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Abstract

LFG c(onstituent)-structure and f(unctional)-structure analyses provide

the detailed syntactic structures necessary for subsequent semantic analy-

sis. The f-structure encodes grammatical functions as well as semantically

relevant features like tense and number. The c-structure, in conjunction with

the φ-mapping, provides the information on linear precedence necessary for

semantic scope and anaphora resolution. In this paper, we present a system in

which a stochastic LFG-like grammar of English provides the input to the se-

mantic processing. The LFG-like grammar uses stochastic methods to create

a c-structure and a proto f-structure. A set of ordered rewrite rules augments

and reconfigures the proto f-structure to add more information to the stochas-

tic output, thereby creating true LFG f-structures with all of the features that

the semantics requires. Evaluation of the resulting derived f-structures and of

the semantic representations based on them indicates that the stochastic LFG-

like grammar can be used to produce input to the semantics. These grammars

combine the advantages of LFG structures, e.g. the explicit encoding of gram-

matical functions, with the advantages of stochastic systems, e.g. providing

connected parses in the face of less-than-ideal input.

1 Introduction

LFG c(onstituent)-structure and f(unctional)-structure analyses provide the detailed

syntactic structures necessary for subsequent semantic analysis (Dalrymple, 1999,

2001). The f-structure encodes grammatical functions as well as semantically rel-

evant features like tense and number. The c-structure, in conjunction with the

φ-mapping, provides the information on linear precedence necessary for semantic

scope and anaphora resolution.

LFG has also proven an excellent theory for use in computational linguistics

due to its computational and mathematical tractability (Maxwell and Kaplan, 1989,

1993, 1996). Cross-linguistic theoretical and implementational work has resulted

in large-scale LFG grammars for typologically varied languages (Butt et al., 1999,

2002). These LFG grammars face two challenges. First, some constructions may be

outside the scope of the grammar. This can arise when the input is ungrammatical,

e.g. contains typos, or when a construction is not covered by the grammar, e.g. the

construction is too computationally costly or too rare to warrant inclusion in the

grammar. Second, even highly efficient LFG implementations can be significantly

slower than state-of-the-art stochastic parsers.

In this paper, we present a project where the output of a stochastic LFG-like

grammar of English (Cahill et al., 2008) serves as input to the XFR semantic repre-

sentation (Crouch and King, 2006), mapping f-structures into semantic representa-

tions. The XFR semantics is used for meaning-sensitive applications such as ques-

tion answering (Bobrow et al., 2007) and search, expecting as input well-formed

†We thank Josef van Genabith and Jennifer Foster from Dublin City University for providing

the initial development data and the Natural Language Theory and Technology group at PARC for

providing the XLE LFG grammar and the XFR ordered rewrite system.

358



LFG c- and f-structures as created by the English ParGram grammar (referred to

here as the XLE grammar) which runs on the XLE LFG parser (Crouch et al., 2009).

The stochastic LFG-like grammar, created at Dublin City University and referred

to here as the DCU grammar, uses stochastic methods to create a c-structure and a

proto f-structure (Cahill et al., 2002). These proto f-structures do not necessarily

obey LFG’s completeness and coherence conditions, especially when long-distance

dependencies are involved, and do not have all of the f-structure features that the

XLE grammar provides.

Therefore, we augmented and reconfigured the output of the DCU grammar and

created a set of rewrite rules that add the information needed to obtain true LFG f-

structures with all of the features that the semantics requires (Hautli, 2009). For

most open class items, general rules could be used; other lexical items, such as

pronouns and determiners, required more specific, lexicalized rules to create the

appropriate f-structure facts.

The project results suggest that the proto LFG structures of stochastic gram-

mars such as the DCU grammar can be used for meaning-sensitive applications.

They combine the advantages of LFG structures, e.g. the explicit encoding of gram-

matical functions in f-structure, in conjunction with the advantages of stochastic

systems, e.g. providing connected parses in the face of less-than-ideal input. The

initial results also suggest that stochastic grammars producing the proto LFG struc-

tures can be used when no XLE LFG grammar is available but a treebank of the

language is: in such situations, it can be faster to create a stochastic grammar in-

stead of a rule-based one (Cahill et al., 2005). When an XLE LFG grammar does

exist, the DCU grammar can be used in conjunction with the XLE LFG grammar

to replace it in out-of-coverage sentences. The XLE LFG grammars produce dis-

tinctive fragment parses when sentences are out of coverage (Riezler et al., 2002);

these can be replaced by the DCU proto f-structures to provide spanning c- and

f-structures.

