
DEPENDENCY-BASED SENTENCE SIMPLIFICATION
FOR INCREASING DEEP LFG PARSING COVERAGE

Özlem Çetinoğlu, Sina Zarrieß and Jonas Kuhn
IMS, University of Stuttgart

Proceedings of the LFG13 Conference

Miriam Butt and Tracy Holloway King (Editors)

2013

CSLI Publications

http://csli-publications.stanford.edu/

Abstract

Large scale deep grammars can achieve high coverage of corpus data, yet
cannot produce full-fledged solutions for each sentence. In this paper, we
present a dependency-based sentence simplification approach to obtain full
parses of simplified sentences that failed to have a complete analysis in their
original form. In order to remove the erroneous parts that cause failure, we
delete phrases from failed sentences by utilising their dependency structure,
and reprocess the remaining shorter sentences with XLE to get full analyses.
We ensure the grammaticality and preserve the core argument structure of
simplified sentences by defining the deletion scheme only on a set of modifier
phrases. We apply our approach on German data and retrieve full parses of
simplified sentences for 52.37% of the failed TIGER sentences. With the
combination of original and simplified sentences, the full XLE parses derived
from the TIGER Treebank increases from 80.66% to 90.79%.

1 Introduction

Over the last two decades, the LFG community has witnessed the development
of wide-coverage, deep, hand-crafted grammars for several languages (Butt et al.,
2002). These grammars can typically parse over 90% of corpus data, yet can-
not produce a full-fledged solution for each sentence. The difficulty of achieving
100% coverage on unrestricted text with a deep parsing approach lies in two as-
pects: missing lexical items, idiosyncrasies and rare constructions on one hand
and ungrammatical material and spelling errors in real language use on the other.
One natural solution to overcome such cases is to extend the grammar in question
with manual rules for uncovered instances or to relax the existing rules to handle
ungrammatical cases. However, such modifications on a large-scale, with an al-
ready high-coverage grammar is very labour-intensive and requires a high level of
linguistic expertise. Moreover, the flexibility needed to handle erroneous inputs is
hard to predict and employ during grammar development due the wide range of
possible ungrammaticalities. In this work, we instead pursue an automatic way of
dealing with failed sentences.

(1) exemplifies a TIGER sentence 1, a real corpus example that contains an
agreement mistake. The article des ‘of the’ and the adjective japanischen ‘Japanese’,
both in genitive case, give the hint that it is a genitive construction, but the noun
Außenministerium ‘foreign ministry’ is in nominative case and therefore doesn’t
agree with the surrounding words.

(1) Ein
A

Sprecher
speaker

des
of the

japanischen
Japanese

Außenministerium
foreign ministry

verkündete
proclaimed

daraufhin
then

,
,

man
one

werde
would

Jelzins
Yeltsin’s

Aussage
statement

“
“

vorsichtig
carefully

analysieren
analyze

”
”

,
,

bevor
before

1The TIGER Treebank (Brants et al., 2002) consists of over 50,000 sentences of German news-
paper text. All sentences are syntactically annotated and each token contains lemma, POS tag, and
morphological information.

man
one

sie
it

kommentiere
comment

,
,

aber
but

:
:

‘A speaker (of the Japanese foreign ministry) then proclaimed that Yeltsin’s
statement would be “ carefully analyzed ” , before commenting on it , but :’

The German ParGram Grammar outputs only fragmented analyses for this sen-
tence as given in Figure 1. Fragments, together with skimming, is a method XLE
uses in dealing with robustness (Riezler et al., 2002). Fragmenting allows XLE to
output chunk or partial analyses in cases where it cannot produce a complete parse.
Skimming, on the other hand, handles time and memory problems. When parsing
a sentence exceeds a certain time and memory threshhold XLE spends a limited
amount of effort for the remaining constituents, which might lead to suboptimal
or partial analyses. It is not possible to avoid such analyses unless we take into
consideration parsing the closest well-formed sentence of the original problematic
case.

A closer look at Figure 2 depicts the problems in the analysis of (1) more
clearly. Both the c-structure and the f-structure of the partial phrase Ein Sprecher
des japanischen Außenministerium verkündete ‘A speaker of the Japanese for-
eign ministry proclaimed’ are fragmented. In the c-structure, Ein Sprecher des
japanischen ‘a speaker of the Japanese’ and Außenministerium verkündete ‘for-
eign ministry proclaimed’ form incorrect phrases. In the corresponding f-structure,
Sprecher ‘speaker’ does not get any grammatical role and Ministerium ‘ministry’
is incorrectly analysed as the subject of verkünden ‘proclaim’.

Such a fragmented analysis is not favorable for our research purposes. Full
parses are crucial, for instance, in XLE parse disambiguation (Forst, 2007) and
generation reranking (Cahill et al., 2007; Zarrieß et al., 2011) as well as deep syn-
tactic analyses of raw text. This fact motivates investigations into how to gain the
sentences we lose due to fragmented parses. For recovery, we have to locate and
correct the problem.

The problematic part in (1) is the missing genitive marker ‘s’ at the end of
Außenministerium ‘foreign ministry’. When this word is corrected to Außenminis-
teriums the German ParGram Grammar outputs a fully connected c-structure and
an f-structure with correct arguments. However automatically correcting this par-
ticular problem is not as easy as manual correction. Without ‘s’ Außenministerium
is a valid word in nominative case; there are no lexical level errors. The error
emerges at the syntactic level where the nominative-marked noun prevents a geni-
tive adjunct construction. Deciding how to correct an error is a much harder goal
than locating it.

