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Abstract

This paper describes INESS-Search, a new search tool for constituency,
dependency and LFG treebanks. The tool is derived from TIGERSearch and
has been extended to encompass full first-order predicate logic over node
variables. In addition, several operators have been implemented that are spe-
cific for querying c- and f-structures. The original TIGERSearch syntax has
been extended and considerably simplified, thus making a graphical query
input device less necessary. The search index is dynamically updated when
the treebank is modified. The INESS-Search tool is usable viaa Web inter-
face as an integrated part of INESS, the Norwegian Infrastructure for the
Exploration of Syntax and Semantics.

1 Introduction

In the last two decades, many tools for querying traditionaldependency and con-
stituency treebanks have been developed. They all differ inexpressiveness, query
language and formalism, ease of use, and applicability to specific kinds of tree-
banks. But no tool has been developed previously that can handle LFG treebanks,
since LFG treebanks of a size that calls for a dedicated and powerful search tool
have only recently been emerging.

The structural representation of syntactical analyses in Lexical Functional
Grammar is quite different from and more complex than the tree-like structures
that we encounter in traditional treebanks. Whereas c-structures in fact are proper
(ordered) trees, f-structures can be described as unordered directed graphs, pos-
sibly with cycles. In addition, c- and f-structures are interconnected by virtue of
the projection relation holding between c-structure nodesand sub-f-structures, and
thus must be seen in combination (again, formally describable as a directed graph).
In contrast, the structures that are prominent in traditional treebanks are the follow-
ing:

• proper ordered trees, with or without labeled edges (e.g. the Penn Treebank)

• proper unordered trees as used in dependency treebanks derived from Con-
straint Grammar (e.g. the Sami treebanks in INESS)

• trees equipped with some additional structure peculiar to aspecific frame-
work or treebank (e.g. secondary edges and crossing edges inthe Tiger tree-
bank)

• unordered trees with or without secondary edges in some dependency tree-
banks (e.g. the PROIEL treebank (Haug, 2008) in INESS)

None of those tree varieties are equivalent to general directed graphs.
As a consequence, existing treebank search tools, which aredesigned to operate

on traditional treebanks, are unable to cope with fully general directed graphs.
Some of those tools are designed or implemented in a way that makes them in



principle unsuited for general directed graphs, as there isno way to extend them
beyond proper trees. Examples are LPath+ (Lai & Bird, 2005) and MonaSearch
(Maryns, 2009).

Other tools are in principle extensible to directed graphs,like TIGERSearch,
Emdros (Petersen, 2005) and fsq (Kepser, 2003).

Among those tools, TIGERSearch (Koenig, Lezius, 2003) was identified as a
suitable basis for the implementation of INESS-Search for the following reasons:

• TIGERSearch is equipped with an elegant and concise query language that
can easily be extended to meet the needs of a more general search tool.

• The implementation of dominance relations in TIGERSearch via Gorn ad-
dressing naturally extends to directed graphs and lends itself to an elegant
implementation of circularity detection.

• The Java implementation of TIGERSearch is reasonably fast,so one could
expect that a reimplementation would have acceptable queryexecution speed.

INESS-Search contains extensions necessary to query fullygeneral directed
graphs like LFG f-structures, but also implements the full functionality of TIGER-
Search and thus can be used to query constituency and dependency treebanks.

Whereas the expressive power of the query language of TIGERSearch can be
characterized as roughly equivalent to the existential fragment of first-order pred-
icate logic over node variables, the query language of INESS-Search is equivalent
to full first-order predicate logic.

The INESS-Search tool is useable via a Web interface as an integrated part of
INESS, the Norwegian Infrastructure for the Exploration ofSyntax and Semantics
(Rosén et al., 2012).

2 Abbreviated syntax and specialized operators

In order to make the syntax of the query language concise and easy to use, the
original TIGERSearch syntax has been extended with convenient abbreviations
and path-like concatenation of operators. Variables in operator expressions can be
omitted when they are not needed for coreferencing in other relations. Examples
for full and abbreviated syntax are given below.

