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Abstract

In this position paper, | take a look at some of the key “designci-
ples” of LFG and draw some parallels to developments in rekean Nat-
ural Language Processing (NLP) and computational lingpgisiver the past
few years. A number of recent trends and findings in NLP re$eseem to
have precedents in earlier LFG work in ways that have notivedemuch
attention so far.

1 Introduction

In this position paper, | draw some parallels between sontigeokey “design prin-
ciples” of LFG and recent developments in research on Nitargguage Process-
ing (NLP) and computational linguistics. Since the curramnputational work in
which some original LFG design principles resurface is etdied in quite a dif-
ferent methodological context, one might argue that thelfeds that can be drawn
are at a level that is too abstract to make any point that igiehsfic interest. |
believe however that it is worthwhile taking a closer lookla®eing whether the
common aspects behind the original LFG ideas and the cutoenputational re-
search questions can be given a meaningful interpretatimss frameworks. The
hope is that an increased awareness both in the LFG commamityn the NLP
community may lead to some new cross-fertilisation in thar fieture.

The paper is structured as follows: section 2 will very byiefiview a develop-
ment in the relation between theoretical and computatiomeak in LFG over the
past 10 years or so; in section 3, | will then point out somemédevelopments in
data-driven computational linguistics, which are seeiingrelated to LFG, but
as | will claim display many features of the ‘spirit of LFG'0De able to situate the
various approaches in the same architectural coordinateray | will introduce in
section 4 a high-level scheme for classifying different svay modeling the re-
lation between linguistic forms and their interpretaticnaafunction of the given
context of utterance, which in turn serves as the basis forideng different types
of modular interface architectures in section 5. Again& fackdrop, | illustrate
the claim advanced in section 3 for a particular study (Sjpadly Seeker and Kuhn
(2013b), of which | will outline the conceptually relevartipts). In section 7, |
point out the ways in which | think it is the ‘spirit of LFG’ thas particularly
relevant for the point I am making and | conclude.

fThe considerations in this contribution and the work fronthini my group that | refer to have
been carried out in SFB 732 “Incremental Specification int€xtfi, funded by the German Research
Foundation (DFG), in particular in projects D2 and D8. | amdhted to my group for discussions
and for contributing the computational and experimentatkwein particular to Wolfgang Seeker
who has influenced these considerations a lot — and to thabooltors from the SFB for ongoing
exchanges about the representational and architectureéption of specification in context.



2 LFG and NLP: The past and the status quo

Traditionally, the LFG community has been known to be a rdmesngase for a
continued and successful exchange between theoreticaloamgutational linguis-
tics. This has probably numerous reasons, but one is cldzalythe represen-
tations used in the LFG formalism are an ideal common growncexchanging
thoughts about linguistic analyses of data from languagessa the typological
spectrum. The reflex of heavily theory-internal assumggtisncarefully avoided
in the representations; and for each relevant dimensiomgfiistic description,
a formal structure is chosen for representation that dyspllae observed proper-
ties (trees for c-structure, set-based feature strucforefsstructure etc.). These
structurally straightforward representations allow bibté theorists and the com-
putationalists to anchor their respective systematic @mtso— using a constraint-
based and lexicalist approach. In what Johnson (2011, B)tbal “golden age for
collaboration and cross-fertilisation between lingaigtieory and computational
linguistics” — the 1980s — the connection was very obvious,ito the LFG com-
munity, the collaboration continued to be successful winen“émpiricist” camp
in NLP gathered momentum in the 1990s and statistical teclesiwere beginning
to dominate research in computational linguistics (seer€@h(2011)). LFG has
not only been the theoretical framework for one of the mostessful attempts
of engineering linguistically grounded broad-coveragamgmars across languages
(in the well-known ParGram project, Butt et al. (2002)), biudlso provided the
representational framework for important work on treebaaked grammar acqui-
sition (Cabhill et al., 2008a), discriminative ranking mtsdéor parse disambigua-
tion (Riezler et al., 2002), and statistical constituebaged pruning (Cabhill et al.,
2008D).

There is successful ongoing research work in the mentiorelitions; at the
same time however, it has to be acknowledged that many catigmel analy-
sis tasks (e.g., machine translation, semantic role ladpetioreference resolution)
for which there was no doubt in the late 1980s that they woetplire carefully
engineered knowledge sources, are quite successfullyagmped with cascades
composed of statistical modules, each solving a stru¢yuelhtively simple input-
output mapping. This is not to say that the importance ofdisiic insights is not
acknowledged in the field of NLP — the last few years have drbagout many oc-
casions in which the relation between linguistics and lagguechnology has been
discussed (the 201llinguistic Issues in Language Technolagy “Interaction of
Linguistics and Computational Linguistics” is just one eyade; here King (2011)
represents the LFG view); the occasionally hostile atmespbetween the camps
from the 1990s has by and large disappeared. However it ssmnsdems that the
common denominator across fields ended up less sophistittzi@ many would
have hoped: linguistic insight is clearly needed for higlality gold-standard cor-
pus annotation; but most other ingredients for effectivajgotational models seem
to be taken from general-purpose machine learning thatatgeeion this training
data, avoiding any tailoring to peculiarities of the datpresentations. Method-



ologically, if language-specific hard constraints on tharcle space are used in
some experiment, these are considered to be simplifyingingassumptions that
should ultimately be abandoned in favor of purely dataeiriacquisition of all
constraints. This is diametrically opposed to linguistiethodology in the genera-
tive tradition, which attempts to identify non-trivial gemalizations or implications
that hold across languages and thus help pre-structuringehrch space for the
language learnék.

