
EXLEPSE: AN ECLIPSE-BASED, EASY-TO-USE
EDITOR FOR COMPUTATIONAL LFG GRAMMARS

Roman Rädle, Michael Zöllner and Sebastian Sulger
Universität Konstanz

Proceedings of the LFG11 Conference

Miriam Butt and Tracy Holloway King (Editors)

2011

CSLI Publications

http://csli-publications.stanford.edu/



Abstract

We present eXLEpse, an easy-to-use editor for creating computational
grammars based on the Lexical-Functional Grammar (LFG) formalism (Dal-
rymple, 2001). The editor is implemented as a plugin for the open-source
program development platform Eclipse. eXLEpse provides functionality for
editing computational LFG grammars and an interface to the XLE grammar
development platform (Crouch et al., 2011). The editor can replace Emacs as
an editor and provides a graphically enriched user interface as an alternative
to the shell-based interface of the XLE platform. It is available free of charge
on the internet.

1 Introduction and Motivation

The Eclipse plugin eXLEpse1 provides functionality for editing computational LFG

grammars and an interface to the XLE grammar development platform. The pri-
mary goal of eXLEpse was to develop an easy-to-use editor for computational
grammars with a simple yet powerful interface to XLE. The editor can replace
Emacs2 as an editor and provides an alternative to the shell-based interaction with
the XLE platform.

For novices in XLE grammar development, it can be quite hard to get used to
Emacs and the XLE command prompt. Also, the grammar syntax required by XLE

can sometimes be confusing (e.g., nested templates). eXLEpse addresses these
problems, providing a graphically enriched user interface via the Eclipse platform3.
eXLEpse connects to the XLE binaries and the X11 windows platform to parse text
and display parse results. Furthermore, various error support functions and ad-
vanced syntax highlighting enable novice users to concentrate solely on the gram-
mar development process without painfully learning the details of Emacs and its
concepts. Additionally, Eclipse offers support for a diversity of version control
systems (VCS) such as the version management software Subversion via the Sub-
clipse4 plugin. Developers can make use of all the Subversion features through
this plugin, without having to leave eXLEpse. This is useful especially for large
grammar projects.

We emphasize that eXLEpse and its concepts constitute work in progress. In
particular, we do not, as of yet, view eXLEpse as a Swiss army knife of grammar
development, but rather as an evolutionary development based on previously ex-
isting XLE editors towards a homogenous LFG design environment. The eXLEpse
plugin is available as public and free software under the terms of the Eclipse Public
License (EPL). The plugin is distributed together with Eclipse and the Subclipse

†We thank the LFG11 audience and the members of the ParGram community for their construc-
tive criticism and feedback.

1http://www.exlepse.org
2http://www.gnu.org/s/emacs/
3http://www.eclipse.org
4http://subclipse.tigris.org/



plugin in a single zipped package for easy installation; packages for the most com-
mon operating systems are available.

In Section 2, we review some of the issues that arise in current approaches to
LFG grammar development, introducing the features of the eXLEpse editor step by
step in subsections. The paper concludes with a brief summary and perspectives
for future work.

2 eXLEpse – an XLE Perspective for Eclipse

The motivation for the development of the eXLEpse editor arose from registering
usability problems in user interfaces currently employed in LFG grammar develop-
ment with XLE. This section describes some of these problems; novices in gram-
mar development taking XLE courses at the Universität Konstanz have reported
that part of their difficulties with XLE have to do with the usability obstacles re-
ported here. The eXLEpse project therefore focuses on problems experienced by
XLE and Emacs novices, looking for accessible techniques to start learning about
LFG grammar development.

LFG grammar development with XLE usually takes place using Emacs in com-
bination with the Unix command shell. The Emacs plugin lfg-mode.el, written
by Mary Dalrymple, is distributed together with XLE for easier LFG grammar de-
velopment.5 It loads commands that cause Emacs to activate syntax highlighting,
indentation, and other visual aids that help in LFG grammar development. More-
over, lfg-mode.el provides Emacs with special commands that are loaded into
the Emacs menus. The commands are used to load (1) load files that are relevant to
the grammar being opened, (2) start and restart XLE shells, and (3) let you browse
rules, templates and lexical entries.

The views and tools of eXLEpse are described in the following sections and
compared to the standard grammar development process using Emacs in combina-
tion with lfg-mode.el.

2.1 Managing Windows and Editors

In the non-eXLEpse architecture, the actual XLE process used for parsing and gen-
erating sentences has to be opened in a separate Emacs buffer. Therefore, the user’s
desktop environment during grammar development may look as in Figure 1, with
different grammar files opened in multiple Emacs buffers and a separate buffer for
the XLE process. For professional grammar developers or computer scientists, this
may not be a big issue, but for novices looking to learn about grammar develop-
ment in an easy way, this can be very cumbersome.