• Terminal nodes

full: [word=“Sophie”]
abbreviated: “Sophie”

• Node labels

full: #c:[cat=“NP”]
abbreviated: #c:NP



• Operator concatenation

full: [cat=“IP”] > #x:[cat=“NP”] & #x > [cat=“N”]
abbreviated: IP> NP> N

• Omission of variables in relations

full: #f >OBJth #g
abbreviated: >OBJth

In addition, several operators have been implemented that are specific for querying
complex tree node and f-structure constellations:

• A rule operator, which has the shape of a derivation rule and makes it pos-
sible to specify relations between mothers and daughters

#c→ AP .∗ PP

• A c-command operator

#n>c> #c

Some operators are specific to LFG c- and f-structures:

• A path operatorspecifying regular expressions over f-structure attributes:

g is either the value ofOBJth of f or contained in theADJUNCT set off

#f >( OBJth | ADJUNCT $ ) #g

g is bothOBJ andTOPIC of f

#f >( OBJ& TOPIC ) #g

• A projection operator: tree nodec projects to the f-structuref

#c>> #f

• A projective equivalence operator: nodesc1 andc2 are in the same projective
domain

#c1>><< #c2

• An extended-head operator: n is the extended head ofc according to the
definition given in Bresnan (2001)

#n>h> #c

Many of these operators could in principle be expressed and implemented using
more primitive relations like dominance and labeled dominance. Defining them as
dedicated operators however has two advantages: queries can be expressed more



concisely, and the operators can be hard-coded, resulting in dramatically improved
performance.

The syntax of INESS-Search is sufficiently compact and intuitive to make elab-
orate graphical query devices unnecessary, especially in the case of relatively sim-
ple searches. Moreover, in the case of more complex searchesinvolving advanced
operators and quantification, a GUI would face expressiveness challenges. Instead,
we will in further work explore the possibilities offered bypredefined examples
and cached previous queries.

3 Querying parallel treebanks

INESS-Search is being extended with a parallel search mode (Dyvik, Meurer,
Rosén & De Smedt, 2009). This mode is still in an experimental stage. The main
idea is that for aligned sentence pairs, certain nodes (treenodes or c-structure nodes
and sub-f-structures) will be aligned. To make alignment searchable, an alignment
relation has been introduced as shown in (1).

(1) #s>>> #t

This relation holds ifs is instantiated by a node in the source c- or f-structure,t is
instantiated by a node in the target c- or f-structure, and those nodes are aligned.
Thus, query (2) will match all aligned pairs of analyses in a Norwegian–English
parallel treebank where a source c-structure lexical node “jente” is aligned with a
target c-structure lexical node “girl”.

(2) #s:“jente”>>> #t:“girl”

An alignment relation can of course be part of a more complex query expression,
as (3) illustrates. This query will match a source c-structure node dominating a
lexical node “jente”, aligned with a target c-structure node dominating a lexical
node “girl”.

(3) #s> “jente” & #t > “girl” & #s >>> #t

Our approach is influenced by Volk, Lundborg & Mettler (2007), who were the
first to devise a syntax for querying node alignment based on TIGERSearch, which
they implemented in the Stockholm Tree Aligner tool.

4 Expressivity

The expressive power of the original TIGERSearch query language is equivalent to
the existential fragment of first-order predicate logic over node and value variables.

In TIGERSearch, all variables are implicitly existentially quantified and uni-
versal quantification is not available. Unfortunately, with existential quantification
alone, many seemingly basic queries cannot be expressed, aswe will see below.



Therefore, the query language of INESS-Search has been equipped with unre-
stricted universal quantification over node variables and acouple of new predicates
and operators including the equality operator. Its expressivity is equivalent to full
first-order predicate logic over node variables (with the less important addition of
value variables, which are always existentially quantified).

The introduction of universal quantification increases thecomplexity of the
query language; new notational devices have to be introduced, and they have to
be provided with an interpretation in terms of predicate calculus. Since in TIGER-
Search all variables are existentially quantified, quantification does not have to be
specified explicitly, that is, no quantifier expressions (i.e.,∃x∃y : ...) are needed.
When both existential (∃x : ...) and universal quantification (∀y : ...) are possible,
quantification has to be specified explicitly. This, however, can clutter a query ex-
pression considerably. Therefore, notational conventions are introduced that make
the use of explicit quantifiers unnecessary in most cases.

