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Abstract

This paper describes INESS-Search, a new search tool fatit@ncy,
dependency and LFG treebanks. The tool is derived from TI&#ziRch and
has been extended to encompass full first-order predicgte éver node
variables. In addition, several operators have been imghtad that are spe-
cific for querying c- and f-structures. The original TIGERSsh syntax has
been extended and considerably simplified, thus making phgral query
input device less necessary. The search index is dynasigadlated when
the treebank is modified. The INESS-Search tool is usabla Wb inter-
face as an integrated part of INESS, the Norwegian Infrasire for the
Exploration of Syntax and Semantics.

1 Introduction

In the last two decades, many tools for querying traditialeglendency and con-
stituency treebanks have been developed. They all diffexpressiveness, query
language and formalism, ease of use, and applicability éciBp kinds of tree-
banks. But no tool has been developed previously that catldn&fG treebanks,
since LFG treebanks of a size that calls for a dedicated ane il search tool
have only recently been emerging.

The structural representation of syntactical analysesdxidal Functional
Grammar is quite different from and more complex than the-likee structures
that we encounter in traditional treebanks. Whereas ctstres in fact are proper
(ordered) trees, f-structures can be described as undrdinected graphs, pos-
sibly with cycles. In addition, c- and f-structures are mtnected by virtue of
the projection relation holding between c-structure natessub-f-structures, and
thus must be seen in combination (again, formally desciebaba directed graph).
In contrast, the structures that are prominent in traditioreebanks are the follow-

ing:
e proper ordered trees, with or without labeled edges (eegPtmn Treebank)

e proper unordered trees as used in dependency treebanksdifdm Con-
straint Grammar (e.g. the Sami treebanks in INESS)

e trees equipped with some additional structure peculiar $pexific frame-
work or treebank (e.g. secondary edges and crossing edfes Tiger tree-
bank)

e unordered trees with or without secondary edges in somendepey tree-
banks (e.g. the PROIEL treebank (Haug, 2008) in INESS)

None of those tree varieties are equivalent to generaltduegraphs.

As a consequence, existing treebank search tools, whicleaigned to operate
on traditional treebanks, are unable to cope with fully gehdirected graphs.
Some of those tools are designed or implemented in a way thkesnthem in



principle unsuited for general directed graphs, as thermiway to extend them
beyond proper trees. Examples are LPathai & Bird, 2005) and MonaSearch
(Maryns, 2009).

Other tools are in principle extensible to directed grapike, TIGERSearch,
Emdros (Petersen, 2005) and fsq (Kepser, 2003).

Among those tools, TIGERSearch (Koenig, Lezius, 2003) wastified as a
suitable basis for the implementation of INESS-Searchtferfollowing reasons:

e TIGERSearch is equipped with an elegant and concise queguéae that
can easily be extended to meet the needs of a more genercth sealr

e The implementation of dominance relations in TIGERSeatiehGorn ad-
dressing naturally extends to directed graphs and lenel itsan elegant
implementation of circularity detection.

e The Java implementation of TIGERSearch is reasonably $asbne could
expect that a reimplementation would have acceptable gxegution speed.

INESS-Search contains extensions necessary to querydatgral directed
graphs like LFG f-structures, but also implements the utidtionality of TIGER-
Search and thus can be used to query constituency and depgrideebanks.

Whereas the expressive power of the query language of TIGERRB can be
characterized as roughly equivalent to the existentiginrant of first-order pred-
icate logic over node variables, the query language of INS8&ch is equivalent
to full first-order predicate logic.

The INESS-Search tool is useable via a Web interface as egrated part of
INESS, the Norwegian Infrastructure for the Exploratiorsghtax and Semantics
(Rosén et al., 2012).