Removing the erroneous part of the sentence instead of correcting it could be
an acceptable trade-off for an automatic solution. Full parses including the core
argument structure of a sentence is our main interest in parsing a sentence. If
the problem is located in some modifier phrase its removal does not harm gram-
maticality and the full parse of the remaining part is still useful for our purposes.
For instance, in parse disambiguation (Forst, 2007), the training data consists of

Fi
gu

re
1:

T
he

c-
st

ru
ct

ur
e

of
th

e
se

nt
en

ce
in

(1
),

pr
oc

es
se

d
by

th
e

G
er

m
an

Pa
rG

ra
m

G
ra

m
m

ar
.

Figure 2: The c- and f-structure of the partial phrase Ein Sprecher des japanis-
chen Außenministerium verkündete ‘A speaker of the Japanese foreign ministry
proclaimed’, processed by the German ParGram Grammar.

sentence-full parse pairs. The gold LFG parse of a sentence is determined au-
tomatically by matching it to its gold TIGER representation.2 When a modifier
is removed from a sentence, its representation is removed from the gold TIGER
tree. The LFG analyses of the simplified sentence are then matched against the
simplified TIGER representation to find the gold LFG parse. The deleted parts or
meaning changes do not cause the complete withdrawal of the simplified sentence
as training data because our main purpose in this application is to identify which
LFG parse is the gold one among alternatives for a given sentence.3

Employing such a simplification aproach reduces the task of recovering failed
sentences to the automatic identification of modifiers. This brings us to the question
of how to identify modifiers. Actually, the problematic modifier in sentence (1) can
easily be identified by using a dependency tree. Figure 3 depicts the dependency
representation of the first six tokens of our example sentence. Außenministerium is
the head of the genitive adjunct (AG) with dependants des and japanischen.

We can get the dependency representations of sentences we want to simplify by
using dependency parsers. They are easy and fast to train and parse with, and with

2Section 4 details the matching.
3Our goal is not so much to identify material that can be dropped without changing the meaning of

a sentence, but rather material for which we can assume with great confidence that it does not affect
the grammaticality of the material that we leave in: e.g., dropping the direct object of a transitive
verb will in some cases be unproblematic (like in John sings a song → John sings), but in many
cases it will. The simplified sentences can then be safely used as the skeleton to which a full LFG
analysis can be attached – and of course, the fact that they are not original corpus material, but have
undergone modification, has to be listed with them. The dependency tree information can even be
used to indicate the missing material in the LFG structure (an aspect which we do not address in the
present paper).

Figure 3: The dependency tree of the partial phrase Ein Sprecher des japanis-
chen Außenministerium verkündete ‘A speaker of the Japanese foreign ministry
proclaimed’.

their robust nature they do not pose coverage problems. Moreover, they are less
sensitive to the type of input errors in Figure 3. The dependency parser correctly
identifies the phrases and assigns correct labels despite the missing ‘s’ in Außen-
ministeriums. When we remove the genitive adjunct (subtree with the head AG)
from the dependency tree of the sentence in (1), the German ParGram Grammar
fully and correctly parses the remaining sentence. Figure 4 displays the f-structure
of the simplified sentence. Sprecher ‘speaker’ is correctly analysed as the sub-
ject of verkünden ‘proclaim’ and the complement clause with the head analysieren
‘analyse’ is correctly identified.

This approach can be generalised to a simplification scheme on all sentences
an LFG grammar fails to output a full parse. The guiding idea is the following:
a state-of-the-art statistical dependency parser is run on any sentence that doesn’t
receive a full analysis from XLE. Its coverage is 100%, and although the labelled
dependency tree analysis that it produces will not be perfect, we can use it as a
fairly reliable indication of “non-core” parts of the sentence: appositions, relative
clauses, etc. We generate modified versions of the input string in which these parts
are deleted and try to reparse them with the original LFG grammar. By using a
conservative scheme of deletions, we try to ensure that grammaticality and the
core argument structure of the sentences are preserved. Depending on the context
of application, the resulting simplified f-structure can be used directly (e.g. as
training data), or a synthesized analysis for the original string can be constructed
(e.g. for feature extraction in a dependency parsing scenario).

We apply the scheme on German data and achieve full parses of simplified
sentences on 52.37% of the failed TIGER sentences. This increases the full XLE
parses derived from the TIGER Treebank from 80.66% to 90.79%. We evalu-
ate the accuracy of the simplified f-structures by matching them against the gold
TIGER trees and observe that the simplified f-structures match with the gold syn-
tactic structure of the simplified input sentences for the 48.50% of the successfully
reparsed cases. We also experiment with the simplification scheme in a non-gold

Figure 4: The f-structure of the simplified sentence Ein Sprecher verkündete da-
raufhin , man werde Jelzins Aussage “ vorsichtig analysieren ” , bevor man sie
kommentiere , aber : ‘A speaker then proclaimed that Yeltsin’s statement would be
“ carefully analyzed ” , before commenting on it , but :’

setting. Parsing results on raw data proves it is possible to apply the proposed
system beyond the gold TIGER data.

