
AUTOMATIC ACQUISITION OF LFG RESOURCES

FOR GERMAN - AS GOOD AS IT GETS

Ines Rehbein and Josef van Genabith

Universität des Saarlandes Dublin City University

Proceedings of the LFG09 Conference

Miriam Butt and Tracy Holloway King (Editors)

2009

CSLI Publications

http://csli-publications.stanford.edu/

480



Abstract

We present data-driven methods for the acquisition of LFG resources from

two German treebanks. We discuss problems specific to semi-free word or-

der languages as well as problems arising from the data structures determined

by the design of the different treebanks. We compare two ways of encoding

semi-free word order, as done in the two German treebanks, and argue that

the design of the TiGer treebank is more adequate for the acquisition of LFG

resources. Furthermore, we describe an architecture for LFG grammar ac-

quisition for German, based on the two German treebanks, and compare our

results with a hand-crafted German LFG grammar.

1 Introduction

Traditionally, deep, wide-coverage linguistic resources are hand-crafted and their

creation is time-consuming and costly. Much effort has been made to overcome this

problem by automatically inducing linguistic resources like rich, deep grammars,

lexicons and subcategorisation frames from corpora. Most work so far has con-

centrated on English, like that of Hockenmaier and Steedman [2002], Nakanishi

et al. [2004] and Cahill et al. [2002, 2004]. They present successful approaches

for the acquisition of deep linguistic resources from the Penn-II treebank, using

different grammar frameworks like CCG, HPSG and LFG. English, however, is a

configurational language, where strict word-order constraints help to disambiguate

predicate-argument structure. Porting these approaches to a semi-free word order

language, we have to ask: How good can it get? Can we expect similar results

when dealing with (semi-) free word order? Can data-driven methods cope when

dealing with ambiguous data structures and sparse data, caused by a rich(er) mor-

phology in combination with case syncretism? And, furthermore, what impact

does treebank design have on the automatic acquisition of linguistic resources like

deep grammars?

This paper describes approaches to treebank-based acquisition of LFG resources

for a semi-free word order language, based on the method of Cahill et al. [2002,

2004, 2008], Burke et al. [2004] and O’Donovan et al. [2005], who presented the

large-scale acquisition of LFG grammars and lexical resources from the English

Penn-II and Penn-III treebanks. They also presented work on data-driven multilin-

gual unification grammar development for Spanish, Chinese and German. While

results point to treebank-based grammar acquisition being a universal method, re-

sults for other languages are by far lower than the ones achieved for English and

the English Penn treebank.

There are different possible reasons for this: first of all, the size of the English

Penn-II treebank, which is much larger than most treebanks for other languages,

might be responsible for the good results on English. Another reason might be the

configurational English word order, where strict constraints determine the gram-

matical function of a lexical unit in a certain surface position. Finally, the good

results for English might be due to the data structures employed in the Penn-II

481



treebank, which might be optimised for the task at hand and thus improve perfor-

mance on the English data.

In this paper we develop different f-structure Annotation Algorithms for Ger-

man, based on two German treebanks with crucially different annotation schemes,

adapted to feature sets of varying granularity as represented in three different gold

standards. We discuss problems specific to the annotation schemes of the two tree-

banks as well as to language-specific properties of German, where the variability

in word order and the richer morphology (compared to English) often result in data

sparseness, causing severe problems for data-driven methods. Finally, we com-

pare the performance of our data-driven grammar acquisition architectures with

the hand-crafted German ParGram LFG of Dipper [2003], Rohrer and Forst [2006],

and Forst [2007].

The paper is structured as follows: Section 2 gives an overview of typological

properties of German and their representation in two different German treebanks.

Section 3 describes the LFG grammar acquisition architecture for German, focus-

ing on the differences to the work of Cahill et al. [2003, 2005] and Cahill [2004].

Section 4 reports on the automatic generation of LFG f-structures and discusses

problems specific to semi-free word order and to the design of the German tree-

banks. Section 5 presents a comparison of our best automatically acquired LFG

grammar with related work, namely the hand-crafted ParGram LFG for German.

The last section concludes.

2 Typological Properties of German and their Represen-

tation in Two German Treebanks

German, like English, belongs to the Germanic language family. Despite being

closely related, there are crucial differences between the two languages. One of

them is the semi-free word order in German, which contrasts with the more config-

urational English; another, but related difference concerns the richer morphology in

German, compared to the rather impoverished English morphology. Both proper-

ties are reflected in the treebank data structures used to represent syntactic analyses

of the particular languages.

2.1 TiGer and TüBa-D/Z: Two German Treebanks

The TiGer treebank [Brants et al., 2002] and the TüBa-D/Z [Telljohann et al., 2005]

are two German treebanks with text from the same domain, namely newspaper text.

Both treebanks are annotated with phrase structure trees, dependency (grammatical

relation) information and POS tags, using the Stuttgart Tübingen Tag Set (STTS)

[Schiller et al., 1995]. Differences regard the set of categorial node labels used for

syntactic annotation and the set of grammatical function labels. TiGer annotates

25 different syntactic categories and distinguishes between 44 different grammat-

ical functions, while the TüBa-D/Z uses 26 different syntactic categories and 40

482



“But without the Tigers there will be no peace”

Figure 1: TiGer treebank tree

grammatical function labels. The main differences between the two treebanks are:

(1) the flatter annotation in TiGer compared to the more hierarchical annotation

in TüBa-D/Z, (2) the annotation of unary nodes in the TüBa-D/Z and no unary

nodes in TiGer, (3) TüBa-D/Z uses topological fields to annotate the semi-free

German word order, which allows for three possible sentence configurations (verb-

first, verb-second and verb-final), and (4) TiGer annotates Long Distance Depen-

dencies through crossing branches, while TüBa-D/Z encodes LDDs with the help

of grammatical function labels (see Figures 1 and 2).