2 Abbreviated syntax and specialized operators

In order to make the syntax of the query language concise agyl te use, the

original TIGERSearch syntax has been extended with coemérabbreviations

and path-like concatenation of operators. Variables imaipe expressions can be
omitted when they are not needed for coreferencing in otdations. Examples

for full and abbreviated syntax are given below.

e Terminal nodes

full: [word="Sophie”]
abbreviated: “Sophie”

e Node labels

full: #c:[cat="NP"]
abbreviated: #c:NP



e Operator concatenation

full: [cat="IP"] > #x:[cat="NP"] & #x > [cat="N"]
abbreviated: IP>~NP >N

e Omission of variables in relations

full: #f >o0Bdh #g
abbreviated: >oBdh

In addition, several operators have been implemented teapecific for querying
complex tree node and f-structure constellations:

e A rule operator which has the shape of a derivation rule and makes it pos-
sible to specify relations between mothers and daughters
#c— AP .x PP

e A c-command operator

#n>c> #c
Some operators are specific to LFG c- and f-structures:

e A path operatorspecifying regular expressions over f-structure attabut
g is either the value obsih of f or contained in thebJUNCT set of f
#f >( 0BXh | ADJUNCT$) #g
g is bothoBJandTopic of f

#f >( 0BI& TOPIC ) #g

e A projection operator tree node: projects to the f-structurg
#e>> #

e A projective equivalence operatarodesc; andces are in the same projective
domain

#el >><< #c2

¢ An extended-head operatorn is the extended head efaccording to the
definition given in Bresnan (2001)

#n >h> #c
Many of these operators could in principle be expressedmapétmented using

more primitive relations like dominance and labeled domgea Defining them as
dedicated operators however has two advantages: quendsecaxpressed more



concisely, and the operators can be hard-coded, resuttidgamatically improved
performance.

The syntax of INESS-Search is sufficiently compact andtintuto make elab-
orate graphical query devices unnecessary, especialheindse of relatively sim-
ple searches. Moreover, in the case of more complex searoladging advanced
operators and quantification, a GUI would face expressia®nbhallenges. Instead,
we will in further work explore the possibilities offered Ipyedefined examples
and cached previous queries.

3 Querying parallel treebanks

INESS-Search is being extended with a parallel search mbgeik, Meurer,
Rosén & De Smedt, 2009). This mode is still in an experinestige. The main
idea is that for aligned sentence pairs, certain nodesr{trées or c-structure nodes
and sub-f-structures) will be aligned. To make alignmeatrdeable, an alignment
relation has been introduced as shown in (1).

(1) Hs>>> #t

This relation holds ifs is instantiated by a node in the source c- or f-structtiig,
instantiated by a node in the target c- or f-structure, anddmodes are aligned.
Thus, query (2) will match all aligned pairs of analyses in @Wegian—English
parallel treebank where a source c-structure lexical ngelge” is aligned with a
target c-structure lexical node “girl”.

(2) #sjente”>>> #t: girl”

An alignment relation can of course be part of a more completyjexpression,
as (3) illustrates. This query will match a source c-strietnode dominating a
lexical node “jente”, aligned with a target c-structure eatbminating a lexical
node “girl”.

(3) #s>"jente” & #t > “girl” & #s5 >>> #t

Our approach is influenced by Volk, Lundborg & Mettler (200&ho were the
first to devise a syntax for querying node alignment basedlGiERSearch, which
they implemented in the Stockholm Tree Aligner tool.

4 Expressivity

The expressive power of the original TIGERSearch querydagg is equivalent to
the existential fragment of first-order predicate logicravede and value variables.
In TIGERSearch, all variables are implicitly existentyafjuantified and uni-
versal quantification is not available. Unfortunately,néixistential quantification
alone, many seemingly basic queries cannot be expressedt adll see below.



Therefore, the query language of INESS-Search has beeppaguiwith unre-
stricted universal quantification over node variables acougple of new predicates
and operators including the equality operator. Its exjviégss equivalent to full
first-order predicate logic over node variables (with theslanportant addition of
value variables, which are always existentially quant)fied

The introduction of universal quantification increases ¢benplexity of the
qguery language; new notational devices have to be intratjumed they have to
be provided with an interpretation in terms of predicatewiis. Since in TIGER-
Search all variables are existentially quantified, quanatifbon does not have to be
specified explicitly, that is, no quantifier expressions.(Hdzdy : ...) are needed.
When both existentiaHz : ...) and universal quantificatiory( : ...) are possible,
guantification has to be specified explicitly. This, howewan clutter a query ex-
pression considerably. Therefore, notational convestame introduced that make
the use of explicit quantifiers unnecessary in most cases.