Section 2 provides an overview of the rule-based XLE grammar and the DCU

stochastic LFG-like grammar. The rewrite rules that apply to the DCU structures to

create XLE-style f-structures are described in section 3, with its evaluation follow-

ing in section 4. Section 5 discusses the approach and points to future work.

2 The Grammars

2.1 The English XLE Grammar

XLE is an efficient rule-based grammar development platform, developed by the

Palo Alto Research Center (PARC). It consists of cutting-edge algorithms for pars-

ing and generating Lexical-Functional Grammars, along with a user interface for

writing and debugging such grammars (Crouch et al., 2009). The platform is also

used in the ParGram project (Butt et al., 1999, 2002) for the development of parsers

for several languages including Arabic, Chinese, German, French, Norwegian,

Turkish, Urdu, and Welsh.
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The English XLE LFG grammar is designed to handle well-edited English text

(e.g. newspaper text, technical manuals) and is part of a larger system that maps

text to an Abstract Knowledge Representation (AKR) (Bobrow et al., 2007) via

the XLE parser and the XFR ordered rewrite system. The output of the system is

used for applications such as search, question-answering (Bobrow et al., 2007),

and redaction (Bier et al., 2009). The basic system pipeline is shown in Figure 1.

text breaker (FST)

↓

tokenizer & morphologies (FST)

↓

syntax (XLE LFG)

↓

semantics (XFR ORDERED REWRITING)

↓

AKR (XFR ORDERED REWRITING)

Figure 1: Pipeline architecture of the XLE-based system

The text is broken into sentences and words, using finite-state transducers (FST).

The morphology analyzes each word and passes the information on to the broad-

coverage XLE LFG grammar, which outputs c- and f-structure. These are then

processed by the semantic and AKR rewrite rules.

Like all LFG grammars, the output of the syntax is a tree (c-structure) encoding

linear order and constituency and an attribute-value matrix (f-structure) encoding

predicate argument structure and semantically important features such as number

and tense. These structures are more articulated than those usually found in LFG

textbooks and papers because they contain all the features needed by subsequent

processing and applications. Sample XLE c- and f-structures for The boys hopped.

are shown in Figure 2.1

XLE outputs a packed representation of all possible solutions which allows sub-

sequent processing to choose between different analyses for ambiguous sentences.

In order for the grammar to be robust, XLE uses Optimality Theory marks (OT

marks) in the syntax rules to indicate which analyses are dispreferred (Frank et al.,

1998). In addition, the grammar can produce well-formed fragments if there is no

analysis that spans the entire input (Riezler et al., 2002). The combination of these

capabilities makes XLE robust in the face of ill-formed input and shortfalls in the

coverage of the grammar.

1The XLE f-structures generally encode standard theoretical LFG f-structure features. The one

exception to this are the CHECK features which are used primarily grammar-internally to constrain

the application of specific syntactic constructions or to provide information useful for debugging.

By convention, the names of these features begin with an underscore. As will be seen in §3.2, for

the purposes of this project, the only CHECK feature of importance is the SUBCAT-FRAME feature

which the XFR semantics uses for lexical look-up.

360



CS 1: ROOT

Sadj[fin]

S[fin]

NP

D

^ the

NPadj

NPzero

N

boys

VPall[fin]

VPv[fin]

V[fin]

hopped

PERIOD

.

"The boys hopped."

'hop<[21:boy]>'PRED

'boy'PRED

countnoun-lex_LEX-SOURCECHECK

countCOMMONNSEM

commonNSYN
NTYPE

'the'PRED
defDET-TYPE

DETSPEC

CASE nom, NUM pl, PERS 321

SUBJ

V-SUBJ_SUBCAT-FRAMECHECK

MOOD indicative, PERF -_, PROG -_, TENSE pastTNS-ASP

CLAUSE-TYPE decl, PASSIVE -, VTYPE main64

Figure 2: XLE output for The boys hopped.

On top of the syntactic c- and f-structure output, a semantic representation is

derived using the XFR rewriting system. The semantic XFR system consists of rules

that rewrite the syntactic structure to a semantic one, using external resources to re-

place words with concepts and grammatical functions with semantic roles (Crouch

and King, 2006). In this paper, the XFR rewrite system is further used to rewrite

DCU f-strctures to XLE-like f-structures (§3).

2.2 The DCU LFG-like parser

Extensive efforts at Dublin City University have resulted in the development of

an automatic treebank annotation algorithm which annotates Penn-Treebank style

trees (Marcus et al., 1994) with LFG f-structure information (Cahill, 2004). The

annotated treebank can be used as a training resource for stochastic versions of

unification and constraint-based grammars and for the automatic extraction of such

resources (Cahill and McCarthy, 2002). The treebank is annotated such that solving

the annotated functional equations produces LFG-like f-structures. The annotations

describe what are called “proto-f-structures”, which

• encode basic predicate-argument-modifier structures;

• may be partial or unconnected (i.e. in rare cases a sentence may be associated

with two or more unconnected f-structure fragments rather than a single f-

structure);

• may not encode some re-entrancies, e.g. in the case of wh- or other move-

ment or distribution phenomena (e.g. of subjects into VP coordinate struc-

tures) (Cahill and McCarthy, 2002).

