
FROM DEPENDENCY STRUCTURES TO LFG
REPRESENTATIONS

Dag Haug
University of Oslo

Proceedings of the LFG12 Conference

Miriam Butt and Tracy Holloway King (Editors)

2012

CSLI Publications

http://csli-publications.stanford.edu/

Abstract

In this paper, we present the conversion of the PROIEL dependency tree-
bank into LFG representations and the algorithms that were used in con-
verting dependency structures to f- and c-structures. The source corpus has
a large amount of non-projective edges, and the conversion to c-structure
goes beyond previous work in providing principled representations of non-
projective structures.

1 Introduction

When creating a treebank, it is necessary to select an appropriate formalism to ex-
press the annotation in. While it might seem obvious to simply pick your favoured
linguistic theory, this is in practice rarely what happens. Instead, treebanks are
usually expressed in either dependency grammar (DG), which despite some im-
portant work (Tesnière, 1959; Sgall et al., 1986; Mel’čuk, 1988; Hudson, 2007),
has never really been developed as a unified linguistic theory; or in some phrase
structure-based formalism that typically uses much flatter phrase structures than
those assumed by linguists who use phrase structure-based paradigms as their the-
oretical framework.

There are several good reasons why this is so. One practical concern may be
that it is hard to get annotators with the appropriate training for performing more
theoretically motivated annotation. Second, corpus annotation inevitably needs
to deal with constructions that linguistic theory has not developed analyses of,
whether because they are thought linguistically uninteresting (e.g. calendar expres-
sions) or simply because they have gone unnoticed in the literature (especially if
one is dealing with a less-studied language). So a theoretically motivated corpus
will require much theoretical work before the annotation can start. Third, creating a
treebank is a very time-consuming task, and it is desirable that the result should be
accessible to as many users as possible. The more theoretically motivated the tree-
bank is, the less it is likely to be accessible to ‘outsiders’ who might, for example,
have difficulties in navigating the AVMs of pure HPSG or LFG-based corpora.

But while there are good reasons why treebanks avoid theory-driven repre-
sentations, this can lead to a gap between corpus linguistics and linguistic theory
(Frank, 2001). One of the main uses that a treebank can offer would seem to be
the testing of linguistic theories and analyses against ‘real data’, not just intuitions.
But if the raw data that a corpus search yields is simply not compatible with the
theory to be tested, hypothesis testing can be more difficult.

The solution to this dilemma is to annotate and store corpora using simplified
representations, but to take care that it is possible to enrich these representations to
proper, theoretically motivated structures – ideally, to different structures motivated
by several different theoretical frameworks.

†We thank Mary Dalrymple for hints about the earlier literature, the audience at LFG12 for useful
comments and Tracy Holloway King for editorial suggestions.

Figure 1: Linguistic annotation and theories

1.1 Theory-neutral representation

We are therefore aiming at a ‘theory-neutral’ representation. By theory-neutral
annotation, we understand annotation that respects at least the first, and possibly
the second of the following two constraints.

1. Encode enough structure to allow the reconstruction of theoretically moti-
vated structures in the target frameworks

2. Encode no more structure than is common to the target frameworks (includ-
ing structure that in some frameworks are seen as derived/secondary)

Of course, there are limits to such theory-neutrality: some theories might simply
be too different. But in the ideal situation it will be possible to reconstruct full
theoretical representations by supplementing the information in the corpus with
the specific assumptions of each target theory. If constraint 2 is not violated, it
will be possible to do this by monotonically adding information. The situation is
summed up in figure 1.

When generating phrase structures from a corpus that does not have them,
which is the most challenging problem in creating LFG representations out of a de-
pendency treebank, the added theoretical assumptions will typically concern such

language source nonprojective projective % nonproj
Latin Gallic War 1547 19086 8.1%

Letters to Atticus 2269 22693 10.0%
Vulgate NT 2721 65671 4.1%
Per. Aeth. 1279 14890 8.6%

Greek Herodotus 4137 33522 12.3%
NT 3997 94028 4.3%

OCS Marianus NT 1828 47719 3.8%
Zographensis NT 26 701 3.7%
Suprasliensis 327 6068 5.4%

Gothic NT 1886 46884 4.0%
Armenian NT 409 18063 2.3%

Koriwn 48 1539 3.1%

Table 1: Projectivity in the PROIEL corpus

things as categories and X′-theory. In fact, converting a corpus can be seen as hy-
pothesis testing: the conversion will only succeed if it is in fact possible to convert
the dependency structures into phrase structures that accord with our assumptions,
and failure will indicate that the data falsifies our assumptions about phrase struc-
ture.1

Our approach to annotation entails a different strategy for conversion than what
is found in much other work. The information added during conversion is intended
to embody assumptions of linguistic theories, not to be guesses about information
that is lacking in the source data. With few exceptions, we are only enriching the
annotation to the extent that this can be done in a deterministic way; we do not
attempt to make up for missing information in the source through heuristics.

