selected corrections of the word alignment prior to rule induction.1 They also

use a statistical search and statistical model to transfer SL structures to TL struc-

tures. The transfer component of their system therefore is also a hybrid. Finally,

for generation, they used a hand-crafted generation grammar and a statistical

model, including a TL model, for example, to select the best output. Thus the

generation step in their system is also a hybrid of hand-crafted and automatically

learned resources.

The focus of our work is to investigate methods of automatically learning how

to translate from training data. The transfer step in our system is trained fully au-

tomatically without any hand-crafted rules or human-selected corrections to any

part of the rules or word-alignment.2 Our system uses hand-crafted resources

for parsing and generation (Kaplan et al., 2004; Riezler et al., 2002). The bitext

training data is automatically parsed (Kaplan et al., 2002) and the same type of

grammar is used for generation. The transfer stage of our system is fully sta-

tistical, but the experimental evaluation in this paper is evaluating the decoder

in the context of a hybrid system, using hand-crafted resources for parsing and

generation.3 Figure 1 shows the Transfer-Based MT system pipeline with each

stage labeled either statistical or hybrid for our system.

4 Statistical Transfer

4.1 Transfer Rule Induction

To induce transfer rules automatically from the parsed corpus, we use the RIA

rule induction tool (Graham and van Genabith, 2009). Figure 2 shows some

1Through personal communication with John Maxwell.
2Note that results for our system should not be compared with results reported in Rie-

zler and Maxwell (2006) since our transfer component is statistical while that of Riezler and

Maxwell (2006) is a hybrid.
3There are parsing and generation resources available for LFG that are trained fully automat-

ically (Cahill et al., 2004; Cahill and van Genabith, 2006). We plan to use these resources with

our statistical transfer decoder to compare with the current hybrid system in the near future.

320

Figure 2: Example Transfer Rules

example transfer rules produced by the tool. The transfer rule induction algo-

rithm takes as input (i) a dependency structure pair and (ii) a one-to-one set of

alignments between nodes of the dependency structure pair.

4.1.1 Local F-Structure Alignment

Prior to rule induction a set of one-to-one correspondences between the lo-

cal f-structures of each pair of parsed sentences in the bilingual corpus must be

established. For automatic alignment of local f-structures we take the parsed

bilingual corpus and extract the predicate values from each pair of f-structures

to reconstruct a lemmatized version of the bitext. Figure 3 shows an example of

a bitext corpus that is first parsed, then reconstructed from the f-structure repre-

sentation. The order of the predicates in the reconstructed version of the bitext

(Figure 3(c)) is determined by the location of the local f-structure within the

overall f-structure. The predicate values are ordered via a depth-first traversal

of the underlying dependency graph encoded in the f-structure. For example, the

order of the predicates in the reconstructed corpus (Figure 3(c)) of the German

f-structure in Figure 3(b) is ähneln und bill bob since ähneln is the predicate of

the main f-structure with daughter und that in turn has daughters bill and bob. In

order for the depth-first traversal not to loop if the f-structure contains instances

of reentrancy or argument sharing we temporarily ignore these dependencies

when reconstructing the corpus from the f-structures. The reconstructed bitext

is then input to Giza++ (Och et al., 1999) and automatic word alignment is run

321

in both language directions. The output is then input to Moses to compute the

symmetrization of the bidirectional alignment. We currently use the intersection

in order to get a reliable set of one-to-one correspondences between words.

The aligned parsed bitext is used as input to the rule induction step. We

use the RIA open source rule induction tool (Graham and van Genabith, 2009)

to induce transfer rules. For each input f-structure pair and its node alignment,

RIA induces all transfer rules consistent with the node alignment. The following

section provides the definition for consistent transfer rules.