The basis of the annotation algorithm are treebank trees. These can either be

Penn-II Treebank trees or, for novel text where there is no treebanked analysis, the

output of a statistical parser such as that of Charniak (Charniak, 2000) or Bikel
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(Bikel, 2002). After obtaining the tree, the nodes in the tree are annotated with

f-structure equations. An example for Boys hopped. with the annotations is shown

in Figure 3.

Unannotated tree:

(S (NP (NNS Boys) ) (VP (VBD hopped)) (. .)

Annotated DCU tree:

(S

(NP [up-subj=down]

(NNS boys [up-pred=’boy’, up-num=pl,up-pers=3]))

(VP [down-stmt type=decl]

(VBD hopped [up-pred=’hop’,up-tense=past])

(. .))

Figure 3: Annotated DCU tree representation for Boys hopped.

After the annotation, all equations are percolated up the tree and unified at the

topmost node. This process results in the f-structure in Figure 4.

num pl, pers 3, pred boysubj

pred hop, stmt_type declarative, tense past-1

Figure 4: DCU f-structure for Boys hopped.

Evaluating the DCU annotation algorithm against existing gold standards shows

that it can outperform hand-crafted, wide-coverage constraint grammars. The cur-

rent DCU system achieves an f-score of 82.73 against the PARC 700 Dependency

Bank (King et al., 2003), compared to 80.55% for the hand-crafted XLE LFG pars-

ing system (Cahill et al., 2008). However, there are two issues with the f-structures

produced by the DCU gramamrs. First, the PARC 700 Dependency Bank has a

reduced feature set and contains only a subset of the features that are found in the

very detailed ParGram f-structures. Therefore, the XFR semantics would fail due

to missing f-structure features. Second, many of the features are present in the

DCU f-structures in a different form than those of the XLE ones, and so they must

be reformatted in order for the semantics to process them. Both of these problems

will be illustrated in the next section.

To summarize, with the DCU LFG-like grammar and the XLE grammar, we

have two different approaches to obtaining LFG analyses. On the one hand, the

rule-based XLE grammar has very detailed feature structures, but faces coverage

issues. On the other hand, the stochastic DCU grammar has the drawback of a less

detailed f-structure, but with more connected parses. In this project we aimed to

combine the advantages of both approaches.
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3 Hybridization with XFR Augmentation Rules

The reasons for hybridizing the XLE-based system (Figure 1) are two-fold. In the

case of English, the language used in this project, the stochastic grammar can be

used in place of the rule-based grammar for out-of-coverage sentences, thereby

supplying more connected input to the semantics. In the case of other languages,

if no rule-based grammar is available but a treebank of the language is, it can be

used to create a stochastic grammar for that language (Cahill et al., 2005).

3.1 The Overall Architecture

To produce the full, detailed f-structures needed by the semantics, we apply XFR

rules to map DCU proto f-structures to XLE-style f-structures. The XFR ordered

rewrite rules consume a set of input facts and replace it with another set of facts

(§3.2). These rules can create a link between the stochastic DCU grammar and the

rule-based XLE grammar output. The system using the DCU output as input for the

XLE semantics is shown in the pipeline in Figure 5.

sentence breaker (FST)

↓

DCU syntax (PTBP + ANNOTATION ALGORITHM)

↓

reformatting

↓

XFR rules (XFR ORDERED REWRITING)

↓

semantics (XFR ORDERED REWRITING)

Figure 5: Hybridized pipeline

First, a sentence breaker splits running text into sentences, which are then pro-

cessed by a probabilistic treebank based parser (PTBP) and annotated by the DCU

annotation algorithm (§2.2). The DCU proto f-structure output is then reformatted

by a script in order to be compatible with the input format expected by the XFR

system. After that, the XFR ordered rewrite rules are applied to create XLE-style f-

structures. In the final step, the rewritten f-structures are fed into the XFR semantic

rules.

3.2 The XFR Rules

Input to the system is a set of facts representing the f-structures obtained by the

DCU parser and the output is a set of rewritten facts representing the full f-structures

that are fed into the XFR semantic system. The XFR system operates on a source

f-structure and transforms it incrementally into the target structure. The order of

the rules is important because each rule has the potential to change the set of input
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facts that the subsequent rules will encounter: rules can prevent following rules

from applying by removing facts that they would otherwise have applied to; they

can also enable the application of later rules by introducing facts that these rules

require. See the XLE documentation (Crouch et al., 2009) for details of the XFR

system rule notation.