3 Automatic Annotation of LFG F-Structures

Cahill et al. [2003, 2004, 2005, 2008] presented a modular architecture for auto-

matically annotating the English Penn-II treebank with LFG f-structures (Figure

3), which enables them to automatically extract deep, wide-coverage grammars

which yield results in the same range as the best hand-crafted grammars for En-

glish [Briscoe and Carroll, 2002, Kaplan et al., 2004]. The f-structure Annotation

Algorithm (AA) exploits lexical head information, and categorial, configurational

and functional information as well as traces and co-indexation annotated in the

Penn-II treebank. After determining the head of each constituent, the main module

of the AA uses left-right context annotation principles to assign the most probable

f-structure equation to each node in the tree (Figure 3). These principles express

annotation generalisations and have been hand-crafted by looking at the most fre-

quent grammar rules for each node in the Penn-II treebank and are also applied to

unseen low-frequency rules. A sample partial left-right context annotation rule for

NPs is given in Table 1. The left-context rule states that all adjectives or adjectival

phrases to the left of the head of an NP should be annotated as an adjunct, while

the right-context rule specifies that an NP to the right of the head of an NP is an

483



“However, there won’t be considerable reinforcements for the next playing

season.”

Figure 2: TüBa-D/Z treebank tree

Head−
Lexicalisation

Coordination

Annotation Annotation

Principles

Catch−All

Clean−Up

Left−Right Context

Principles

and Traces

Figure 3: Architecture of the English f-structure Annotation Algorithm (AA)

apposition. The creation of these left-right-context rules needs linguistic expertise

and crucially depends on configurational properties of English.

left-context head right-context

JJ, ADJP: ↓ = ∈ ↑ ADJUNCT NN, NNS, ... NP: ↓ = ∈ ↑ APP

↑=↓

Table 1: Left-right context annotation rule used in the English AA

Coordinations are treated seperately. After adding f-structure equations to all

nodes in the tree, the Catch-All and Clean-Up module deals with overgeneralisa-

tions. Finally, traces are resolved.

The German LFG AA, like the English one, is highly modularised and pro-

ceeds as follows (Figure 4). First it reads in the treebank trees encoded in the

NEGRA export format and converts each tree into a tree object. Then it applies

head-finding rules which we developed in the style of Magerman [1995], in order

to determine the head of each local node.1 The head-finding rules specify a set

of candidate heads, depending on the syntactic category of the node, and also the

1TiGer provides head annotation for all categorial nodes except NPs, PPs and PNs. Due to the

flat annotation in TiGer, partly resulting from the decision not to annotate unary nodes, the problem

of identifying the correct head for those nodes is more severe than for the TüBa-D/Z, where the more

hierarchical structure results in smaller constituents which, in addition, are all head-marked. When

annotating original treebank trees, the head-finding rules are applied to NP, PP and PN nodes; when

484



Read

Tree
Special

Cases
Macros Validate

Find

Head

Figure 4: Architecture of the German f-structure Annotation Algorithm

direction (left/right) in which the search should proceed. For prepositional phrases,

for example, we start from the left and look at all child nodes of the PP. If the left-

most child node of the PP has the label KOKOM (comparative particle), we assign

it as the head of the PP. If not, we check if it is a preposition (APPR), a preposition

merged with a determiner (APPRART), an apposition (APPO), and so on. If the

left-most child node does not carry one of the candidate labels, we take a look at

the next child node, working our way from left to right.

For some of the nodes these head-finding rules work quite well, while for others

we have to accept a certain amount of noise. This is especially true for the flat NPs

in the TiGer treebank. A Special Cases module checks these nodes at a later stage

in the annotation process and corrects possible errors made in the annotation.

After determining the heads, the tree is handed over to the Macros module

which assigns f-structure equations to each node. This is done with the help of

macros. Sometimes these macros overgeneralise and assign an incorrect grammat-

ical function. In order to deal with this, the Special Cases module corrects inap-

propriate annotations made by the Macros module. Finally the Validation module

takes a final look at the annotated trees and makes sure that every node has been

assigned a head and that there is no node with two child nodes carrying the same

governable grammatical function.

The most important difference in the design of the English and the German

AAs concerns the application of left-right context annotation rules described above.

For English, these rules successfully specify the correct annotation for the majority

of local nodes in a given tree. For German, however, these rules do not work as well

as for English. Table 2 illustrates this point by showing different possibilities for

the surface realisation of a (rather short) German sentence. Some of the examples

are highly marked, but all of them are possible surface realisations of (1).

(1) Die

the

Anklage

prosecution

legt

lies

ihm

him

deshalb

therefore

Betrug

fraud

zur

to the

Last.

burden.

The prosecution therefore charges him with fraud.

The f-structure-annotated grammar rule for the sentence in (1) (Figure 5) tells

us that the first NP Die Anklage (the prosecution) is the subject of the sentence,

running the AA on parser output trees with erroneous or no GF labels in the trees, we also make use

of head-finding rules for other syntactic categories.

In TüBa-D/Z, heads are marked for most categorial nodes. However, there are some open issues,

like the one concerning the head of the middle field or of proper name nodes, or the annotation of

appositions, which are considered to be referentially identical and therefore bear no head marking in

the TüBa-D/Z.

485



S → NP VVFIN PPER PROAV NN PP

↑ SUBJ=↓ ↑=↓ ↑ DA=↓ ↓∈↑MO ↑ OA=↓ ↑ OP=↓

Figure 5: Grammar rule and f-structure equations for the sentence in (1)

Die Anklage legt ihm deshalb Betrug zur Last.

Betrug legt ihm deshalb die Anklage zur Last.

Ihm zur Last legt die Anklage deshalb Betrug.

Zur Last legt ihm die Anklage deshalb Betrug.