The remainder of the paper is structured as follows: We look into related work
in Section 2. We describe and experiment with sentence simplification in Section
3. We evaluate the accuracy of our system in Section 4 and extend it to parsing
raw text in Section 5. An error analysis in Section 6 is followed by conclusion and
future work in Section 7.

2 Related Work

Achieving high parsing coverage of LFG grammars has been in the scope of sev-
eral researchers. Riezler et al. (2002) parse the Wall Street Journal with the En-
glish ParGram Grammar. They reach 100% coverage at the expense of fragmented
and skimmed analyses. Rohrer and Forst (2006) also make use of skimming and
fragmenting in parsing the TIGER Treebank with the German ParGram Grammar.
Besides these standard mechanisms, they implement additional rules for linguis-
tic phenomena that cause non-full analyses. Coordination, parentheticals, subject
gaps, reported speech clauses are among the refined constructions. Dost and King

(2009) parse and analyse a large set of Wikipedia articles to determine lexical and
syntactic gaps in the ParGram English grammar, and improve the grammar cover-
age by incorporating their findings.

An alternative approach for handling coverage problems is to generate f-struc-
tures by annotating statistical phrase-structure parser output with f-structure con-
straints and by solving those constraints (Cahill et al., 2004). After all, the sta-
tistical parsers they are based on are robust. Although the approach is applied to
several languages, only the English system’s output comes close to XLE f-structure
duplicates, which also cannot reach 100% coverage (Hautli et al., 2010).

Sentence simplification in LFG systems has been studied before (Riezler et al.,
2003; Crouch et al., 2004), in a different context than ours, paying attention to
meaning preservation. Riezler et al. (2003) carry out sentence simplification on
English computer news articles by converting parsed f-structures to reduced ones
with transfer rules. They then disambiguate and generate from reduced f-structures
to obtain shorter sentences. Crouch et al. (2004) further describes the type of rules
used in the transfer system.

Although utilising dependencies in sentence simplification is a novel approach
in LFG research, dependency-based sentence simplification is an accepted method,
often used to extract the important information out of the data in applications such
as summarisation (Vanderwende et al., 2006) and spoken language understanding
(Tür et al., 2011). Vanderwende et al. (2006) pays attention to grammaticality
of simplified sentences whereas Tür et al. (2011) can ignore it, as the simplified
dependency structures are used as features in a statistical classifier. Both systems
work on English data.

On the German front, there has been research on deep parsing systems that
utilise dependencies, mainly by developing hybrid approaches. Schiehlen (2003)
parses the NEGRA Treebank with a combination of a shallow approach based on
machine learning and a cascaded finite state parser. Frank et al. (2003) bring to-
gether a topological fields parser with a wide-coverage HPSG parser. Our system
differs from those in making use of dependencies in sentence simplification deci-
sions.

3 Sentence Simplification

We employ two different approaches to simplify sentences. The first one utilises
the dependency representation of sentences to be simplified. We initially remove
only one subtree at a time and then further simplify the trees with multiple subtree
removal. As an alternative to dependency-based simplification we introduce an
n-gram-based approach, which constitutes our baseline system.

3.1 Implementation Setup

We use the TIGER treebank (Brants et al., 2002) 2.1 as our data set in our ex-
periments. We leave out sentences 8000 to 10000 as test and development sets
following the TiGerDB split (Forst et al., 2004) and work on the training set which
corresponds to the remaining 48471 sentences. We parse our corpus with a version
of the German ParGram grammar (Rohrer and Forst, 2006) and use the depen-
dency version of the TIGER Treebank which is converted by Seeker and Kuhn
(2012). The edge labels used in the conversion are taken from the STTS tag set
(Schiller et al., 1999).

3.2 Dependency-based Simplification

For our simplification process we manually define a set of deletable dependency
subtrees that would not harm the grammaticality of a sentence and preserve the
core argument structure. Table 1 gives the list of edge labels that correspond to
the heads of deletable subtrees. In most of the cases, all instances of an edge
label are deletable. However there are some conditional deletions. For instance
a noun kernel (NK), which is an umbrella label for various relations inside of the
nominal phrase including the head relations, is deletable only when it functions
as an adjunct. Datives are reasonable candidates for deletion because they may be
free datives, like ihm ‘him’ in the example Sie backte ihm einen Kuchen ‘She baked
him a cake’.4

The simplification script traverses the dependency tree of a sentence to be sim-
plified and looks for a deletable subtree. Once a subtree is removed from the orig-
inal tree, its yield is deleted from the original sentence. The shorter sentence we
get out of the deletion might need punctuation adjustments. The TIGER Treebank
does not necessarily attach all punctuation to a relevant node. The TIGER-to-
dependency conversion tool assigns its previous token as the head of a punctuation
mark. This approach might clash with the phrase boundaries, that is, there could be
dangling punctuation tokens after simplification. Such cases are handled with a set
of rules within the simplification script. The outcome of the script is a candidate
sentence for reparsing with the German ParGram Grammar.

3.2.1 One Subtree Deletion

As our initial experiment, the simplification script goes through the list of deletable
labels and removes only one deletable subtree at a time from a sentence. The
number of candidates generated for each sentence varies depending on the number
of deletable dependencies it contains. This procedure produces 52867 candidates,
that is, 5.6 candidates per sentence on average. We process all the candidates with
the German ParGram Grammar.

4In order to capture free datives, we deviate from our conservative deletion scheme that preserves
core arguments. This rule might cause the deletion of datives that are part of a subcategorisation
frame.