1.2 The source corpus

The corpus to be converted in this experiment is the PROIEL corpus, which con-
sists of 447,008 words in Greek, Latin, Gothic, Armenian and Old Church Slavic
(OCS). The core of the corpus is made up by translations of the New Testament in
these languages (or the original, in the case of Greek), and there are also some other
Greek and Latin texts. All these languages are morphologically rich, dependent-
marking, non-configurational languages with a high-degree of non-projectivity, al-
though this varies a lot between texts. As can be seen in table 1, the non-biblical
texts have very high non-projectivity rates, in one case exceeding 10%. This makes
the creation of motivated c-structures an interesting challenge.

The corpus is annotated with dependency structures, i.e. labelled, asymmetric
relations between words, but with some changes from what is normal in DG. There

1It should be noted that manually annotated data often has errors and inconsitencies in it, which
can also create problems for the conversion. Such annotation mistakes can and should be corrected
on the source side rather than being dealt with in the conversion.

Figure 2: Object control (1)

are two problems in particular that led us to deviate from standard DG, namely
structure-sharing and ellipsis.

Structure-sharing phenomena are problematic for DG because of the unique
head principle which says that each word has exactly one head, ensuring that the
dependency graph is in fact a tree. In the PROIEL corpus, this constraint is re-
spected in the primary dependency graph, but structure-shared elements are related
to their second head via secondary edges, as in the object control example in (1)
with the associated dependency graph in figure 2.

(1) Moribus
custom.PL.M.ABL

suis
own.3.PL.M.ABL

Orgetoricem
Orgetorix.SG.M.ACC

ex
from

vinculis
chain.PL.N.ABL

causam
cause.SG.F.ACC

dicere
say.PRES.INF.ACT

coegerunt
force.3.PL.PRF.ACT

‘Following their customs, they forced Orgetorix to speak his cause from
chains.’ (Caes. Gal. 1.4.1)

Orgetoricem is both the object of the matrix verb coegerunt and the subject of
the embedded infinitive dicere. Only the first function is captured in the primary
dependency graph whereas the second function is represented via the dotted sec-
ondary edge labelled XSUB (external subject). Notice that the same annotation is
used for functional and anaphoric control. Also no distinction is made between
raising and control, i.e. whether the higher position is thematic or not. The reason
is that there is simply no reliable answers to such questions for our languages at the
moment. On the other hand, the annotation does distinguish between cases like (1)

and those where the accusative does not have a grammatical function in the matrix
clause, i.e. accusatives with infinitives. In these cases, the accusative is made the
SUBJ of the infinitive (which is COMP), without any structure-sharing.

Ellipsis is problematic for DG because DG normally relies on the words of the
sentence to make up the nodes of the dependency tree. But when there is ellipsis,
there is structure without any word. Consider (2).

(2) partes
parts.PL.F.ACC

tres
three.F.ACC

quarum
who.PL.F.GEN

unam
one.SG.F.ACC

incolunt
inhabit.3.PL.PRES.ACT

Belgae
Belgian.PL.M.NOM

aliam
other.SG.F.ACC

Aquitani
Aquitani.PL.M.NOM

tertiam
third.SG.F.ACC

qui
who.PL.M.NOM

ipsorum
himself.3.PL.M.GEN

lingua
language.SG.F.ABL

Celtae
Celt.PL.M.NOM

nostra
our.SG.F.ABL

Galli
Gauls.PL.M.NOM

appellantur
call.3.PL.PRES.PAS
‘three parts, of which the Belgians inhabit one, the Aquitani another, and
those called Celts in their own language and Gauls in ours the third.’ (Caes.
Gal. 1.1.1)

There are three coordinated clauses sharing the relative pronoun quarum, but only
the first has an overt verb, incolunt. The others two clauses contain ellipted in-
stances of the same verb, but this is not easy to capture in DG – there is no node
of which Aquitani can be the subject. And there is no overt conjunction coordinat-
ing the three clauses. Our solution is to use empty nodes in such cases, as shown
in figure 3. The empty nodes are typed (V for ellipted verb and C for ellipted
conjunction) and bear an arbitrary, unique identifier. Via secondary edges labeled
PID (predicate identity), we can also capture the fact that the empty verbal node
instantiates incolunt.