4.1.2 Consistent Transfer Rules

As in Phrase-Based Statistical Machine Translation (PB-SMT), where a word

alignment for each example sentence pair is first established before phrases con-

sistent with that word alignment are extracted (Och et al., 1999; Koehn et al.,

2003), we induce transfer rules that are consistent with the node alignment. We

define a consistent transfer rule using a simplification of the actual training de-

pendency structures and temporarily consider them as acyclic graph structures

by ignoring edges that cause cycles in the graph or edges that share an end node

with another edge. Definition 1 applied to a (simplified) dependency structure

pair yields a set of rules containing no variables by constraining rule induction

using both the alignments between nodes and the position of the nodes within

the two structures:

Definition 1.

Given a one-to-one set of alignments A between nodes in dependency pair

(F,E), (f , e) is a rule consisting of nodes (Nf , Ne), rooted at (rf , re), with

descendents (Df ,De) of rf and re in F and E respectively, if

Nf = rf ∪Df∧
Ne = re ∪De∧
∀fi ∈ Nf : (fi, ej) ∈ A→ ej ∈ Ne∧
∀ej ∈ Ne : (fi, ej) ∈ A→ fi ∈ Nf∧
∃ej ∈ Ne : (rf , ej) ∈ A∧
∃fi ∈ Nf : (fi, re) ∈ A

Definition 2.

For any rule (f , e) in dependency pair (F,E) rooted at (rf , re) consisting of

nodes Nf and Ne, where (s, t) is also a rule in (F,E) rooted at (rs, rt) consist-

ing of nodes Ns and Nt where rs %= rf , rt %= re, iff rs ∈ Nf and rt ∈ Ne, there

is a rule (a, b) rooted at (rf , re) with nodes rs and rt replaced by variable xk,
where k is an index unique to the transfer rule, consisting of nodes:

Na : Nf\Ns ∪ xk
Nb : Ne\Nt ∪ xk

322

Figure 3: Alignment of Local F-structures

323

Figure 4: Consistent Transfer Rules

Definition 2 allows the introduction of variables into transfer rules. Any rule

that contains another rule nested within it can be used to form a new rule by

replacing the nested rule with a single variable in its LHS and RHS. To help

visualize what is considered a consistent transfer rule, Figure 4(b) shows the

example dependency structure in Figure 4(a) divided into parts by a number of

boxes with corresponding parts of the dependency structure pair labeled with

the numbers 1-6. Each consistent transfer rule can be realised by assigning a

binary value to each pair of boxes, so that boxes assigned 1 are included in the

rule and boxes assigned 0 are left out. Combinations of binary values for nodes

are constrained and this can be visualized by only allowing adjoining boxes

in Figure 4(b) to be labeled 1 for any rule. Figures 4(c), 4(d) and 4(e) show

example consistent rules with the binary value combinations that encode them.

4.2 Translation Model

As in PB-SMT, a Transfer-Based SMT translation model can be defined as a

combination of several feature functions combined using a log-linear model:

p(e|f) = exp
n∑

i=1

λihi(e, f)

324

4.2.1 Transfer Rule Probabilities

In PB-SMT the translation of an input sentence into an output sentence is

modeled by breaking down the translation of the sentence into the translation

of a set of phrases. Similarly, for Transfer-Based SMT, the transfer of the SL

structure f into a TL structure e can be broken down into the transfer of a set of

rules {f̄ , ē}:

p(f̄ I1 |ē
I
1) =

I∏

i=1

φ(f̄i|ēi)

We compute all rules from the training corpus and estimate the translation prob-

ability distribution by relative frequency of the rules:

φ(f̄ , ē) =
count(ē, f̄)

∑
f̄i
count(ē, f̄i)

This is carried out in both the source-to-target and target-to-source direction and

each model is used as a feature.

4.2.2 Lexical Weighting

We adapt a standard lexical-weighting method used in PB-SMT to hierarchi-

cal deep syntactic structure. In PB-SMT, lexical weighting is used as a back-off

since it provides richer statistics and more reliable probability estimates. Adapt-

ing this feature to deep syntax is straightforward. In PB-SMT the lexical trans-

lation probability of a phrase pair is calculated based on the alignment between

the words in the phrase pair. For deep syntax, we simply calculate the same

probability via the alignment of lexical items in the LHS and RHS of a trans-

fer rule. The lexical translation probability of a RHS, ē, given the LHS, f̄ , is

estimated as follows:

lex(ē|f̄ , a) =

length(ē)∏

i=1

1

|{j|(i, j) ∈ a}|

∑

∀(i,j)∈a

w(ei|fj)

We use lexical weighting in both language directions.

