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Abstract

We describe the design of an LFG-based generation system that provides
a framework for empirical studies on the choice among grammatical para-
phrases (i.e. syntactic alternations), as an effect of interacting soft con-
straints. To be able to study the relevant variation, we extend the XLE gen-
eration architecture so it no longer departs from standard f-structures, but
from a more abstract level of (meaning) representation. This representation
is constructed by means of XFR term-rewrite rules. We discuss the design
of the meaning representation in light of the surface realisation task. In par-
ticular, we address the problem of obtaining a transfer grammar that reverses
meaning construction, taking into account the generation performance.

1 Introduction

In this paper, we describe the design of an LFG-based generation system that pro-
vides a framework for studying soft constraints on grammatical paraphrases, i.e.
syntactic alternations. These alternations have recently attracted interest intheo-
retical linguistic research, motivating models of grammar that assume statistical
preferences to be guiding the use of certain linguistic constructions. By way of
illustration, we cite an example from Bresnan and Ford (2010):

Given the following linguistic context in a dialogue:

(1) And I said, I want a backpack.
I told him, if you want to give me a present for Christmas ...

What is the most likely continuation of the sentence?

(2) a. ... give me a backpack.
b. ... give a backpack to me.

The alternatives in (2) illustrate the English dative alternation. Bresnan et al.
(2007) show that speakers prefer one over the other construction depending on
the discourse context and the discourse accessibility of the verb’s arguments. For
(2), the speaker in the dataset chose (2-a). This can be explained by the fact that
the speakers statistically prefer first-person, pronominal, discourse-given recipients
(me) to precede nominal, discourse-new themes (backpack).

Interestingly, the insight that discourse properties of referents are aninforma-
tive factor in modelling linguistic preferences among grammatical variants is cor-
roborated by computational research using generation with implemented broad-
coverage grammars – where the relevant distinctions are subject to complexin-
teractions of multiple factors and information sources. Cahill and Riester (2009)
use the generator integrated in the XLE system to generate syntactic alternations
(mainly word order variations) from given corpus sentences. They address the task
of ranking these alternations, i.e. finding the appropriate realisation in context, by
training a log-linear statistical model to replicate the actual realization choices for
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corpus data from a treebank. Their experiments show that a model approximat-
ing discourse properties of the referents in a sentence improves the results of the
realisation ranking model.

There are a number of lingustically interesting alternations that the work by
Cahill and Riester (2009) could not study as participating in the ranking process,
e.g. argument or voice alternations. F-structures are usually underspecified at the
level of word order, but not at the more abstract semantic level encoding the re-
alisation of predicate arguments. For instance, an LFG grammar would usually
assign different f-structure representations to the active and passive realisation of
a sentence. To be able to include these alternations, we need to extend the current
XLE generation architecture so it departs from a level of representationabstracting
away from syntactic alternations.

XLE supports generation from partially underspecified feature structure repre-
sentations.1 So, in principle, one could design a brand new feature representation
for the intended level of abstraction. However, a level of representation normalis-
ing the relevant alternations has already been designed and related to f-structures
from the ParGram LFG grammars, in the context of textual entailment and ques-
tion answering tasks: Crouch and King (2006). Since our experiments are aimed
at capturing interaction effects in real corpus data, it is important to achieve broad
coverage of syntactic, morphological and lexical phenomena relatively fast. So,
the most natural way to go is to adapt the existing representation and mapping
mechanism for our purposes.

Crouch and King (2006) use the term-rewrite transfer system included in the
XLE system (the “XFR system”), for mapping f-structures to flat semantic rep-
resentations. Originally designed for machine translation, the system has proven
highly useful from a practical point of view, since it supports rapid data-oriented
engineering for various kinds of format conversion. The resulting transfer rule sets
are generally very robust, since it is easy to include catch-all rules (andoverride
them for specific data instances). It is also relatively straightforward to port an
XFR transfer grammar from one ParGram grammar to another, taking advantage
of the carefully controlled parallel f-structure geometry across languages.

The XFR system is unidirectional, so it cannot be reversed directly. This means
that for our project of building semantics-based generation taking advantage of
existing work on meaning construction, we have to address two questions: (1) what
should be the design for our meaning representation (which parts of the entailment-
oriented shallow semantics do we want to take over, etc.), and (2) how can the
reverse mapping from the meaning representation to (a packed representation of
all possible) f-structures be realized.

We introduce the task of surface realisation ranking in more detail and discuss
the motivations of this work in Section 2. In Section 3, we provide a brief overview

1There are limits posed by theoretical results showing that the generation from underspecified
features structures is undecidable in the general case (Wedekind, 1999) – but the XLE generator
takes advantage of the constructive approach of Kaplan and Wedekind(2000).
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of the extended generation architecture proposed in this paper. Section 4describes
the design of the meaning representation and discusses several adaptations for the
surface realisation task. Finally, in Section 5, we treat the problem of obtaining a
transfer grammar that reverses the meaning construction and point out its relation
to generation performance.

2 Surface Realisation Ranking in the LFG Architecture

2.1 Ranking in the LFG Architecture

LFG grammars implemented in the XLE framework are generally reversible so
that they can be used in parsing and generation. In both scenarios, onehas to deal
with disambiguation, i.e. ranking problems. Formally, the disambiguation problem
amounts to the selection of the (or a) contextually appropriate analysis/realisation
from a set of candidates that is characterised by underspecification in the shape of
a “packed” LFG representation. In parsing, all candidate analyses share a common
surface string; in generation, the candidate realisations share (a partialspecification
of) an underlying input representation, typically a partial f(unctional) structure.
The two dual choice problems are illustrated on the left-hand side of Figure 1.