Notice finally that this solution is in principle equivalent to that adopted in
many DG corpora (notably the Prague Dependency Treebanks and corpora inspired
by these) where ‘invisible structure’ is captured in the labels instead. We can re-
move empty nodes and instead make them dependents of their empty head’s own
head and label the resulting dependencies with the concatenation of the original
label, a unique ID for the empty node, and the label that the empty node bears to
its own head in the origin structure. This yields the structure in figure 4. But such
structures are more difficult to work with for annotators.

The labels used in the corpus and their LFG equivalents are shown in table 2.
As we can see, the labels have been chosen to match those of LFG. Still, there are a
couple of differences. First, the annotation scheme does not attempt to distinguish
between OBJθ/OBL, as that distinction is hard to draw for annotators.2 Second,

2Unless it were reduced to a category difference, where all PPs are OBL and all non-accusative
argument NPs are OBJθ – but that distinction is in any case retrievable from the morphological anno-

Figure 3: Ellipsis (2)

Figure 4: Ellipsis without empty nodes

Function Label LFG Function Label LFG
Adverbial ADV ADJ Oblique OBL OBJθ/OBL

Agent AG OBLAG Parenthetical PARPRED —
Apposition APOS ADJ Partitive PART ADJ

Attribute ATR ADJ Predicate PRED —
Auxiliary AUX — Subject SUB SUBJ

Complement COMP COMP Vocative VOC —
Argument of noun NARG OBL Free predicative XADV XADJ

Object OBJ OBJ Open complement XOBJ XCOMP

Table 2: Labels in the PROIEL corpus and their LFG equivalents

vocatives (VOC) and parenthetical predications (PARPRED) have no direct counter-
parts in LFG. In the conversion, these were simply ignored.3 Predicate (PRED) and
auxiliary (AUX) are used in the PROIEL corpus for functions that do not introduce
an embedded layer of f-structure, but simply contribute the features of the depen-
dent in the f-structure of the head. We will see how this works in more detail in
section 2.

2 Converting to f-structures

F-structures and dependency graphs both encode labelled syntactic dependencies,
so conversion is not very difficult. There is also previous work in the LFG tradition
that we can lean on, notably Forst (2003).

There are two major differences between f-structures and dependency graphs
that conversions typically need to deal with. First, as observed, LFG’s structure-
sharing runs against DG’s unique head principle. This is not a problem for our
conversion, since the source corpus already captures structure-sharing through sec-
ondary edges. Second, in DG every word introduces depth in the graph, whereas in
LFG multiple words can contribute to the same f-structure without nesting. Here,
the source corpus uses AUX and PRED for such words, so they are identifiable.

The conversion proceeds by mapping the morphological analysis of each token
to a set of features and (unless the token bears the AUX function) its lemma to a
semantic form. The subcategorization template for the semantic form is simply
retrieved from the argument daughters in the source graph + a subject if none is
present, to account for subject pro-drop.4 This gives us f-structures for each token.
In the next step, the f-structure of each token is either made the value of the LFG-
equivalent of its function in the f-structure of its head (if the function is not AUX or

tation.
3Another simple solution would have been to generate separate f-structures for parenthetical pred-

ications.
4Before this is done, the lemma is checked against a stop list of impersonal words. Note that no

attempt is made to account for pro-dropped objects and obliques, which are much rarer.

Figure 5: Dependency graph for (3)

PRED), or simply unifies with the f-structure of its head (if its function is AUX or
PRED). Consider the simple example in (3).

(3) puer
boy.SG.M.NOM

amat
love.3.SG.PRES

puellam
girl.SG.F.ACC

pulchram
beautiful.SG.F.ACC

‘The boy loves the beautiful girl.’

The dependency graph is given in figure 5. The f-structures (omitting NUMBER for
the sake of readability) the of the words are as in (4).