4.2.3 A Dependency-Based Language Model

The overall system employs a language model at two different stages; a tri-

gram dependency-based language model is used as a feature in the log-linear

model by the transfer decoder and a standard trigram language model is used

after generation to select the single best TL output. Riezler and Maxwell (2006)

used a dependency-based language model in their system, but this was only done

after decoding by calculating dependency-based language model scores on the

n-best output of the decoder.4 We take an approach that is more in keeping with

SMT and use language modeling during decoding. This section describes how

4Through personal communication with John Maxwell.

325

Figure 5: Dependency-Based Language Model Example for F-structure of The cat likes

to sleep

we have fully integrated a dependency-based language model into the transfer

decoder.

Since our statistical search produces dependency structures where words are

organized in a graph as opposed to a standard language model that deals with

linear sequences of words, we estimate the probability of a dependency structure

using the preceding context of each word within the dependency graph. In a

standard trigram language model, the probability of the ith word in the context

of its preceding i-1 words is approximated by the probability of observing it

preceeded by its two preceding words:

P (w1, ..., wm) ≈
m∏

i=1

P (wi|wi−2, wi−1)

The dependency-based language model approximates the probability of each

word in the structure as the probability of observing it preceeded by its parent

and grandparent words:

P (w1(..., wm)) ≈
m∏

i=1

P (wi|parent(parent(wi)), parent(wi))

If all dependency relations between local f-structures that cause either argu-

ment sharing or reentrancy are ignored, the underlying pred-only structure is

an acyclic graph. We ignore such dependency relations when extracting the

dependency-based language model so that each node in the structure can be

assumed to have at most a single parent node. Figure 5(a) shows an example

f-structure for the English sentence The cat likes to sleep. Figure 5(b) shows

the simplified graph that used for language modeling where the reentrancy in-

volving sleep and cat is ignored. As in standard language modeling, where the

start of a sentence is represented by the special symbol <s>, we add a root

node to the structure with this symbol. We also add the end symbol to the leaf

nodes</s>. Figure 5(c) shows the probability approximation of the f-structure

shown in Figures 5(a) and (b).

326

4.2.4 Other Features

Other features included in the log-linear model for ranking TL hypothesis

structures include:

• Word Penalty

• Phrase Penalty

• Fragmented Structure Penalty

• Fragmented Rule Penalty

• Grammatical Mismatch Penalty

The word penalty and phrase penalty are taken almost directly from PB-SMT.

The word penalty is used to counterbalance the dependency-based language

model’s bias for shorter TL structures and the phrase penalty is used to coun-

terbalance the bias of transfer rule probabilities toward smaller rules. All other

things being equal, it is better to transfer the structure using large transfer rules,

as the chunk of structure that forms the RHS was already observed together in

the corpus and therefore can be assumed to cause no problems with regard to

creating unusual TL word combinations, which can happen when combining

smaller rules. In addition, as the system can produce structures that are missing

dependency relations between two nodes in the TL structure, the fragmented

structure penalty is used to allow the model to bias towards more complete

structures. A fragmented rule penalty is also used to disprefer rules that were

induced from training data that had received a fragment parse from the parser.

These rules tend to lead to bad TL structures that cause problems for the gener-

ator. It would be possible to completely filter out such rules to ensure they were

never used, but in theory it is better to leave them in and allow the system to bias

against their use as it is still possible in some cases that a fragmented rule leads

to the best solution for a given input, for example when no non-fragmented rule

is available to translate the word. Finally, the grammatical mismatch penalty is

used to penalize rules by the amount of mismatching grammatical information

in the LHS of the rule and the SL structure. All else being equal, rules that

have a small amount of LHS grammatical information matching that of the SL

structure are dispreferred.