The rewriting works as follows: if a set of f-structure features (or part of an

f-structure) matches the left-hand side of a rule, then the rule applies to produce

the features on the right-hand side of the rule. A XFR rule which rewrites the DCU

proto f-structure for the subject boys is shown in Figure 6.

input:








subj









pred boy

num pl

pers 3

















XFR rule:

subj(%X,%Subj), pred(%Subj,%Pred), num(%Subj,%Num), pers(%Subj,3)

==>

SUBJ(%X,%Subj), PRED(%Subj,%Pred),

NUM(%Subj,%Num), PERS(%Subj,3),

NTYPE(%Subj,%Ntype), NSYN(%Ntype,common),

NSEM(%Ntype,%Nsem), COMMON(%Nsem,count).

output:






















SUBJ























PRED
′boy′

NTYPE





NSEM

[

COMMON count
]

NSYN common





NUM pl

PERS 3













































Figure 6: Rewriting of the noun boys

The XFR rule in Figure 6 works as follows. The material before the arrow (==>)

contains the input f-structure facts which must be matched for the rule to apply. The

material after the arrow contains the f-structure facts created by the application of

the rule. Forms beginning with a percent sign (%) are variables. For example, in

Figure 6, the variable %X is the f-structure which contains a subj; that subj is

then referred to by the variable %Subj. This %Subj f-structure must have pred

attribute with value %Pred and a num attribute with value %Num in order for the

XFR rule to match.

Given the input f-structure in Figure 6, the left-hand side of the rule goes

through the list of XFR facts and matches with the subj fact, whose pred ar-

gument has the value boy and also matches the subject’s num and pers attributes

with their values. The rule rewrites these facts to those on the right-hand side of
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the rule, resulting in the output f-structure shown in Figure 6. This is a very simple

example of an ordered rewrite rule but the principle remains the same for more

complicated constructions.

In total, the XFR system mapping from DCU to XLE f-structures consists of 162

rewrite rules.

In the remainder of this section we discuss several classes of issues that arose:

the correction of core predicate-argument structures which did not conform to the

XLE analysis or which were simply incorrect; the addition of default values which

are necessary for the semantics; and the lexicalization of rules to provide features

for particular predicates.

3.2.1 Core Predicate-Argument Structure

Of primary importance was correcting syntactic constructions where the core predi-

cate-argument structure provided in the DCU f-structure differed from that in the

XLE, and often in the theoretical LFG, analysis.

There were a few places where the original DCU analysis did not capture func-

tional control as a re-entrant f-structure. For example, in the DCU analysis of sen-

tences like This seems to be a post-1990 problem., what traditional LFG analysis

would consider a functionally controlled subject was represented only once within

the f-structure, as the subject of the matrix verb. In order to correctly represent

functional control, the identity relation between controller and infinitival subject is

done by creating a re-entrant f-structure for the controlled SUBJ under the XCOMP.

The creation of functional control structures is shown in Figure 7.

num sg, pred pro, pron_form thissubj

adegree positive, pred post-19901adjunct

apreddetspec

num sg, pers 3, pred problem

xcomp

pred be, to_inf +

xcomp

pred seem, stmt_type declarative, tense pres-1

'seem<[-1-SUBJ:this], [-1-XCOMP:be]>'PRED

'this'PRED

pronounNSYNNTYPE

DEIXIS proximal, NUM sg, PERS 3, PRON-TYPE demon

SUBJ

V-SUBJ_SUBCAT-FRAMECHECK

MOOD indicative, PERF -_, PROG -_, TENSE presTNS-ASP

'be<[-1-SUBJ:this], [-1-XCOMP-XCOMP:problem]>'PRED
[-1-SUBJ:this]SUBJ

'problem<[-1-SUBJ:this]>'PRED
[-1-SUBJ:this]SUBJ

'post-1990'PRED
ADV-TYPE vpadv, DEGREE positive

1ADJUNCT

'a'PRED
indefDET-TYPE

DETSPEC

NUM sg, PERS 3

XCOMP

PASSIVE -, VTYPE main

XCOMP

CLAUSE-TYPE decl, PASSIVE -, VTYPE main-1

Figure 7: Predicate-Argument Structure: Creation of functional control for This

seems to be a post-1990 problem.
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A second set of phenomena where the core predicate argument structure had to

be changed was imperatives and certain participial constructions. These structures

lack subjects in the original DCU f-structures. This occurs because the f-structures

produced by the DCU parser are not subject to the LFG completeness requirement

whereby all arguments of a predicate must be present in the f-structure, even if

they are not realized in the c-structure. These constructions were identified and the

appropriate subject information was provided. An example is provided in Figure 8.