Deshalb legt ihm die Anklage Betrug zur Last.

... ... ... ... ... ...

Table 2: Variable word order in German (sentence (1))

while the noun Betrug (fraud) should be annotated as an accusative object, and

the pronominal adverb deshalb (therefore) is an element of the modifier set. Ta-

ble 2, however, illustrates that these constituents can occur in very different posi-

tions to the left or right of the head of the sentence. This shows that, unlike for a

strongly configurational language such as English, the specification of left-right-

context rules for German is not very helpful.

Instead of developing horizontal and strongly configurational context rules, the

AA for German makes extended use of macros, using different combinations of

information such as part-of-speech (POS) tags, node labels, edge labels and parent

node labels (as encoded in the TiGer and TüBa-D/Z treebanks). First we apply

more general macros assigning functional annotations to each POS, syntactic cate-

gory or edge label in the tree. More specific macros, such as the combination of a

POS tag with the syntactic node label of the parent node or a categorial node with a

specific grammatical function label, can overwrite these general macros. The order

of these macros is crucial, dealing with more and more specific information. Some

of the macros overwrite information assigned before, while others only add more

information to the functional annotation.

To give an example, consider the POS tag ART (determiner). The first macro

is triggered by this POS tag and assigns the f-structure equation ↑=↓,↓ det-type=

de f . The next macro looks at combinations of POS tags and grammatical func-

tion (GF) labels and, for a determiner with the label NK (noun kernel), adds the

equation ↑ spec : det =↓, while the same POS tag gets assigned the functional

equation ↓∈↑ spec : number when occurring with the edge label NMC (numerical

component). The annotation for the combination of POS and grammatical function

label can be overwritten when a more specific macro applies, e.g. one which also

considers the parent node for a particular POS-GF-combination.

The determiner with edge label NK has so far been annotated with headword,↓

det-type = de f ,↑ spec : det =↓. This is overwritten with the f-structure equation

↑ ob j : spec : det =↓, if it is the child of a PP node. This is due to the fact that

the annotation guidelines of the TiGer treebank analyse prepositions as the head

of a PP, while the head noun (and its dependents) inside the PP is annotated as the

486



object of the preposition. Due to the flat annotation in the TiGer treebank, it is not

helpful to use vertical context above the parent node level. The AA makes heavy

use of the Special Cases module, where further annotation rules are specified for

most syntactic categories. One tricky case is that of NPs, which have a totally

flat structure in the TiGer treebank. There are many cases where the information

about POS tag and grammatical function label is not sufficient, and neither is their

relative position to the head of the phrase. In those cases the presence or absence

of other nodes decides the grammatical function of the node in question.

NP

NN

↓∈=↑: name_mod

Kanzlerin

chancellor

PN

↑=↓

NE

↓∈=↑: name_mod

Angela

Angela

NE

↑=↓

Merkel

Merkel

Figure 6: NP-internal structure in TiGer (PN=head)

NP

ART

↑ spec : det =↓

die

the

NN

↑=↓

Kanzlerin

chancellor

PN

↑ app=↓

NE

↓∈=↑: name_mod

Angela

Angela

NE

↑=↓

Merkel

Merkel

Figure 7: NP-internal structure in TiGer (PN=apposition)

To illustrate this, consider the three examples in Figures 6-8. All three exam-

ples show an NP with a noun child node followed by a proper name (PN) node, but

where the grammatical annotations differ crucially. In Figure 6, the PN is the head

of the NP. In Figure 7, where we have a determiner to the left of the noun (NN), the

noun itself is the head of the NP, while the PN is an apposition. The third example

(Figure 8) looks pretty much like the second one, with the exception that Merkel is

in the genitive case. Here the PN should be annotated as a genitive attribute. This

is not so much a problem for the annotation of the original treebank trees where

we have both the correct grammatical function labels as well as morphological

information. For parser output, however, morphological information is not avail-

able and the grammatical functions assigned are often incorrect. In Section 4.2.1

487



NP

ART

↑ spec : det =↓

die

the

NN

↑=↓

Regierung

government

PN

↑ gr =↓

NE

↓∈=↑: name_mod

Angela

Angela

NE

↑=↓

Merkels

Merkel.gen

Figure 8: NP-internal structure in TiGer (PN=genitive to the right)

we will return to this issue und discuss the reason for the missing morphological

information in the parser output.

3.1 Differences between our AA for German and Preliminary Work

The annotation algorithm for German presented in this chapter is based on and

substantially revises and extends preliminary work by Cahill et al. [2003, 2005]

and Cahill [2004]. The AA by Cahill et al. provides annotations for a rather lim-

ited set of grammatical functions only (26 grammatical functions: 11 governable

functions, 10 non-governable functions and 5 atomic features). We created a new

gold standard f-structure bank containing 250 sentences from the TiGer treebank,

the TIGER250, which uses a substantially extended set of grammatical functions

and features (46 grammatical functions: 14 governable grammatical functions, 13

non-governable grammatical functions and 19 atomic features). As a result, the

annotated resources contain richer linguistic information and are of higher quality

and usefulness compared to the one of Cahill et al. [2003, 2005] and Cahill [2004].

Our annotation algorithm also makes use of a valency dictionary in order to distin-

guish between stative passive constructions and the German Perfekt with sein ’to

be’.

We also adapted the AA to the feature set used in the TiGer DB2 [Forst et al.,

2004] (Dependency Bank) and a hand-crafted gold standard from the TüBa-D/Z3

(TUBA100).

2The TiGer DB distinguishes 52 different grammatical features. We use a slightly modified ver-

sion without the distinction between different prepositional objects, and without morphological fea-

tures or compound analysis.
3The TüBa-D/Z gold standard was semi-automatically created by Heike Zinsmeister and Yannick

Versley, using the conversion method of Versley [2005] on 100 randomly selected trees from the

TüBa-D/Z. The feature set is similar to the TiGer DB.