4.3 Decoding

4.3.1 Top-down Transfer Rule Application

Decoding takes a single SL structure as input and involves a statistical search

for the n-best TL structures. TL solutions are created via a top-down application

of transfer rules to the SL structure beginning at the root (or main) f-structure.

When the LHS of a rule unifies with the SL structure, the RHS produces a

327

Figure 6: Example top-down application of transfer rules

portion of the TL structure. Figure 6 shows an example application of three

rules to the dependency structure for the German sentence Die Katze schläft

gern ‘The cat likes to sleep’ shown in Figure 6(a). Figure 6(b) shows the first

transfer rule to be applied to the root node of the SL structure to produce the TL

structure portion shown in Figure 6(c). Transfer rule variables map arguments

in the SL structure to the desired position when creating a TL solution. For

example, variable X0 in Figure 6(b) maps the subject of schlafen to the subject

of like in the TL structure labeled with id number 1 shown in Figure 6(c). Next

Katze in the SL structure is translated (Figures 6(d) and 6(e)), before finally die

is translated (Figures 6(f) and 6(g)).

4.3.2 Beam Search

As with all SMT systems, the number of possible output translations given

a single SL input is too large to exhaustively rank each possible output. We

therefore employ a standard search algorithm, beam search, to produce the n-

best TL solutions.

Partial translations (or translation hypotheses) are constructed by applying

transfer rules to the SL structure. While TL translations are constructed, beam

search manages the large search space by ranking translation hypotheses and

pruning the search by dropping lower scoring hypotheses. A number of stacks

are used to organize translation hypotheses into groups of comparable hypothe-

328

ses, according to the portion of SL structure that has already been translated

to produce each hypothesis, i.e. hypothesis stack N stores TL translation hy-

potheses with N nodes covered in the SL structure. For example, Figure 7(a)

shows the hypothesis stacks for decoding the f-structure of Die Katze schläft

gern containing 4 nodes and therefore requiring stacks 1-4 for decoding, each

stack storing translation hypotheses for solutions covering one to four nodes,

respectively.

Transfer rules are indexed by root node so that they can be retrieved quickly

to translate SL structure nodes. For example, in Figure 7(a) the rules rooted

at node Katze are stored together. Since rules are applied top-down to the SL

structure (see Section 4.3.1) rules beginning at the root node of the SL structure

(or main SL f-structure) are first used to construct hypotheses. For example, in

Figure 7(b) the rule that translates the root node of the SL structure schlafen as

doze is first used to construct a hypothesis and since it covers one SL node it is

stored in hypothesis stack 1. Figure 7(c) shows the next three hypotheses that are

constructed: snooze, sleep and like sleep. Hypotheses are ordered within each

stack according to their score, high-to-low from bottom-to-top. We currently

use histogram pruning. When a stack becomes full, lower scoring solutions are

pruned by being popped off the top of the stack.

For efficiency, each partial translation is only stored once in memory even

though it may be part of several different future hypotheses. For example, hy-

pothesis stack 2 in Figure 7(d) contains four translations constructed by expand-

ing hypothesis doze by four different rules, each translating the word Katze into

a different TL word. These new hypotheses are represented by a reference to the

most recently applied transfer rule (rules translating Katze) and a reference back

to the previous hypothesis. Figure 6 shows an example of decoding. Figure 7(e)

shows an example of how per single completed translation, the structure for the

lion likes to doze, is represented in the hypothesis stacks and Figure 7(f) shows

all hypotheses are represented when the decoder has completed translating a

single SL input structure. The n-best translated structures can be retrieved from

the final stack.

4.3.3 Efficient Dependency-Based Language Modeling

An important feature in an SMT decoder is the language model and integrat-

ing one can be a more challenging task than other features since the language

model score of a translation hypothesis cannot be calculated by simply com-

bining the language model scores of the phrases (or rules) that it is composed

of.