First, the variable marke# is interpreted as an existential quantifier marker;
each variable occurring with-& (and being in a positive context; see below) intro-
duces an existential quantifier in prenex form (i.e., stagdo the left and scoping
over all terms of the expression). Also implicit variableariables that are tac-
itly introduced via an abbreviated syntax constructior, eistentially quantified.
Thus, a query expression like (4) is translated into thecllgiorm (5). Since both
quantifiers are of equal type, the quantifier order is insicgut.

4) #x>#y
B) drdy:x>vy

In order to express universal quantification, a new variabéker % is intro-
duced! A variable marked with% is universally quantified and introduces a uni-
versal quantifier in prenex form. The expression (6) traasl#o the logical form

().
(6) #x> %y

(7) FaxVy:x >y

When existential and universal variables cooccur in oneygagpression as in
(6), quantifier order is no longer arbitrary. If the quantifteder is not specified
explicitly, a default scoping rule determines that all @msal variables are in the
scope of all existential variables.

If the default scoping order is not the intended one, scopeng be specified
explicitly by stating the intended quantifier order in paheses at the beginning
of the query expression:

(8) (%Y #x): #x> %y

1See Marek, Lundborg & Volk (2008), who first introduced the a$ % as a notational device
for universal quantification, but gave it a different intexgation.




Query (8) translates to the logical form (9).
9 Vydx:xz>uy

It is also important to note how constraints on variablesirerpreted in the case
of universal quantification. A constraint like #x:[cat="NFstating thatz should
be an NP node) can either be realized as a predicate clauszlogical form3z :
cat(z, ‘NP”), or it could be interpreted asrastricted quantifiet: 3z.cat@, ‘NP’).
In the case of existential quantification, the two intergtiens are equivalent.
However if we consider an example like (10) that involvesvarsal quantifi-
cation, the two interpretations given in (11) and (12) aréomger equivalent.

(10) Find all sentences where each NP directly dominates an N
(%ox #y): %ox:NP> #y:N

(11) Vzdy: cat(, ‘NP’) A catfy, N) Ax >y
(12) Vz.catf, ‘NP’) dy.catfy, ‘N'): x >y

In interpretation (11), variable ranges unrestrictedly over all nodes, and the pred-
icate catf, ‘NP’) requires that every node be an NP node, which is gfaaot the
intended interpretation of (10). In interpretation (12Wawer,z ranges over the
restricted domain of NP nodes, and only for each of thosep@rdaied N node has
to exist.

Thus, the restricted quantifier interpretation of constsais the intended one,
and the one that is implemented. To make this interpretatione explicit, the
constraints can also be placed together with the quantifisrs (13).

(13) (%x:NP #y:N): %x> #y

Further complications arise when we introduce negatiomsitier example
(14), where the node variableis only mentioned in a negative context.

(14) A PPnode dominating aiN node with no intervening@Pnode

#X:PP>x #y:N & (#X >x #z2:PP>x #y)
The intended meaning of the query, phrased in prose, isd“Radesr (PP) andy
(N) such that there is no nodgPP) lying betweern: andy.” Thus, z is interpreted
as existentially quantified in the scope of the negationtéNbatz andy are al-

ready existentially quantified outside the scope of the ti@gd This leads to the
logical form (15).

(15) dzx.cat@, ‘PP’) Jy.caty, ‘N'): x >+ y A =(3z.catl, ‘PP’):z > z >x y)

2A restricted quantifier expresses a restriction on the dormaér which the variable in question
ranges.



This logical form can be transformed into prenex form (1&)jah is the canonical
form underlying the implementation of the query expression

(16) Jx.cat(r, ‘PP’) Jy.catfy, ‘N’) Vz.catl, ‘PP’): x >y A —(z >* z >x )

Observe that by moving it out of the scope of the negationetiigential quantifier
is transformed into a universal quantifier. In the same wayegated universal
quantifier resurfaces as an existential quantifier in préoer.

We should keep in mind that the TIGERSearch query languags dtow
constraint variables and value variables, in addition tdenwariables. In query
(17), c is a value variable that is used to express thaindy should have equal
catvalues. The corresponding logical form is given in (18).