notpred1adjunct

pred appear, stmt_type declarative, tense pres-1

'appear'PRED

'null_pro'PRED

pronounNSYNNTYPE

PERS 2, PRON-TYPE null

SUBJ

'not'PRED
negADJUNCT-TYPE

1ADJUNCT

MOOD imperative, PERF -_, PROG -_, TENSE presTNS-ASP

CLAUSE-TYPE imp, PASSIVE -, VTYPE main-1

Figure 8: Predicate-Argument Structure: Insertion of a subject for Do not appear

3.2.2 Adding Default Values: Verbs

The addition of default features for f-structures was one of the most important

tasks of the XFR mapping. This was particularly the case for verbs which govern

many semantically-relevant features such as tense, mood, and aspect (TNS-ASP)

and subcategorization frame information. All of these are used by the semantics

rules and so must be present in the input f-structure.

The features such as TENSE, VTYPE, MOOD and PASSIVE posed a challenge,

because of feature sparseness in the DCU structures. For example, the DCU gram-

mars provide a passive + feature when the verb is passive, but no passive -

feature when the verb is active. In the augmentation rules, these missing features

and values are provided by judicious use of rules inserting default values.

The system also adds subcategorization features. The XLE grammar’s verb lex-

icon has almost 9,800 verb stems with an average of 2.8 subcategorization frames

each.2 Subcategorization features are essential for the semantic lexical look-up that

aids in mapping the verb’s arguments to thematic roles in the semantics. The fea-

tures dealing with subcategorization include the core argument structure of the

PRED and a feature encoding the subcategorization frame name, which is not part

of the DCU f-structures.

2Most of the frames were obtained from electronic dictionaries or manually. See O’Donovan

et al. (2005) for ways to bootstrap creation of such lexical resources from treebanks.
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An example for the sentence He pushes it. is shown in Figure 9. Notice the

insertion of negative values for PASSIVE, PERF, and PROG as well as insertion

of the SUBCAT-FRAME feature.

num sg, pred pro, pron_form itobj

num sg, pred pro, pron_form hesubj

modal +, pred push, stmt_type declarative, tense fut-1

'push<[-1-SUBJ:he], [-1-OBJ:it]>'PRED

'he'PRED

pronounNSYNNTYPE

CASE nom, GEND-SEM male, HUMAN +, NUM sg, PERS 3, PRON-TYPE pers

SUBJ

V-SUBJ-OBJ_SUBCAT-FRAMECHECK

'it'PRED

pronounNSYNNTYPE

CASE obl, GEND-SEM nonhuman, HUMAN -, NUM sg, PERS 3, PRON-TYPE pers

OBJ

MOOD indicative, PERF -_, PROG -_, TENSE futTNS-ASP

CLAUSE-TYPE decl, PASSIVE -, VTYPE main-1

Figure 9: Default Values: Augmentation of verb-related features for He pushes it.

3.2.3 Lexicalization: Nouns and Pronouns

In some cases, more specific lexically-based information had to be provided in the

f-structure. This arose when the semantics depends on f-structure features which

are present in the XLE structures but not the DCU ones and which are not predictable

from the general syntactic configuration.

For example, in the DCU grammar, proper nouns are correctly identified as

such, but are not categorized by type. The morphology used in the XLE parser

types many proper nouns (e.g. locations (Detroit, France), organizations (IBM,

Congress), people (Mary, Smith), and gender for first names (Mary vs. John)).

Such information is valuable for the semantic interpretation, especially for anaphora

resolution and more accurate concept look-up. For this project, we extracted this

information from the morphology and incorporated it into the XFR rules.

Similarly, many time-related nouns, such as months, days, and seasons, which

the semantics expects to have identified with special f-structure date/time features,

were lexicalized in the XFR rules, as the DCU output did not distinguish them from

other nouns. However, all other nouns are accounted for by a general rule for

modifying and inserting common noun features and rewritten accordingly.

An example for the rewriting of proper nouns (i.e. Masha) and time expressions

(i.e. fall) is shown in Figure 10.