Although the search space is limited by beam search, during decoding large

numbers of TL hypothesis structures need to be ranked. At each expansion of a

translation hypothesis (via joining of an existing hypothesis with a new rule) a

language model score for the newly created hypothesis needs to be calculated.

Since this is carried out very many times per single decoding run, it is vital that

329

Figure 7: Beam Search Decoding

330

the method of calculating this score is highly efficient.

In our system, we pre-compute a dependency-based language model score for

each transfer rule prior to beam search. This score is calculated only once for

each rule even though a single rule may be part of several translation hypotheses.

Then during decoding, when a translation hypothesis is expanded by adding a

new rule, the new hypothesis score can be calculated quickly by combining the

score of the old hypothesis, the rule score and a score calculated based on the

probabilities of trigrams where the old hypothesis and rule join together. The

probability of a TL hypothesis, hn, that was produced by combining hypothesis

hn−1 and rule r can be calculated as follows:

hyp score(hn) = hyp score(hn−1) ∗ join score(hn−1, r) ∗ rule score(r)

Since hyp score(hn−1) and rule score(r) are already computed, only

join score(hn−1, r) needs to be computed when hyp score(hn) is computed.

Figure 8 shows how the language model scores are efficiently calculated

when decoding the f-structure for the German sentence Die Werbung spiegelt

die Vielfalt der britischen Universität wider ‘The advertisement reflects the di-

versity of the British university’. We begin with the German f-structure graph

shown in Figure 8(a) with nodes labeled by id numbers. Figure 8(b) shows the

initial empty translation hypothesis that has probability 1.

Figures 8(c), 8(f) and 8(i) show example transfer rules that can be applied

to the German f-structure. Dependency-based language model scores are pre-

computed for each rule by identifying all trigrams within the RHS structure and

calculating the product of their individual probability estimations retrieved from

the language model; we will call this the rule score (see Figure 8(d) for Rule A,

Figure 8(g) for Rule B and Figure 8(j) for Rule C). In addition, for each rule,

n-grams located at the RHS root node and frontier nodes are recorded. For ex-

ample, Rule B in Figure 8(g) has a single root node bigram advertisement the

located at node 2 while Rule A in Figure 8(d) has two frontier bigrams < s >,
reflect and diversity, of located at nodes 2 and 6, respectively. This information

is used to calculate the language model score of joining a rule and a hypothesis.

Figure 8(e) shows the translation hypothesis established by applying Rule A to

the German structure. The language model score for the structure is established

by combining the score of the previous hypothesis (since this is the first rule for

this hypothesis, the previous hypothesis is the empty hypothesis and is therefore

1), the join score (since we are joining the rule with the empty hypothesis this

score is also 1) and the rule score (see Figure 8(d)).

Figure 8(h) shows the translation hypothesis created by expandingHypothes-
is1 by RuleB . Since this expansion involved adding a rule at node 2 in the

TL structure, the joining trigrams are derived by creating lists of words via all

possible combinations of the frontier bigrams belonging to Hypothesis1 la-

beled 2 and the root bigrams of RuleB , also labeled 2 (see root n-grams in

Figure 8(g)). For this example, this results in a single word sequence <s >re-

331

Figure 8: Efficient Dependency-based Language Modeling

332

flect advertisement the which forms two trigrams <s >-reflect-advertisement
and reflect-advertisement-the. The score for Hypothesis2 is then calculated by

combining the hypothesis score for Hypothesis1, the join score and the pre-

computed rule score for Rule B.

5 Experimental Evaluation

In our experimental evaluation of the system, we investigate the effects of the

disambiguation model used to select the best parse. Riezler and Maxwell (2006)

used an English disambiguation model for parsing both the German and En-

glish data when translating from German to English. If a single disambiguation

model is used for both languages, the f-structures of a given pair of training

sentences are likely to be quite similar, and this may help the rule induction

process. However, another approach is to use language-specific disambiguation

models for parsing. In this case, it is more likely that the actual best f-structure

for each sentence of the training data is selected. Although a more authentic

German parse may help the overall MT system, at the same time this is likely to

increase the dissimilarity between the parses of the German-English sentences

pairs, which may increase the difficulty of transfer.