Ranking in generation:

Output Candidates
Sentence1 Sentence2 ... Sentencen

Analysis
Ambiguous Input

Ranking in parsing:

Output Candidates
Analysis1 Analysis2 ... Analysisn

Sentence
Ambiguous Input

Surface realisation ranking:

Output Candidates
Sentence1 Sentence2 ... Sentencen

Analysis
Ambiguous Input

Output Candidates
Analysis1 Analysis2 ... Analysisn

Sentence
Ambiguous Input

Figure 1: Ranking in a reversible grammar architecture

In both scenarios, log-linear statistical models for ranking the candidates have
proven successful for modelling the preferred choice based on corpus data mod-
elling the linguistic experience of a speaker.2 Formally, the set-up is very similar

2In the log-linear ranking approach, each candidate structure is represented as a vector of its
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to the Optimality Theoretic (OT) LFG architecture (Bresnan, 1996, 2000), which
can be based on the same reversible framework of candidate generation (Kuhn,
2000, 2001, 2003).3

From a generation perspective, an LFG f-structure can be considered an ab-
stract syntactic representation that is underspecified with respect to word order and
certain aspects of morphological/lexical word choice (Cahill et al., 2007).There-
fore, in mapping f-structures onto surface sentence strings, one usually obtains
various possible, truth-conditionally equivalent realisations.

The quality of a mechanism choosing a particular surface realisation can be
evaluated straightforwardly in a corpus-based setting. The typical design for test-
ing a surface realisation component against realistic corpus data is displayed on
the right-hand side of Figure 1 (going from the bottom to the top): First, a corpus
sentence is parsed and mapped to a linguistic, underspecified analysis. Second, a
generator maps this analysis to all possible surface realisations which haveto be
ranked by a realisation ranking model. Finally, the output of the ranking is com-
pared against the original corpus sentence. There are multiple ways andmeasures
to assess this comparison, such as automatic measures from Machine Translation
evaluation or human judgements (Cahill, 2009).

2.2 Ranking for Free Word Order Languages

The ranking problems described in the previous section are especially challenging
in languages with free word order. Consider the following example from German:

(3) Maria
Maria.NOM

schenkt
gives

Thomas
Thomas.DAT

ein
a

Buch.
book.ACC.

Sentence (3) illustrates a verb with three case-ambigous arguments, such that in
parsing the sentence receives four possible analyses (Mary can be the subject, and
the direct and indirect object,Thomascan also have all three functions,bookcan be
the subject and the direct object). When we generate from an arbitrary f-structure
for Sentence (3), we obtain the set of surface realisations in (4) which amounts to
the set of all permutations of the three arguments.

(4) a. Maria schenkt ein Buch Thomas.
b. Maria schenkt Thomas ein Buch.
c. Ein Buch schenkt Thomas Maria.
d. Ein Buch schenkt Maria Thomas.

contextually relevant properties. The property weights (corresponding to the relative ranks of the
constraints in an OT setting) can be discriminatively trained on corpus data using numerical opti-
mization algorithms, which ensure that the weights for the various properties are set in such a way
that the observed analyses/realisations are ranked the highest (Riezleret al., 2002; Cahill et al., 2007).

3The close relationship between an OT constraint ranking approach and log-linear models (which
is just a different name for Maximum Entropy models) is discussed by Goldwater and Johnson (2003)
and J̈ager (2004).
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e. Thomas schenkt ein Buch Maria.
f. Thomas schenkt Maria ein Buch.

If we were able to generate from an f-structure underspecified for voice, we
would additionally obtain the surface realisations in (5) illustrating all possible
permutations in passive voice (where in German only the theme argument can be
turned into the passive subject).

(5) a. Maria
Maria.DAT

wird
is

von
by

Thomas
Thomas

ein
a

Buch
book.NOM

geschenkt.
given.

b. Maria wird ein Buch von Thomas geschenkt.
c. Ein Buch wird Maria von Thomas geschenkt.
d. Ein Buch wird von Thomas Maria geschenkt.
e. Von Thomas wird Maria ein Buch geschenkt.
f. Von Thomas wird ein Buch Maria geschenkt.

To our knowledge, the impact of syntactic alternations like voice on realisation
ranking in free word order languages has so far not been investigatedin compu-
tational frameworks working with reversible grammars. Velldal (2008) reports on
HPSG-based generation experiments for English where he constrasts generation
from meaning representations that are underspecified and specified for voice and
topicalisation. As one would expect, the underspecified representations trigger
much more (about twice as many) surface realisation candidates and the ranking
task becomes much harder.

While it is difficult to compare surface realisation experiments based on differ-
ent grammars and languages, one would, at least theoretically, expect that the sta-
tus or function of syntactic alternations differs between languages like English and
German, since German has more options available for achieving a particular order-
ing and hence, conveying subtle information structural differences. InEnglish, the
use of syntactic alternations (e.g. the dative alternation) is often attributed to statis-
tical word order patterns. Bresnan et al. (2007) base their explanationof the dative
alternation on the finding that “animate, pronominal, short, discourse-acessible ar-
guments tend to precede inanimate, nonpronominal, long arguments.” In German,
the situation is less clear, since these precedence patterns are not constrained by
the word order restrictions.