As a final example of lexicalization, personal, possessive, demonstrative, inter-

rogative, and relative pronouns have to be mapped individually based on the lexical

item due to the lack of relevant features on the DCU side. Examples of rewritten
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adegree positive, pred there1adjunct

adegree positive, pred next2adjunct

num sg, pers 3, pred fall
obj

num sg, pers 3, pred masha, proper miscsubj

pred go, prog +, stmt_type declarative, tense pres-1

'go<[-1-SUBJ:Masha], [-1-OBJ:fall]>'PRED

'Masha'PRED

NAME-TYPE first_name, PROPER-TYPE namePROPERNSEM

properNSYN
NTYPENTYPE

CASE nom, HUMAN +, NUM sg, PERS 3

SUBJ

'there'PRED
ADV-TYPE vpadv, DEGREE positive

1ADJUNCT

V-SUBJ-OBJ_SUBCAT-FRAMECHECK

'fall'PRED

'next'PRED
ADV-TYPE vpadv, DEGREE positive

2ADJUNCT

seasonTIMENSEMNTYPE

CASE obl, NUM sg, PERS 3

OBJ

MOOD indicative, PERF -_, PROG +_, TENSE presTNS-ASP

CLAUSE-TYPE decl, PASSIVE -, VTYPE main-1

Figure 10: Lexicalization: Rewriting of proper nouns and time expressions for

Masha is going there next fall.

pronouns were shown in Figure 9 for the personal pronouns he and it. In particular,

note the addition of the PRON-TYPE, PERS, GEND-SEM, and HUMAN features.3

4 Development and Evaluation

To develop the XFR augmentation rules that map from the DCU proto f-structures to

XLE-style f-structures, we created a testsuite of 430 sentences which covered core

and some peripheral syntactic phenomena in English and which was based on the

testsuites used by the XLE grammar developers to test syntactic coverage. For ex-

ample, the testsuite covers syntactic phenomena such as extraposition, extraction,

gerunds, sentential subjects and different clause types (declarative, interrogative

and imperative sentences).

A schematic overview of the system development and evaluation is provided

in Figure 11. The development and evaluation sentences were parsed by the XLE

parser to obtain full f-structures. The same sentences were parsed by the DCU

parser, creating proto f-structures. In the next step, augmentation ordered rewriting

3The XLE f-structures contain the nominative form of the pronoun as the PRED instead of the

more commonly accepted PRED
′pro′ familiar from the theoretical LFG literature and seen in the

input DCU f-structure in Figure 9. This choice of PRED value for pronouns is independent of the

issues in this paper, other than the fact that the XFR rewrite rules must be able to alter the PRED

values correctly in order to create the structures that the XFR semantics expects and input.
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development data

evaluation data

ւ

DCU PARSER ց

proto f-structures

↓

AUGMENTATION XFR RULES −→ syntactic match ←− XLE PARSER

DCU f-structures evaluation XLE f-structures

ց ւ

SEMANTIC

XFR RULES

ւ ց

DCU-based semantic match XLE-based

semantic −→ evaluation ←− semantic

representations representations

Figure 11: Overview of development (and evaluation)

rules reformatted and rewrote the DCU f-structures. The resulting f-structures were

compared to those produced by the XLE parser using XLE’s triples match (Crouch

et al., 2009). The same process was done at the level of the semantic representa-

tions.

4.1 Evaluation Measures

To compare the f-structures and semantic representations, we use the standard eval-

uation measures f-score, precision and recall, which compare the features of the

representations to be evaluated in relation to the features of a (often gold standard)

reference set.4 In this project, precision measures how many features in the trans-

ferred DCU f-structures are correct, whereas recall focuses on the completeness of

the transferred DCU structures. Here precision is usually higher than recall; this is

true for f-structures and for semantic representations. However, recall is the more

important measure here as it shows how complete the transferred DCU structures

are in relation to the original XLE structures.

4.2 Syntactic F-structure Evaluation

The f-structures in the transferred DCU f-structures were compared to those in the

XLE f-structures. The results are shown below for declaratives, interrogatives, and

imperatives.

4Precision and recall are widely used to evaluate the output of natural language processing sys-

tems. When a set of “test” items Y (rewritten DCU f-structures) is compared to a set of “reference”

items X (original XLE f-structures), precision (X|Y) =
|X∩Y |
Y

and recall (Y|X)=
|X∩Y |
X

(Melamed

et al., 2003) are measures to compare the output. The f-score is a weighted average of precision and

recall.
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F-Structure Matching of Declaratives The matching of declaratives varies quite

a bit, depending on how many proper nouns are included in the sentence.5 Expres-

sions like Eiffel Tower and President George W. Bush initially get a proper noun

feature from the DCU parser, but no information as to what kind of proper noun

they are (e.g. location, person, etc.). In order to insert this information, one would

have to list every item in the rewrite rules, something which cannot be done in the

general case for unknown text. This is why sentences with proper nouns usually

have a lower matching score.