First, the variable marker# is interpreted as an existential quantifier marker;
each variable occurring with a# (and being in a positive context; see below) intro-
duces an existential quantifier in prenex form (i.e., standing to the left and scoping
over all terms of the expression). Also implicit variables,variables that are tac-
itly introduced via an abbreviated syntax construction, are existentially quantified.
Thus, a query expression like (4) is translated into the logical form (5). Since both
quantifiers are of equal type, the quantifier order is insignificant.

(4) #x> #y

(5) ∃x∃y : x > y

In order to express universal quantification, a new variablemarker% is intro-
duced.1 A variable marked with% is universally quantified and introduces a uni-
versal quantifier in prenex form. The expression (6) translates to the logical form
(7).

(6) #x> %y

(7) ∃x∀y : x > y

When existential and universal variables cooccur in one query expression as in
(6), quantifier order is no longer arbitrary. If the quantifier order is not specified
explicitly, a default scoping rule determines that all universal variables are in the
scope of all existential variables.

If the default scoping order is not the intended one, scopingcan be specified
explicitly by stating the intended quantifier order in parentheses at the beginning
of the query expression:

(8) (%y #x): #x> %y

1See Marek, Lundborg & Volk (2008), who first introduced the use of % as a notational device
for universal quantification, but gave it a different interpretation.



Query (8) translates to the logical form (9).

(9) ∀y∃x : x > y

It is also important to note how constraints on variables areinterpreted in the case
of universal quantification. A constraint like #x:[cat=‘NP’] (stating thatx should
be an NP node) can either be realized as a predicate clause in the logical form:∃x :
cat(x, ‘NP’), or it could be interpreted as arestricted quantifier2: ∃x.cat(x, ‘NP’).
In the case of existential quantification, the two interpretations are equivalent.

However if we consider an example like (10) that involves universal quantifi-
cation, the two interpretations given in (11) and (12) are nolonger equivalent.

(10) Find all sentences where each NP directly dominates an N

(%x #y): %x:NP> #y:N

(11) ∀x∃y: cat(x, ‘NP’) ∧ cat(y, ‘N’) ∧ x > y

(12) ∀x.cat(x, ‘NP’) ∃y.cat(y, ‘N’): x > y

In interpretation (11), variablex ranges unrestrictedly over all nodes, and the pred-
icate cat(x, ‘NP’) requires that every node be an NP node, which is clearly not the
intended interpretation of (10). In interpretation (12) however,x ranges over the
restricted domain of NP nodes, and only for each of those, a dominated N node has
to exist.

Thus, the restricted quantifier interpretation of constraints is the intended one,
and the one that is implemented. To make this interpretationmore explicit, the
constraints can also be placed together with the quantifiers, as in (13).

(13) (%x:NP #y:N): %x> #y

Further complications arise when we introduce negation. Consider example
(14), where the node variablez is only mentioned in a negative context.

(14) A PPnode dominating anN node with no interveningPPnode

#x:PP>∗ #y:N & !(#x >∗ #z:PP>∗ #y)

The intended meaning of the query, phrased in prose, is: “Find nodesx (PP) andy
(N) such that there is no nodez (PP) lying betweenx andy.” Thus,z is interpreted
as existentially quantified in the scope of the negation. (Note thatx andy are al-
ready existentially quantified outside the scope of the negation.) This leads to the
logical form (15).

(15) ∃x.cat(x, ‘PP’) ∃y.cat(y, ‘N’): x >∗ y ∧ ¬(∃z.cat(z, ‘PP’): x >∗ z >∗ y)

2A restricted quantifier expresses a restriction on the domain over which the variable in question
ranges.



This logical form can be transformed into prenex form (16), which is the canonical
form underlying the implementation of the query expressions.

(16) ∃x.cat(x, ‘PP’) ∃y.cat(y, ‘N’) ∀z.cat(z, ‘PP’): x >∗ y ∧ ¬(x >∗ z >∗ y)

Observe that by moving it out of the scope of the negation, theexistential quantifier
is transformed into a universal quantifier. In the same way, anegated universal
quantifier resurfaces as an existential quantifier in prenexform.

We should keep in mind that the TIGERSearch query language does allow
constraint variables and value variables, in addition to node variables. In query
(17), c is a value variable that is used to express thatx andy should have equal
cat values. The corresponding logical form is given in (18).