3 Recent developments

It is at this point that | would like to go into some recent depenents: As the re-
sults for some of the standard NLP problems that can be axkttegith supervised
methods (such as treebank-trained constituent parsingpardlency parsing for
English) are reaching a plateau, a new set of refined resgaestions comes up:

(i) The standard NLP approach to multi-level analysis (e.gt;q@laspeech tag-
ging, morphological analysis, syntactic constituent andépendency parsing, se-
mantic role labeling, coreference resolution) is to assanpépeline of separate
input-output modules, each solving a single intermeditdp the output of which
is then fed into the next step. This is conceptually perspisuit avoids additional
algorithmic complexity, and allows for module-specific snpsed training. How-
ever it comes at the cost of error propagation. This has tiygemompted consider-
able attention on “joint modeling”, i.e., effective wayssaflving combined prob-
lems that span more than one step in the classical pipetnéréictability, the joint
modeling is often approximated using some flexible comimnatf modules). Ex-
amples of task combinations are morphological segmentaiial parsing (Gold-
berg and Tsarfaty, 2008), part-of-speech tagging andmaf&ohnet and Nivre,
2012), morphological disambiguation and parsing (Seekéikaihn, 2013a), syn-
tactic and semantic parsing (Li et al., 2010), and, in thenmsy direction, referring
expression generation and surface realization (Zarrie¥ahn, 2013).

(i) If some approximation of a joint model is assumed, how caridhedidate
set” of intermediate results be best represented? One magfance assume some
(underspecified or packed) representation of the exhaulssivof candidates, or a
k-best list according to some preliminary scoring, possdaynbining candidates
from different alternative modules. Bjorkelund et al. {2) for instance use output
from various parsers to populate a candidate set for rankicigieving state of the
art results for parsing across various “morphologicalty tanguages”. Depending
on the data structure, one may even be in a position to conplairial analyses by a
technique sometimes called “blending” (Sagae and Lavieé62Ball et al., 2007).

INote however that since both frameworks are motivated hyieg/learnability considerations,
theycouldbe related to each other at a substantial level — the diffeenan be argued to be mainly
in prioritizing the step-by-step lifting of one’s idealimj working assumptions.

2The citations given in this listing are not intended to beaative. Given that this is an indi-
vidual position paper, there is a bias towards examples of fvom my group and our department.
This implies by no means that | think there is no other, mongartant work.



(i) Related to the previous points, a question arises for agifwits involv-
ing only a level of analysis that is relatively far “downstma” in the pipeline: if
the typical pipeline could build on alternative intermediaepresentations, which
do not affect the outcome directly — how can one decide onype that should
be chosen? For example, should constituent or dependemsgspar both, be
used for the task of coreference resolution (Bjorkelund Euohn, 2012); how
should morphological segmentation be addressed in “mdogtoally rich” lan-
guages (Goldberg and Tsarfaty, 2008)? Taking this questidime limit, one may
ask what intermediate (linguistic?) representation tamssin end-to-end tasks
like machine translation. Quernheim and Knight (2012), ifstance, propose a
probabilistic model for Machine Translation that uses aastio feature structure
as an intermediate representation, which is in the spirgasfier LFG work on
translation using f-structures (Kaplan et al., 1989; Rieahd Maxwell, 2006).

(iv) Can latent representations of intermediate levels be gdluce.g., for in-
ducing semantic properties in a grounded learning scetikgiin Richardson and
Kuhn (2012) or for adjusting parsing models across langsiabiéov and Hender-
son (2010)? If so, is the induced latent representationrsup® an established
intermediate representation, which can be trained direetaluated and tuned (to
the extent that annotated resources are available)?

(v) Are there systematic linguistic constraints that can bdageal for im-
proving a data-driven component, exploiting structuralidanig blocks of linguistic
expressions and detailed knowledge about the synchramizatross (underspec-
ified) interface representations? And can the relevantt@ings be formulated in
a way that they carry over across typologically differemiglaages?

For the questions under (v) | will provide a relatively digdiillustration from
the study in Seeker and Kuhn (2013b) in section 6 below.

Note that none of the approaches mentioned are modeledhiis ®fran LFG
grammar or sub-grammar. |1 would like to claim however thatrtiethodology and
the set of research questions is very much in the ‘spirit dbL.las mentioned, part
of the long-term interdisciplinary success of LFG lies ie tombination of (or:
Parallel Correspondence across) relatively straightiodwepresentational levels
for which there are good empirical tests. So, typical higiel LFG research ques-
tions could be paraphrased as ‘what are the primitives thaild be assumed at
the level of f-structure/a-structure — what effect do thegildle choices have on the
neighbouring levels of representation?’

Up until about five years ago, the data-driven paradigm in MlaB not ques-
tioning the input and output representations assumed iargiged approaches to
particular analysis problems — the available datasets takes for granted, and the
challenge was to devise maximally general machine leart@olgniques. As the
network of subtasks feeding one another (depending on thares architecture)
has been growing as outlined above, questions about ajgtmnterface repre-
sentations do however gain crucial importance. So, wheonites to deciding on
a global model architecture spanning across subtasks efldeofiNLP very much
resembles the problem space that LFG theorists have beeesadd) all along.