488



4 LFG F-Structure Annotation and Evaluation on Two

German Treebanks

For German, we adapted the AA to the node and edge labels of the two German

treebanks. As described above, word order variation in German does not allow

to make strong use of configurational information as in the English AA. Instead,

we heavily rely on the grammatical function labels in the trees. This works well

when annotating original treebank trees, but causes many problems when applied

to parser output. State-of-the-art parsing results as presented in the PaGe Shared

Task on Parsing German [Kübler, 2008] are in the range of 58-70% F-score for

TiGer and 75-84% for TüBa-D/Z.4 The differences in annotation schemes do not

allow for a direct comparison of parsing results, but the message is clear: for both

treebanks automatically assigned syntactic nodes and, even more important, gram-

matical function labels are to a great extent error-prone, which defines an upper

bound for treebank-based parsing into f-structures using the automatic annotation

algorithm.

Section 4.2 presents parsing experiments with automatic LFG f-structure an-

notation based on TiGer and TüBa-D/Z, and evaluates the generated f-structures

against hand-crafted gold standards from the TiGer treebank (TiGer DB, TIGER250)

and from the TüBa-D/Z (TUBA100). However, before applying the AA to parser

output we want to test its performance on gold standard syntax trees.

4.1 Results for LFG F-Structure Annotation on Gold Standard Syn-

tax Trees

Table 3 shows results for automatic f-structure annotation on gold treebank trees

for the sentences in the TiGer DB, the TIGER250 and the TUBA100.5 Results for

Prec. Rec. F-Score

TiGerDB 87.8 84.8 86.3

TIGER250 96.8 97.5 97.1

TUBA100 95.5 94.6 95.0

Table 3: Results for automatic f-structure annotation on gold treebank trees

the TIGER250 and the TUBA100 are quite good, while results for the TiGer DB

are around 10% lower. This is due to mapping problems between the TiGer DB

and TiGer treebank. The sentences in the TiGer DB have been converted semi-

automatically into a dependency-based triple format, using a large, hand-crafted

LFG grammar for German [Dipper, 2003] and then manually corrected. The TiGer

DB provides a very fine-grained description of linguistic phenomena in German,

4Results report constituent-based evalb labelled F-scores on syntactic nodes and grammatical

function labels when using gold POS tags with gold GF labels as parser input
5We split the gold standards into development and test set, with 500 test set trees for the TiGer

DB and 125 test trees for the TIGER250. Due to its limited size, we did not split the TUBA100.

489



but includes additional information which is not annotated in the TiGer treebank

and thus cannot be derived automatically. This means that the TiGer DB-based

evaluation is biased in favour of the hand-crafted LFG grammar of Dipper [2003].

4.2 Parsing German with Automatically Acquired LFG Grammars

In our experiments we use the Berkeley parser [Petrov and Klein, 2008], a language-

agnostic parser which automatically refines and re-annotates the training data by

applying split-and-merge operations, so that the likelihood of the transformed tree-

bank is maximised. The Berkeley parser achieved the best results in the Shared

Task on Parsing German (ACL 2008).

We removed the gold standard sentences from the treebanks and extracted two

training sets with 25,000 sentences each. For TiGer we persued two different ways

of resolving crossing branches in the trees: (1) by attaching the non-head child

nodes higher up in the tree, following Kübler [2005], and (2) by splitting discon-

tinuous nodes into smaller “partial nodes” [Boyd, 2007], a strategy which aims

at preserving local tree structure while allowing the system to recover the origi-

nal dependencies after parsing. With regard to GF labels we tested two different

settings: in the first setting (Atomic) we merged categorial node labels with gram-

matical function labels and trained the parser on the new atomic labels. In the

second setting (FunTag) we removed GF labels from the training data and trained

the parser on syntactic categories only. The GF labels were then assigned in a post-

processing step, using the SVM-based grammatical function labelling software by

Chrupała et al. [2007]. We parsed the different test sets with the extracted gram-

mars and, for the grammars without grammatical functions, let FunTag assign GFs

to the parser output. The trees with grammatical function labels were passed over

to the AA, where all nodes in the parse trees were annotated with LFG functional

equations. Next we collected the equations and handed them over to a constrainst

solver, which generated LFG f-structures.

4.2.1 Results

Table 4 shows constituent-based parsing results for the different test sets and set-

tings (Atomic, FunTag) as well as results for f-structure evaluation. For the first set-

ting, where we let the Berkeley parser assign the grammatical functions (Atomic),

the two TiGer test sets yield constituent-based parsing results in the range of 76-

79% (labelled F-score on syntactic categories) and 67-70% (including GF labels).

Results for the TüBa-D/Z are more than 10% higher, which is an artifact of the

different treebank annotation schemes and does not reflect parser output quality, as

can be seen in the f-structure evaluation. On the f-structure level precision is in the

range of 73-81%, while recall for the TüBa-D/Z f-structures is dramatically lower

at around 45%. For the TiGer, we achieve a recall of 73.7% for TiGer DB and of

79.7% for the TIGER250 test set.

Parsing results for the Berkeley parser trained on TiGer syntactic nodes only

490



Constituent-based evaluation

Atomic FunTag

length<= 40 F-score F-score GF POS acc. F-score F-score GF POS acc.