Another difference between the DCU and XLE grammars is that the DCU parser

always treats hyphenated forms as single units. For example, in the noun phrase

a high-interest loan, the head noun loan has a single modifer high-interest in the

DCU analysis. This loses certain semantic relationships which are needed for the

semantic matching.

precision recall f-score

72.63 65.61 68.94

Table 1: Matching results for declaratives with proper nouns

If we consider sentences that do not contain proper nouns (e.g. I’ll go. or He

laughed every third year.), the results are as in Table 2. Note the significantly

higher scores.

precision recall f-score

87.13 82.67 84.84

Table 2: Matching results for indicatives without proper nouns

Many clauses have a perfect f-score of 100, but this is countered by issues concern-

ing coordination and the correct assignment of adjuncts in other sentences.

F-Structure Matching of Interrogatives A major issue is the DCU parsing of

interrogative clauses. The training data for the DCU grammar is a corpus from the

Wall Street Journal, which does not contain many matrix interrogatives. Due to the

lack of training data, interrogatives are often analyzed incorrectly, e.g. the subject

of the sentence is often analyzed as an object. Any mismatch in grammatical func-

tions is a serious issue for the semantic processing. Judge et al. (2006) propose a

method to add more interrogatives to the training data to alleviate this problems by

building a QuestionBank. This bank consists of a corpus of 4,000 annotated ques-

tions used to train parsers in question answering technology and the evaluation of

question parsing. Unfortunately, this DCU parser option was not available for this

project.

5The analysis of proper nouns is particularly important for the semantics because of the applica-

tions it is used in. As such, the testsuites contain examples of proper nouns in order to assure that

they are being correctly processed by the syntax and the semantics.
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Thirty-one sentences of the development data were interrogative sentences.

Matching the rewritten interrogatives against the original XLE interrogatives gives

the results in Table 3. The reason for the relatively low matching figures is that

these clauses get incorrect analyses due to the lack of interrogative sentences in the

DCU training data.

precision recall f-score

45.17 43.15 44.13

Table 3: Matching results for interrogatives

F-Structure Matching of Imperatives As with interrogatives, imperatives are

relatively rare in the Wall Street Journal corpus used to train the DCU parser. Our

development set contains 25 imperatives. The figures for the matching of impera-

tives are higher than those for interrogatives, as more features could be added by

the XFR rules and the analyses in general are closer to the XLE f-structures.

precision recall f-score

61.83 49.10 54.74

Table 4: Matching results for imperatives

4.3 Semantic Representation Evaluation

In order to determine whether enough information is included in the f-structures

for them to be input to the semantic representations used by meaning-sensitive

applications, we prepared an evaluation of semantic representations of 66 queries

and answers, chosen for their coverage of phenomena of interest to the semantics

(e.g. negation, anaphora).6 These were parsed by both the DCU and XLE parser,

then the DCU f-structures were processed by the XFR rules. Both XLE and DCU

f-structures were used as input to the semantic system, and the resulting semantic

representations were compared against each other. An example for a passage and

query (and answer) is the following:

(1) P: Although Mary likes vegetables she eats them raw.

Q; Does Mary like vegetables?

A: Yes

The matching figures for the semantic representations of the passage and the query

are shown in Table 5.

6These passage-query-answer pairs came from the regression sets (de Paiva and King, 2008) used

in developing the question answering system. By using a regression set which was designed for an

application that uses the XFR semantics, any changes in overall system performance could be more

easily detected.

371



precision recall f-score

64.04 60.27 62.10

Table 5: Query-passage pair match results for the semantic representation

The overall figures for the semantic matching are lower than those in §4.2 for

the syntactic matching due to the large number of interrogatives. However, on the

positive side, some of the passage sentences are significantly longer than those in

the development set, which had been chosen as representative of isolated syntactic

phenomena. The ability to correctly process these data provides evidence that the

hybrid system works on data which combines simple syntactic constructions into

the complex sentences found in naturally occurring text.

5 Future Work and Discussion

Given the initial positive results of the project, the next step is to build a fully

integrated hybrid DCU-XLE system (Figure 5) that can be run over large corpora

and compare the results with those of the standard XLE system (Figure 1). Of

particular importance is the behavior of the hybrid DCU-XLE system in application

contexts. Having such a system raises some issues that were unimportant in the

initial project. We address two of these here. We first discuss the issues arising

from the different treatment of ambiguity in the two systems. We then discuss

efficiency: back-of-the-envelope calculations show that the two systems should be

roughly similar in efficiency, but this remains to be tested empirically.