(17) #x:[cat=#c]>x* #y:[cat=#cC]
(18) FzIydc: x >x y A catfx, ¢) A catfy, c)

INESS-Search allows constraint and value variables toramdy with existentially
guantified node variables that are not in the scope of a wavguantifier since it
is otherwise difficult to give a sensible interpretation.

The rules that determine the interpretation of quantificeind constraints in
the extended query language of INESS-Search can be sunechaszollows:

e Prenex form: all quantifiers precede the body of the logical form

¢ Existentially quantified are:#-variables and implicit variables in a positive
context;%-variables in a negated context

¢ Universally quantified are: %-variables in a positive context; implicit vari-
ables and#-variables in a negated context that are not mentioned irsi po
tive context

e Default scoping universal variables are in the scope of all existentiai-var
ables by default

e Explicit scoping: quantifier scoping can be explicitly specified in prenex
form

e Constraints on variablesare interpreted as restricted quantifiers

One could ask what the practical value of the increased sgpeness of INESS-
Search might be. In their survey of treebank query systemis&IBird (2004) list
typical queries that a query system should be able to expk@ssng those queries
that are relevant in our setting (Q1-Q5), TIGERSearch isaht¢ to handle Q2
and Q5:

(19) Q2: Find sentences that do not include the word “saw”.



Q5: Find the first common ancestor of sequences of a nhounghras
followed by a verb phrase.

These queries can easily be expressed in INESS-Search as:
(20) Q2: I(#x:"saw” = #x)

Q5: #c>* #NINP x #v &
#C>x #VIVP I>x #n &
I(#C > #X > #N & #X > #V)

The formulation of Q2 might seem slightly odd at first glanbat its meaning
becomes clearer when we look at the corresponding logical {81), where the
constraint is transformed into a restricted quantifier.

(21) Q2: Vx.word(r,“saw”): —=(x = x)

A tree matches the query Q2 if every node whose word attribatethe value
“saw” is not equal to itself. Since = z is tautologically true for every node
instantiation ofz, this means that the restricted domain defined by wgtdaw”)
must be empty, that is, the tree must not contain any such node

One might consider introducing a more intuitive abbredasgntax for Q2,
e.g.,!"saw”.

Full first-order predicate logic is not the most powerfulitad system conceiv-
able. Most importantly, transitive closure of binary redas cannot be expressed
in first-order predicate logic. Since the transitive clesaf some basic relations,
notably direct dominance and direct precedence, are ofadriagportance in a lin-
guistic querying system, they are normally implementedaasctoperators (domi-
nance and precedence).

Other useful complex relations like the c-command relatind the extended-
head relation that could hardly be defined efficiently usingrerbasic relations
have been implemented in INESS-Search as hard-codedrelati

It is however not possible to define transitive closures bitaary ad-hoc re-
lations. Maryns (2009) mentions as an example the tragsitivsure of the domi-
nance relation PB NP, which could be used to find arbitrarily long chains of em-
bedded PPs dominating NPs. This query cannot be expressiestiorder predi-
cate logic, but it can be expressed in MonaSearch, whichsiscban an implemen-
tation of Monadic second-order logic. It is not clear to meettter such queries
are of great practical importance. MonaSearch, howevamnatabe extended to
general directed graphs; the tree automata that MonaSgaetk expressions are
compiled into can only handle proper trees.

INESS-Search is not the only attempt to extend TIGERSeaitthuwaiversal
quantification. In their paper entitled “Extending the TIBguery language with
universal quantification”, Marek, Lundborg & Volk (2008) ipb out the lack of



expressive power in TIGERSearch and try to outline a designumiversal quan-
tification extension to TIGERSearch. They introduce théamobf a “node set”;

variables instantiated by node sets are marked with dMarek et al. do not ex-
plicitly equate node set variables with universally quigedi variables, although
their definition makes it clear that the concepts are the semi@rtunately, by not

seeing this equivalence, they also do not see ¥iewariables interact with nega-
tion and implication, and instead try to extend their “nod& siotion in a rather

complicated way by introducing “subqueries” in order toeeyth queries of type

Q5.