(4) root
r

[]

puer

b


PRED ‘BOY’
CASE NOM

GEND MASC



amat

l


PRED ‘LOVE 〈SUBJ, OBJ〉
PERSON 3
TENSE PRES



puellam

g


PRED ‘GIRL

CASE ACC

GEND FEM



pulchram

n


PRED ‘BEAUTIFUL’
CASE ACC

GEND FEM


In step two, then, n is made the value of the ADJ function in g (embedded inside

a set, since we know that (X)ADJ is set-valued), g becomes the value of OBJ in
l, b becomes the value of SUBJ in l, and l and r unify, since amat has the PRED

function. This yields (5).

(5)


PRED ‘LOVE 〈SUBJ, OBJ〉’
TENSE PRES

PERS 3

SUBJ


PRED ‘BOY’
CASE NOM

GEND MASC



OBJ



PRED ‘GIRL’
CASE ACC

GEND FEM

ADJ




PRED ‘BEAUTIFUL’
CASE ACC

GEND FEM







There are a couple of things to notice about the generated f-structures. First, it
follows from the method that words can only contribute features to their own f-
structure or that of their head – but in the latter case, they contribute all their
features to the head. This means that it is impossible for the output structures
to represent LFG’s traditional account of agreement as cospecification of features
in one f-structure: instead, pulchram bears the agreement features CASE and GEND

in its own f-structure. This is not necessarily wrong (and indeed Haug and Nikitina
(this volume) argue that such a theory of agreement is needed for Latin). Second,
the f-structure is generated separately from the c-structure, which means that the
c-structure cannot influence the f-structure. In other words, functions that are typ-
ically assigned configurationally, such as TOPIC and FOCUS cannot be accounted
for.

3 Converting to c-structures

Unlike f-structures, c-structures contain information that is very different from that
found in a dependency graph. This part of the conversion is therefore much more
difficult, but also more interesting. As far as I know, there is no LFG work on
inferring c-structures from dependencies, but there is more general work on the
relationship between phrase structure grammars and dependency grammars going
back to at least Gaifman (1965).

Instead of syntactic dependencies, c-structures contain information about word
order, category and constituency. None of these need be present in a dependency
tree. However, we can reconstruct the linear order by referring to the original string

(barring tokenization differences), and in any case nodes will often bear an order-
ing that lets us reconstruct the original word order. Categorical information is also
not too difficult to retrieve, since treebanks typically have morphological annota-
tion.5 In the following, we will simply assume that the words of the dependency
graph are marked for their category. Finally, and this is the most crucial point,
constituency and dependency are of course related. The exact relationship is the
topic of discussion, which makes the conversion interesting also from a theoretical
perspective.

Intuitively, we can look at constituency as combining information about de-
pendencies and word order, i.e. a constituent is a continuous domain of words re-
lated by dependency relations. Generally, the phrasal head is also the dependency
head of any words inside its phrase, but there are some common mismatches. For
example, dependency analyses often (but by no means always) make functional
elements such as determiners and auxiliary verbs dependents of their associated
lexical element. Such differences are not really due to the difference between the
formalisms, but rather to different and sometimes controversial analyses. For ex-
ample, some phrase structure grammars assume that determiners take their noun
as a complement, others that the determiner occurs in the specifier position of the
nominal projection. We therefore consider these alterations not to be part of the
conversion to c-structure. Instead they are performed in a separate step of pre-
processing, where auxiliary verbs are made the head of lexical verbs (but articles
remain dependents of their nouns).

In the following we will describe our conversion algorithm. We will not attempt
a full-fledged formalization of the linguistic structures and the conversion between
them in this context, but we will be explicit enough for it to be possible to see that
the algorithm is sound and that it does not lose information, i.e. it is reversible.