TiGerDB 79.3 70.2 96.0 81.0 70.9 97.0

TIGER250 76.6 66.9 95.4 79.3 68.4 96.5

TUBA100 89.3 80.2 96.5 89.2 76.3 96.4

f-structure evaluation

Atomic FunTag

Precision Recall F-score Precision Recall F-score

TiBerDB 73.0 73.9 73.4 76.1 65.1 70.2

TIGER250 81.4 79.7 80.5 87.6 67.5 76.3

TUBA100 76.9 45.1 56.9 75.8 39.3 51.7

Table 4: C-structure parsing results (labelled F-score without and with GF) and

f-structure evaluation

(FunTag) are higher than for the atomic labels. For TüBa-D/Z, however, we ob-

serve better results when training on both syntactic categories and grammatical

functions. The FunTag-assigned GFs yield better evalb results and a higher pre-

cision for the TiGer f-structures. For the TüBa-D/Z, precision is slightly lower

than for f-structures generated from parser output where the Berkeley parser did

the function labelling. The better precision for the TiGer f-structures comes at the

cost of a decrease in recall. For the TüBa-D/Z f-structures, recall is even lower

than before.

There are several reasons for the low recall for the TüBa-D/Z: (1) Due to its

limited size the TUBA100 does not cover all relevant grammatical phenomena and

therefore is not sufficient as a test set for grammar development, which is reflected

in the low recall score. (2) Phrases without a clear dependency relation to the other

constituents in the tree are attached directly to the root node in the TüBa-D/Z. The

resulting tree structure makes it impossible for the AA to disambiguate the sentence

and find a suitable dependency relation for the highly attached node, which means

that these nodes are not represented in the f-structure, further lowering recall for

the TüBa-D/Z. (3) NP internal structure in the TüBa-D/Z contains less information

than in TiGer, where grammatical function labels distinguish genitive attributes,

dative attributes and comparative complements. The missing information can be

partly retrieved from morphological annotation, but this would require an exten-

sive treebank transformation to make this information available to the parser. The

grammars extracted from the treebanks do not include morphological information,

which means that the TiGer grammars encodes more specific functional informa-

tion than the TüBa-D/Z grammars.

Yet another reason for the lower recall for TüBa-D/Z f-structures can be found

in the design of the grammatical function labels used in the annotation. While

the original treebanks use roughly the same number of grammatical functions (44

in TiGer versus 40 in TüBa-D/Z; Table 5), some of the grammatical functions

in the TüBa-D/Z occur only with a very low frequency. When comparing two

smaller subsets of 2,000 gold treebank trees, we still find 42 of the 44 GFs in

491



Gold all Gold 2000 Atomic FunTag

TiGer 44 42 41 40

TüBa-D/Z 40 33 31 19

Table 5: Number of different grammatical functions in TiGer/TüBa-D/Z gold trees

and reproduced in the different parsing settings (Atomic/FunTag)

the TiGer set, while the TüBa-D/Z subset uses only 33 of the 40 GFs. For parser

output the problem gets even worse. In the TiGer-trained parser output for the same

subset of 2,000 sentences we find 41 different GF labels when the Berkeley parser

assigns the grammatical functions, and 40 when FunTag does the GF labelling,

while in a data set of the same size from the TüBa-D/Z, only 31 different GF labels

are used in the parser output (Atomic), and the FunTag approach yields only 19

different grammatical functions. This leads to a crucial difference between the

type of information encoded in the GF labels for the two treebanks: while TiGer

labels describe the grammatical function of one node, in TüBa-D/Z the GF labels

(besides the main grammatical functions such as subject and acusative or dative

object) express dependency relations between different nodes in the tree, which

are often positioned in different topological fields. As pointed out, some of the

grammatical functions in the TüBa-D/Z occur with a very low frequency.6 This

poses a problem for machine learning methods, which rely on a sufficiently large

set of training instances in order to achieve good performance on unseen data.

GF Atomic FunTag Atomic FunTag

TiGer (2,000 sent.) TüBa-D/Z (2,000 sent.)

DA 52.5 74.9 56.8 27.2

OA 79.5 85.5 69.0 46.4

SB 90.0 88.4 85.2 72.1

ALL GF 93.1 94.4 91.9 88.3

Table 6: Evaluation of main grammatical functions in TiGer and TüBa-D/Z (dative

object: DA/OD, accusative object: OA, subject: SB/ON)

Next we compare results for the main grammatical functions (subject, ac-

cusative and dative object) on 2,000 sentence test sets from TiGer and TüBa-D/Z

(Table 6). For parser-assigned GFs, we observe better results for dative objects

(DA/OD) for the parsing model trained on the TüBa-D/Z, while for subjects and

accusative objects the TiGer-trained parser yields better results. The SVM-based

FunTag shows poor performance on the TüBa-D/Z data, while for TiGer the func-

tion labeller outperformes the setting where the Berkeley parser does the GF as-

signment (Atomic). This divergent behaviour might be due to the different data

6OA-MODK (conjunct of modifier of accusative object), ON-MODK (conjunct of modifier of

nominative object) and OADVPK (conjunct of modifier of ADVP object) occur only once in 27,125

sentences in TüBa-D/Z Release 3, OG-MOD (modifier of genitive object) 7 times, OADJP-MO

(modifier of ADJP object) 8 times, OADVP-MO (modifier of ADVP object) 10 times, and FOPPK

(facultative object of PP object) 17 times.

492



structures in the treebanks. The split into topological fields in the TüBa-D/Z takes

away necessary context information, which is encoded in the feature set for the flat

TiGer trees.

4.3 Different Approaches to Discontinuity and their Impact on F-

Structure Annotation

Boyd [2007] presents an improved method for converting the crossing branches

in TiGer into context-free representations by splitting up discontinuous nodes into

marked “partial” nodes. She shows that the improved conversion results in more

consistent trees and improves results in a labelled dependency evaluation for ac-

cusative, dative and prepositional objects. In her experiments, Boyd used an unlex-

icalised PCFG parsing model (LoPar, Schmid [2000]) with gold POS tags as parser

input.

We applied the split-node conversion method to the TiGer data and trained the

Berkeley parser on the converted training sets. Table 7 shows parsing results for

the two conversion methods: (1) raised nodes and (2) split nodes. For the TiGer

DB test set, results for the split-node conversion are slightly worse, while for the

TIGER250 test set there is a small improvement of 1% F-score. For both data sets,

however, the number of valid f-structures decreases considerably.