AG genitive adjuncts
APP appositions
JU discourse marker-like
MNR PP adjuncts (in noun phrases)
MO modifiers
NG negation
PAR head of parenthesis
PG possessive PP adjuncts
PH placeholders (e.g. German Vorfeld es5)
PNC proper noun components
RC relative clauses
RE infinite clauses attached to nominals
SBP PP subjects in passive
UC inside foreign language phrases
VO vocatives
NK noun kernels
DA datives

Table 1: Edge labels of deletable subtrees that are used in the dependency-based
sentence simplification system.

3.2.2 Multiple Subtree Deletion

Failure in parsing a sentence might stem from problems in multiple subtrees. Hence,
removing only one subtree is not sufficient to obtain a full parse in some cases. In
order to simplify sentences even further, we let the simplification script generate
all possible subtrees by deleting all combinations of deletable dependencies. This
approach brings an overhead: the number of candidates grows very high for longer
sentences. It can reach up to 608,255 candidates for a sentence and the average
number of candidates per sentence is 924. Hence, the total number of candidates is
not feasible for parsing. As a solution, we take only the 10 shortest candidates into
account when a sentence has more than 10 candidates. We also remove the punc-
tuation of the shortest candidate and include it as the 11th candidate. The average
number of candidates per sentence drops down to 8.1 this way.

(2) marks all deletable subtrees for the sentence in (1). In the one subtree
deletion setting, five candidates are produced out of this sentence. In the multiple
subtree deletion setting, there are 63 alternatives; we only take the shortest 10.
(3) shows the correctly parsed candidates among those 10 sentences. The deleted
subtrees are represented with the edge labels of their heads.

5If a Vorfeld modifier is deleted, the sentence becomes ungrammatical due to word order. It is
possible to reorder the sentence by using a lineariser (Bohnet et al., 2012) to achieve a grammatical
order again.

(2) Ein
A

Sprecher
speaker

[AG des
of the

japanischen
Japanese

Außenministerium]
foreign ministry

verkündete
proclaimed

[MO

daraufhin]
then

,
,

man
one

werde
would

Jelzins
Yeltsin’s

Aussage
statement

“
“

[MO vorsichtig]
carefully

analysieren
analyze

”
”

,
,

[MO bevor
before

man
one

sie
it

kommentiere
comment

,]
,

[MO aber]
but

:
:

‘A speaker [of the Japanese foreign ministry] [then] proclaimed that Yeltsin’s
statement would be “ [carefully] analyzed ” , [before commenting on it ,] [but] :’

(3) a. Ein Sprecher [AG] verkündete [MO], man werde Jelzins Aussage “ [MO]
analysieren ” [MO] [MO]:

b. Ein Sprecher [AG] verkündete daraufhin , man werde Jelzins Aussage “
[MO] analysieren ” [MO] [MO]:

c. Ein Sprecher [AG] verkündete [MO], man werde Jelzins Aussage “ vorsichtig
analysieren ” [MO] [MO]:

3.3 N-gram Based Sentence Simplification

One might argue that a dependency-based simplification system is costly due to
parsing times and resources to train parsers. We pursue the question if it is possible
to benefit from a simpler simplification system in regaining failed sentences. Our
baseline simplification technique is based on n-grams. We utilise van Noord’s
(2004) parsability metric, which is mainly designed for error mining purposes.
Parsability of a word is defined as the ratio of a word’s occurrence in successful
parses C(w|OK) to its occurrence in all sentences C(w):

P (w) = C(w|OK)
C(w)

The metric is extendable to word sequences. When the sequence is represented
as wi . . . wj , the parsability of a word sequence is:

P (wi . . . wj) =
C(wi...wj |OK)

C(wi...wj)

In order to incorporate the parsability concept into our sentence simplification
system, we extract the n-grams (n=1,2,3) of failed sentences.6 We then calculate
the number of occurrences of those n-grams in failed sentences and in the whole
treebank, hence their parsability scores. We delete the n-grams with zero parsabil-
ity to obtain the simplified candidates. If there are no n-grams with zero parsability
scores in the sentence we delete the n-gram with the lowest parsability. We ap-
ply a set of punctuation correction rules to this approach too. We achieve a set of
26822 candidates after the simplification and we reparse all these sentence with the
German ParGram Grammar. Note that this approach does not ensure the grammat-
icality of a simplified sentence or the preservation of argument structure.

6We limit ourselves to small numbers of n due to our small corpus size.

For the sentence in (1), the simplified sentences are given in (4), showing the
deletion of unigrams, bigrams, and trigrams respectively. None of the simplifica-
tions in this example leads to a grammatical sentence, therefore no full analyses are
obtained after reprocessing. Note that Außenministerium that causes the parse fail-
ure is not among the deleted n-grams, since its occurrences as a nominative noun
have full analyses that increase its overall parsability score. No full analyses and
no correct identification of the problem in the given sentence indicate the n-gram
based model can fail in cases the dependency-based model achieves success.