Marek et al. seem to have partially implemented the “nodéesdension in
their adaptation of TIGERSearch, whereas “subqueries’oahg proposed as an
extension. While they state that their approach is easy meiment, they also
mention that it is very slow, and they cite the arguments ef dievelopers of
TIGERSearch for not having implemented universal quaatifio:

The use of the universal quantifier causes computationaiheae
since universal quantification usually means that a poskibje num-
ber of copies of logical expressions have to be producedtheosake
of computational simplicity and tractability, the univakrgjuantifier
is (currently) not part of the TIGER language. (TIGERSeatgtp,
section 10.3)

This, however, is a misconception; as | show in the outlinthefimplementation,
the computational complexity introduced by a universaligigtified variable is not
significantly higher than the complexity originating froigtential variables.

5 Implementation

INESS-Search is written in Common Lisp. The implementaisomeavily inspired
by the TIGERSearch implementation, and parts of the quersepare a reimple-
mentation of the code of the Stockholm Tree Aligner (Marekndborg & Volk,
2008).

5.1 Static and dynamic indices

In INESS-Search, the various search indices are static endtared in files on
disk. Using the Unix system cathmap those index files are mapped onto virtual
memory addresses. Sinoenapimplements demand paging, only those parts (pa-
ges) of the index files that are actually needed are loadedniain memory in a
lazy manner. This obviates the need for loading the filesadptinto main memory,
as is done in TIGERSearch.

The treebank index consists of inverted indices for theousrfeatures that are
represented in the treebank (includingrd, cat, parent-edgesand child-edge}
and a graph file encoding the graphs of the entire treebankr&dhk the graph file



can only be traversed sequentially, the inverted indicesval quick lookup of all
graphs containing a node with a given feature value, and obales with a given
feature value. In addition, since the lexicon part of theeited index is organized

as asuffix array (Manber & Myers, 1991), sentences and nodes whose feature
values satisfy a given regular expression can be looked uallgcquickly2 This
ability to look up all and only those graphs and nodes thafyagiven constraints

is crucial in the implementation of an efficient query evéluastrategy.

An alternative to storing the treebank index in static fildsch is persued in
some query tools (e.g., ANNISPis to use a relational database. The advantages of
a relational database approach are immediate: index loakdgoins are built-in
functionality and do not have to be implemented in the toodi, anost importantly,
relational databases are dynamic; it is easy to add treée togebank index, or to
delete trees from it. This flexibility, however, comes at m@rWhen querying a
relational database, there is some overhead connectee@pmigetrack of transac-
tions and concurrency, and to client-server communicaliis means in practice
that querying a database is potentially much slower thadimgdrom anmmaped
file with a dedicated index structu?eOn the other hand, as most treebanks that
have been constructed so far are quite static in natures ibdittle need to change
them dynamically.

The LFG treebanks stored in the INESS system are in fact aapéira in that
respect. Since it is possible to disambiguate the parsegikea sentence in the
treebank, an INESS LFG treebank is quite dynamic while iteisidp constructed.
In order to keep the treebank index synchronized with thévang treebank and
make it seem dynamic, the index has been divided into twadayidie main index
layer is a static index reflecting the treebank state at the tvhen the index was
generated. In addition, there is an incremental layer winidaxes only those sen-
tences that have been added or edited since the main indexviag compiled. It
also keeps track of deleted sentences. Since the increlnetéa is quite small,
it can be compiled very fast, and thus can be regenerateg e the treebank
changes. To keep the incremental index small, the main irsleegenerated off-
line when the incremental index exceeds a certain size.

5.2 Query evaluation strategy

Every INESS-Search query is equivalent to a logical form Ghdahat all quanti-
fiers are in prenex form, all node constraints are expressqdantifier restrictions,
and the body of the form is a boolean combination of binargtiehs and pred-
icates. We can assume that the body is normalized, in thes dbBasit is equal

3See Meurer (2012) for a detailed account on the indexingnigaks used here.

4See http://www.sfb632.uni-potsdam.de/d1/annis/.