And indeed, most of the major interface representation®uudscussion in cur-
rent NLP work can be argued to bear close resemblance to Badpresentations,
as is sketched in Figure 1:

LFG Data-driven NLP
c-structure categories part-of-speech tags
morphological f-structure features morphological anialys
c-structure trees constituent syntax
f-structure embeddings (minus functional control) depsmy structure
a-structure (incl. functional control) semantic role Ik
anaphoric control coreference resolution

Figure 1: Rough correpondences across levels of repréisenta

In addition, we can note that some of the more controversietsmf the NLP
architecture, like the interplay of morphological segnaéioh and syntactic pars-
ing, correspond to controversial parts of the LFG architeci{the morphology-
syntax interface).

The major difference is that in classical LFG, the concretwleting task for
relating the various levels is solved in terms of the forrtiaka of symbolic for-
mal constraints describing the possible corresponderatores (and this task is
addressed by the linguist or grammar writer), whereas ireatimulti-level cor-
respondence” NLP, the concrete pairwise (or larger) wtaticross levels is de-
termined by machine learning methods operating on traideig, possibly with
latent intermediate representations. But as the charattbe interface represen-
tations ceases to be fixed a priori in NLP work, the high-leedrch for the best
possible set of interface representations gains impagtaathere a combination of
interface representations that allows for effective miogedf arbitrary languages?
This does not seem to be all that different from linguistmea@rch in the generative
tradition.

4 The broader picture for interface representations in lin-
guistic modeling

In this and the following sections, | take a few steps backewetbp a high-level
picture of the role of representations (and in particulderiiace representations
assumed for interacting “modules”) that is broad enoughcépturing linguistic
work on the theory of grammar on the one hand and data-drieempatational
work in Natural Language Processing on the other hand.

This line of reasoning is closely connected to the Stuttgalfaborative re-
search center SFB 73@cremental Specification in Conteit which linguists and
computational linguists from distinct research paradidrage been successfully
cooporating. This SFB has been set up to depart from one ahtist character-
istic properties of natural language(s) and the human kgegdaculty: the high



degree of ambiguity in linguistic expressions and the mosffiortless ability of
speakers and hearers to deal with it when the expressiom®arextually embed-
ded.

Any model of language interpretation in the face of ambiguitll follow the
general scheme in the top half of Figure 2; models of choit@iguage generation
follow the same scheme in the reverse direction, as see indatiom half.

COMPREHENSION

Empirical Data: e te — m;
‘ |
Model:
Model:
! o T |
Empirical Data: €j — i +e
PRODUCTION

Figure 2: The general modeling scheme for specification imecd

The observable empirical process in comprehension is @tgability, given
some linguistic expressionthat she is confronted with in a particular context
to decide which is the appropriate interpretation among a large set of interpre-
tations whiche could have in different contexts. Any theoretical or conapiohal
model characterizes the input expressioin the empirical data by a set of alter-
native analyses of this input and assumes some appropejatesentation’ of the
empirically observed context At the core of the model is some functigrwhich
picks out one analysis; among the alternatives, given context The form of
representation of the competing analyses, and in partiofithe target analysis;
is chosen in such a way thaf contains a representation of the hearer’s interpreta-
tionm; (e.g.,a1 ...a, may be different syntactic trees for an observed string, and
one of the trees reflects the structure that hearers findatatuhe given utterance
context). In the same way, the reverse process models aesfseakoice among
possible expressions for realizing some underlying thbogimessage in a given
utterance context.

The representations and functions assumed for a partimdael process are
chosen in a way that they satisfy certain meta-theoretigatiples and allow for
the prediction of some corpus of empirical language datawiWego into details
of the modeling choices below, but note at this point that devspread objective
is to follow some principle of economy. For a process of djmEation in context,
economical modeling can often be fleshed out as follows: &adtran assuming
an explicit listing of the entire set of choicés; . . . a,, } prior to contextual disam-
biguation, the representation language is designed tade@/compact represen-
tation for this set — this is the widespread notioruoflerspecificationn linguis-
tic modeling, especially in its symbolic guise. Design d&wis in probabilistic
modeling are typically influenced by additional constrgjrduch as the attempt to
exploit the information available in a given data samplgdas in the best possible



way for deriving generalizations, without overfitting theodel parameters to the
training data.

In summary, the relationship between the two levels of igmtation is gen-
erally determined by meta-principles and a combinationamisiderations, which
can have various forms depending on the theoretical framewo

Adopting a plain and simple common schematic core structoreall ap-
proaches to ambiguity in language is very useful for idgintd the commonalities
(and distinctions) between alternative approaches inttiay ©f language — across
disciplines, theoretical paradigms, and language famdied languages. While
the entities, representations and functions/processésr wonsideration may dif-
fer, the common scheme of specification in context makesssipte to pinpoint
systematic similarities and differences — for instancepibiential/justification for
using underspecification in different modeling tasks.

5 The internal interface architecture of models of specifi-
cation in context

The schematic process in Figure 2 captures the ordinaryigegnotion oambi-
guity. many natural language expressions can have variousatiffarterpretations
or readings but language users normally have the competence to picigkesine
(or, more generally, reduce the set of choices) in a givetesbiof usage.

In order to be able to model this process systematicallyreteyant proper-
ties of expressions have to be accessible in some représantnd since various
properties are known to interact in the process of contemsitive specification,
or disambiguation, the simple scheme requires some fuekication. To cap-
ture different properties in the general case, each of theesentations:; from
the set{a; ...a,} of candidate analyses for some expressi@an be thought of
as a bundlg¢}, 2, . .. éf) of properties — maybe dt different levels of linguistic
representation, or layers, $¢ may be the constituent syntax representation for
reading 1 of an utteranee /3 the representation of a different readingepfind/5
the corresponding representation at some more abstrgaidiic level.