Precision Recall F-score valid F-struc.

TiGer DB

raised 73.0 73.9 73.4 82.4

split 71.8 72.0 71.9 71.0

TIGER250

raised 81.5 80.9 81.2 88.0

split 82.7 81.8 82.2 84.0

Table 7: f-structure evaluation on converted TiGer trees (raised- vs. split-node)

Boyd’s split-node conversion works well for pure PCFG parsers like LoPar.

The Berkeley parser, however, makes use of horizontal markovisation, which breaks

up the original grammar rules and generates new rules which have not been seen

in the training set. This also admits rules with only one of the two partial nodes,

which means that a reconstruction of the original tree is impossible, and often leads

to clashes during f-structure generation.

5 LFG Parsing: Related Work

This section discusses related work and shows how our research compares to the

wide-coverage hand-crafted LFG grammar of Dipper [2003], Rohrer and Forst

[2006], and Forst [2007] developed in the ParGram project [Butt et al., 2002].

The ParGram German LFG uses 274 LFG-style rules (with regular expression-

based right-hand sides) and several lexicons with detailed subcategorisation infor-

mation and a guessing mechanism for default lexical entries [Rohrer and Forst,

493



ParGram TiGerDB DCU250

up. log. low.

GF bound lin. bound

da 67 63 55 44 38

gr 88 84 79 71 87

mo 70 63 62 65 73

oa 78 75 65 69 63

quant 70 68 67 67 78

rc 74 62 59 34 30

sb 76 73 68 74 79

preds

only 79.4 75.7 72.6 72.7 78.6

coverage on the NEGRA treebank (>20,000 sentences)

81.5 81.5 81.5 88.2 88.7

Table 8: F-scores for selected grammatical functions for the ParGram LFG (upper

bounds, log-linear disambiguation model, lower bounds) and for two automatically

acquired TiGer grammars

2006]. Preprocessing in the experiments reported in Rohrer and Forst [2006] in-

cludes modules for tokenisation, morphological analysis and manual marking of

named entities, before the actual parsing takes place. An additional disambigua-

tion component based on maximum entropy models is used for reranking the output

of the parser. Forst [2007] tested parser quality on 1,497 sentences from the TiGer

DB and reported a lower bound, where a parse tree is chosen randomly from the

parse forest, an upper bound, using the parse tree with the highest F-score (eval-

uated against the gold standard), as well as results for parse selection done by the

log-linear disambiguation model.

Table 8 shows results for the ParGram LFG and for the automatically induced

grammars on selected grammatical relations and on all grammatical functions ex-

cluding morphological and other features (preds only). The automatically induced

TiGer DB and DCU250-style grammars were trained on the full TiGer treebank

(>48,000 sentences, excluding the test data). We report results for the test sets

from the TiGer DB and the DCU250.

The hand-crafted LFG outperforms the automatically acquired grammars on

most GFs for the TiGer DB, but results are not directly comparable. The TiGer

DB-based evaluation is biased in favour of the hand-crafted LFG. Named entities

in the ParGram LFG input are marked up manually, while for our grammars these

multiword units often are not recognised correctly and so are punished during eval-

uation, even if part of the unit is annotated correctly. Furthermore, the hand-crafted

ParGram LFG grammar was used in the creation of the TiGer DB gold standard in

the first place, ensuring compatibility as regards tokenisation and overall linguistic

analysis.

F-scores for the DCU250 are in roughly the same range as the ones for the

hand-crafted grammar. For high-frequency dependencies like subjects (sb) or mod-

ifiers (mo), results of the two grammars are comparable. For low-frequency depen-

494



ParGram TiGerDB DCU250

up. log. low.

GF bound lin. bound

da 67 63 55 58 50

gr 88 84 79 68 88

mo 70 63 62 63 77

oa 78 75 65 68 80

quant 70 68 67 58 69

rc 74 62 59 50 50

sb 76 73 68 76 85

preds

only 79.4 75.7 72.6 76.0 84.4

Table 9: Precision for selected grammatical functions for the ParGram LFG and

for the TiGer grammars

dencies like dative objects (da) or relative clauses (rc), however, the hand-crafted

LFG outperforms the automatic LFG f-structure annotation algorithm by far. Cov-

erage for the automatically acquired grammars is considerably higher than for the

hand-crafted LFG grammar. Rohrer and Forst [2006] report a coverage of 81.5%

(full parses) when parsing the NEGRA treebank, which contains newspaper text

from the same newspaper as in the TiGer treebank. By contrast, the automatically

acquired TiGer grammars achieve close to 90% coverage on the same data. On

the TiGer treebank Rohrer and Forst [2006] report coverage of 86.4% full parses,

raising the possibility that, as an effect of enhancing grammar coverage by system-

atically extracting development subsets from TiGer, the ParGram LFG is tailored

closely to the TiGer treebank.

The DCU250 test set is equally biased towards the TiGer treebank-based LFG

resources, as it only represents what is encoded (directly or implicitly) in the TiGer

treebank. The truth is somewhere in between: The TiGer DB evaluation of the

treebank-based LFG resources attempts to a limited extent to counter the bias of

the original TiGer DB resource towards the hand-crafted LFG grammar by remov-

ing distinctions which cannot be learned from TiGer data only, and by relating

TiGer DB to (some of) the original TiGer tokenisation using the version prepared

by Boyd et al. [2007]. The resulting resource still favours the hand-crafted LFG

resources, which outperform the treebank-based resources by about 3% points ab-

solute. Looking at precision, results for the TiGer grammars are more or less in the

same range as the F-scores for the Pargram LFG (Table 9).7

5.1 Discussion

Our automatically extracted grammars yield better coverage than the hand-crafted

LFG of Dipper [2003], Rohrer and Forst [2006] and Forst [2007], but with regard

to F-score the ParGram LFG still outperforms the automatically acquired gram-

7Unfortunately, Forst [2007] does not report results for precision and recall.