We conduct an empirical investigation into which approach achieves better

machine translation output for our system, by training and testing the system

using (i) an English disambiguation model (Kaplan et al., 2004; Riezler et al.,

2002) to select the best parse for both German and English sentences, and com-

pare with results when (ii) a German disambiguation model (Forst, 2007) is used

for selecting the best German parse and an English disambiguation model (Ka-

plan et al., 2004; Riezler et al., 2002) is used to select the best parse for the

English sentences.

5.1 Training

The system was trained separately for each configuration. Training data for both

configurations used data restricted by sentence length of 5-15 words from the

Europarl (Koehn et al., 2005) and Newswire parallel corpora, which resulted

in approximately 360,000 German-English sentence pairs, and a held-out de-

velopment set of 500 sentences pairs. Both sides of the training corpus were

parsed with the XLE parse engine (Kaplan et al., 2002). For Configuration 1,

an English disambiguation model (Kaplan et al., 2004; Riezler et al., 2002) was

used when parsing both the German and English data. For Configuration 2, a

German disambiguation model (Forst, 2007) was used when parsing the Ger-

man data and the English disambiguation model (Kaplan et al., 2004; Riezler

et al., 2002) for the English data. The single best parse for each sentence, ac-

cording to the appropriate disambiguation model, was used for training for both

configurations.

For node alignment, Giza++ (Och et al., 1999) was run in both language

333

Config. BLEU NIST Coverage Connected TL structure

1 0.1121 3.5685 92.2% 33.4%

2 0.0730 2.6643 91.8% 47.2%

Table 1: Machine Translation System Results for Configuration 1: English disambigua-

tion model for both German and English data, and Configuration 2: German disam-

biguation model for German data and English disambiguation model for English data

directions and the intersection was obtained using Moses (Koehn et al., 2007).

We used both a dependency-based language model from the parsed TL side

of the Europarl corpus and a conventional language model using lower-cased

TL sentences, both trained on approximately 1,250,000 sentences. The SRILM

toolkit (Stolcke, 2002) was used for both language models. Minimum Error

Rate Training (Och, 2003) was carried out using ZMERT (Zaidan, 2009) to train

weights for each configuration on 500 randomly selected held-out development

set sentences optimizing for Bleu.

5.2 Testing

The system was tested in a single language direction, German to English on 500

randomly selected held-out test set German sentences and the single best TL

translation produced by the system was evaluated using automatic metrics with

a single reference translation.

For each configuration, the German sentences were parsed with the same

parsing engine and grammar as was used for training, and the single best f-

structure according to the disambiguation model was selected as input to the

decoder.

TL decoder output structures can be fragmented, and we automatically re-

pair them if necessary. Automatic repair involves adding edges (in the form

of FIRST/REST equations with nodes ordered via the position of their trans-

lations in the SL structure) to any TL structure that does not already form a

single connected graph. For each test sentence, the 100-best TL decoder output

structures were repaired automatically, before being input to the generator and

a maximum of 50,000 sentences were generated per test sentence. A standard

language model was used to select the final TL output.

5.3 Results

The Bleu (Papineni et al., 2002) and NIST (Doddington, 2002) scores for both

system configurations on the test set are shown in Table 1. According to the au-

tomatic metrics, Configuration 1 achieves a Bleu score of 0.1121 outperforming

Configuration 2, which achieves 0.073, almost 4 Bleu points lower than Con-

figuration 1. Configuration 1 also has higher system coverage, i.e. it was able

to produce at least some output for 92.2% of the test set, while Configuration 2

334

achieves 91.8% coverage. The number of TL structures output from the decoder

that already formed a single connected graph and therefore did not require any

repair was, however, higher for Configuration 2 (47.2%) than Configuration 1

(33.4%).