Since the cognitive process of picking a particular readimgontext is ex-
tremely complex (and for instance involves extra-lingaighowledge), it is com-
mon to focus attention on a subprocess with defined linguiistérface representa-
tions, typically relating two (or more) established leveidinguistic descriptions,
such as syntactic constituent structure and grammaticatifins, etc. The sub-
process can then, quite conveniently, be seen as a smilhsaaion of the full
process; and it suggests itself to construe the full proasss cyclic chain of for-
mally similar subprocesses, as indicated in Figure 3.

The underlying assumption is that at each layerspecification process re-
duces a set of possible alternativigs . . . ¢, } for this layer to a particular choice
E; which then again defines the choice of options for the neperla+ 1, and so
on. Note that if we view the cascade as a series of contextdallen specification



COMPREHENSION
Empirical Data:

Figure 3: The cyclic (pipeline) model of specification in text

steps, the relevant context for each step is not just detexmby the empirically
observed (presumably largely extra-linguistic) contexiut each layer contributes
highly relevant bits of information for the specificationntext at the next layer.
For instance, layer 2 may be the level at which inflectionakudee values such
as number (on verbs with subject agreement and on nominakels) are deter-
mined, and layer 3 may be the level at which the syntacticstra for this input
string is determined. Then, due to agreement constralmeseature values deter-
mined in layer 2 will affect the specification in layer 3.

Classical feature underspecification at intermediateldeverepresentation is
typically motivated by the observation that certain chsistay open across lay-
ers at which the relevant feature type would normally belvesb Clearly, the
modeling decision for interface representations is intatyatied to the assumed
sequence of cyclic specification decisions, i.e., the gechiral design. Modeling
alternatives can be decided on the grounds of economicaldemations.

The cyclic specification sequence goes along with strongnastons: growth
of specificity has to follow the same sequence across lagerallfanalysis prob-
lems; in a classical pipeline architecture, specificatieniglons cannot normally
be undone later. Often, the contextual clues at a partidajer give strong indi-
cations for a certain specification, but the decision canvegrimlden later. This
effect cannot be modeled appropriately in a plain pipelMile earlier work in
Generative Linguistics (e.g., the GB model) was based oear concept of sub-
sequent levels of information, more recent models (Minismaland Distributed
Morphology) have abandoned the idea of a step-by-step seque specification.
Largely, problems of ambiguity are resolved at the interawith the articulatory
and the perceptual system, respectively.



Despite the conceptual limitations tied to the strong icgtions for the se-
guence of specification decisions, pipeline models tylyidarm the baseline sys-
tems in data-driven approaches in Natural Language Plioges$iere, a layer
corresponds to some analysis tool trained on annotatedisalqta following the
classical levels of linguistic representation. When agaplbon new input data, the
tools make no strict choice of specification, but assign @dky scores to the var-
ious options. In the typical pipeline setup, the highestrisg prediction is passed
on to the next layer, which may of course occasionally brisglasequent layer in
the situation where it can no longer make correct predistioeven though it may
locally have strong evidence available.

As has become obvious, the pipeline architecture is not &adkequate to model
situations where two independent linguistic subsystenesact in constraining the
space of possibilities of further specification. An altéiwveabstract architecture is
the joint model sketched in Figure 4, which does not prei§peaay particular se-
guence of subsequent specification, but posits a simultsndecision, in principle
allowing for arbitrary global interaction across layers.
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Figure 4: The joint model of specification in context

In the joint model, any subprocess of layer-specific spetiba can (at least
abstractly) be informed by the output of any other subprgices., effectively the
specification decisions mutually contribute context infation for each other.

Of course, any concrete model following this idealized gdtas to break up
the circularity in its design. Moreover, complex model d@@ttures can combine
ideas from the pipeline and from the joint model, yieldingaatwspace of possible
system architectures. This essentially characterizeartttétectural status quo for
several of the recent research questions in NLP, addressedttion 3.

Let me now come back to the question of representationaffawtes. \We note
that despite considerable methodological differencesy#nious approaches tend
to “meet at” common interface representations — mostly tassical levels of lin-
guistic descriptions, such as segmental and prosodic pbginal representations,
representations of core aspects of morphological and&yndructure, and mean-



ing representations of key notions of semantic interpieiat

This representational interfacing has been a key elememh&my of the suc-
cessful examples of collaborations between linguistickatural Language Pro-
cessing, providing hubs both for model combination acragers and for cross-
paradigm comparison (or combination) of models addresbiagsame layer with
alternative approaches. However, as research has praceededdress advanced
implications of modeling decisions, the fields are at a paihere one can and
should start lifting some of the simplifying assumptionsuels as the assumption
that the interface representations can be carried oveputildjustment from one
research paradigm/modeling approach to another. Whigecibmvenient to use an
existing treebank annotation for training a submodules itinlikely that the as-
sumptions that informed the original annotation guidedide actually hold in all
respects for the context in which the trained submodulerieatly supposed to be
used.

The set of recently developing research questions (se8lias a sign that a
process of re-thinking the simplifying architectural ameghresentational assump-
tions is happening. By looking at such activities with thembnate system from
classical linguistic modeling in mind, there is a (maybe satnat unexpected)
chance to take advantage of lessons learned from thednatick in linguistics —
or, as | am pointing out in this paper, the ‘spirit of LFG’.