2.3 Surface Realisation and the Problem of Input Representation

Before moving on to the design of the extended generation architecture, webriefly
point out an additional, independent advantage of using a more abstractshallow
meaning representation instead of a standard LFG f-structure.

Grammar-based generators are a good basis for focussed studies on surface
realisation (or “tactical” generation), since these systems (usually) produce gram-
matical output, and are actually able to produce all grammatical realisations of a
given abstract input. However, an obvious limitation of grammar-based genera-
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tors is that they require a very specific input representation which corresponds to
the internal specification of the grammar. Depending on the system context of the
surface realiser, this input representation is often hard (or almost impossible) to
predict in external applications (see Section 4). As a consequence, grammar-based
generators are rarely used in real-life generation applications. A further disadvan-
tage of grammar-specific input for generation is the fact that the results obtained
by different generators based on different grammars or input representations are
difficult to compare (Belz et al., 2010).4

We extend the XLE generation set-up to take a more shallow representation
as input, using an added conversion step at the beginning. This can be seen as a
first step towards making the grammar-based XLE generator applicable in tradi-
tional NLG domains, like e.g. text summarisation, where the input representation
can be expected to be more abstract or underspecified than fully-fledged LFG f-
structures. The initial conversion step can be re-engineered fairly easily to adapt it
to the relevant system context.

3 System Overview

The work presented in this paper investigates the feasibility of interfacing theXLE
generator with a preprocessing step, which produces a packed underspecified f-
structure representation of the f-structures compatible with a shallow meaningrep-
resentation, abstracting away from morpho-syntactic alternations. As pointed out
in Section 1, practical engineering considerations lead us to assume that thisshal-
low input representation is most conveniently built by means of transfer rules, re-
using a good deal of the work on meaning representations in Crouch and King
(2006), a.o.

The generation architecture we propose is illustrated in Figure 2. First, an in-
put corpus sentence is parsed and mapped to a flat semantic representation. Note
that the subject of the passive f-structure is mapped to a “semantic object” inthe
meaning representation. In the reverse mapping from meaning representation to
f-structures, the generator produces an f-structure chart that, besides the original
f-structure, realises its meaning-equivalent syntactic paraphrases, e.g. voice alter-
nations. This f-structure chart is then mapped to all its corresponding surface sen-
tences by means of the standard XLE generator. Finally, a ranking model selects
the most appropriate surface realisation.

Thus, our surface realisation testing architecture is very similar to Cahill et al.
(2007). We just extend their generation pipeline by intermediate steps of further

4One reason for the lack of comparable tools for surface realisation is thelack of standardised
resources annotated with semantic representations. Bohnet et al. (2010) present statistical generation
experiments on the CoNLL’09 data which integrates semantic annotations from PropBank. However,
they face the problem that this semantic annotation is far from complete, i.e.the relations between
certain words are missing (e.g. adjectival modifiers). As a solution, Bohnet et al. (2010) add the
missing semantic relations based on some handcrafted rules and the underlying dependency tree
which results in semantic representations very similar to syntactic representations.
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‘Tom was discovered by Chomsky.’
↓ XLE parsing

Original F-structure:
2

6

6

6

6

6

6

6

6

6

6

6

6

4

PRED ′discover< (↑ SUBJ)(↑ OBL-AG) >′

SUBJ

2

4

PRED ′Tom′

NTYPE proper-name
PERS 3

3

5

OBL-AG

»

PRED ′Chomsky′

...

–

TOPIC [’Tom’ ]
VTYPE main
PASSIVE +

3

7

7

7

7

7

7

7

7

7

7

7

7

5

↓ transfer meaning
construction

HEAD (discover)
PAST (discover)
ROLE (sem-subj,discover,Chomsky)
ROLE (sem-obj,discover,Tom)

↓ reverse transfer
mapping

Output F-structure Chart:
2

6

6

6

6

6

6

6

6

4

2

4

PRED ′discover< (↑ SUBJ)(↑ OBJ) >′

SUBJ
ˆ

PRED ′Chomsky′
˜

OBJ
ˆ

PRED ′Tom′ ˜

3

5

2

4

PRED ′discover< (↑ SUBJ)(↑ OBL-AG) >′

SUBJ
ˆ

PRED ′Tom′ ˜

OBL-AG
ˆ

PRED ′Chomsky′
˜

3

5

3

7

7

7

7

7

7

7

7

5

↓ XLE generation
“Tom was discovered by Chomsky.”

“Chomsky discovered Tom.”
↓ surface realisation

ranking
“Tom was discovered by Chomsky.”

Figure 2: Generation via meaning representations

analysis, followed by generation of a broader f-structure (chart) representation,
such that we do not directly regenerate from an f-structure obtained for a corpus
sentence. This work focuses on the added intermediate steps in the testing pipeline,
i.e. the bidirectional mapping between f-structures and a more abstract meaning
representation. We leave examination of the final realisation ranking in the new
setting for future work.

By using the XLE grammar-based generator in our architecture, we make sure
that the final output of the generation system (if there is one) is a grammatical
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sentence. However, it is important to note that in the additional generation step
from semantics to f-structure (charts), the wellformedness of the transfer output
is not guaranteed or checked since the transfer rules can produce arbitrary sets of
f-structure terms as output. We use the grammar-based generator as a filter(similar
to Crouch et al. (2004)) that only maps those f-structures to surface sentences that
correspond to the definition of the underlying grammar.