(17) #x:[cat=#c]>∗ #y:[cat=#c]

(18) ∃x∃y∃c: x >∗ y ∧ cat(x, c) ∧ cat(y, c)

INESS-Search allows constraint and value variables to occur only with existentially
quantified node variables that are not in the scope of a universal quantifier since it
is otherwise difficult to give a sensible interpretation.

The rules that determine the interpretation of quantification and constraints in
the extended query language of INESS-Search can be summarized as follows:

• Prenex form: all quantifiers precede the body of the logical form

• Existentially quantified are:#-variables and implicit variables in a positive
context;%-variables in a negated context

• Universally quantified are:%-variables in a positive context; implicit vari-
ables and#-variables in a negated context that are not mentioned in a posi-
tive context

• Default scoping: universal variables are in the scope of all existential vari-
ables by default

• Explicit scoping: quantifier scoping can be explicitly specified in prenex
form

• Constraints on variablesare interpreted as restricted quantifiers

One could ask what the practical value of the increased expressiveness of INESS-
Search might be. In their survey of treebank query systems, Lai & Bird (2004) list
typical queries that a query system should be able to express. Among those queries
that are relevant in our setting (Q1–Q5), TIGERSearch is notable to handle Q2
and Q5:

(19) Q2: Find sentences that do not include the word “saw”.



Q5: Find the first common ancestor of sequences of a noun phrase
followed by a verb phrase.

These queries can easily be expressed in INESS-Search as:

(20) Q2: !(#x:“saw” = #x)

Q5: #c>∗ #n:NP !>∗ #v &
#c>∗ #v:VP !>∗ #n &
!(#c >∗ #x >∗ #n & #x >∗ #v)

The formulation of Q2 might seem slightly odd at first glance,but its meaning
becomes clearer when we look at the corresponding logical form (21), where the
constraint is transformed into a restricted quantifier.

(21) Q2: ∀x.word(x,“saw”): ¬(x = x)

A tree matches the query Q2 if every node whose word attributehas the value
“saw” is not equal to itself. Sincex = x is tautologically true for every node
instantiation ofx, this means that the restricted domain defined by word(x,“saw”)
must be empty, that is, the tree must not contain any such node.

One might consider introducing a more intuitive abbreviated syntax for Q2,
e.g.,!“saw”.

Full first-order predicate logic is not the most powerful logical system conceiv-
able. Most importantly, transitive closure of binary relations cannot be expressed
in first-order predicate logic. Since the transitive closure of some basic relations,
notably direct dominance and direct precedence, are of crucial importance in a lin-
guistic querying system, they are normally implemented as basic operators (domi-
nance and precedence).

Other useful complex relations like the c-command relationand the extended-
head relation that could hardly be defined efficiently using more basic relations
have been implemented in INESS-Search as hard-coded relations.

It is however not possible to define transitive closures of arbitrary ad-hoc re-
lations. Maryns (2009) mentions as an example the transitive closure of the domi-
nance relation PP> NP, which could be used to find arbitrarily long chains of em-
bedded PPs dominating NPs. This query cannot be expressed infirst-order predi-
cate logic, but it can be expressed in MonaSearch, which is based on an implemen-
tation of Monadic second-order logic. It is not clear to me whether such queries
are of great practical importance. MonaSearch, however, cannot be extended to
general directed graphs; the tree automata that MonaSearchquery expressions are
compiled into can only handle proper trees.

INESS-Search is not the only attempt to extend TIGERSearch with universal
quantification. In their paper entitled “Extending the TIGER query language with
universal quantification”, Marek, Lundborg & Volk (2008) point out the lack of



expressive power in TIGERSearch and try to outline a design of a universal quan-
tification extension to TIGERSearch. They introduce the notion of a “node set”;
variables instantiated by node sets are marked with a%. Marek et al. do not ex-
plicitly equate node set variables with universally quantified variables, although
their definition makes it clear that the concepts are the same. Unfortunately, by not
seeing this equivalence, they also do not see how%-variables interact with nega-
tion and implication, and instead try to extend their “node set” notion in a rather
complicated way by introducing “subqueries” in order to cope with queries of type
Q5.