To provide a more concrete illustration of how one shouldgima this linguis-
tically informed view on recent data-driven modeling, | Miliefly review some
high-level conclusions from the study by Seeker and Kuhd 8B, which shows
very clearly that it can be crucial to question the justifimatof particular repre-
sentational decisions even in well-established standaiel $¢enarios.

6 Questioning standard representations — an illustration

Data-driven parsing of text from the newspaper domain is @nthe most es-
tablished standard tasks in modern NLP. People have spentiéeades on im-
proving the processing pipeline to achieve the best passddults for syntactic
analysis (and in particular contextual disambiguationq ilomain for which siz-
able amounts of hand-labeled training data, so-calledb#sles, are available. The
supervised scenario makes it possible for machine leamoirgxploit clues from
various levels of representation for the disambiguatiarigien, possibly including
non-linguistic statistical tendencies from the real-wlatbmain — such as the fact
that it is more likely for managers to employ people than tbiedes.

Most recent advances in this task have thus been due to teesihat al-
low machine learning methods to capture more and more conapié potentially
subtle constellations of contextual clues for the disamdiign decision. For in-
stance, in statistical dependency parsing, the compl@fityxploitable machine
learning features has been subsequently increased talénchhmbinations of two
or three dependency arcs (some relevant contributions Ganesras (2007); Koo



and Collins (2010); Bohnet and Kuhn (2012)). Training am&ex among the most
promising candidate analyses from an initial parser has lveey successful in
constituent parsing (the best known work here is CharniakJahnson (2005), but
the technique is widely used, and computational work in tR&lframework was
among the first studies to this end (Riezler et al., 2000, P002

Although it is acknowledged that the choice of appropriatguistic represen-
tations is also important, most researchers assumed thatradny years of tuning,
no further improvements could be made by adjusting the septational assump-
tions behind the standard task (which depends on the idigigisions made in the
original treebanking effort).

For the syntactic parsing task, the ultimate structuramisiguation decision
depends on a constellation of morphosyntactic featuresrfgrather things): what
are the inflectional person/number features of a verb, vehidtei case and number
of a noun, etc.? The German sentence provided in figure 5 Helosxample is in
OSV order, and it is not just selectional preferences of &b that indicate this
order; the inflectional marking of the initial determinam, dombination with the
noun, makes it a clear accusative, and in addition, therelialgsubject agreement
on the verb.

Since the morphological features cannot be read off detéstially from the
surface form (the two nouns in the example, by themselvesaartbiguous be-
tween nominative and accusative), data-driven parsingpidlly split up into
several subtasks: part-of-speech tagging, morpholotagagling and structural de-
pendency parsing. Although in morphological disambigurgtstrict grammatical
rule knowledge plays a more decisive role than in syntaésiardbiguation (where
it is obvious that data-driven techniques are needed towigtpcertain decisions),
it has been established that training the inflectional disgoator on the full sen-
tences is important for achieving competitive results. @@ intuitively imagine
that the system can pick up corpus-specific statisticaldeciés in the lineariza-
tion of certain forms, so the morphological disambiguatifectively anticipates
certain syntactic decisions.

Ideally, the syntactic parser should be able to overridésaetfrom an earlier
morphological step, but the search space of all possiblebgwtions of inflec-
tional options for the words in a sentence is huge (at leasafmguages with a rel-
atively rich inflectional morphology that displays synget). Even with a fairly
large manually annotated treebank, a parser that is leataimake structural de-
cisions and inflectional decisions jointly, without anyesichnstraints, has too few
indications from the corpus data to pick up some importattepas. Thus, it is
more effective to break up the task in a pipeline of two subeatidecisions. The
occasional errors in the earlier inflectional decisionsocarteveighed by the major-
ity of cases where there are enough helpful clues availabthd surface string;
the second step, syntactic disambiguation can thus usevdilatde training data
very effectively for making decisions within the inflectally constrained search
space. Even the idea of allowing the syntactic parser td&dk on the second or
third most likely morphological analysis of a word will tygailly lead to an overall



decrease in parsing performance (on the standard in-daestidata).

As the considerations and experiments in Seeker and Kuli3k3&how, there
is however one point in the established standard setup fardtaven parsing that
can be improved substantially, and this is where questionirgrépresentations
assumed at the interfaces between subprocedures is hitgayive.

As just discussed, training a morphological disambiguatahe full sentence
context is empirically superior to a purely symbolic apmtodhat will feed the
syntactic parser with all possible morphosyntactic oggtiter each word. Conve-
niently, a syntactic treebank can be used as gold-standsedfadr this task too:
the treebank annotators used their grammatical knowleddeuaderstanding of
the real-world context to determine exactly the right irtiatal feature values for
each word in the string. For instance, each word in the GerNRulas kleine
Auto(“the small car”), when used in a treebank context ttke small car is parked
in a side streewill receive an unambiguous marking for case, number and gen
der, although each form is ambiguous in several ways, and #he full NP —
out of context — is ambiguous between nominative and adgesddf course, the
morphological disambiguator trained on such fully disagnbied data will not be
perfect — it will occasionally make incorrect predictioms & syncretic inflectional
form — but it can nicely exploit the tendencies mentionedvabo