4 A Meaning Representation for Surface Realisation

The standard meaning construction approach for the ParGram LFG grammars im-
plemented in the XLE framework is the transfer semantics system developed by
Crouch and King (2006). It has been ported to German by Zarrieß (2009). The sys-
tem exploits the XLE transfer module to map LFG f-structures to shallow meaning
representations on the basis of an ordered list of term-rewrite rules. In this section,
we will discuss the design of the representation and its usefulness for generation.
In the next section, we will discuss the technical aspects of reversing therules for
generation.

4.1 Normalising Paraphrases

The main purpose that a meaning representation for surface realisation serves is to
normalise the analyses of truth-conditionally equivalent syntactic structures. As the
result of this normalisation, syntactic alternations get assigned an identical mean-
ing representation. In the generation step, the surface realiser will then map the
meaning representation to all its possible syntactic alternations.

The semantic representation we want to generate from was originally designed
for a textual entailment application (Crouch and King, 2006). To capture the en-
tailment relation between, e.g., active and passive realisations of a verb, the rep-
resentation assigns a uniform analysis to these alternations. As an example,the
sentences in (6-a) and (6-b) would both be assigned the meaning representation in
(6-c). The subject of the active and the oblique agent of the passive verb are both
normalised to a “semantic subject”. Such a normalised meaning representation is
exactly what we need in generation.

(6) a. Peter saw Mary.
b. Mary was seen by Peter.
c.

HEAD (see)
PAST(see)
ROLE (sem-subj,see,Peter)
ROLE (sem-obj,see,Mary)

The meaning construction mechanism from Crouch and King (2006) imple-
ments a number of further normalisation operations for other types of paraphrases
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or alternations that are both interesting for entailment and surface realisation. The
implemented normalisations include the following:

(7) a. Attributive vs. predicative modifiers
(i) Peter reads a good book.
(ii) Peter reads a book that is good.

b. Clefts
(i) It is a book that Peter reads.
(ii) Peter reads a book.

c. Genitives
(i) the building’s shadow
(ii) the shadow of the building

d. Nominalisations vs. verbal realisations
(i) Peter regrets the destruction of the city.
(ii) Peter regrets that the city was destroyed.

4.2 Implicit Syntactic Information

An important aspect of the paraphrase normalisation is that many syntax-internal
features are removed from the meaning representation. In practice, the f-structures
that correspond to a certain pair of meaning-equivalent sentences, e.g. active and
passive alternations, do not only differ in their argument frame and passive feature.
The f-structures usually also specify a lot of other, e.g. morphological, features of
the involved noun phrases and the verb that differ between the alternationconstruc-
tions. An example alternation pair and its corresponding f-structure pair is given in
Table 1.

Tom
Tom

sieht
sees

Marie.
Mary.

2

6

6

6

6

6

6

6

6

6

6

4

PRED ′sehen< (↑ ...)(↑ ...) >′

SUBJ

»

PRED ′Tom′

CASE nom

–

OBJ

»

PRED ′Marie′

CASE acc

–

CHECK
ˆ

AUX-SELECT ′haben′
˜

TOPIC
ˆ ′Tom′ ˜

PASS −

3

7

7

7

7

7

7

7

7

7

7

5

Marie
Mary

wird
is

von
by

Tom
Tom

gesehen.
seen.

2

6

6

6

6

6

6

6

6

6

6

6

6

4

PRED ′sehen< (↑ ...)(↑ ...) >′

SUBJ

»

PRED ′Marie′

CASE nom

–

OBL-AG

»

PRED ′Tom′

CASE dat

–

CHECK

»

AUX-SELECT ′sein′

PARTICIPLE ′perfect′

–

TOPIC
ˆ ′Marie′ ˜

PASS +

3

7

7

7

7

7

7

7

7

7

7

7

7

5

Table 1: F-structure pair for passive-active alternation
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For generation, it is important to remove these syntax-internal features because
they would implicitly disambiguate an abstract semantic representation of an al-
ternation. For instance, if the meaning representation would not underspecify the
case of a noun phrase, the surface realiser would have implicit syntactic informa-
tion about the original sentence realisation.

In the LFG ParGram grammars, many of these syntax-internal features are con-
ventionally subsumed under the technically motivated CHECK-feature. So these
can easily be detected and removed when constructing the semantic representation.
In the mapping from semantics to f-structure, these features do not need tobe re-
constructed since the XLE generator can deal with underspecified f-structures (see
Section 5.1).

However, in certain problematic cases, the f-structures for an alternationpair
contain implicit features that are not syntax-internal. As an example, consider the
sentence pair in Table 2. The analyses are produced by a German LFG grammar
whose lexicon does not have an entry for the proper nounKarthago. XLE provides
a “guessing” mechanism for unknown words. In this case, the German grammar
has been set up to assume that unknown capitalized word forms are proper names,
leaving the gender and number feature unspecified (since there are proper names
for all genders and in singular and plural – likeBeatles).

As a consequence, the f-structure forKarthago in the passive sentence does
not have aNUM feature since the number of the noun cannot be inferred from the
syntax. By contrast, the f-structure forKarthagoin the active sentence does have
a NUM feature which comes from the inflectional morphology of the verb. So the
two sentences have different meaning representations (if the meaning construction
takes number into account).