Note that the user may open several files in a single Emacs window pane. The
user can then cycle through the files using special Emacs-specific shortcuts. Note

5For the remainder of the paper, we use the term Emacs, referring to instances of Emacs running
with the lfg-mode.el plugin.



further that a single Emacs pane may be split (vertically or horizontally) in two
or more parts. The user can open and edit different files in the different parts of
the pane. They may also display, e.g., a grammar file in one part of the pane and
the XLE buffer for parsing text in another part of the pane. These functionalities
are accessible using special keyboard commands or the drop-down menus. Thus,
it is in fact not necessary to open files in separate Emacs windows; however, to
command these functionalities, it is necessary to know a) that Emacs offers them
and b) the menus and keyboard shortcuts that activate them.

In eXLEpse, these functionalities are provided in a more intuitive way. See
Figure 2 for an overview of the eXLEpse perspective. The files of a grammar
folder may be opened by double-clicking them in the project explorer on the left.
If a file is already open, the newly opened file will be displayed in a new tab. The
user may create additional editor windows (with their separate tabs) by dragging
files to the edge of the central editing area of eXLEpse; see Figure 3. Files may be
distributed across editor windows and tabs within editors using drag-and-drop.

2.2 Different Keyboard Shortcuts

The default keyboard shortcuts of Emacs do not conform to current conventions.
By consequence, the keyboard shortcuts for opening, creating, or saving files in
Emacs differ from the shortcuts used throughout well-known operating systems.
Hence, a user who is already familiar with conventional operating systems or stan-
dard applications (e.g. word processor, text editor) has to learn Emacs shortcuts
from scratch. For instance, in Emacs M-w (for “wipe”) is set as a shortcut to cut
selected regions whereas most WIMP6 applications use Ctrl+X (Cmd+X on Mac
OS). This complicates the fluent grammar development, as the novice user needs
to shift focus away from grammar development to look up unknown shortcuts. In
contrast, all shortcuts of eXLEpse are in accordance with current editor standards
set across operating systems.

2.3 XLE Programming

To implement LFG, XLE uses a syntax that is distinct from programming or script-
ing languages (e.g. Java, C#/WPF) and thus a beginner needs to learn XLE syntax
from scratch. In combination with the sparse error messages, this can lead to user
frustration. As an example, consider the delimiter symbol that separates the entries
within a grammar (e.g. rules, lexical entries) — in XLE, the delimiter symbol is the
dot, which is the smallest visible lexical symbol and therefore hard to find on the
screen. This gives rise to errors in grammar development as the result of a miss-
ing dot or other delimiters (e.g., semicolons). If an error occurs, XLE prints error
messages to the standard command line output and the grammar developer has to
distinguish regular output and error messages. However the details of these error

6Windows Icons Menus Pointers



Fi
gu

re
1:

Po
ss

ib
le

us
er

de
sk

to
p

du
ri

ng
gr

am
m

ar
de

ve
lo

pm
en

tw
ith

X
L

E
an

d
E

m
ac

s



Fi
gu

re
2:

T
he

eX
L

E
ps

e
X

L
E

pe
rs

pe
ct

iv
e

co
ns

is
ts

of
a

pr
oj

ec
te

xp
lo

re
r(

le
ft

),
an

X
L

E
ed

ito
r(

m
id

dl
e-

le
ft

),
an

X
L

E
do

cu
m

en
ta

tio
n

br
ow

se
r

(m
id

dl
e-

ri
gh

t)
,a

gr
am

m
ar

ou
tli

ne
(r

ig
ht

),
co

ns
ol

e
in

pu
ta

nd
ou

tp
ut

an
d

a
pr

ob
le

m
s

vi
ew

(b
ot

h
at

th
e

bo
tto

m
).



Fi
gu

re
3:

T
he

eX
L

E
ps

e
X

L
E

pe
rs

pe
ct

iv
e

al
lo

w
s

fo
re

di
tin

g
di

st
ri

bu
te

d
ac

ro
ss

ed
ito

rw
in

do
w

s
an

d
ta

bs
us

in
g

dr
ag

-a
nd

-d
ro

p.
In

th
e

ab
ov

e
sc

re
en

sh
ot

,t
o
y
-
e
n
g
-
o
t
.
l
f
g

is
di

sp
la

ye
d

in
th

e
ed

ito
r

to
th

e
le

ft
,w

hi
le

th
e

te
st

su
ite

t
e
s
t
f
i
l
e
.
l
f
g

is
di

sp
la

ye
d

in
th

e
bo

tto
m

ed
ito

r,
an

d
m
o
r
p
h
-
l
e
x
.
l
f
g

an
d
m
o
r
p
h
-
r
u
l
e
s
.
l
f
g

ar
e

di
sp

la
ye

d
to

ge
th

er
in

th
e

ed
ito

rt
o

th
e

ri
gh

t,
ea

ch
fil

e
in

its
ow

n
ta

b.



messages are problematic because of the sparse clues that are given to identify the
error in the grammar.