495



mars. The lower results for our grammars are not due to low precision: Table

9 contrasts F-scores for the Pargram LFG with results for precision as achieved

by the automatically acquired TiGer grammars. Future work should therefore fo-

cus on improving recall in order to achieve results comparable with or better than

hand-crafted grammars. One promising approach is the one of Seeker [2009], who

describes a grammatical function labeller based on Integer Linear Programming

(ILP). Seeker presents a two-step approach, consisting of a classification step and

a selection step. During classification, the probability distribution over all possible

labels for each node in the tree is computed, using a maximum entropy classifier.

During selection, the overall probability of the whole tree is optimised, where the

ILP-based approach allows the developer to implement hard constraints (e.g.: no

more than one subject per local tree). First results show that global optimisation in

combination with linguistically motivated constraints improves precision and cov-

erage. F-scores for f-structure evaluation on the TiGer DB increase to more than

75%, while coverage was raised from around 88% to more than 96%.

An unsolved problem is the encoding of LDDs in treebank annotation schemes

for (semi-) free word order languages. Currently, neither the TiGer treebank and

even less so the TüBa-D/Z way of representing non-local dependencies can be

learned successfully by statistical parsers. An approach to resolving LDDs at the

f-structure level was described in Cahill et al. [2004] and Cahill [2004] and suc-

cessfully implemented as part of the English treebank-based LFG acquisition and

parsing architectures. However, the method of Cahill et al. relies on complete f-

structures, which means that the recall problem must have been solved before we

can reliably and profitably compute LDDs on f-structure level for German.

6 Conclusions

We presented two architectures for the automatic acquisiton of LFG resources,

based on two German treebanks. Compared to a hand-crafted German LFG, our

method yields higher coverage and comparable results for the high-frequency gram-

matical functions, while for the less frequent GFs the hand-crafted grammar clearly

outperforms the automatic approach.

We have outlined a number of problems for treebank-based f-structure anno-

tation for German: (1) The semi-free word order in German rules out the use of

configurational information for f-structure annotation. (2) Parsing results for Ger-

man, especially for GF assignment, are not reliable enough to support accurate

f-structure annotation. (3) Our alternative approach to assign GF labels using an

SVM-based function labeller achieves high precision, but at the cost of recall. This

is due to missing context sensitivity of the function labeller, resulting in the assign-

ment of conflicting GFs.

We showed that particular treebank encoding schemes have a strong impact on

the usability of the resources. We argue that the GF label set in the TüBa-D/Z,

which has been designed with the aim of expressing dependency relations between

496



different nodes in the tree, is less adequate for the automatic acquisition of LFG

resources than the label set in TiGer. The GF labels in the TüBa-D/Z are harder to

learn and also encode less specific grammatical information than the ones in TiGer.

The task of automatically inducing linguistic resources from (semi-) free word

order languages is much harder than for more configurational languages like En-

glish. Future research needs to address the problem of automatic GF assignment

which for German is far more important than for configurational languages (one

promising line of research has been outlined in Section 5.1). Only then can we ex-

pect to automatically induce high-quality linguistic resources for languages other

than English and other configurational languages.

References

Adriane Boyd. Discontinuity revisited: An improved conversion to context-free

representations. In Proceedings of the Linguistic Annotation Workshop (LAW

2007), pages 41–44, Prague, Czech Republic, 2007.

Adriane Boyd, Markus Dickinson, and Detmar Meurers. On representing depen-

dency relations – insights from converting the German TiGerDB. In Proceedings

of the 6th International Workshop on Treebanks and Linguistic Theories (TLT-

07), pages 31–42, Bergen, Norway, 2007.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George

Smith. The TIGER Treebank. In Erhard W. Hinrichs and Kiril Simov, edi-

tors, Proceedings of the First Workshop on Treebanks and Linguistic Theories,

pages 24–42, Sozopol, Bulgaria, 2002.

Ted Briscoe and John Carroll. Robust accurate statistical annotation of general text.

In Proceedings of the 3rd International Conference on Language Resources and

Evaluation (LREC-02), pages 1499–1504, Las Palmas, Canary Islands, 2002.

Michael Burke, Olivia Lam, Aoife Cahill, Rowena Chan, Ruth O’Donovan, Adams

Bodomo, Josef van Genabith, and Andy Way. Treebank-based acquisition of a

chinese lexical-functional grammar. In Proceedings of the 18th Pacific Asia

Conference on Language, Information and Computation (PACLIC-18), pages

161–172, Tokyo, Japan, 2004.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and Christian

Rohrer. The parallel grammar project. In Proceedings of COLING-02 Workshop

on Grammar Engineering and Evaluation, pages 1–7, Taipei, Taiwan, 2002.

Aoife Cahill. Parsing with Automatically Acquired, Wide-Coverage, Robust, Prob-

abilistic LFG Approximations. PhD dissertation, School of Computing, Dublin

City University, Dublin, Ireland, 2004.

497



Aoife Cahill, Mairéad McCarthy, Josef van Genabith, and Andy Way. Automatic

annotation of the penn-treebank with LFG f-structure information. In LREC-02

workshop on Linguistic Knowledge Acquisition and Representation - Bootstrap-

ping Annotated Language Data, Third International Conference on Language

Resources and Evaluation (LREC-02), post-conference workshop, pages 8–15,

Paris, France, 2002.

Aoife Cahill, Martin Forst, Mairéad McCarthy, Ruth O’Donovan, Christian Rohrer,

Josef van Genabith, and Andy Way. Treebank-based multilingual unification-

grammar development. In Proceedings of the Workshop on Ideas and Strategies

for Multilingual Grammar Development, at the 15th European Summer School

in Logic Language and Information, Vienna, Austria, 2003.