Such types of implicit information in the f-structure are not easy to deal with in
generation. First, it is difficult in practice to foresee such problems and debug them
when they occur. Second, the XLE generator is very sensitive to slight changes in
the f-structure input. If the surface realiser were to add aNUM feature to the f-
structure in the passive sentence in Table 2 (which may seem to be a reasonable
move), the generator would fail (because the structure that the grammar assigns
to the sentence is no longer subsumed by the input representation). On the other
hand, one would drastically change the output of the surface realisation iftheNUM

feature was generally underspecified (in this case, the generator wouldproduce the
singular and plural realisation for each noun phrase in a given input f-structure).5

While the above type of grammar-internal, implicit information may suggest
we are dealing with more of a technical than a principled problem, similar cases of
indirect disambiguation of a meaning representationdooccur in situations that are

5This problem with syntax-internal, atomic features has also been noted in other applications, e.g.
Machine Translation. Graham (2010) reports drastically varying performance of their MT system
depending on the quality of atomic feature translation. She also reports thatgrammar coverage of
the generator varies between 12% and 41% depending only on the translation quality of the atomic
features. This corroborates the aforementioned claim that grammar-based generators can be hard to
use in external applications.
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Rom
Rome

wurde
was

von
by

Karthago
Carthage

erobert.
conquered.

2

6

6

6

6

6

6

6

6

4

PRED ′erobern< (↑ ...)(↑ ...) >′

SUBJ

2

4

PRED ′Rom′

PERS 3
NUM sg

3

5

OBLAG

»

PRED ′Karthago′

PERS 3

–

PASS +

3

7

7

7

7

7

7

7

7

5

Karthago
Carthage

eroberte
conquered

Rom.
Rome.

2

6

6

6

6

6

6

6

6

6

6

4

PRED ′erobern< (↑ ...)(↑ ...) >′

SUBJ

2

4

PRED ′Karthago′

PERS 3
NUM sg

3

5

OBJ

2

4

PRED ′Rom′

PERS 3
NUM sg

3

5

PASS −

3

7

7

7

7

7

7

7

7

7

7

5

Table 2: F-structure pair for passive-active alternation: the featuresfor Karthago
are asymmetric

fully motivated linguistically. These structures need to be addressed in the meaning
construction. For (8-a), the normalised meaning representation (8-b) contains im-
plicit information that its original sentence must have been realised in active voice.
This is because the subject of the sentence is the generic pronounmanwhich cannot
be used as an oblique agent in a prepositional phrase, i.e., (8-c) is ungrammatical.
Thus, if the realiser derives an f-structure where the generic pronoun is realised as
the oblique agent, the grammar-based generator rules will not produce a surface
sentence for this input.

(8) a. Man
One

hat
has

Maria
Mary

im
in the

Park
park

gesehen.
seen.

b.

HEAD (see)
PAST(see)
ROLE (sem-subj,sehen,man)
ROLE (sem-obj,sehen,Maria)

c. *Maria
Mary

wurde
was

von
by

man
one

im
in the

Park
park

gesehen.
seen.

d. Maria
Mary

wurde
was

von
by

jemandem
somebody

im
in the

Park
park

gesehen.
seen.

In order to be able to generate a passive paraphrase from Sentence (8-a), the
meaning representation would have to abstract away from the lexical realisation of
the pronoun such that the generator could realise the subject as a different pronoun,
e.g. jemand(somebody), as in (8-d). As a consequence, the surface realisation step
would be extended from word order and structural choice to lexical choice, which
is usually considered as a separate step of generation (Bateman and Zock, 2003).

A similar and very frequent type of implicit syntactic information occurs in
coordinated sentences. For instance, in sentence (9), the noun phrase Tom is the
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subject of two verb phrases. At the moment, the meaning representation keeps
the information about the lexical identity of the two subjects in a lexical index
(marked as integers in (9-b)). If the generator “knows” that the two subjects have
to be realised by the same noun phrase, it cannot produce a passive paraphrase for
one of the verb phrases due to syntactic constraints. However, if we interpret the
representation as even more abstract and allow the realiser to generate a pronoun
for Tom in one of the verb phrases (such as in (9-c)), we introduce a completely
new type of generation problem (i.e. the generation of referring expressions) into
our system.

(9) a. Tom
Tom

sieht
sees

Marie
Marie

und
and

schenkt
gives

ihr
her

einen
an

Apfel.
apple.

b.

HEAD (sehen)
ROLE (sem-subj,sehen,Tom:1)
ROLE (sem-obj,sehen,Marie:2)
ROLE (sem-subj,schenken,Tom:1)
ROLE (sem-obj,schenken,Apfel:3)
ROLE (recipient,schenken,sie:4)

c. Marie
Marie

wurde
was

von
by

Tom
Tom

gesehen
seen

und
and

bekam
got

von
by

ihm
him

einen
an

Apfel
apple

geschenkt.
given.

Finally, the type of implicit syntactic information that needs to be added or
removed in paraphrase normalisation is also dependent on the complexity of the
underlying alternation. For instance, the meaning representation normalisesrela-
tive clauses and deverbal attributive adjuncts, such as (10-a-b). However, the non-
finite verb in (10-a) does not carry any tense information whereas the finite verb
in (10-b-c) does. Thus, in order to generate a relative clause paraphrase for (10-a),
the meaning construction needs to include rules that infer the tense oflaughing.

(10) a. Peter saw a laughing girl.
b. Peter saw a girl who was laughing.
c.