There seem to be just two alternatives: either feeding aesulent syntactic
parser with the word-by-word predictions of the statidlycaained morphological
disambiguator, or leaving all but the strictly symbolic @é&ms to the syntactic
parser. This however ignores what in modern linguisticsleses captured by the
notion of underspecification, and cyclically increasingafication as more infor-
mation becomes available: in the space of available arelgsehe full sentence
string, the adjectivkleine as part of the NRlas kleine Autaannot be plural —
although the word form certainly can. It is the local phrasattext that partially
disambiguates the word forms. However, recognizing theettword sequence as
an NP still leaves the case feature for each of the three vapes: they could be
nominative or accusative (but all of them have to be the same)

The standard architectural scenario for input-outpuhingi of (token-based)
machine-learning classifiers does not provide a basis fptudag this middle
ground state of information half-way between the full sétiipretation options for
an ambiguous (syncretic) word form and the one contextsitigled out interpre-
tation. Note that it is not just a question of assigning défe weight to potential
interpretation options: a machine-learning classifierauaite well provide a prob-
ability distribution over the potential morphosyntact&afure values in the given
string context. But this still does not capture the inteetefencies across words
(mediated through the syntactic structuring decisionkiéineends up accusative,
Autowill not end up nominative, unless there is some other syietatructure in
which they do not form an NP.

Of course it is not at all trivial to set up an architecturettisaable to cap-
ture these very interdependencies, while at the same tithiaking advantage of
the statistical tendencies when predicting the distriliutiver possible inflectional



values/syntactic structures. But it is possible, usingrtteta-level framework of
Integer Linear Programming (ILP) for navigating the seasphce of interrelated
options, as Seeker and Kuhn (2013b) show. The presentgosgiéiper is not the
place to go into the technical details of how this works. Thecial point is that
the frameworks allow a linguistically informed modellerdgpress interrelations
across the choices for the various word-level and sentleved-decisions. The
knowledge that NPs are a structural domain with importarglications for the
distribution of inflectional features within the sententiéng is thus a priori knowl-
edge that the machine learning system does not have to pifrbimgthe available
training data. Moreover, the way in which syncretic formédhior several cells
in the morphological paradigms for various inflectionalssies can be stated ex-
plicitly as a quasi-underspecification of combinationsniiieictional features. And
finally, certain aspects of verb subcategorization can beresd when assembling
the predictions for a verb’s arguments — mainly what cowasp to LFG’s func-
tional uniqueness principle: there cannot be two arguntéatsaresubject®

Diesen Unterschied sehen die Versuchspersonen
this distinction sehen the experimental.subjects
1. Acc NOM/ACC/DAT NOM/ACC NOM/ACC
2,  e-e-- NP-----  aaea- NP-----
3. — NOW/ACC/DAT NOM/ACC NOM/ACC
4. — NOM/ACE NOM/AcE
5. OBJECT SUBJECT

Figure 5: Illustration of the intuitive flow of informatiorof disambiguation

The intuitive flow of information is sketched for a locally aiguous (but glob-
ally unambiguous) German example in Figure 5, ignoring rhosgntactic fea-
tures other than case. Both nouns in the sentence are caggpamby themselves.
Since the dependency parser considers possible readitiysheitransitive main
verb, it is clear that there must be two NPs. The #i€sen Unterschieds dis-
ambiguated by the demonstrative determiner. Because ofifunal uniqueness,
this excludes the accusative/object readingdierVersuchspersongealthough it is
locally ambiguous.

Figure 6 sketches more far-reaching interactions invgldifferent inflectional
paradigms for German adjectives and certain nouns, depgrmudi the choice of
determiner, plus the interaction with subject agreemethefiinite verb. Note that
the final noun has the same form in all instand@sf(agtg, but this is a syncretic
form that could be nominative/accusative of feminine slagor plural.

In the transition from the second to the third variant of tkereple, changing
only the wordviele (“many”) to die (the definite article) turns an ambiguous sen-
tence into an unambiguous one, because the article foreedetfadjectival noun

3Any more far-reaching subcategorization constraints tete empirically problematic, because
of a fair degree of variation in real corpus data.



Stuttgarts  groRte \Verein  erwahnte viele Befragte

Stuttgart's largest  club mentioned (3pl) many interviesvee
——————— OBJECT------ - - - SUBJECT- - -
Stuttgarts  groRte  Vereén erwahnte viele Befragte
Stuttgart’s largest  clubs mentioned (3pl) many interviesve
________  J I S
Stuttgarts  groRte  Vereén erwahnte die Befragte
Stuttgart's largest  clubs mentioned (3pl) the interviewee
------- SUBJECT------ --- OBJECT---
Stuttgarts  grofRte  Veredn erwahnte die Befragte
Stuttgart's largest  clubs mentioned (3sg) the interviewee
——————— OBJECT------ - - - SUBJECT- - -

Figure 6: lllustration of subtle interactions between ictiienal paradigms, NP-
internal agreement and subject/verb agreement

Befragteto be a feminine singular rather than a plural. To complithitegs some
more, it is not the article imlie Befragtealone that enforces this reading. With a
singular subject agreement on the verb, as in the forth Marihe subject/object
interpretation in the complete sentence is flipped, since@id forms in the NPs
are syncretic for nominative/accusative. This illustratshould give some intu-
itive indication that a syntactic parser that does not haveely on some locally
informed morphological prediction may have a real empirchvantage.