In contrast to Emacs, eXLEpse evaluates grammars automatically after saving
a grammar file. The error message and a line number is shown in the problems
view if an error occurs during evaluation (see Figure 4). The grammar developer is
provided with rapid, incremental feedback that allows them to make fewer errors
and complete grammar development in less time (Shneiderman, 1983). In addition,
new error detection can be added if future XLE releases introduce further error
types. The eXLEpse preference pane provides an input dialog to add additional
problem types based on regular expressions. One of the five different problems
that are currently recognized is the template invocation error, an example of which
is given in (1).

(1) Template invocation error near line 242, column 105 in file /Users/xle/Docu-
ments/toy-eng.lfg: The invocation of template NPL has 1 argument, but the
definition has 0 parameters at line 131 in /Users/xle/Documents/toy-eng.lfg.

Figure 4: The problems view in eXLEpse displays errors of a currently opened
grammar file and highlights error position. Error positions are extracted from XLE

console output.

2.4 Syntax Highlighting

The Emacs editor highlights different aspects of an LFG file such as rules, tem-
plates, or comments. Some aspects, however, are not highlighted, for instance the
different parts of a configuration section (see Figure 6(a)). The eXLEpse editor
highlights the previously mentioned parts and moreover offers support for code
completion within the configuration section (see Figure 6(b)). When pressing the
shortcut Ctrl+Space the code completion popup opens and displays suitable config-
uration templates. The programmer can select a desired template to auto-complete
the input. Also, the colors used by eXLEpse to highlight the grammar code can



be changed by the user using the eXLEpse preference pane to match their personal
preferences (see Figure 5).

Figure 5: The colors used for the syntax highlighting in eXLEpse can be changed
using the eXLEpse preference pane.

2.5 Grammars as Projects

Large grammars often consist of several files (e.g. morphological rules or test
suites). Therefore, eXLEpse offers the possibility of assigning files of a gram-
mar to a logical construct, so called projects (see Figure 7). Multiple projects are
further organized in workspaces. On the one hand, this reduces complexity by
chunking different grammars into smaller units. On the other hand it provides cen-



(a
)

St
an

da
rd

E
m

ac
s

vi
ew

w
ith

X
L

E
sy

nt
ax

hi
gh

lig
ht

in
g.

(b
)

eX
L

E
ps

e
X

L
E

ed
ito

rw
ith

im
pr

ov
ed

sy
nt

ax
hi

gh
lig

ht
in

g
an

d
co

de
co

m
pl

et
io

n.

Fi
gu

re
6:

T
he

tw
o

di
ff

er
en

tX
L

E
ed

ito
rs

–
E

m
ac

s
an

d
eX

L
E

ps
e

–
in

a
si

de
-b

y-
si

de
co

m
pa

ri
so

n.



tralized access to grammars so that fast and frequent switches between projects is
enabled. The grammar developer can display several grammar files of different
projects simultaneously and within a single eXLEpse instance just by pointing at
double-clicking the files. Files may also be shared across grammar projects, e.g. by
putting them in the top-level directory of the workspace that contains the grammar
projects.7

Figure 7: XLE grammars consisting of multiple files can be grouped into logical
units, so called projects.

2.6 The Outline View

In Emacs, rules, templates and lexical entries contained in a grammar file may
be browsed using the LFG drop-down menu Rules, templates, lexicon menus. Se-
lecting the desired rule, template or lexical entry causes Emacs to jump to the
respective place in the grammar file.

In eXLEpse, the outline view summarizes the contents of a currently opened
grammar file (see Figure 8). Hence, contents are grouped into config, rules, tem-
plates, and lexical entries. Therefore users can rapidly overview a grammar and
highlight the corresponding grammar fragment by selecting an item of the outline
view. This functionality relies on the concept of brushing and linking (Buja et al.,

7The common templates and common features files of the ParGram project are examples of gram-
mar files that are commonly shared across grammars (Butt et al., 2003). In eXLEpse, these can be
put in the workspace directory for easy access.