HEAD (see)
PAST(see)
PAST(laugh)
ROLE (sem-subj,see,Peter)
ROLE (sem-obj,see,girl)
ROLE (sem-subj,laugh,girl)

All these examples show that the boundaries between lexicalisation, grammati-
calisation and surface realisation in generation get blurred rather quickly. Thus, the
design decisions made at the level of meaning representation will greatly influence
the difficulty and the outcome of the final surface realisation task. Moreover, we
have seen that the meaning representations and the f-structures of a given alterna-
tion pair have to be carefully examined in a variety of syntactic contexts in order
to produce well-formed input for the grammar-based generator.
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5 Reversing Meaning Construction

This section addresses the issue of mapping meaning representations as discussed
in Section 4 to f-structure chart representations from which the standardXLE gen-
erator is able to generate – given the fact that the XFR system is not directlyre-
versible. We already mentioned the engineering advantage of re-using existing
resources as much as possible – in particular in view of the multilingual setting
of ParGram, which will make it relatively easy to port solutions to other lan-
guages. Hence, our approach is to develop XFR rules for the backward mapping
from meaning representations to f-structures that draw upon the forward mapping
rules as much as possible.6 In Section 5.1, we show that if the meaning construc-
tion is restricted to a specific type of normalisation rules and if the generation of
syntax-internal features is left to the grammar-based generator, the reverse transfer
grammar can be easily derived.

A second important issue raised by our surface realisation architecture isthe
computational complexity and runtime performance of generation. The f-structure
output produced by a reverse meaning construction is formally more complex
than the f-structures that have been used in surface realisation experiments so far:
whereas Cahill et al. (2007) generate from single f-structures that represent one
possible analysis of a sentence, we will generate from f-structure charts which
represent all the possible realisations of a syntactic alternation. Moreover, the f-
structures used by Cahill et al. (2007) are almost completely specified, i.e.,they
contain all the syntax-internal features needed by the grammar. In our case, as al-
ready mentioned in Section 4, the f-structures will necessarily by underspecified
to a certain degree since not all syntax-internal features can and should be recon-
structed from the meaning representation. These properties of the f-structure input
will have a noticeable effect on generation performance, which we will discuss in
Section 5.2.

5.1 Transfer Rules and Bidirectionality

The XFR term rewrite system has been used in a variety of system contexts:f-
structure based machine translation (Riezler and Maxwell, 2006), sentence con-
densation (Crouch et al., 2004), and textual entailment oriented shallow meaning
construction (Crouch and King, 2006). See Crouch et al. (2004) fora detailed
illustration of the XFR system.

According to Emele et al. (1996), term rewrite rules can be defined as follows:

(11) a. 〈LHS Set〉#〈LHS Conds〉 ↔ 〈RHS Set〉#〈RHS Conds〉
b. 〈LHS Set〉#〈LHS Conds〉 → 〈RHS Set〉

6As an alternative option, one could consider a system that automatically learns the mapping
between these structures, in the style of Bohnet et al. (2010). However, we feel that such a purely
statistical approach ignores much of the implicit knowledge given in the forward meaning construc-
tion grammar and that it risks producing output incompatible with the XLE generator.
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c. 〈LHS Set〉 ← 〈RHS Set〉#〈RHS Conds〉

The most general definition in (11-a) specifies a transfer rule as a bidirectional
rewrite relation between a set of left hand side terms and a set of right hand side
terms. The rewrite can be conditioned on a set of terms on both sides of the rule.
The corresponding unidirectional rule definitions are given in (11-b-c). In a unidi-
rectional transfer rule, only one rule side can have rewrite conditions.

The XFR system represents an f-structure internally as a set of two-place
terms.7 By this means, one can formulate rewrite rules on f-structures that perform
arbitrary lexical and structural transformations. An example rewrite rule isgiven in
(12). The sample rule applies to f-structures that have aPASSIVEandVTYPE fea-
ture as well as an oblique agent, mapping the oblique agent to a “logical subject”
(i.e., using the f-structure of active clauses as the prototypical representation).

(12) +VTYPE(%V, %%), +PASSIVE(%V, +), OBL-AG(%V, %LogicalSUBJ)
==> SUBJ(%V, %LogicalSUBJ).

As a unidirectional system, the XFR syntax allows conditions only on the left
hand side of rules. Other transfer systems, such as Emele et al. (1996) from the
Verbmobil project, implement a bidirectional syntax for rewrite rules. However,
Emele et al. (1996) also mention that the implementation of a bidirectional transfer
grammar is difficult in the case of large sets of rules. They report that unidirectional
rules are more effective in practice since the grammar writer does not haveto keep
track of the bidirectional rule conditions.

In the case of meaning construction, it would presumably be even more diffi-
cult to specify bidirectional rewrite rules than for machine translation. One reason
is that the meaning construction deletes a lot of syntax-internal features from the
f-structure, e.g.,CASE, PERS, or TOPIC (see the discussion on syntax-internal fea-
tures in Section 4). An example for such a deletion rule is given in (13). Therule
simply deletes everyCASE feature from its input.

(13) CASE(%%, %%) ==> 0.

A bidirectional version of the deletion rule in (13) would have to be much
more elaborate since it would need to specify exactly the contexts in which aCASE

feature appears in an f-structure (essentially duplicating constraints from the gram-
mar and the lexicon). Similarly, when we want to reverse unidirectional meaning
construction rules at a fully general level, we cannot expect to find an automatic
procedure that uses only the information in the forward rules.