3.1 What’s in a dependency structure

Words are the cornerstones of our structures: they make up to nodes of our depen-
dency graphs and the terminals of our phrase structure trees. We want the same
elements to serve in both structures. More concretely, we will assume that words
(and other terminals) are tuples 〈w, i, c, r, t〉 where w is the form of the word, i
is the index (surface string position), c is the category, r is the syntactic function
and t is a boolean flag indicating whether the ‘word’ is a trace. Traces will seem
suspicious from an LFG perspective and we will in fact create c-structures that are
trace-free, but as we will see, traces are still useful in the intermediate representa-
tions between DGs and c-structures. Notice also that we will make no use of the
secondary edges in the PROIEL DGs in the conversion procedure, as we want the
procedure to be applicable more generally to other corpora. In other words, the
input dependency structures will respect the unique head principle. In addition, we

5Sometimes, the syntactic function is also necessary for category inference. For example, we
assume that adjectives bearing nominal functions such as SUBJ, OBJ etc. have been nominalized and
therefore have category N rather than A.

will assume that there is always a single root word, i.e. a unique word that does
not have a head. Since we have ignored vocatives and parenthetical predications,
this assumption holds good in the source corpus, as it does in most dependency
corpora.

Dependency structures, then, will be tuples 〈W, r, f〉 where W is the set of
words, r(∈ W) is the root and f is a functionW \ {r} 7→ W taking dependents
to their heads, such that f forms a tree overW rooted in r. Notice that while we
normally think of the labels in a dependency structure as attaching to the edges of
the graph, we have here assumed that the labels attach to words. Because of the
unique head principle, this makes no difference.

3.2 Order domain structures

We now introduce the notion of the order domains, a concept we have adapted from
Bröker (1998), although it plays a different role in our system. The order domain
D(w) of a node w is the largest subset of W such that w ∈ D(w), all words in
D(w) are dominated (either directly or via nodes that are also in D(w)) by w and
D(w) is continuous, i.e. for any two words in D(w), all words in between are also
contained in D(w). We will call w the head of the order domain D(w).

In other words the order domain D(w) contains w itself as well as all those
of its (direct and indirect) dependents that in an intuitive sense are not ‘displaced’.
This is not far from the concept of a constituent as a continuous domain of words
related by dependency relations.

Let us call the set O of order domains of all the words in a sentence an order
domain structure. Set inclusion is a partial order on O and it is easy to see that
〈O,⊆〉 is a join semi-lattice whose top isW , which is the order domain of r.

Furthermore, for all order domainsD(w1),D(w2),D(w3), ifD(w1) andD(w2)
are both supersets of the order domain D(w3), then by the definition of order do-
mains, w1 and w2 must both dominate w3 in the dependency structure. Hence,
since the dependency structure is a tree, either w1 dominates w2 or vice versa.
Moreover, by the continuity of order domains, all nodes between w1 and w3 must
be dominated by w1 and similarly for w2. It follows that either D(w1) ⊆ D(w2)
or D(w2) ⊆ D(w1). This means that the order domain structure is always not just
a semi-lattice, but in fact a tree in the graph-theoretical sense. Moreover, since the
order domains are always continuous, there are no crossing branches in our tree.
That is, order domain structures are the same kind of structures as context-free
phrase structure trees over nodes that, as we noted above, are very close in con-
ception to constituents. As such, it provides useful intermediate structure between
dependency graphs and phrase structures.

Consider the constructed Latin example in (6), which has the dependency graph
shown in figure 6.

Figure 6: Dependency graph for (6) and (10)

(6) malus
bad.SG.NOM.M

Maximilianus
Max.SG.NOM.M

trusit
push.SG.NOM.M

bonum
good.SG.ACC.M

Fredericum
Fred.SG.ACC.M
‘Bad Max pushed nice Fred.’

The order domains of the words in (6) are given in (7).

(7) malus {malus}
Maximilianus {malus,Maximilianus}
trusit {malus,Maximilianus,bonum,trusit,Fredericum}
bonum {bonum}
Fredericum {Fredericum,bonum}

If we order these sets by set inclusion, we get the order domain structure in (8).

(8) {malus,Maximilianus,bonum,trusit,Fredericum}

{malus,Maximilianus}

{malus}

{Fredericum,bonum}

{bonum}

Consider now a possible phrase structure tree for (6), along with a reduced ver-
sion of this tree, containing only the (uppermost, in the case of adjunction-induced
iterations) maximal projections:

(9) IP

NP

AP

A′

A

malus

NP

N′

N

Maximilianus

I′

I

trusit

NP

AP

A′

A

bonum

NP

N′

N

Fredericum

IP

NP

AP

NP

AP

We observe that the order domain structure is isomorphic to the reduced tree con-
taining only maximal projections. Consider now (10), which gives the same exam-
ple slightly altered so as to have a discontinuous object NP.