(4) a. Ein Sprecher des japanischen Außenministerium verkündete daraufhin , man
werde Jelzins Aussage “ vorsichtig analysieren ” , bevor man sie
kommentiere , aber :

b. Ein Sprecher des japanischen Außenministerium verkündete daraufhin , man
werde Jelzins Aussage “ vorsichtig analysieren ” , bevor man sie
kommentiere , aber :

c. Ein Sprecher des japanischen Außenministerium verkündete daraufhin , man
werde Jelzins Aussage “ vorsichtig analysieren ” , bevor man sie
kommentiere , aber :

3.3.1 Coverage Results

Table 2 gives the overview of coverage statistics. 80.66% of the TIGER training
set has full XLE parses. The remaining 9373 sentences constitute the set to be
simplified.

Our baseline n-gram system can generate fully parsed simplified sentences for
2893 (30.87%) of the cases. When only one subtree is deleted, 3367 (35.92%)
sentences have at least one simplified form with a full parse. When all possible
candidates are created and 10 shortest are chosen, the number of sentences with at
least one simplified full parse increases to 4607 (49.83%). We also create a com-
bination of full parses where all full parses with one subtree deletion are taken and
the set of candidates that one subtree deletion failed but multiple subtree deletion
succeeded to produce full parses are added. This combination increases the number
of full parses to 4909 with a coverage of 52.37%.

Note that the upper limit of simplified sentences with a full parse is 8462
(90.28%) because 911 sentences are not simplifiable at all. 58.02% of the sim-
plifiable sentences achieve a full parse in the combination system.

4 Accuracy of the Simplification System

The full f-structure output of a simplified sentence exhibits valid syntactic struc-
tures for that sentence. But it is possible that the syntactic structures the grammar
produces do not match the underlying syntactic structure of the corresponding sim-
plified sentence.

In evaluating the parses we achieve, we can take advantage of the gold TIGER
Treebank trees. They represent the gold syntactic structure of a given sentence

System sent. full parses
TIGER Training 48471 39098 (80.66%)
n-gram deletion 9373 2893 (30.87%)
1 subtree shorter 9373 3367 (35.92%)
10 shortest 9373 4607 (49.83%)
1 subtree shorter + 10 shortest 9373 4909 (52.37%)

Table 2: Full parse statistics when the original training sentences are used, n-gram
simplification is used in failed sentences, only one subtree is deleted in simplifica-
tion, and 10 shortest candidates are parsed in the multiple subtree simplification.

in TIGER XML representation; we can compare the XLE parses with these gold
structures. However, this comparison is not straightforward. LFG and TIGER
represent the same sentence in different structures. The correspondence neither
between functions nor between features is one-to-one. There are ambiguous map-
pings such as modifiers (MO) in the TIGER Treebank. In LFG, they could be
realised as an ADJUNCT, a directional oblique (OBL-DIR), a locative oblique
(OBL-LOC), or a manner oblique (OBL-MANNER), depending on the context.
There are also structural dissimilarities, for instance, the treatment of auxiliary
verbs. In TIGER trees the main verb is dependent on the auxiliary as its clausal ob-
ject (OC), whereas in LFG the main verb is the head and the auxiliary contributes
to tense and aspect features.

Forst (2007) introduces a matching system that compares XLE parses with
TIGER trees by converting the TIGER XML representation to f-structures through
XLE’s tranfer rules. We apply his approach to simplified sentences and check if
XLE parses are compatible with TIGER trees as our accuracy evaluation. This
comparison, at the same time, produces a set of XLE parses that have gold f-
structures. Later these so called TIGER-compatible f-structures are used in parse
disambiguation and generation reranking.

The TIGER-compatible f-structures are given in Table 3. In the TIGER train-
ing set 11,931 (30.53%) sentences have a gold f-structure. When one subtree is
removed in the simplification of failed sentences, 665 out of 3367 sentences get
a TIGER-compatible f-structure. The accuracy increases to 50.90% with a set of
2345 sentences in the multiple subtree simplification. When one and multiple sub-
tree simplification are combined, the number of full parses increases to 4909 from
4607. But not as many of the additional sentences have TIGER-compatible parses,
hence the accuracy of the system drops to 48.50%.

System sent. full parses TIGER-compatible
TIGER Training 48471 39098 11931 (30.53%)
1 subtree shorter 9373 3367 665 (19.75%)
10 shortest 9373 4607 2345 (50.90%)
1 subtree shorter + 10 shortest 9373 4909 2381 (48.50%)

Table 3: TIGER-compatible f-structure statistics. The percentages show the ratio
of TIGER-compatible parses to full parses.

5 Getting Dependencies from Raw Text

Our experiments so far are conducted on the gold TIGER trees. Working on gold
trees is crucial to obtain training material for the disambiguation/reranking sys-
tems. Another reason we want to improve the coverage of LFG parsing is to utilise
the features derived from deep analyses in dependency parsing. There could be
two approaches to follow in feature integration: The LFG features of each input
sentence are used by the dependency parser during parsing time or the LFG fea-
tures can be used as hard or soft constraints during training time. In either case the
accuracy and high coverage of LFG parses facilitate dependency parsing.

Approaches on integrating deep LFG analyses into dependency parsing are
realistic only when we do not limit ourselves to gold representations. To see if
our system is extendable to real-world scenarios, we simulate such a system in a
predicted setting. We use predicted lemma, POS, and morphological features7 and
parse the TIGER sentences with a statistical dependency parser (Bohnet, 2010). All
systems are trained on the TIGER training data by using 10-fold cross-validation.
The results of the predicted setting are given in Table 4. It can be observed that
for all systems the difference between the predicted and gold setting is quite low
(1.66%, 3.46%, 1.82% absolute for 1 subtree shorter, 10 shortest, and the combina-
tion system respectively). This proves that the simplification approach we employ
can easily be applied to realistic, non-gold scenarios too.