Marek et al. seem to have partially implemented the “node set” extension in
their adaptation of TIGERSearch, whereas “subqueries” areonly proposed as an
extension. While they state that their approach is easy to implement, they also
mention that it is very slow, and they cite the arguments of the developers of
TIGERSearch for not having implemented universal quantification:

The use of the universal quantifier causes computational overhead
since universal quantification usually means that a possibly large num-
ber of copies of logical expressions have to be produced. Forthe sake
of computational simplicity and tractability, the universal quantifier
is (currently) not part of the TIGER language. (TIGERSearchHelp,
section 10.3)

This, however, is a misconception; as I show in the outline ofthe implementation,
the computational complexity introduced by a universally quantified variable is not
significantly higher than the complexity originating from existential variables.

5 Implementation

INESS-Search is written in Common Lisp. The implementationis heavily inspired
by the TIGERSearch implementation, and parts of the query parser are a reimple-
mentation of the code of the Stockholm Tree Aligner (Marek, Lundborg & Volk,
2008).

5.1 Static and dynamic indices

In INESS-Search, the various search indices are static and are stored in files on
disk. Using the Unix system callmmap, those index files are mapped onto virtual
memory addresses. Sincemmapimplements demand paging, only those parts (pa-
ges) of the index files that are actually needed are loaded into main memory in a
lazy manner. This obviates the need for loading the files entirely into main memory,
as is done in TIGERSearch.

The treebank index consists of inverted indices for the various features that are
represented in the treebank (includingword, cat, parent-edgesand child-edges),
and a graph file encoding the graphs of the entire treebank. Whereas the graph file



can only be traversed sequentially, the inverted indices allow a quick lookup of all
graphs containing a node with a given feature value, and of all nodes with a given
feature value. In addition, since the lexicon part of the inverted index is organized
as asuffix array (Manber & Myers, 1991), sentences and nodes whose feature
values satisfy a given regular expression can be looked up equally quickly.3 This
ability to look up all and only those graphs and nodes that satisfy given constraints
is crucial in the implementation of an efficient query evaluation strategy.

An alternative to storing the treebank index in static files which is persued in
some query tools (e.g., ANNIS24) is to use a relational database. The advantages of
a relational database approach are immediate: index lookupand joins are built-in
functionality and do not have to be implemented in the tool, and, most importantly,
relational databases are dynamic; it is easy to add trees to the treebank index, or to
delete trees from it. This flexibility, however, comes at a price. When querying a
relational database, there is some overhead connected to keeping track of transac-
tions and concurrency, and to client-server communication. This means in practice
that querying a database is potentially much slower than reading from anmmap-ed
file with a dedicated index structure.5 On the other hand, as most treebanks that
have been constructed so far are quite static in nature, there is little need to change
them dynamically.

The LFG treebanks stored in the INESS system are in fact an exception in that
respect. Since it is possible to disambiguate the parses of agiven sentence in the
treebank, an INESS LFG treebank is quite dynamic while it is being constructed.
In order to keep the treebank index synchronized with the evolving treebank and
make it seem dynamic, the index has been divided into two layers. The main index
layer is a static index reflecting the treebank state at the time when the index was
generated. In addition, there is an incremental layer whichindexes only those sen-
tences that have been added or edited since the main index layer was compiled. It
also keeps track of deleted sentences. Since the incremental index is quite small,
it can be compiled very fast, and thus can be regenerated every time the treebank
changes. To keep the incremental index small, the main indexis regenerated off-
line when the incremental index exceeds a certain size.

5.2 Query evaluation strategy

Every INESS-Search query is equivalent to a logical form Q such that all quanti-
fiers are in prenex form, all node constraints are expressed as quantifier restrictions,
and the body of the form is a boolean combination of binary relations and pred-
icates. We can assume that the body is normalized, in the sense that it is equal

3See Meurer (2012) for a detailed account on the indexing techniques used here.
4See http://www.sfb632.uni-potsdam.de/d1/annis/.
5Experience from the ANNIS2 project (Rosenfeld, 2010) suggests that this can be compensated

for by using a sophisticated indexing strategy, which, however, results in long indexing times and a
large on-disk index.



to a disjunction of unions of relations, predicates and negated terms, where each
negated term is the negation of a union of relations and predicates.

A query is parsed into an internal representation that is close to the logical
form, but where auxiliary node, constraint and value variables are introduced that
make it possible to represent the query in a flat form.