SExperience from the ANNIS2 project (Rosenfeld, 2010) sstgythat this can be compensated
for by using a sophisticated indexing strategy, which, hameresults in long indexing times and a
large on-disk index.



to a disjunction of unions of relations, predicates and teshterms, where each
negated term is the negation of a union of relations and paees.

A query is parsed into an internal representation that iseclo the logical
form, but where auxiliary node, constraint and value vdesare introduced that
make it possible to represent the query in a flat form.

A matchof a query Qf1, ..., x,,) with variablesr, ..., z,, is a graph together
with an instantiation of all the existential variables ughe first universal variable
with nodesXy, ..., X from I" such that QX1, ..., Xx, Zg+t1, ..., T, ) €valuates to
true.

Let us look at the example query (22), which correspondsédddbical form
(23) and has the internal representation (24). The slashesdenote a regular
expression; plus and minus signs mark whether a variabl@laevoccurs in an
existential context.

(22) (#x:IP %s:S #y:PROB: #X > %S >x* #y
(23) Fz.catl, 'IP’) Vz.cat, /S«/) Jy.catly, ' PROP):z >x s & s >x y

(24) node-order: #x, %, #y

node- var: #x, node: [#fc_1] (+)

node-var: %, node: [#fc_2] (-)

node- var: #y, node: [#fc_3] (+)

fc-var: #fc_1, constraint: cat=#fv_1/+
fc-var: #fc_2, constraint: cat=#fv_2/+
fc-var: #fc_3, constraint: cat=#fv_3/+
fv-var: #fv_1, value: "IP (+)

fv-var: #fv_2, value: /S x/ (+)

fv-var: #fv_3, value: "PROP (+)

relations: % >+ #y, #x > Us

A simple-minded algorithm for evaluating a query on a setrajps (a tree-
bank) would be to go through the graphs one by one, and cheekény possible
instantiation of the variables (by doing a depth-first traaé of the search space)
whether the body of the logical form evaluates to true. Thgerthm is actually
correct, although not necessarily very efficient, when atlables are existentially
quantified.

Some improvements are immediate: We only have to considghgrthat for
every quantifier contain nodes that match the node coniréie., that are lying
in the domain of the restricted quantifier), and each nodelbtar again only needs
to be instantiated with those nodes that match the respegtstrictions. As has
been shown, finding those candidate graphs and nodes caméeehy efficiently
by a reverse-index lookup.

The set of candidate nodes can be restricted further by wsiagion and pred-
icate signatures. For a given relation or predicate, getigies of nodes can be



excluded a priori from the set of node candidates. For imgtaim the dominance
relationz >x* y, x can only be instantiated by non-terminal nodes, and in the pr
jection relationc >> f, ¢ must be a c-structure node afi@n f-structure node. The
restrictions on the node types of a relation or a predicatalisd thesignatureof
the relation or predicate. Since the type of a node is codedennverted index,
the signature information can effectively be used in res«tmglex lookup.

When there are universally quantified node variables iraha correct algo-
rithm is substantially more complex, since it is not sufiitieo evaluate the body
of the logical form for each instantiation of the variableggolation. The outline
given below is quite close to the actual implementatiorhaalgh it does not spell
out details of the technically rather intricate treatmeintiependent disjunctions,
negation of unions of relations, and of variable binding badktracking for value
variables.

e Let Q be a query with node variables, ..., z,,, constraints, predicates and
relations.

e Begin by calculating candidate graphs using reverse indexulp for exis-
tential constraints up to the first universal variable (i4)(Zentences having
an IP).

e For each candidate grafh calculate candidate node sets for each variable
that match the constraints (in (24): all IP;,3ROP nodes far, s, y), or a
dummy node for a universal variable if it is not instantiable

The matches of Q for a given grajphcan be calculated by recursion over the
candidate node sets. We first need some definitions:

e A partial matching tuple( Xy, ..., X;) of nodes inI" for somei < n is an
instantiation ofzq,...,z; such that all constraints and relations involving
x1,...,1; are satisfied.

o If 2,1, isexistential then(T', X1, ..., X;) is apartial matchif (X1, ..., X;) is
a partial matching tuple anthere isan instantiationX;,; of z;,; such that
(X1,...,X;4+1) is a partial matching tuple.

e If 2,41 isuniversal then(T', X1, ..., X;) is apartial matchif (X, ..., X;) is
a partial matching tuple arfdr all instantiationsX;; of ;.1 matching the
constraints orx; 1, the tuple(Xy, ..., X;+1) is a partial matching tuple.

e (I', Xy,..., X,,) is apartial matchif (X, ..., X,,) is a partial matching tuple.