6 A Closer Look into Failed Sentences

Our work mainly focuses on ways of recovering the sentences lost during pars-
ing. As a byproduct it gives us insight into the weak and strong points of the
modules we employ. The parsability metric we used in n-gram-based simplifica-
tion also lists the word sequences that cannot be parsed, as originally used in error
detection. Table 5 lists the 10 most frequent n-grams with zero parsability. The

7all processed with mate lemmatiser, POS tagger, and morphological analyser:
http://code.google.com/p/mate-tools/.

Data System sent. full parses

Predicted
1 subtree shorter 9373 3211 (34.26%)
10 shortest 9373 4346 (46.37%)
1 subtree shorter + 10 shortest 9373 4738 (50.55%)

Gold
1 subtree shorter 9373 3367 (35.92%)
10 shortest 9373 4607 (49.83%)
1 subtree shorter + 10 shortest 9373 4909 (52.37%)

Table 4: TIGER coverage statistics for predicted and gold systems.

sign denotes sentence boundaries. It can be observed that lowercase abbrevia-
tions of news agencies such as AFP, DPA, and RTR are among the most frequent
sources of error. These abbreviations are often used in a template venue, date
(agencies), e.g., AUCKLAND, 9. November (dpa/rtr), which is not handled
well by the German ParGram Grammar. ski is a one-word sentence, tagged as a
non-word (XY) in the TIGER Treebank. 90/Die comes from the political party
Bündnis 90/Die Grünen ‘Allience 90/The Greens’, and similarly CDU/CSU is re-
ferred to as the union of two political parties. Those tokens have high parsability
on their own but when combined into a coordination with a slash as the conjunc-
tion, the German ParGram Grammar cannot parse them. Befreiungstiger von Tamil
is part of a longer multiword Befreiungstiger von Tamil Eelam (LTTE) ‘Liberation
Tigers of Tamil Eelam’. Actually Befreiungstiger von Tamil ‘Liberation Tigers of
Tamil’ can be correctly parsed by the German ParGram Grammar. What it fails
is to combine Tamil and Eelam as a phrase. As a consequence, the analysis of
the whole phrase consists of two fragments Befreiungstiger von Tamil and Eelam
(LTTE).

Parsability Count n-gram

0.000 11 Befreiungstiger von Tamil
0.000 11 CDU / CSU
0.000 17 # ski #
0.000 29 90 / Die
0.000 31 / dpa /
0.000 34 afp / dpa
0.000 38 # (...
0.000 40 # (rtr
0.000 41 dpa / rtr
0.000 95 # (dpa

Table 5: 10 most frequent n-grams with zero parsability, derived from 9373 failed
sentences.

Another way of analysing problematic cases is looking into the phrases that
enabled full parses after their deletion. The most frequent such phrases are given
in Table 6 in the one subtree simplification setting. The most frequent phrase sich
‘oneself’ is used in reflexive verbs. Most German reflexive verbs have a non-
reflexive version too, and it seems when sich is dropped from the sentence the
German ParGram grammar can parse the sentences in the non-reflexive form. The
second most frequent phrase that deletion helps is the negation adjunct nicht ‘not’,
to our surprise. Negation is well handled in a hand-crafted large-scale grammar
after all. An investigation into sentences fully parsed after removing nicht reveals
that the word order of nicht is not canonical in such cases. (5) exemplifies such
a sentence with nicht intervening between the predicative adjective and the finite
copula. ihm is the third person masculine or neutral personal pronoun in dative
case, and its deletion helps due to free datives (cf. section 3.2). The remaining
frequent phrases that prevent full parses in the original sentences are adverbs so
‘so’, auch ‘too’, immer ‘always’, rund ‘around’8, nur ‘only’, and aber ‘but’.

Count Phrase

189 sich
82 nicht
40 so
34 auch
22 ihm
18 Immer
16 rund
15 nur
15 aber

Table 6: The most frequent (count > 15) deleted phrases that enable their simplified
sentences to have full parses.

(5) Daß
That

es
it

so
so

einfach
easy

nicht
not

ist
is

,
,

weiß
knows

natürlich
naturally

auch
also

der
the

CDU-Politiker
CDU politician

.

.
‘Of course the CDU politician also knows it is not so easy.’

The top 21 entries of the deleted phrases list is one-token phrases. The highest
ranked multiple-token phrase is von Bündnis 90/Die Grünen ‘from Allience 90/The
Greens’ with 10 occurrences, which comfirms our findings in Table 5. The length
of deleted phrases goes up to 91 tokens. Figure 5 displays the distribution of phrase
lengths in the scenario where deleting one subtree solves the failure problem and
the shorter sentence achieves a full parse. Deleting only one token is enough for

8Modifying numerals in these occurrences.

a full parse in 1732 of the cases. Deleting 2, 3, 4 tokens helps 770, 525, 371
sentences respectively. For 2205 of the sentences, omitting phrases of 5 or more
tokens are necessary for a full parse.

Figure 5: The distribution of phrase lengths that are deleted in the one subtree
simplification and enabled full parses in the simplified sentence.