A matchof a query Q(x1, ..., xn) with variablesx1, ..., xn is a graphΓ together
with an instantiation of all the existential variables up tothe first universal variable
with nodesX1, ...,Xk from Γ such that Q(X1, ...,Xk , xk+1, ..., xn) evaluates to
true.

Let us look at the example query (22), which corresponds to the logical form
(23) and has the internal representation (24). The slashes /... / denote a regular
expression; plus and minus signs mark whether a variable or value occurs in an
existential context.

(22) (#x:IP %s:S∗ #y:PROP): #x >∗ %s>∗ #y

(23) ∃x.cat(x, ‘IP’) ∀z.cat(z, /S.∗/) ∃y.cat(y, ‘PROP’):x >∗ s & s >∗ y

(24) node-order: #x, %s, #y
node-var: #x, node: [#fc_1] (+)
node-var: %s, node: [#fc_2] (-)
node-var: #y, node: [#fc_3] (+)
fc-var: #fc_1, constraint: cat=#fv_1/+
fc-var: #fc_2, constraint: cat=#fv_2/+
fc-var: #fc_3, constraint: cat=#fv_3/+
fv-var: #fv_1, value: ’IP’ (+)
fv-var: #fv_2, value: /S.*/ (+)
fv-var: #fv_3, value: ’PROP’ (+)
relations: %s >* #y, #x >* %s

A simple-minded algorithm for evaluating a query on a set of graphs (a tree-
bank) would be to go through the graphs one by one, and check for every possible
instantiation of the variables (by doing a depth-first traversal of the search space)
whether the body of the logical form evaluates to true. This algorithm is actually
correct, although not necessarily very efficient, when all variables are existentially
quantified.

Some improvements are immediate: We only have to consider graphs that for
every quantifier contain nodes that match the node constraints (i.e., that are lying
in the domain of the restricted quantifier), and each node variable again only needs
to be instantiated with those nodes that match the respective restrictions. As has
been shown, finding those candidate graphs and nodes can be done very efficiently
by a reverse-index lookup.

The set of candidate nodes can be restricted further by usingrelation and pred-
icate signatures. For a given relation or predicate, certain types of nodes can be



excluded a priori from the set of node candidates. For instance, in the dominance
relationx >∗ y, x can only be instantiated by non-terminal nodes, and in the pro-
jection relationc >> f , c must be a c-structure node andf an f-structure node. The
restrictions on the node types of a relation or a predicate iscalled thesignatureof
the relation or predicate. Since the type of a node is coded inthe inverted index,
the signature information can effectively be used in reverse-index lookup.

When there are universally quantified node variables involved, a correct algo-
rithm is substantially more complex, since it is not sufficient to evaluate the body
of the logical form for each instantiation of the variables in isolation. The outline
given below is quite close to the actual implementation, although it does not spell
out details of the technically rather intricate treatment of dependent disjunctions,
negation of unions of relations, and of variable binding andbacktracking for value
variables.

• Let Q be a query with node variablesx1, ...,xn, constraints, predicates and
relations.

• Begin by calculating candidate graphs using reverse index lookup for exis-
tential constraints up to the first universal variable (in (24): sentences having
an IP).

• For each candidate graphΓ, calculate candidate node sets for each variable
that match the constraints (in (24): all IP, S∗, PROP nodes forx, s, y), or a
dummy node for a universal variable if it is not instantiable.

The matches of Q for a given graphΓ can be calculated by recursion over the
candidate node sets. We first need some definitions:

• A partial matching tuple(X1, ...,Xi) of nodes inΓ for somei ≤ n is an
instantiation ofx1, ..., xi such that all constraints and relations involving
x1, ..., xi are satisfied.

• If xi+1 is existential, then(Γ,X1, ...,Xi) is apartial matchif (X1, ...,Xi) is
a partial matching tuple andthere isan instantiationXi+1 of xi+1 such that
(X1, ...,Xi+1) is a partial matching tuple.

• If xi+1 is universal, then(Γ,X1, ...,Xi) is apartial matchif (X1, ...,Xi) is
a partial matching tuple andfor all instantiationsXi+1 of xi+1 matching the
constraints onxi+1, the tuple(X1, ...,Xi+1) is a partial matching tuple.