5.1 Ambiguity

The XLE LFG grammar can efficiently produce multiple analyses for a given sen-

tence (Maxwell and Kaplan, 1991). A maximum entropy model is applied to the

output of the grammar to rank the parses (Riezler et al., 2002) and an n-best sub-

set of the parses is then passed to the semantics. The more parses that are passed

forward, the more processing that the semantics and AKR rules must perform, al-

though the impact of this is mitigated by the ability of the XFR system to operate on

the packed structures produced by the XLE grammar (Crouch, 2005). In fact, the

XFR system uses the same packing mechanism and code that the XLE parser does.

For meaning sensitive applications, the n-best, instead of the single best, parses are

used in order to increase the chances that the correct parse is available.

On the DCU side, our system used the single parse produced by the DCU gram-

mar. In theory, it would be possible to obtain ranked output from the DCU parser,

e.g. by taking the n-best trees produced by the PTBG. In order for the semantics to

operate on them efficiently, these parses would have to be packed. However, pack-

ing unpacked input can be difficult and inefficient. As such, the hybrid DCU-XLE

approach seems best suited for applications and situations where a single parse
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provides sufficient information. Search, as opposed to question-answering, is one

possible application of this type.

5.2 Efficiency

The efficiency of the hybrid DCU-XLE approach was not systematically explored.

The XLE system can process sentences in documents with an average of∼20 words

per sentence (e.g. Penn Treebank WSJ sentences) at less than a second from text

to semantic output. Half of the time is spent on the syntax (i.e. creating the f-

structure).7 The exact percentage of time spent on the parsing step depends on

how many parses are passed forward to the semantics rules: when more parses are

passed forward, the processing by the XFR rules slows.

XLE has a number of performance variables that can be set to trade speed for

accuracy (Crouch et al., 2009). The one-second-a-sentence results use relative ag-

gressive settings with the result that ∼1.1% of the sentences time out or run out of

memory.

This version of the XLE grammar uses c-structure chart pruning to trim the

context-free c-structure forest before unification (Crouch et al., 2009). C-structure

pruning eliminates a subtree if there is another subtree analysis available and if

the subtree is significantly less probable than the most-probable subtree. The chart

pruner uses a simple stochastic CFG model where the probability of a tree is the

product of the probabilities of each of the rules used to form the tree. The prob-

ability of a rule is basically the number of times that that form of the rule occurs

in the training data divided by the number of times the rule’s category occurs in

the training data, plus a smoothing term. If a subtree’s probability is lower than the

best probability by a given factor, then the subtree is pruned. This approach ensures

that there is always at least one tree and that only highly improbable subtrees are

eliminated. The resulting c-structure forest is often still very large, but it is often

significantly smaller than the original one. Using c-structure pruning speeds the

XLE parser by ∼40% for English, while maintaining accuracy.

The DCU parser runs with a similar level of efficiency and hence should not

significantly change the speed of the overall system. In parsing the British National

Corpus (BNC) (Wagner et al., 2007), which has an average sentence length of 18

words, the PTBG, annotation, and unification took an average of 1.48 seconds per

sentence.8 This longer per-sentence parse time is somewhat misleading because

the parser in the DCU project in Wagner et al. (2007) was configured to provide

analyses for all sentences, no matter how long, complex, or grammatical; if the

occasional missed analysis is acceptable for a given application, more efficient

processing settings can be used.

7Within the XLE LFG parser, the syntax time is roughly divided as: morphology (including the

textbreaker and tokenizer) (4%), lexicon (6%), chart (25%), unifier (55%), completer (4%), solver

(6%).
8Extremely long sentences take much longer to parse, as is also the case for the XLE parser.
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The XFR rules used to map from the DCU output to the semantics input are

relatively few in number and add a negligible amount of time to the processing.

5.3 Conclusion

This paper reported on a project to use a stochastic parser (the probabilistic DCU

parser) that produces proto f-structures as the input to a semantic parser, in the

place of a rule-based LFG parser (the XLE parser). The f-structures were aug-

mented using a set of ordered rewrite XFR rules similar to the rules that create

semantic structures. When evaluating the DCU-based system against XLE output

on the f-structure level, the results are promising in that the DCU-based f-structures

can be used by the semantics to produce well-formed semantic structures. This

provides the opportunity to build hybrid systems using different grammar versions

depending on their ability to parse the input data. The disadvantages of the DCU

parser, which assigns fewer features to the proto f-structures, can be overcome by

the XFR rules providing full LFG structures with detailed syntactic and semantic

features identical to those produced by XLE LFG grammar.

As more researchers wish to build meaning-sensitive applications on top of

ParGram-style XLE grammars, our work suggests that hybrid systems can be built

using DCU grammars for the syntactic processing step (e.g. for Spanish for which

there is a DCU ParGram grammar but no XLE one).
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