7 Conclusion and Future Work

We have presented a dependency-based simplification approach that increases the
coverage of full LFG parses of the TIGER Treebank for German. Our approach
is based on the idea of removing the modifiers from a sentence with no full analy-
ses and reparsing the shorter sentence with the German ParGram Grammar. If the
problematic part that caused a parse failure is in the removed modifier, we achieve
a full parse of the simplified sentence. This method ensures grammaticality while it
preserves the core parts. We utilise the dependency representations of sentences to
identify modifiers. A simplification script traverses the dependency tree of a sen-
tence and deletes subtrees based on a manually collected list of deletable functions.
The outcome is a set of candidate sentences to be reparsed.

Experiments on the TIGER Treebank show 52.37% of the failed sentences
achieve at least one full parse in their simplified form. And among those simplified
full sentences 48.50% of the analyses are compatible with the underlying analyses
of simplified versions of the original sentences. As a comparison we experiment
with an n-gram-based simplification system and observe that the dependency-based
system clearly outperforms the n-gram one, in addition to its superiority in gram-
matical simplifications. In order to test the reliability of our system in a real-world
scenario we repeat the simplification experiments in predicted settings. The re-
sults we achieve are comparable to the gold settings, showing that we can apply
simplification on dependency parser outputs too.

An error analysis on the simplified sentences shows there are some systematic
failures in the German ParGram Grammar due to domain-specific tokens or con-
structions (e.g., news agencies, venue-date boilerplates). Some commonly used
adverbs also prevent the sentences from having full parses when they are used in
non-canonical ways.

The simplification method we proposed in this paper can be a basis to future
research in several directions. XLE parse disambiguation (Forst, 2007) and gen-
eration reranking (Cahill et al., 2007; Zarrieß et al., 2011) are among our initially
motivating applications. We plan to revisit both systems by investigating the ef-
fect of using the extended set of TIGER-compatible f-structures. An additional
application of sentence simplification which we can pursue is to simplify fully
parsed sentences that TIGER-compatibles f-structures cannot be extracted from.
This could provide extra training material for parse disambiguation and generation
reranking.

Another natural extension to the current work is incorporating the deep syn-
tactic representations XLE grammars output as features of a dependency parser.
Øvrelid et al. (2009) converts the LFG output into dependencies to allow parser
stacking. Experiments show features extracted from deep LFG structures help im-
prove parser accuracies both for English and for German. As our future work, we
aim at investigating more ways of integration.

Both systems using the f-structures directly and systems using them as features
would benefit from even more improvements in coverage. We aim to advance the
simplification system both in terms of coverage of failed sentences and in terms of
the content of the full reparses.

0.97% of the failed TIGER sentences are not simplifiable with the existing sim-
plification scheme. It means the errors that prevent full parses reside in the core
arguments of those sentences and it is not possible to delete them. In such cases a
paraphrasing approach can replace a simplification approach. For instance, nomi-
nal phrases can be replaced with easier-to-parse nominals, e.g. pronouns, or coor-
dinations can be replaced with one of their conjucts. Obviously, this paraphrasing
technique can be used within the set of the simplifiable sentences too.

When there are too many candidates to parse in the multiple subtree simpli-
fication setting, we choose 10 shortest candidates. That simple criterion prevents
us from finding longer fully parsed candidates. We can improve the criterion by
paying attention to parsability scores of subtrees to be parsed. If we eliminate
the subtrees including word sequences with zero or low parsability, we reduce the
number of candidates in an earlier step, and further include longer sentences into
the candidate list.

The simplification technique we propose is language independent except for the
manual selection of deletable subtrees. Therefore, it is possible to apply it to several
existing LFG grammars with relatively little effort. Especially for grammars under
development, simplification both handles coverage issues and points out areas to
improve. We are specifically interested in Turkish, as we possess the requirements
for its application: native speaker knowledge for deletable subtree identification, a

ParGram grammar (Sulger et al., 2013), and a state-of-the-art dependency parsing
system (Çetinoğlu and Kuhn, 2013).

Acknowledgements

This work is funded by the project D2 of the Collaborative Research Centre (SFB
732) “Incremental Specication in Context”.

References

Bohnet, Bernd. 2010. Top Accuracy and Fast Dependency Parsing is not a Contra-
diction. In Proc. of COLING, pages 89–97, Beijing, China.

Bohnet, Bernd, Björkelund, Anders, Kuhn, Jonas, Seeker, Wolfgang and Zarriess,
Sina. 2012. Generating Non-Projective Word Order in Statistical Linearization.
In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pages
928–939, Jeju Island, Korea: Association for Computational Linguistics.

Brants, Sabine, Dipper, Stefanie, Hansen, Silvia, Lezius, Wolfgang and Smith,
George. 2002. The TIGER Treebank.

Butt, Miriam, King, Tracy Holloway, Masuichi, Hiroshi and Rohrer, Christian.
2002. The Parallel Grammar Project. In N.Oostijk J. Carroll and R. Sutcliffe
(eds.), Proceedings of the Workshop on Grammar Engineering and Evaluation,
pages 1–7, cOLING02.

Cahill, Aoife, Burke, Michael, O’Donovan, Ruth, Van Genabith, Josef and Way,
Andy. 2004. Long-Distance Dependency Resolution in Automatically Acquired
Wide-Coverage PCFG-Based LFG Approximations. In (ACL’04).

Cahill, Aoife, Forst, Martin and Rohrer, Christian. 2007. Stochastic realisation
ranking for a free word order language. In ENLG ’07.