7The term’s name represents the f-structure attribute; the first argument is the f-structure un-
der which the attribute is embedded (where f-structures are referenced by variables var(0), var(1),
. . . , which have a fixed reference for the full analysis); the second argument is the attribute
value, either an atomic value (e.g.,CASE(var(1),acc)), or an embedded f-structure node
OBJ(var(0),var(1)). The rule syntax for terms to be rewritten vs. conditions is as follows:
A prefixed+ on left hand rule side turns a term into a (positive) condition, which is not consumed
during rule application. Identifiers starting with a % are variables.
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Instead of deriving the formally exact reverse counterpart of the meaning con-
struction transfer, we opt for an approximate transfer reversal. We donot need
to generate full-fledged f-structures from the meaning representations because the
XLE generator can handle underspecified input (Crouch et al., 2004)and will use
the appropriate constraints from the grammar and lexicon to navigate the space of
possibilities. By allowing the generator to addCASE features with arbitrary values,
it can essentially follow the exact grammatical and lexical restrictions on this fea-
ture. We thus avoid a redundant (and presumably error-prone) duplication of this
knowledge in the backward rewrite rules.

Leaving the generation of syntax-internal features to the generator, thegeneral
problem of reversing normalisation transfer rules is substantially simplified. As an
example, consider the three rules (14). This is a typical rule set for normalisation:
several sets of left hand terms, which correspond to meaning-equivalent syntactic
structures, are mapped to an identical set of right hand terms. The normalisation
rules in (14-a-b) are conditionned on the syntax-internalPASSIVEfeature (in (14-a)
it has to have the value−, in (14-b) the value+). After normalisation, the syntax-
internal feature is deleted in (14-c).

(14) a. +PASSIVE(%V,−), SUBJ(%V, %SUBJ)
==> AGENT(%V, %SUBJ).

b. +PASSIVE(%V, +), OBL-AG(%V, %SUBJ)
==> AGENT(%V, %SUBJ).

c. PASSIVE(%%, %%) ==> 0.

Given that we do not need to reconstruct the syntax-internal featuresin the
mapping from semantics to f-structure, one can straightforwardly derivea reverse
version of the transfer rule sequence in (14), which is given in (15). The set of
terms corresponding to the normalised partial meaning representation is optionally
mapped to all its possible syntactic realisations (the?=> operator stands for op-
tional rewrite). The deletion rule in (14-c) and the rule conditions in (14-a-b) can
be ignored.

(15) a. AGENT(%V, %SUBJ) ?=> SUBJ(%V, %SUBJ)
b. AGENT(%V, %SUBJ) ?=> OBL-AG(%V, %SUBJ)

Of course, in the general case, the transfer rules used for meaning construction
from f-structures are not constrained to the format exemplified in (14). The gram-
mar implemented by Crouch and King (2006) is actually far more complex and
notably integrates recursive rules that rearrange the embeddings of thef-structure
nodes. However, for our current work we can restrict attention to the type of sim-
ple normalisation rules, essentially a subset of the rules used by Crouch and King
(2006).8

8We also implemented inspection tools for keeping track of the flow of information during term
rewrite transfer, in order to isolate the relevant rules quickly.
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5.2 F-Structure Charts in Transfer and Generation

Having discussed a way of constraining transfer rules for easy reversal, we show
in this section that we need even stricter constraints on the transfer rules in order
to keep the generation feasible with respect to performance.

In the reverse mapping from meaning construction to f-structure, nothing guar-
antees that we actually generate an f-structure that is within the coverage of a given
LFG grammar. In our generation architecture (Figure 2), we rely on the fact that
the XLE generator will select from the chart those f-structures that comply with
the grammar specification. However, if the generator has to deal with f-structure
charts that comprise a huge number of f-structures that cannot be generated from,
it will often time out or fail.

By way of illustration, we contrast generation from an identical meaning rep-
resentation based on two different reverse transfer grammars that generate active
and passive alternations for transitive and ditransitive verbs.9

Our meaning representation here is simply an f-structure that abstracts from the
voice of the verb, i.e. predicate arguments are mapped to semantic roles, andpas-
sive and verb morphology features are deleted from the f-structure. Depending on
the formulation of the normalisation rules, the reverse generation rules may poten-
tially look very different. In (16) and (17), we present excerpts fromtwo transfer
grammars that perform the same f-structure mappings in different ways. The trans-
fer grammar in (16) incorporates a notion of argument frames: the semantic roles
are not mapped to syntactic roles independent of each other. The naivereverse
grammar in (17) on the other handdoesemploy an independent mapping rule for
each semantic role.

(16) a. AGENT(%V, %Agent), THEME(%V, %Theme),
RECIPIENT(%V, %Recipient)
?=> SUBJ(%V, %Agent), OBJ(%V, %Theme),
OBJ-TH(%V, %Recipient).

b. AGENT(%V, %Agent), THEME(%V, %Theme),
RECIPIENT(%V, %Recipient)
?=> OBL-AG(%V, %Agent), SUBJ(%V, %Theme),
OBJ-TH(%V, %Recipient).

9Note that in German, there are two types of passive that a ditransitive verb can undergo: (1)
regular passive, turning the direct object into the passive subject, and(2) bekommenpassive, turning
the indirect object into the passive subject. In the latter case, the passiveis constructed with the
special auxiliarybekommen(lit. “get”); see Example (i).