5.4 Discussion

The results obtained in the experimental evaluation are contrary to our initial ex-

pectations. With the current system translating from English to German, using

the English disambiguation model for both languages outperforms automatic

evaluation results when the system is run on parse data disambiguated by lan-

guage specific models. We had expected that the more authentic parses for

the German data should lead to an overall increase in translation results, even

if the difficulty of transfer is increased slightly by the slight increase in non-

isomorphism across the f-structure representations for the parsed sentence pairs

in the training data. The transfer rule induction algorithm is designed to induce

rules that capture non-isomorphism, and therefore increasing non-isomorphism

should not effect the system to this degree. One suspected cause of the prob-

lems for Configuration 2 may lie in the grammar used with this disambiguation

model. The number of features in the grammar is higher than that of the Ger-

man grammar used with the English disambiguation model of Configuration 1.

When the data is parsed this leads to the German f-structures of Configuration

2 containing far more atomic features than those of Configuration 1. In fact,

for the German development set parses, the ratio of number features in the f-

structures for Configuration 1 compared to Configuration 2 is approximately

1:4. We suspect that due to the higher number of features of Configuration 2,

transfer rules do not generalize as well to unseen data. The SL atomic features

are used in our system to guide the selection of transfer rules. The smaller set

of features of Configuration 1 may be a better guide for transfer than the larger

set of Configuration 2.

6 Future Work

The size of the training corpus used in the evaluation is small compared to cor-

pora usually used for training SMT systems. We would like to perform fur-

ther extrinsic evaluation of the two disambiguation models when the system is

trained on a larger corpus not restricted by sentence length. This would pro-

vide each configuration with richer statistical estimates and higher coverage of

transfer rules on unseen SL structures.

7 Conclusion

We presented a SMT transfer decoder that uses deep syntactic structures, as the

intermediate representation for transfer that applies state-of-the-art methods of

PB-SMT to deep syntactic transfer. In the experimental evaluation the decoder

335

achieves better results using an English disambiguation model for parsing Ger-

man data, than when a German disambiguation model is used.

Acknowledgements

This work was partly funded by a Science Foundation Ireland Ph.D. scholarship

P07077-60101.

References

Ondřej Bojar and Jan Hajič. 2008. Phrase-Based and Deep Syntactic English-to-Czech

Statistical Machine Translation. In Proceedings of the third Workshop on Statistical

Machine Translation, Columbus, Ohio, June 2008.

Joan Bresnan. 2001. Lexical-Functional Syntax., Blackwell Oxford, 2001.

Miriam Butt, Helge Dyvik, Tracy H. King, Hiroshi Masuichi and Christian Rohrer.

2002. The Parallel Grammar Project. In Proceedings of the 19th International Con-

ference on Computational Linguistics (COLING’02), Workshop on Grammar Engi-

neering and Evaluation, pages 1-7. Tapei, ROC.

Aoife Cahill, Michael Burke, Ruth O’Donovan, Josef van Genabith and Andy Way.

2004. Long-Distance Dependency Resolution in Automatically Acquired Wide-

Coverage PCFG-based LFG approximations. In Proceedings of the 42nd ACL.

Aoife Cahill and Josef van Genabith. 2006. Robust PCFG-Based Generation using

Automatically Acquired LFG Approximations. In Proceedings of COLING-ACL

2006, pages 1033-1040, Sydney, Australia.

Mary Dalrymple. Lexical Functional Grammar, Academic Press, San Diego, CA; Lon-

don. 2001.

George Doddington. 2002. Automatic Evaluation of Machine Translation Quality Us-

ing N-Gram Co-Occurrence Statistics. In Proceedings of HLT 2002.

Martin Forst. 2007. PhD thesis. Disambiguation for a Linguistically Precise German

Parser. University of Stuttgart.

Yvette Graham, Deirdre Hogan and Josef van Genabith. 2007. Automatic Evaluation

of Generation and Parsing for Machine Translation with Automatically Acquired

Transfer Rules. In Proceedings of the 2007 Workshop on Using Corpora for NLG:

Language Generation and Machine Translation, at MT Summit XI, Copenhagen,

September 2007.