Czech German Hungarian
NO-C C PREDM|NO-C C PREDM|NO-C C PREDM
subject 85.4187.23* 85.46 |90.0292.91* 90.59 |85.0587.67* 86.53
predicative 87.130.09* 87.11 |72.8680.70* 74.33 |74.1678.88* 74.79
obj (nom) 47.4853.19* 38.74 | - - - - - -
obj(gen) 70.1572.54 70.27 |31.41 42.98 34.26 | - - -
obj (dat) 79.9980.42 79.54 |65.2177.78* 71.05 |75.3377.92* 73.49
obj(acc)  84.2786.79* 84.12 |83.7487.96* 84.86 |91.9693.21* 92.53
obj (instr) 67.3668.76 65.02 | — - - - - -
all arg funcs 84.3386.37 84.21 [86.27 90.11 87.24 |86.87 89.04 87.78
all other 81.3781.37 81.05 |89.79 89.88 89.98 |82.73 82.86 83.43

Table 1: Table from Seeker and Kuhn (2013b): Parsing re$oitshe uncon-
strained (0-C) and the constrainecc] ILP models, and the Bohnet parser with
predicted morphology outpupRED-M) in terms of labeled attachment f-score.

Table 1 shows a summary of the results that Seeker and Kuli3i§20eport
for the different variants in the combination of data-dniv&yntactic and morpho-
logical models* The datasets considered were standard treebanks for Gzegh,

4+ marks statistically significant differences when compatime performance on a grammatical
function for the C model to therRED-M model.



man and Hungarian (three languages with relevant case mgaikiNPs). The
ILP-constrained search (system outalitof the combination of predictions from
the morphological disambiguator and a dependency parads I® a significant
improvement for the (case-marked) argument functions wdwmnpared with a
parser that does not use the linguistically informed cainsts (system outpwto-
C). The constrained combination is also superior to the sththe-art Bohnet
parser (Bohnet, 2010), provided with morphological prédits as input to syntac-
tic parser (system outp@#RED-M): Note the increase of more than two percentage
points for the argument functions (“all arg funcs”) in Czeanid German over the
morphological prediction based parsers (84-286.37 and 87.24+ 90.11)° For
the other functions, which are independent of case markingjecrease of per-
formance is incurred. These overall results are quite reafde, given that the
baseline systems are very competitive parsers.

To conclude this section, we have seen an example of advaticedesearch
that takes advantage of principled linguistic knowledgetalthe interaction across
interface representations in the setup of a modeling actite. Running the best
available machine learning techniques on gold standardt/oytput pairs alone
does not suffice. For best results, itis crucial to know afmaitole of intermediate
interfaces and the status of the corresponding repregergat

7 Conclusion: Is it the ‘spirit of LFG’ rather than the
spirit of linguistic thinking more generally?

The interactions are subtle and the technical solution itegavolved — but |
think the discussion of Seeker and Kuhn (2013b) in the previgection makes
it clear that even in advanced statistical NLP modelingyeted, linguistically in-
formed constraining of the search space can have a veryabt#ieffect. Reaching
the same effect in an exclusively data-driven way would kesexely hard, even
when powerful general-purpose machine learning techsique applied for pick-
ing up the constraints from training data: there is alwayt fulimited amount
of high-quality training data, and if an unconstrained nidu&s tolearn that
case/number/gender feature agreement occurs inside gfaBgerson/number
agreement holds between subjects and inflected verbs (bagjre@ment occurs
in other configurations), the “signal” in the same data careoused to induce
other important generalizatiofisIn particular, the wide-spread syncretism in the
morphosyntactic feature paradigms tends to blur many oti¢tia points, so pre-
structuring the space in terms of underspecified abstrpotsentations makes the

The advantage from the constraints is least pronounceddogatian, which has very few cases
of sycretism in its inflectional paradigms.

®One might speculate that some of these configurational hamdtrints reflect an aspect of
Universal Grammar, but | do not want to go into this here. Nb#d the standard treebank-trained
parser experiments may fail to reflect some bootstrappirgasto which human language learners
are exposed to and whidoesallow for a more data-driven induction of the relevant comists.



available data much more informative.

The critical reader will probably think, alright, this shewhe importance of lin-
guistic awareness about important interface representagven for heavily data-
driven NLP — but is there really any specific point relatedhe fspirit of LFG’
that can be made? Or in other words, tharesimilarities for various LFG levels
of representation and important interface representtiomecent NLP work, as
sketched in Figure 1 on page 6 — but these may reflect some ratkarprising
convergence which any empirical account has to undergoesasater, simply to
capture the systematic patterns in the data!? After allaffexted levels also re-
semble traditional levels from descriptive grammar. Soduld seem that similar
parallels as listed in Figure 1 could be drawn for any othangnatical paradigm,
especially constraint-based ones (such as HPSG or CCGlthed the conceptual
view of simultaneous interaction across interface reprasiens.

To a certain degree, this reservation is of course justifitdie look just at
the representations at the established “hub” levels of gratical analysis, and
we ignore differences in the theoretical assumptions archarésms that different
approaches assume to relate them to one another, we must eipetural simi-
larities across all approaches at a relatively high levellsdtraction (maybe with
the exception of heavily derivational approaches).