1991). In contrast to Emacs, the outline feature in eXLEpse is provided to the
grammar developer without the need to navigate through the application menu by
selecting rules, lexical entries or templates from nested drop-down menus. The
outline view is provided to the user immediately after opening the file.

Figure 8: This view outlines config, rules, templates, and lexical entries and thus
provides a quick access to the contents of a grammar file.

2.7 Sentence Parsing

When using Emacs, text parsing with XLE is executed in a separate buffer. If the
user does not use split buffers as described in Section 2.1, they need to arrange
buffer windows in order to perceive application states (see Figure 1). Although
rearrangement of buffer windows is possible, the user has to layout windows man-
ually. Whenever the grammar developer wants to parse text, they are forced to
switch to the proper buffer, which could be hidden by other windows. Often, users
will have an XLE buffer running somewhere in the background of an Emacs pane.
They then have to select that pane, and cycle through all buffers opened in that
pane to find the XLE buffer.

Moreover, when changes are made to rules within a grammar, the currently
running XLE process has to be restarted for the changes to take effect.8 While XLE

produces a warning if there are non-lexicon changes without a restart of XLE, this
can lead to user frustration, as novice users may forget to restart XLE and ignore
the warning. Emacs buffers displaying grammar files include commands from the
LFG drop-down menu to either start a new XLE process, or start an XLE process
in an XLE buffer or switch to an existing one (among other commands, see Figure
9(a)). Emacs buffers that display a running XLE process include commands from

8Note that it is not necessary to restart XLE if only the lexicon is affected by changes (i.e., ad-
ditions to the lexicon or changes in lexical entries), since the lexicon sections of a grammar are
re-indexed by XLE at parse-time.



the XLE drop-down menu to either restart XLE (alternatively, using the XLE-specific
shortcut Ctrl+c+Ctrl+f) or start a new XLE process in another window (among other
commands, see Figure 9(b)). That is, there is no possibility to directly restart XLE

from a grammar buffer and switch to the XLE buffer at the same time.
Another problem with sentence parsing in the non-eXLEpse architecture is

connected to the XLE command create-parser. When a new XLE process
is started, the main grammar file containing the rules etc. is not loaded automati-
cally, unless there is an xlerc configuration file for the grammar. If the command
create-parser grammar-file is put in the xlerc file, the XLE process
will load the specified grammar when starting up. In many cases, the xlerc file
will only contain that single command.9

In eXLEpse, none of these issues arise. Because of the integrated design, there
is no need to switch between windows. The user can specify which of the files of a
project is the main grammar file containing the configuration section; that file will
receive a small green arrow next to the file name (see Figure 7). When the user
attempts to parse a sentence, eXLEpse automatically calls create-parser on
that specified file, effectively eliminating the need for an xlerc file in most cases.
create-parser is called again automatically when a user saves a grammar file,
so that it is not necessary to restart XLE manually.

Current approaches that aim at parsing sentences with XLE require at least basic
experience with a command line tool (e.g., shell). Therefore, grammar developers
have to learn how to use the shell in advance. However, eXLEpse hides this com-
plexity and provides simple access to the parser actions through a toolbar or a con-
text menu (see Figure 10). The grammar developer can either input text manually
(see Figure 10(a)) or choose to parse a pre-selected text (see Figure 10(b)).

2.8 Console Input

Only basic XLE commands (i.e., parsing sentences, parsing parts of a testsuite) are
implemented in the current version of eXLEpse via icons and context menus (see
Figure 10), although we plan to integrate more commands in the future (see Section
3). In order to provide eXLEpse with fully-fledged XLE support, a console has been
included (see Figure 11). The console constitutes a command line interface to XLE.
It allows text input and enables a grammar developer to give arbitrary commands
to the XLE process. Any XLE command that is otherwise not accessible may be
issued to XLE using the console from within eXLEpse.

2.9 XLE Documentation

For programming tasks it is very important to have documents at hand that describe
either the programming syntax or the application programming interface (API).

9Note that xlerc files may contain useful shortcut commands, ranging from manipulating OT
marks to running complicated testsuite commands to customizing the XLE display windows. For the
novice, however, these commands will not be applicable in the majority of cases.



(a
)

E
m

ac
s

ed
ito

r
w

ith
L

F
G

dr
op

-d
ow

n
m

en
u,

ac
ce

ss
ib

le
fr

om
bu

ff
er

s
w

ith
gr

am
m

ar
fil

es
.

(b
)

E
m

ac
s

ed
ito

rw
ith

X
L

E
dr

op
-d

ow
n

m
en

u,
ac

ce
ss

ib
le

fr
om

X
L

E
bu

ff
er

s.