Then,(T", X1, ..., X) is amatchof Q if (T', X1, ..., Xj) is a partial match andl is
maximal such that alty, ..., z;, are existentially quantified. This includes the case
k=0.

It is left as an exercise to the reader to verify that the pati algorithm is
correct.



When the first variable in a query Q is existential and a matdsdot consist
of a graph aloneki > 0), there might exist more than one match of Q for the
same graph’. The given algorithm will enumerate all such matches. Insisarch
interface however, a lazy evaluation strategy is used: Feryegraph, only the
first match is calculated, which can speed up the calculatidhe set of matching
graphs considerably. Only when the user inspects a patiguaph, the remaining
matches for that graph are calculated.

An informal evaluation of INESS-Search against some tnelelsarch sys-
tems (i.e., TIGERSearch, MonaSearch and Emdros) base&d GH@®ER treebank
indicates that our system is as fast or significantly fastemost types of queries.

5.3 Gorn adressing of directed graphs

In TIGERSearch, node dominance and precedence are coaed@sin addresses
(Gorn, 1967). Each node has a Gorn address, which is an exgooftihe path start-
ing from the tree root and leading to the node. In concretadea Gorn address is
a sequence of integers, each one telling which child nodadseewhen traversing
the path through the tree.

Using Gorn addressing, dominance and precedence relaenstraightfor-
ward to check: node X dominates node Y if g(X) (the Gorn adumasX) is a
proper prefix of g(Y), and X precedes Y if g(X) is alphabetigamaller than
a(Y).

This addressing scheme extends easily to directed acyelhg. As opposed
to trees, there may be more than one path from the root to a givde in a graph.
So we simply associate to each graph node the set of Gornsagdréhat describe
the possible paths from the root to the node. (Note that tthisessing scheme
assumes that the children of every node are ordered.) Watbetlbxtended Gorn
addresses in place, a graph node X dominates node Y if thareaddress in g(X)
that is a proper prefix of some address in g(Y).

Determining the Gorn addresses of the nodes in a graph islaotraversing
the graph in a depth-first traversal; each step correspandsd path to the node
in focus and contributes to the extended Gorn address ohtiu.

When we try to extend this algorithm to arbitrary directedmirs, the problem
arises that circularity would give rise to infinitely many@@ddresses, each being
a prefix of infinitely many others, since a path can wind aabiy often around a
cycle. For all practical purposes however, given any twoeisdad a cycle, we only
need to be able to detect that they dominate each other diahgyicle.

A guery like (25) that explicitly specifies a double cycle mfastructure would
in fact fail to match that f-structure (e.qg., 27), but suclees are quite unintuitive
and artificial.

(25) #x>(ADJUNCT $ SUBJ ADJUNCTS$ SUBJ) #X

Here is an outline of the algorithm that assigns Gorn addeegs directed
graphs with cycles.



e Do a depth-first traversal of the cyclic structure;
e Assign Gorn addresses to nodes as you proceed,;

¢ Stop and backtrack when you detect ttvad assigned Gorn addresses would
be prefixes of the new Gorn address. (Ihi sufficient to stop when one
assigned Gorn address is already a prefix of some other ads@orn ad-
dress.)

Consider example (26) and its f-structure in (27). Figuruktrates the Gorn
addressing for such a circular f-structure. The boxed nusmaee node IDs, and
the number sequences below are the calculated Gorn adslresse

(26) Jagede hunder bjeffetChased dogs bark.”