• (Γ,X1, ...,Xn) is apartial matchif (X1, ...,Xn) is a partial matching tuple.

Then,(Γ,X1, ...,Xk) is amatchof Q if (Γ,X1, ...,Xk) is a partial match andk is
maximal such that allx1, ..., xk are existentially quantified. This includes the case
k = 0.

It is left as an exercise to the reader to verify that the outlined algorithm is
correct.



When the first variable in a query Q is existential and a match does not consist
of a graph alone (k > 0), there might exist more than one match of Q for the
same graphΓ. The given algorithm will enumerate all such matches. In thesearch
interface however, a lazy evaluation strategy is used: For every graph, only the
first match is calculated, which can speed up the calculationof the set of matching
graphs considerably. Only when the user inspects a particular graph, the remaining
matches for that graph are calculated.

An informal evaluation of INESS-Search against some treebank search sys-
tems (i.e., TIGERSearch, MonaSearch and Emdros) based on the TIGER treebank
indicates that our system is as fast or significantly faster on most types of queries.

5.3 Gorn adressing of directed graphs

In TIGERSearch, node dominance and precedence are coded using Gorn addresses
(Gorn, 1967). Each node has a Gorn address, which is an encoding of the path start-
ing from the tree root and leading to the node. In concrete terms, a Gorn address is
a sequence of integers, each one telling which child node to chose when traversing
the path through the tree.

Using Gorn addressing, dominance and precedence relationsare straightfor-
ward to check: node X dominates node Y if g(X) (the Gorn address of X) is a
proper prefix of g(Y), and X precedes Y if g(X) is alphabetically smaller than
g(Y).

This addressing scheme extends easily to directed acyclic graphs. As opposed
to trees, there may be more than one path from the root to a given node in a graph.
So we simply associate to each graph node the set of Gorn addresses that describe
the possible paths from the root to the node. (Note that this addressing scheme
assumes that the children of every node are ordered.) With these extended Gorn
addresses in place, a graph node X dominates node Y if there isan address in g(X)
that is a proper prefix of some address in g(Y).

Determining the Gorn addresses of the nodes in a graph is doneby traversing
the graph in a depth-first traversal; each step corresponds to one path to the node
in focus and contributes to the extended Gorn address of thatnode.

When we try to extend this algorithm to arbitrary directed graphs, the problem
arises that circularity would give rise to infinitely many Gorn addresses, each being
a prefix of infinitely many others, since a path can wind arbitrarily often around a
cycle. For all practical purposes however, given any two nodes in a cycle, we only
need to be able to detect that they dominate each other along that cycle.

A query like (25) that explicitly specifies a double cycle in an f-structure would
in fact fail to match that f-structure (e.g., 27), but such queries are quite unintuitive
and artificial.

(25) #x>(ADJUNCT $ SUBJ ADJUNCT$ SUBJ) #x

Here is an outline of the algorithm that assigns Gorn addresses in directed
graphs with cycles.



• Do a depth-first traversal of the cyclic structure;

• Assign Gorn addresses to nodes as you proceed;

• Stop and backtrack when you detect thattwo assigned Gorn addresses would
be prefixes of the new Gorn address. (It isnot sufficient to stop when one
assigned Gorn address is already a prefix of some other assigned Gorn ad-
dress.)

Consider example (26) and its f-structure in (27). Figure 1 illustrates the Gorn
addressing for such a circular f-structure. The boxed numbers are node IDs, and
the number sequences below are the calculated Gorn addresses.

(26) Jagede hunder bjeffer.“Chased dogs bark.”

(27) 



















PRED ‘bjeffe<[8:hund]>’

TOPIC

8











PRED ‘hund’

ADJUNCT















PRED ‘jage<NULL, [8:hund]>’

SUBJ
[

8
]

VFORM pastpart

























SUBJ
[

8
]





















0

1

1

10

bjeffe

PRED

2

11, 12

11101, 12101

SUBJ

TOPIC

3

110, 120

111010, 121010

hund

PRED

4

111, 121

111011, 121011

ADJUNCT

5

1110, 1210

1110110, 1210110

$

SUBJ

6
11100, 12100

11101100, 12101100

jage

PRED

7
11102, 12102

11101102, 12101102

pastpart

VFORM

Figure 1: Gorn addressing of a circular f-structure



6 Interface and visualization

The INESS-Search tool is an integrated part of INESS, the Norwegian Infrastruc-
ture for the Exploration of Syntax and Semantics6 and can be used to query all
treebanks hosted in that infrastructure via a Web interface. In the display of the
search results, matching tree/c-structure and sub-f-structures are hightlighted, and
the user can choose to see one sub-match at a time, or all possible matches at once.
Figure 2 illustrates the display of a match to the query (28) in the German Tiger
LFG treebank.