Fi
gu

re
9:

T
he

tw
o

di
ff

er
en

td
ro

p-
do

w
n

m
en

us
to

in
te

ra
ct

w
ith

X
L

E
fr

om
w

ith
in

E
m

ac
s.



(a
)

In
pu

ta
te

xt
us

in
g

a
di

al
og

.
(b

)
Pa

rs
e

an
ar

bi
tr

ar
y

se
le

ct
ed

te
xt

w
ith

he
lp

of
th

e
co

nt
ex

tm
en

u.

Fi
gu

re
10

:
T

he
tw

o
di

ff
er

en
t

op
tio

ns
to

pa
rs

e
te

xt
w

ith
eX

L
E

ps
e.

O
pt

io
n

(a
)

al
lo

w
s

m
an

ua
l

in
pu

t
of

te
xt

w
he

re
as

op
tio

n
(b

)
en

ab
le

s
pa

rs
in

g
of

a
gi

ve
n,

pr
e-

se
le

ct
ed

te
xt

.



Figure 11: eXLEpse’s console view allows input of arbitrary not yet graphically
supported XLE commands.

In the Emacs interface to XLE, users can enter the command documentation,
which launches a web browser and displays the XLE documentation.

In eXLEpse, the XLE documentation (Crouch et al., 2011) is accessible directly
in the eXLEpse window; an external browser application is not needed. Moreover,
the documentation window integrates seamlessly into the eXLEpse perspective and
can be placed next to the XLE editor in order to program and to look up a definition
or examples simultaneously (see Figure 12).

3 Conclusion and Future Work

We have presented eXLEpse, an easy-to-use editor plugin for developing computa-
tional LFG grammars. eXLEpse supersedes both shell-based parsing and command
input as well as the Emacs editor. It represents a complete development platform
that seamlessly integrates into operating systems with help of the Eclipse platform.
eXLEpse uses the XLE binaries to parse sentences and displays parser results to the
user by communicating with the X11 window system.

Future work includes the following improvements to eXLEpse. We plan to
integrate the parse-testfile command in the editor, providing a button for
file input similar to the parse button. Also, we intend to include code reformat-
ting functionalities (indentation etc.) similar to the Esc+q command in Emacs,
which provides a reliable way to render grammars more readable. Moreover, we
plan to change the outline pane to refer not only to the currently opened file, but
to the whole grammar project. This way, the user can work with a more com-
plete overview of rules, templates and lexical entries included in a grammar. Also,
popup menus can be integrated and open up when a specific template or rule is
selected by a user. The popup shows where that template or rule is called in the



Fi
gu

re
12

:A
do

cu
m

en
ta

tio
n

vi
ew

is
in

te
gr

at
ed

in
eX

L
E

ps
e.



grammar. Incorrect template calls (e.g., template calls with the wrong number
of arguments) could be detected more easily in this manner. Functionalities for
creating and editing finite-state morphologies (Beesley and Karttunen, 2003) from
within eXLEpse are currently being investigated. Finally, support for generating
documentation from commented XLE grammars or additional XML documenta-
tion files as suggested by Dipper (2003) could be integrated straightforwardly into
eXLEpse.

References

Beesley, Kenneth and Karttunen, Lauri. 2003. Finite State Morphology. Stanford,
CA: CSLI Publications.

Buja, Andreas, McDonald, John Alan, Michalak, John and Stuetzle, Werner. 1991.
Interactive data visualization using focusing and linking. In Proceedings of the
2nd conference on Visualization ’91, VIS ’91, pages 156–163, Los Alamitos,
CA, USA: IEEE Computer Society Press.

Butt, Miriam, Forst, Martin, King, Tracy Holloway and Kuhn, Jonas. 2003. The
Feature Space in Parallel Grammar Writing. In Proceedings of the ESSLLI 2003
Workshop on Ideas and Strategies for Multilingual Grammar Development,
pages 9–16.

Crouch, Dick, Dalrymple, Mary, Kaplan, Ronald M., King, Tracy Holloway,
Maxwell III, John T. and Newman, Paula. 2011. XLE Documentation. Palo Alto
Research Center.

Dalrymple, Mary. 2001. Lexical Functional Grammar, volume 34 of Syntax and
Semantics. Academic Press.

Dipper, Stefanie. 2003. Implementing and Documenting Large-Scale Grammars.
Ph. D.thesis, University of Stuttgart.

Shneiderman, B. 1983. Direct Manipulation: A Step Beyond Programming Lan-
guages. Computer 16, 57–69.