(27) [PrED'bjeffe<[8:hund]>’
PRED‘hund’
PRED‘jage<NULL, [8:hund]>’
TOPIC
ADJUNCT SUBJ[S]

VFORM pastpart
8

_SUBJ[B}

[o]
1
TOPIC
PRE/%

10 11,12
bjeffe 11101, 12101
PRED ARJUNCT
110, 120 111,121
111010, 121010 111011, 121011
hund $ L
SUBJ
1110, 1210
1110110, 1210110
PRED VFORM
[6]
11100, 12100 11102, 12102
11101100, 12101100 11101102, 12101102
jage pastpart

Figure 1: Gorn addressing of a circular f-structure



6 Interface and visualization

The INESS-Search tool is an integrated part of INESS, theMdgian Infrastruc-
ture for the Exploration of Syntax and Semarftiesd can be used to query all
treebanks hosted in that infrastructure via a Web interfatéhe display of the
search results, matching tree/c-structure and sub-¢tsires are hightlighted, and
the user can choose to see one sub-match at a time, or alhleossitches at once.
Figure 2 illustrates the display of a match to the query (88he German Tiger
LFG treebank.

(28) V >>( TNS-ASP TENSE) “pres”

ROOT

/\ PRED 'dauern<[22:Wunder]>'

CProot PERIOD PRED  'Wunder'

\ ‘ TOPIC NTYPE 23| NSYN common |
DP Cbar . 2, | PERS 3, NUM pl, GEND neut, CASE nom
DPx ADVP

‘ / TNS-ASP | [ TENSE pres, MOOD indicative |
v 24
|

‘ ‘ PRED 'lang<[14:pro]>'
NP Vx AP w=iidipo]

‘ | | aDIUNCT | £ PRED ‘etwas' PRED  'mehr N

N dauern APx s 5| ADV-TYPE unspec|’ ,| ADJUNCT-TYPE degree

‘ \ apjunct | { PRED "oro" 3}
p

Wunder AD;/P A
‘ | NTYPE 15| NSYN pronoun |

ADV I3 12| PRON-TYPE null
anger

‘ > | DEGREE comparative, DEG-DIM pos, ATYPE adverbial
ol

SuBJ

etwas SUBJ [22]
VTYPE main, STMT-TYPE decl, PASSIVE -, CLAUSE-TYPE decl

Figure 2: Visualization of a query match

7 Future plans

INESS-Search is still work in progress. Even though thedasictionality as
described in this article is implemented and stable, thesenaany conceivable
extensions that would make the tool even more useful. Betow list of those
features that will be implemented in the course of the ongdNESS project.

Query refinementinstead of writing a complex search expression, it is often
easier to start with a simple expression and refine it by beayen the set of graphs
matching the first expression. Since queries operate ohesgmgphs in isolation,
query refinement is well-defined and easy to implement. Tthisds in contrast to
query refinement in a traditional corpus, where the scopejakay expression can
span over arbitrarily many corpus positions.

®See http://iness.uib.no.



Search in cross-sentential annotatidome linguistic phenomena, such as dis-
course structure and anaphora resolution, are not restrictisolated sentences,
since they may cross sentence boundaries. In INESS, theERR®ebank is an
example of a treebank featuring such cross-sententialtatme. With a slight
adaptation of the search algorithms and the index layoUtS8FSearch will be
able to handle cross-sentential search.

Search in metadatd.arge treebanks often consist of several different andlyze
documents, where each document comes with its own set oflatatauch as title,
author, publishing year, and so on. These metadata havestabehable in combi-
nation with syntactic queries, thus enabling the user timice$he scope of a query
to a subset of the documents.

Aggregation and export of query resulBor many purposes, it is not sufficient
to be able to browse through the matches of a query. One sbeuthle to aggre-
gate the query results in tabular form in order to feed thamarstatistics package
or the like. The anchor points for aggregation would be théchiag graphs and
the matching nodes in each graph, and the table entries beudduser-selectable
function of the graph and the nodes, such as for instance dbe tabel or the
value of any other node feature, or some more complicatecessjon that can be
calculated on a match.

HPSG supportStarting with the Redwoods treebank in 2001, quite large-tre
banks have been compiled in the HPSG framewoFk.our knowledge, there ex-
ists no dedicated query tool for searching in HPSG treebaftesare planning to
adapt the INESS infrastructure and the INESS-Search tai¢dommodate HPSG
treebanks.
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