Yvette Graham and Josef van Genabith. 2008. Packed Rules for Automatic Transfer

Rule Induction. In Proceedings of the European Association of Machine Translation

Conference 2008, Hamburg, Germany.

Yvette Graham and Josef van Genabith. 2009. An Open Source Rule Induction Tool for

Transfer-Based SMT. To appear in The Prague Bulletin of Mathematical Linguistics.

Ronald M. Kaplan, Stefan Riezler, Tracy H. King, John T. Maxwell, and Alexander

Vasserman. 2004 Speed and Accuracy in Shallow and Deep Stochastic Parsing. In

Proceedings of Human Language Technology Conference/North American Chapter

of the Association for Computational Linguistics Meeting, Boston, MA, May 2-7

2004.

Ronald M. Kaplan, Tracy H. King and John T. Maxwell. 2002. Adapting Existing

Grammars: the XLE Experience. In Proceedings of COLING 2002, Taipei, Taiwan.

336

Ronald Kaplan and Joan Bresnan. 1982. Lexical Functional Grammar, a Formal Sys-

tem for Grammatical Represenation. In J. Bresnan, editor, The Mental Representa-

tion of Grammatical Relations, pages 173-281, MIT Press, Cambridge, MA.

Philipp Koehn, Franz Josef Och and Daniel Marcu. 2003. Statistical Phrase-based

Translation. In Proceedings of the HLT-NAACL 2003, pages 48-54, Edmonton,

May/June 2003.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation.

In Proceedings of MT Summit 2005.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison Burch, Richard Zens,

Alexandra Constantin, Marcello Federico, Nicola Bertoldi, Chris Dyer, Evan Herbst,

Brooke Cowen, Wade Shen, Christine Moran and Ondřej Bojar. 2007. Moses: Open

Source Toolkit for Statistical Machine Translation In Proceedings of the 45th Annual

Meeting of the Association of Computational Linguistics

John T. Maxwell III and Ronald M. Kaplan. 1991. A Method for Disjunctive Constraint

Satisfaction. In Current Issues in Parsing Technology, Masaru Tomita editor, pages

173-190, Kluwer Aca demic Publishers.

Franz Josef Och. 2003. Minimum Error Rate Training in Statistical Machine Trans-

lation. In Proceedings of the 41st Annual Meeting of the Association for Computa-

tional Linguistics (ACL-03), Sapporo, Japan, pages 160-167.

Franz Josef Och, Christoph Tillmann Hermann and Franz Josef Ney. 2000. Improved

Alignment Models for Statistical Machine Translation. In Proceedings of the 1999

Conference on Empirical Methods in Natural Language Processing (EMNLP’99).

College Park, MD, pages 20-28.

Kishore Papineni, Salim Roukos, Todd Ward and Wei-Jing Zhu. 2002. A Method

for Automatic Evaluation of Machine Translation. In Proceedings of ACL 2002,

Philadelphia, pages 311-318.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard Crouch, John T. Maxwell,

and Mark Johnson. 2002. Parsing the Wall Street Journal using Lexical Functional

Grammar and Discriminitive Estimation Techniques . (grammar version 2005) In

Proceedings of the 40th Annual Meeting of the Association of Computational Lin-

guistics (ACL), Philadelphia, July 2002.

Stefan Riezler and John T. Maxwell III. 2006. Grammatical Machine Translation. In

Proceedings of HLT-ACL, pages 248-255, New York.

Petr Sgall, Eva Hajičova and Jarmilla Panevova. 1986. The Meaning of the Sentence

and its Semantic and Pragmatic Aspects. Dordrecht: Reidel and Prague: Academia

1986.

Andreas Stolcke. 2002. SRILM - An Extensible Language Modeling Toolkit. In Pro-

ceedings of the International Conference on Spoken Language Processing, Denver,

Colorado, September 2002.

Omar Zaidan. 2009. Z-MERT: A Fully Configurable Open Source Tool for Minimum

Error Rate Training of Machine Translation Systems. In The Prague Bulletin of

Mathematical Linguistics, No. 91:79:88.

337