(10) malus
bad.SG.NOM.M

Maximilianus
Max.SG.NOM.M

bonum
good.SG.ACC.M

trusit
push.SG.NOM.M

Fredericum
Fred.SG.ACC.M
‘Bad Max pushed nice Fred.’

The dependency tree remains the same, although the indices on the words have
changed. It is a theoretically disputed matter how to best represent the phrase
structure of an example like (10). Two possible analyses are shown in (11). To
the left is a minimalist-style analysis where the discontinuity is accounted for by
assuming that the displaced adjective has moved to the specifier of a functional
projection (FocP).6 To the right is an LFG-style style analysis7 which assumes that
the displaced adjective adjoins to a headless object NP which is unified with the
other object NP at f-structure.

(11) TopP

NP

AP

A′

A

malus

NP

N′

N

Maximilianus

FocP

AP

A′

A

bonum

IP

I

trusit

NP

N′

N

Fredericum

IP

NP

AP

A′

A

malus

NP

N′

N

Maximilianus

I′

NP

N′

AP

A′

A

bonum

I

trusit

NP

N′

N

Fredericum

However, if we only consider the uppermost maximal projections, both these trees
6For an analysis of discontinuities in Latin along these lines, see Devine and Stephens (2006).
7This is not to say that LFG has to assume the rightmost structure rather than the leftmost.

are isomorphic with each other and with the order domain structure, which are both
given in (12).

(12) TopP/IP

NP

AP

AP/NP NP

{malus,Maximilianus,bonum,trusit,Fredericum}

{malus,Maximilianus}

{malus}

{bonum} {Fredericum}

In a sense, then, the order domain structure represents phrase structure while ab-
stracting away from the internal structure of projections. The internal structure of
projections is of course very important in phrase structure grammars, since it deter-
mines things such as c-command relations etc. But on the other hand, assumptions
about the internal structure of phrases is also where different theories differ most.
Therefore, an order domain structure is as close as we can get to a proper phrase
structure representation without making theory-internal assumptions. To get to
proper phrase structure representations such as those in (11), we need to add those
assumptions.

Before we go on to see how that can be done, we need to fix a problem with
the order domain structure in (12). Although this structure can be derived from
the dependency graph, there is in fact no way to go back from the order domain
structure. The problem is that there is no way to retrieve the dependency of bonum
on Federicum. We will solve this by enriching our order domain structures with
traces. In addition to the set of nodes defined above, an order domain structure will
consist of traces of all nodes that are dominated (directly or indirectly) by a word
but are not in its order domain according to the previous definition. The partial
order that defines the tree structure of an order domain structure will be the subset
relation modulo traces. This yields (13), where traces appear as words in italics.

(13) {malus,Maximilianus,bonum,trusit,Fredericum}

{malus,Maximilianus}

{malus}

{bonum} {Fredericum,bonum}

Now we can retrieve the dependency tree by ordering the order domains by a subset
relation ⊆t that consider traces and their overt realizations as identical.

3.3 Adding linguistic knowledge

To take order domain structures to phrase structures there are two steps we must
accomplish. First, we must create a projection corresponding to each order domain.
Second, we must embed these phrases in each other. To do this, we must know the
rules for creating projections and combining them.

Xia and Palmer (2001) identified three questions that any conversion from de-
pendencies to phrase structures must answer:

1. For a category X, what kind of projections can X have?

2. If a category Y depends on a category X in a dependency structure, how far
should Y project before it attaches to Xs projection?

3. If a category Y depends on a category X in a dependency structure, to what
position on X’s projection chain should Y’s projection attach?

Our answers to these questions are guided by X′-theory and LFG’s approach to
discontinuities.

1. All categories X project two levels X′ and XP. However, if the phrase is
displaced, it will be embedded inside one or more headless projections cor-
responding to the path to its functional heads.

2. A dependent Y always projects to Y′ then YP and the YP attaches to the
head’s projection

3. Dependents are divided into three types using a set of handwritten rules:
specifiers, modifiers and arguments. Specifiers are made sisters of X′ and
arguments are made sisters of X. Modifiers Chomsky-adjoin to either X′ or
XP depending on whether they are restrictive, as indicated by the depen-
dency edge label (ATR or APOS).