Aoife Cahill, Michael Burke, Ruth O’Donovan, Josef van Genabith, and Andy

Way. Long-distance dependency resolution in automatically acquired wide-

coverage PCFG-based LFG approximations. In 42nd Annual Meeting of the As-

sociation for Computational Linguistics (ACL-04), pages 319–326, Barcelona,

Spain, 2004.

Aoife Cahill, Martin Forst, Michael Burke, Mairéad McCarthy, Ruth O’Donovan,

Christian Rohrer, Josef van Genabith, and Andy Way. Treebank-based acqui-

sition of multilingual unification grammar resources. Journal of Research on

Language and Computation; Special Issue on Shared Representations in Multi-

lingual Grammar Engineering, pages 247–279, 2005.

Aoife Cahill, Michael Burke, Ruth O’Donovan, Stefan Riezler, Josef van Genabith,

and Andy Way. Wide-coverage deep statistical parsing using automatic depen-

dency structure annotation. Computational Linguistics, 34(1):81–124, 2008.

Grzegorz Chrupała, Nicolas Stroppa, Josef van Genabith, and Georgiana Dinu.

Better training for function labeling. In Proceedings of the Conference on Re-

cent Advances in Natural Language Processing (RANLP 2007), pages 133–138,

Borovets, Bulgaria, 2007.

Stefanie Dipper. Implementing and documenting large-scale grammars — Ger-

man LFG, doctoral dissertation, ims, university of stuttgart. Arbeitspapiere des

Instituts für Maschinelle Sprachverarbeitung (AIMS), 9(1), 2003.

Martin Forst. Filling statistics with linguistics - property design for the disam-

biguation of German LFG parses. In Proceedings of the ACL Workshop on Deep

Linguistic Processing, pages 17–24, Prague, Czech Republic, 2007.

Martin Forst, Núria Bertomeu, Berthold Crysmann, Frederik Fouvry, Silvia

Hansen-Schirra, and Valia Kordoni. Towards a dependency-based gold standard

for German parsers - the TiGer Dependency Bank. In Proceedings of the COL-

ING Workshop on Linguistically Interpreted Corpora (LINC ’04), pages 31–38,

Geneva, Switzerland, 2004.

498



Julia Hockenmaier and Mark Steedman. Generative models for statistical parsing

with combinatory categorial grammar. In 40th Annual Meeting of the Associa-

tion for Computational Linguistics (ACL-02), pages 335–342, Philadelphia, PA,

2002.

Ronald M. Kaplan, Stefan Riezler, Tracy H. King, John. T. Maxwell III, Alexan-

der Vasserman, and Richard Crouch. Speed and accuracy in shallow and deep

stochastic parsing. In Proceedings of the Human Language Technology Confer-

ence and the 4th Annual Meeting of the North American Chapter of the Associ-

ation for Computational Linguistics (HLT-NAACL-04), pages 97–104, Boston,

MA, 2004.

Sandra Kübler. How do treebank annotation schemes influence parsing results?

Or how not to compare apples and oranges. In Proceedings of the 5th Interna-

tional Conference on Recent Advances in Natural Language Processing (RANLP

2005), pages 293–300, Borovets, Bulgaria, 2005.

Sandra Kübler. The PaGe 2008 shared task on parsing German. In ACL Workshop

on Parsing German (PaGe-08), pages 55–63, Columbus, OH, 2008.

David M. Magerman. Statistical decision-tree models for parsing. In 33rd Annual

Meeting of the Association for Computational Linguistics (ACL-95), pages 276–

283, Cambridge, MA, 1995.

Hiroko Nakanishi, Yusuke Miyao, and Jun’ichi Tsujii. Using inverse lexical rules

to acquire a wide-coverage lexicalized grammar. In IJCNLP 2004 Workshop

on Beyond Shallow Analyses - Formalisms and Statistical Modeling for Deep

Analyses, Sanya City, Hainan Island, China, 2004.

Ruth O’Donovan, Michael Burke, Aoife Cahill, Josef van Genabith, and Andy

Way. Large-scale induction and evaluation of lexical resources from the penn-II

and penn-III treebanks. Computational Linguistics, 31(3):329–366, 2005.

Slav Petrov and Dan Klein. Parsing German with language agnostic latent vari-

able grammars. In ACL Workshop on Parsing German (PaGe-08), pages 33–39,

Columbus, OH, 2008.

Christian Rohrer and Martin Forst. Improving coverage and parsing quality of a

large-scale LFG for German. In Proceedings of the 5th International Conference

on Language Resources and Evaluation (LREC-06), pages 2206–2211, Genoa,

Italy, 2006.

Anne Schiller, Simone Teufel, and Christine Thielen. Guidelines für das tagging

deutscher textkorpora mit STTS. Technical report, Universität Stuttgart and Uni-

versität Tübingen, Tübingen, Germany, 1995.

Helmut Schmid. LoPar: Design and implementation. Technical report, Universität

Stuttgart, Stuttgart, Germany, 2000.

499



Wolfgang Seeker. On the Use of Hard Linguistic Constraints in Automatic Gram-

mar Acquisition for German. Diploma thesis, Institut für Linguistik, Potsdam,

Germany, 2009.

Heike Telljohann, Erhard W. Hinrichs, Sandra Kübler, and Heike Zinsmeister.

Stylebook for the Tübingen Treebank of Written German (TüBa-D/Z). Univer-

sität Tübingen, Germany, 2005.

Yannick Versley. Parser evaluation across text types. In Proceedings of the

4th Workshop on Treebanks and Linguistic Theories (TLT-05), pages 209–220,

Barcelona, Spain, 2005.

500