(i) a. Die
The

Frau
woman.NOM

schenkt
gives

Maria
Maria.DAT

ein
a

Buch.
book.ACC.

b. Ein
A

Buch
book.NOM

wird
is

Maria
Maria.DAT

von
by

der
the

Frau
woman

geschenkt.
given.

c. Maria
Maria.NOM

bekommt
gets

ein
a

Buch
book.NOM

von
by

der
the

Frau
woman

geschenkt.
given.
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(17) a. AGENT(%V, %Agent) ?=> SUBJ(%V, %Agent).
b. AGENT(%V, %Agent) ?=> OBL-AG(%V, %AG)
c. THEME(%V, %Theme) ?=> OBJ(%V, %Theme).
d. THEME(%V, %Theme) ?=> SUBJ(%V, %Theme).

Grammar (16) will mostly produce f-structures that are well-formed and that
can be generated from, whereas grammar (17) will produce a lot of f-structures
that are not compatible with LFG assumptions or specific grammatical/lexical con-
straints, e.g., f-structures with two subjects or without a subject. In the finalsurface
realisation, these f-structures will not produce any surface sentence; however they
substantially slow down the generation process.

For our generation experiment, we considered a set of 156 German sentences
extracted from the HGC, a huge German corpus of newspaper text.10 In Table 3, we
report generation performance based on two different inputs for the surface realiser,
one that was produced by means of the naive transfer rules in (17), and one that
was produced by means of the lingustically informed rules in (16). The timeout
parameter was set to 500 seconds. As can be seen, the generator cannot easily deal
with the f-structure chart input that contains a lot of illformed structures. It times
out in 30% of the cases and the average generation time is dramatically increased
compared to generation from mostly well-formed input.

# f-structures avg. generation time (excl. timeouts)# timeouts
Naive Rules 156 246.14 (110.68) 53
Informed Rules 156 36.20 (27.04) 3

Table 3: Generation performance depending on the transfer rules that produced the
f-structure input

These results add an important aspect to the discussion about transfer grammar re-
versibility in Section 5.1. Even if we had a method that could automatically reverse
any given transfer grammar, the f-structure charts produced by that reverse gram-
mar would not necessarily be usable in generation experiments on actual corpus
sentences.

Moreover, in Table 4, we compare the number of surface realisations thatare
produced in generation from meaning representations and generation from usual
f-structures. In both cases, the total average of surface realisationsis very high due
to some very long sentences in our test set. If we compare the number of reali-
sations sentence-wise, the picture is more realistic: In generation from meaning
representations that abstract from the voice of a verb, the number of realisations
increases by a factor of 2.8 on average. However, in 40% of the sentences, the
number of surface realisations did not increase at all, i.e. no alternations could be

10All contain a ditransitive verb that instantiates its three arguments, such thatit should generally
be possible to generate several voice alternations. We did not include special rules for specific con-
structions like coordinations or generic pronouns (see Section 4), suchthat, in these contexts, the
grammar will rule out the automatically generated alternations.
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generated. This suggests that a more abstract meaning representation (as discussed
in Section 4) would have a huge impact on the surface realisation output.

Avg. number of realisations for semantic input25092.16
Avg. number of realisations for syntactic input14168.57
Avg. increase of realisations per sentence 284%
Sentences with no increase in realisations 64
Total number of sentences 156

Table 4: Number of surface realisations produced in generation from meaning rep-
resentations

6 Conclusion

In Sections 1 and 2, we outlined the two main motivations for implementing an
LFG-based surface realisation system that generates syntactic alternations from
meaning representations. First, this generation architecture provides a framework
for studying the interplay of multiple soft constraints on the basis of complex cor-
pus data, taking advantage of high-quality linguistic grammars that have broad
coverage at the same time. Hence, a topic of great theoretical linguistic interest
can be addressed from a computational perspective. Second, this work has demon-
strated the usability of the grammar-based XLE generator in a setting where the
(underspecified) input representation is not directly produced by the grammar, thus
taking a first step towards making the generator applicable in a wider range of
natural language generation domains.

In light of the discussions and experiments presented in this paper, we can
conclude that our architecture is definitely suited for carrying out targeted linguistic
studies of a well-delimited set of syntactic alternations. For instance, with the
help of our system, it is possible to do large-scale surface realisation experiments
focussing on specific phenomena, comparing them to the smaller-scale and more
controlled experiments in theoretical linguistic research, e.g. by Bresnan et al.
(2007). It is also possible to empirically study the complex interaction of two or
three factors known to play a role in surface realisation, e.g., word order, voice and
discourse status of argument phrases.

In addition, Section 4 on the design of the meaning representation showed that
by doing actual surface realisation studies, it is more likely that residual issues with
a particular level of abstraction chosen as the input representation will bebrought
to our attention. An example is the implicit exclusion of a passive realization due
to a particular lexical choice for the agent argument, or the question whether or not
a tense feature is included in the abstract input representation.

Concerning the second motivation, our conclusion is more cautious. In Section
4 and 5, we have seen several difficulties with the mapping between a (more or
less) grammar-external meaning representation and an f-structure inputthat can be
dealt with by the XLE generator. The main problems are that (a) the generator is
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very sensitive to slight changes in the f-structure input and the underspecification
mechanism does not always remedy this problem, and (b) the generator can be used
to filter illformed f-structures. However, if the input contains a massive number
of illformed structures, the performance decreases dramatically. In the case of
well-delimited linguistic studies, both of these rather technical problems can be
addressed through careful manual design of the transfer rules that map between
semantics and f-structure. However, interfacing the grammar-based generator with
an arbitrary semantic representation seems to require a more elaborate generation
architecture.
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