The conversion of the order domain structure starts from the root, but recursively
converts daughter order domains before mothers. For each order domain we first
create a projection according to these rules, i.e. an X – X′ – XP spine, where
X is the category of the order domain’s head.8 Next, if there are order domains
in the tree that contain a trace of the order domain’s head, we order these by ⊆t
and embed the original projection successively inside headless structures Y′ – YP,
where Y is the category of the head of the order domain containing the trace.

Once the full projections of any daughter nodes in the order domain structure
have been created, as well as the X – X′ – XP spine of the current node, it is
necessary to embed the daughter projections in correct positions in the structure.
We rely on hand-written rules to do this. A sample rule for nominal projections is
given in table 3.

The rule that governs the relationship between position and grammatical func-
tion (e.g. phrase adjuncts should be non-restrictive (APOS) etc.) are for the moment
hard-coded in the conversion program, so the handwritten rules only deal with re-
strictions on categories. The rules are tested from the ‘outside in’, i.e. the outermost
dependents are tested for whether they can be phrasal adjuncts; if yes, the next out-
ermost dependents are also tested and so on; when the test fails, it moves to check

8The empty nodes used in ellipsis and asyndetic coordination are represented as phrases without
heads.

N:
:phrase adjuncts: NP, AP
:specifier: DP
:bar adjuncts: NP, AP
:complements: NP, PP, AdvP, AP, CP, IP, VinfP, VptcpP

Table 3: Rules for nominal projections

the next leftmost dependent for specifier-hood; and so on, to bar-level adjunction
and complementhood.

Let us see how this works for (13). In order to create a phrase structure for
the top node, we must create projections from the daughter nodes. We start from
the left. To create a projection for {malus, Maximilianus} we must create one for
{malus} and attach it correctly in the one for {Maximilianus}. This is shown in
(14). The two starting projections are determined by our X′-theoretic assumptions,
and the correct combination is given by the rules in 3.

(14) AP

A′

A

malus

NP

N′

N

Maximilianus

⇒
NP

N′

AP

A′

A

malus

N′

N

Maximilianus

Next, we must construct a projection for bonum. Since there is a trace correspond-
ing to bonum, we must also create a headless projection for the (possibly multiple,
but in this case only one) order domain containing the trace, and embed the first
one in the second. This is shown in (15).

(15) AP

A′

A

bonum

NP

N′ ⇒
NP

N′

AP

A′

A

bonum

Finally, we create a projection for Fredericum. Since this order domain contains
only one non-trace element9 and there is no trace corresponding to Fredericum,
this is simple:

(16) NP

N′

N

Fredericum

Once we have created the projections in (14)–(16), we need to attach them in the
projection of the topmost order domain, which is an IP – I′ – I spine. The result is
shown in (17).

(17) IP

NP

N′

AP

A′

A

malus

N′

N

Maximilianus

I′

NP

N′

AP

A′

A

bonum

I

trusit

NP

N′

N

Fredericum

So we have arrived at a c-structure which can be motivated within LFG. Observe
that in itself, this structure cannot be reverted to the order domain structure, because
again there is no way to retrieve the dependency of bonum on Federicum, which
should be represented by a trace in the order domain structure. For our purposes,
this is not a problem, since we also generate an f-structure, from which we can see
that bonum belongs to Federicum. For other applications where only c-structures
are generated, other options must be considered. One, corresponding to a principles
and parameters approach, would be to represent the trace in the order domain as a
trace in the phrase structure. Another option is to index maximal projections with
the index of the word whose projection it is. This would leave both NPs inside I′

9Notice that if we wanted to create constituent structures with traces in them, we could treat the
trace of bonum as projecting an empty category.

coindexed. For c-structures without such discontinuities, however, the reversion
to an order domain is straightforwardly achieved by substituting for each maximal
projection the set of terminals it dominates and removing all other nodes.

3.4 Evaluation

The conversion algorithm for c-structures is completely rule-based, and as such it
performs no better than the rules it is fed with. But notice that for the most part,
the rules do not really have the character of heuristics in the sense that they would
guess the most likely alternative. Instead, they are intended as hard constraints em-
bodying linguistic knowledge. The only exception to this is the fact that the rules
are always tested from the outside in. This means that if the leftmost dependent
is admissible both as a specifier and as a complement, it will always be made a
specifier. The reason for this choice is that linguistic theories predict that there are
elements such as wh-words which have to occur in specifier positions, while with
other words it is often hard to see whether they are in a specifier position or not, as
the semantic effects of topicalization are vague. Consider (8) again. If we assume
that Latin has a non-obligatory specifier position which serves to indicate topicality
(and not subjecthood), we could equally well assume a phrase structure as in (18).