(28) V >>( TNS-ASP TENSE) “pres”

Figure 2: Visualization of a query match

7 Future plans

INESS-Search is still work in progress. Even though the basic functionality as
described in this article is implemented and stable, there are many conceivable
extensions that would make the tool even more useful. Below is a list of those
features that will be implemented in the course of the ongoing INESS project.

Query refinement.Instead of writing a complex search expression, it is often
easier to start with a simple expression and refine it by searching in the set of graphs
matching the first expression. Since queries operate on single graphs in isolation,
query refinement is well-defined and easy to implement. This stands in contrast to
query refinement in a traditional corpus, where the scope of aquery expression can
span over arbitrarily many corpus positions.

6See http://iness.uib.no.



Search in cross-sentential annotation.Some linguistic phenomena, such as dis-
course structure and anaphora resolution, are not restricted to isolated sentences,
since they may cross sentence boundaries. In INESS, the PROIEL treebank is an
example of a treebank featuring such cross-sentential annotation. With a slight
adaptation of the search algorithms and the index layout, INESS-Search will be
able to handle cross-sentential search.

Search in metadata.Large treebanks often consist of several different analyzed
documents, where each document comes with its own set of metadata such as title,
author, publishing year, and so on. These metadata have to besearchable in combi-
nation with syntactic queries, thus enabling the user to restrict the scope of a query
to a subset of the documents.

Aggregation and export of query results.For many purposes, it is not sufficient
to be able to browse through the matches of a query. One shouldbe able to aggre-
gate the query results in tabular form in order to feed them into a statistics package
or the like. The anchor points for aggregation would be the matching graphs and
the matching nodes in each graph, and the table entries couldbe a user-selectable
function of the graph and the nodes, such as for instance the node label or the
value of any other node feature, or some more complicated expression that can be
calculated on a match.

HPSG support.Starting with the Redwoods treebank in 2001, quite large tree-
banks have been compiled in the HPSG framework.7 To our knowledge, there ex-
ists no dedicated query tool for searching in HPSG treebanks. We are planning to
adapt the INESS infrastructure and the INESS-Search tool toaccommodate HPSG
treebanks.

8 Acknowledgements

INESS is a project cofunded by the Norwegian Research Council and the Univer-
sity of Bergen.

I would like to thank Victoria Rosén, Koenraad De Smedt and the reviewers
for valuable comments and suggestions.

References

Bresnan, Joan: Lexical Functional Syntax. Blackwell Publishers, 2001.

Dyvik, Helge, Paul Meurer, Victoria Rosén and Koenraad De Smedt: Linguistically
Motivated Parallel Parsebanks. In: Passarotti et al. (eds.): Proceedings of the
Eighth International Workshop on Treebanks and LinguisticTheories, Milano,
2009, pp. 71–82.

7See e.g. http://www.delph-in.net.



Gorn, Saul: Explicit Definitions and Linguistic Dominoes. Systems and Computer
Science, Eds. J. Hart & S. Takasu. 77-115. University of Toronto Press, Toronto
Canada, 1967.

Haug, Dag Trygve Truslew and Marius Jøhndal. Creating a Parallel Treebank of the
Old Indo-European Bible Translations. In: Proceedings of the Sixth International
Language Resources and Evaluation (LREC’08), Paris, 2008.

König, Esther, Lezius, Wolfgang, Voormann, Holger: Tigersearch 2.1 User’s Man-
ual. Technical report, IMS Stuttgart, 2003.

Kepser, Stephan: Finite Structure Query – A Tool for Querying Syntactically Anno-
tated Corpora. In EACL 2003, Ann Copestake and Jan Hajič (eds.), pp. 179–186.
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