However, | would nevertheless like to make a stronger pant] | think it
is justified to argue that LF@ closer than other established grammatical frame-
works to the emerging picture in NLP research sketched itiose8 and discussed
in more detalil in sections 5 and 6. | think there is an explandir this circum-
stance at the level of sociology of science. Throughoutétetbpment, the LFG
framework has been shaped in an interdisciplinary dialpguslving theoreti-
cal linguists, descriptive linguists and computationagiiists (as discussed in sec-
tion 2). This circumstance can have an effect on the charsiits of the canonical
interface representations that are being establishedeiparticular modeling goal
dominates the design process, principles advocating faumiformity and theo-
retical simplicity (which are of course important in any ®matic approach) will
have a stronger effect than in a multi-disciplinary setughk latter case, new uni-
formity assumptions about some level of representatiofisrumnediately prompt
a debate if they are not compatible with the various pointgest that the represen-
tation is relevant for. So, empirically grounded applitiapof the interfaces ranks
higher than aesthetic/theoretical considerations ofsel®gel uniformity (and as
a side-effect, a multidisciplinary framework may be somatuinore conservative
and keep up established assumptions). At points in time vithemns out that
relevant interactions across levels are more complex thanqusly assumed (like
in the examples discussion in section 3), this has the adgarthat new accounts
do not have to work around simplifications that are orthojtm#he issue under
consideratior.

"To give an example, LFG has generally used relatively “flatllections of features in the f-
structure, whereas HPSG has established sophisticat@yrdtiically organized feature structures
bundling groups of features. Using inheritance hieracbieer sorted feature structures, the HPSG



Even if this explanation is not correct, it is a fact that LF&shconsciously
adapted an extensible projection architecture of het@emes representation
structures. This allows users of the framework to considerrative paths in
the connection between representational layers. By adsompall layers are in
parallel correspondence, so there cannot be any non-muaoafects that would
strictly exclude more indirect cross-level effects (eagstructure information be-
coming relevant for some decision that is normally madelssietly at f-structure).
Yet, it is considered to be the scientific goal to identify fystematic, “direct” ef-
fects that are behind the empirical generalizations dérix@m the data.

And it is this architecture of parallel correspondence s&formally heteroge-
neous representation structures represents that | woatdcterize as the ‘spirit of
LFG’ in the present context. More than most other framewatkss has avoided
superimposing theory-internally motivated meta priregpbn the modeling ap-
proach and has thus kept an open eye on how empirically adislereffects can
help to make a design decision in one way or another. As a qaesee, a con-
siderable number of LFG contributions have looked at a nétwblevels of rep-
resentations (the LFG projections) in an explorative wayng to find arguments
that help decide what are the most fundamental correspoadesations across
levels, and what are the derived relations. As a matter af feith the availabil-
ity of inverse projection functions and functional compiosi of projections, there
are essentially no effects that cannot be modeled at lediseatly. Examples of
relevant considerations are the questions under whatnegtances the inverse of
the ¢ projection (from c-structure to f-structure) is needed (g-alvorsen and Ka-
plan (1988/1995); Bresnan (1995) and more recently Asugefq)), or whether
some local level of morphological structure is projecteshfrc-structure or from
f-structure (Butt et al., 1996; Frank and Zaenen, 2002).oimpmutational work in
the LFG framework, there have also been discussions ohalige approaches to
the same underlying problem, e.g., disambiguation usinghsjic constraint rank-
ing (Frank et al., 2001) vs. data-driven training of disénative models (Riezler
et al., 2002); for disambiguation, it is a combination of thepective strengths of
approaches that is effectively being applied in the lag@esParGram grammars.

LFG’s way of not treating any particular architectural assumption as atstri
given opens up the research paradigm to the possibility aftwhe might call
conditional interface effects, i.e., seemingly incomiplaticross-level effects that
could not be explained by a single pipeline sequence of nesduls | also ar-

formalism can thus model theories about cross-featuredctiens in an aesthetically appealing way,
and more uniformly than LFG. It turns out however that it iremely difficult, if not impossible, to
establish a single hierarchical structuring of the feaggemetry that is consensus among different
points of view, as is reflected in long debates. In LFG,@esentation®f linguistic expressions
were tentatively chosen in a way that does not reflect sapaist theoretical assumptions (these
are rather reflected in the constraintglescriptionsof the objects, e.g., the mechanism of functional
uncertainty).

8 would say that other constraint-based frameworks haveersmnger commitments in terms
of turning one particular assumption into a guiding repnégtgonal principle — enforcing that other
assumptions will be subordinate to it. (Of course, suclestahts are always somewhat subjective.)



gued in Kuhn (2007), it is a strength of constraint-based@gghes to the theory
of grammar that different systematic effects involving slane interface represen-
tation may quite well be based on different interface-tesiface correspondence,
without enforcing the prediction that one of them is moredamental than the

other. Another way of stating this observation is that LF@emeassumed a strict
pipeline architecture, according to the classificatiomfrgection 5 — which is of

course what can be expected from a non-derivational aplpyedea technical level,

but the observation is also true at a more abstract conddptah

The benefit of being able to use “conditional interfacesotffein the mod-
eling extends quite naturally from classical symbolic miodeof the interface-
to-interface relations, using some logic language to kguiput modeling as it is
done in current machine learning wotience, the observations made throughout
this paper about more and more cross-level relations (segyhideviating from
the step-by-step processing pipeline are not at all simgrfsom the LFG point of
view of the architecture of grammar and interfaces.

So, in conclusion, as far as | can see, LFG's architectureaddliel corre-
spondence seems to be closer to the current NLP situationrtiust other lin-
guistic frameworks. This implies that there may be lessanbet learned from
the LFG experience, and if the ultimate goal is to developtesfasatory overall
framework that makes sense both to linguists and to NLP relses working in
the current paradigm, LFG’s parallel correspondence tacthire may be a good
starting point. Such a framework would also provide the ©&si assessing the
implications of important developments in NLP work from aduistic point of
view, and thus revive the cross-fertilization betweenliistics and computational
linguistics.
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