Çetinoğlu, Özlem and Kuhn, Jonas. 2013. Towards Joint Morphological Analysis
and Dependency Parsing of Turkish. In Proceedings of the Second International
Conference on Dependency Linguistics (DepLing 2013), pages 23–32, Prague,
Czech Republic: Charles University in Prague, Matfyzpress, Prague, Czech Re-
public.

Crouch, Richard, King, Tracy Holloway, Maxwell III, John T., Riezler, Stefan and
Zaenen, Annie. 2004. Exploiting F-structure Input for Sentence Condensation.
In Miriam Butt and Tracy Holloway King (eds.), Proceedings of LFG Confer-
ence, Christchurch, New Zealand: CSLI Publications.

Dost, Ascander and King, Tracy Holloway. 2009. Using Large-scale Parser Out-
put to Guide Grammar Development. In Proceedings of the 2009 Workshop on
Grammar Engineering Across Frameworks (GEAF 2009), pages 63–70, Suntec,
Singapore: Association for Computational Linguistics.

Forst, Martin. 2007. Disambiguation for a Linguistically Precise German Parser.
Ph. D.thesis, University of Stuttgart.

Forst, Martin, Bertomeu, Núria, Crysmann, Berthold, Fouvry, Frederik, Hansen-
Schirra, Silvia and Kordoni, Valia. 2004. Towards a dependency-based gold
standard for German parsers – The TiGer Dependency Bank. In LINC ’04.

Frank, Anette, Becker, Markus, , Markus Becker, Crysmann, Berthold, Kiefer,
Bernd, Schfer, Ulrich and Of, Dfki Gmbh School. 2003. Integrated Shallow and
Deep Parsing: TopP meets HPSG. In ACL 2003.

Hautli, Annette, Çetinoğlu, Özlem and van Genabith, Josef. 2010. Closing the
Gap Between Stochastic and Hand-crafted LFG Grammars. In Miriam Butt and
Tracy Holloway King (eds.), Proceedings of the LFG Conference.

Øvrelid, Lilja, Kuhn, Jonas and Spreyer, Kathrin. 2009. Improving data-driven de-
pendency parsing using large-scale LFG grammars. In Proceedings of the ACL-
IJCNLP 2009 Conference Short Papers, pages 37–40, Suntec, Singapore: Asso-
ciation for Computational Linguistics.

Riezler, Stefan, King, Tracy H., Crouch, Richard and Zaenen, Annie. 2003. Sta-
tistical Sentence Condensation using Ambiguity Packing and Stochastic Disam-
biguation Methods For LFG. In HLT-NAACL.

Riezler, Stefan, King, Tracy H., Kaplan, Ronald M., Crouch, Richard, III, John
T. Maxwell and Johnson, Mark. 2002. Parsing the Wall Street Journal using
a Lexical-Functional Grammar and Discriminative Estimation Techniques. In
ACL 2002.

Rohrer, Christian and Forst, Martin. 2006. Improving coverage and parsing quality
of a large-scale LFG for German. In LREC 2006.

Schiehlen, Michael. 2003. Combining Deep and Shallow Approaches in Parsing
German. In Proceedings of the 41st Annual Meeting of the Association for Com-
putational Linguistics, pages 112–119, Sapporo, Japan: Association for Com-
putational Linguistics.

Schiller, Anne, Teufel, Simone and Stöckert, Christine. 1999. Guidelines für das
Tagging deutscher Textcorpora mit STTS. Technical Report, Technical Report,
University of Stuttgart, 1999.

Seeker, Wolfgang and Kuhn, Jonas. 2012. Making Ellipses Explicit in Dependency
Conversion for a German Treebank. In Proceedings of the 8th International

Conference on Language Resources and Evaluation, pages 3132–3139, Istan-
bul, Turkey: European Language Resources Association (ELRA).

Sulger, Sebastian, Butt, Miriam, King, Tracy Holloway, Meurer, Paul, Laczkó,
Tibor, Rákosi, György, Dione, Cheikh Bamba, Dyvik, Helge, Rosén, Victoria,
De Smedt, Koenraad, Patejuk, Agnieszka, Çetinoğlu, Özlem, Arka, I Wayan
and Mistica, Meladel. 2013. ParGramBank: The ParGram Parallel Treebank. In
Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 550–560, Sofia, Bulgaria: Associa-
tion for Computational Linguistics.

Tür, Gökhan, Hakkani-Tür, Dilek, Heck, Larry and Parthasarathy, S. 2011. Sen-
tence Simplification for Spoken Language Understanding. In IEEE ICASSP.

van Noord, Gertjan. 2004. Error Mining for Wide-Coverage Grammar Engineer-
ing. In Proceedings of the 42nd Meeting of the Association for Computational
Linguistics (ACL’04), Main Volume, pages 446–453, Barcelona, Spain.

Vanderwende, L., Suzuki, H. and Brockett, C. 2006. Microsoft Research at DUC
2006: Task-Focused Summarization with Sentence Simplification and Lexical
Expansion. In Document Understanding Workshop, HLT-NAACL 2006.

Zarrieß, Sina, Cahill, Aoife and Kuhn, Jonas. 2011. Underspecifying and Predict-
ing Voice for Surface Realisation Ranking. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies, pages 1007–1017, Portland, Oregon, USA: Association for Com-
putational Linguistics.