(18) IP

I′

NP

AP

A′

A

malus

NP

N′

N

Maximilianus

I

trusit

NP

AP

A′

A

bonum

NP

N′

N

Fredericum

Considerations of information structure would tell us that (18) is perhaps be more
natural in an ‘all new’ context (answering What happened? rather than What did
Maximilian do?). But such constraints are too vague to be of any use in conversion.
This points to a more general problem with evaluating phrase structures, especially
when working with ancient languages where the word order is ill understood: there
is often no real gold standard to be had.

However, there is another aspect under which our conversion algorithm can
be evaluated, namely its preservation of information. The algorithm does not lose
linguistic information. There is no room for a formal proof here, but we have

already hinted that the order domain structures, once equipped with traces, can be
reverted to dependency structures. It is also possible to revert phrase structures to
order domain structures.

4 Conclusion

We have seen that it is possible to convert a dependency-annotated corpora to full
LFG representations, provided the original annotation is rich enough. Although
dependency structures and functional structures encode very similiar kinds of in-
formation, which facilitates the conversion, this is also the part which requires
the most divergences from a strict phrase structure format. The reason is that
dependency grammar (at least in its usual strict form) does not allow structure-
sharing. Correct transformation of the data could only be achieved because the
dependency format used in the PROIEL source corpus has been extended with
structure-sharing.

The conversion from dependency structures to c-structures, on the other hand,
is more complicated and challenging both from a technical and a theoretical point
of view. On the other hand, it does not require information beyond what is found
in normal dependency structures. The conversion algorithm goes beyond previous
work in conversion between dependencies and phrase structures in that it deals with
non-projectivity in a principled manner, generating structures that are compatible
with LFG’s treatment of discontinuities.

As we noted, there are difficulties in providing an exact evaluation of the c-
structure conversion, since there is room for much disagreement on what a proper
c-structure of these old languages should like. Nevertheless, it is an important
feature that the algorithm is reversible and does not lose linguistic information.

Finally, we hope that the converted corpora will be of use in future development
of LFG grammars for these languages. As mentioned above, their phrase structure
is not well understood. It is to be hoped that the converted PROIEL corpus will be a
valuable resource and help towards a better understanding of both phrase structure
and other aspects of the grammar of these languages.

References

Bröker, Norbert. 1998. A projection architecture for dependency grammar and how
it compares to LFG. In Miriam Butt and Tracy Holloway King (eds.), Proceed-
ings of the LFG98 Conference, Stanford: CSLI Publications.

Devine, A. M. and Stephens, L. D. 2006. Latin Word Order: Structured Meaning
and Information. Oxford: Oxford University Press.

Forst, Martin. 2003. Treebank conversion – creating a German f-structure bank
from the TIGER corpus. In Miriam Butt and Tracy Holloway King (eds.), Pro-
ceedings of LFG03, CSLI Publications.

Frank, Anette. 2001. Treebank conversion - converting the NEGRA treebank to an
LTAG grammar. In Proceedings of the Workshop on Multi-layer Corpus-based
Analysis, Iasi, pages 29–43.

Gaifman, Haim. 1965. Dependency systems and phrase-structure systems. Infor-
mation and Control 8(3), 304–337.

Hudson, Richard. 2007. Language Networks: The New Word Grammar. Oxford
University Press.

Mel’čuk, Igor. 1988. Dependency Syntax: Theory and Practice. Albany: State
University of New York Press.

Sgall, Petr, Hajičová, Eva and Panevová, Jarmila. 1986. The Meaning of the
Sentence and Its Semantic and Pragmatic Aspects. Prague, Czech Repub-
lic/Dordrecht, Netherlands: Academia/Reidel Publishing Company.

Tesnière, Lucien. 1959. Eléments de Syntaxe Structurale. Paris: Klincksieck.

Xia, Fei and Palmer, Martha. 2001. Converting dependency structures to phrase
structures. In Proceedings of the first international conference on human lan-
guage technology research, HLT ’01, pages 1–5, Stroudsburg, PA, USA.

