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Abstract

In this position paper, I take a look at some of the key “designprinci-
ples” of LFG and draw some parallels to developments in research on Nat-
ural Language Processing (NLP) and computational linguistics over the past
few years. A number of recent trends and findings in NLP research seem to
have precedents in earlier LFG work in ways that have not received much
attention so far.

1 Introduction

In this position paper, I draw some parallels between some ofthe key “design prin-
ciples” of LFG and recent developments in research on Natural Language Process-
ing (NLP) and computational linguistics. Since the currentcomputational work in
which some original LFG design principles resurface is embedded in quite a dif-
ferent methodological context, one might argue that the parallels that can be drawn
are at a level that is too abstract to make any point that is of scientific interest. I
believe however that it is worthwhile taking a closer look and seeing whether the
common aspects behind the original LFG ideas and the currentcomputational re-
search questions can be given a meaningful interpretation across frameworks. The
hope is that an increased awareness both in the LFG communityand in the NLP
community may lead to some new cross-fertilisation in the near future.

The paper is structured as follows: section 2 will very briefly review a develop-
ment in the relation between theoretical and computationalwork in LFG over the
past 10 years or so; in section 3, I will then point out some recent developments in
data-driven computational linguistics, which are seemingly unrelated to LFG, but
as I will claim display many features of the ‘spirit of LFG’. To be able to situate the
various approaches in the same architectural coordinate system, I will introduce in
section 4 a high-level scheme for classifying different ways of modeling the re-
lation between linguistic forms and their interpretation as a function of the given
context of utterance, which in turn serves as the basis for describing different types
of modular interface architectures in section 5. Against this backdrop, I illustrate
the claim advanced in section 3 for a particular study (specifically Seeker and Kuhn
(2013b), of which I will outline the conceptually relevant points). In section 7, I
point out the ways in which I think it is the ‘spirit of LFG’ that is particularly
relevant for the point I am making and I conclude.

†The considerations in this contribution and the work from within my group that I refer to have
been carried out in SFB 732 “Incremental Specification in Context”, funded by the German Research
Foundation (DFG), in particular in projects D2 and D8. I am indebted to my group for discussions
and for contributing the computational and experimental work – in particular to Wolfgang Seeker
who has influenced these considerations a lot – and to the collaborators from the SFB for ongoing
exchanges about the representational and architectural conception of specification in context.



2 LFG and NLP: The past and the status quo

Traditionally, the LFG community has been known to be a rare showcase for a
continued and successful exchange between theoretical andcomputational linguis-
tics. This has probably numerous reasons, but one is clearlythat the represen-
tations used in the LFG formalism are an ideal common ground for exchanging
thoughts about linguistic analyses of data from languages across the typological
spectrum. The reflex of heavily theory-internal assumptions is carefully avoided
in the representations; and for each relevant dimension of linguistic description,
a formal structure is chosen for representation that displays the observed proper-
ties (trees for c-structure, set-based feature structuresfor f-structure etc.). These
structurally straightforward representations allow boththe theorists and the com-
putationalists to anchor their respective systematic accounts – using a constraint-
based and lexicalist approach. In what Johnson (2011, 3) calls the “golden age for
collaboration and cross-fertilisation between linguistic theory and computational
linguistics” – the 1980s – the connection was very obvious, but in the LFG com-
munity, the collaboration continued to be successful when the “empiricist” camp
in NLP gathered momentum in the 1990s and statistical techniques were beginning
to dominate research in computational linguistics (see Church (2011)). LFG has
not only been the theoretical framework for one of the most successful attempts
of engineering linguistically grounded broad-coverage grammars across languages
(in the well-known ParGram project, Butt et al. (2002)), butit also provided the
representational framework for important work on treebank-based grammar acqui-
sition (Cahill et al., 2008a), discriminative ranking models for parse disambigua-
tion (Riezler et al., 2002), and statistical constituency-based pruning (Cahill et al.,
2008b).

There is successful ongoing research work in the mentioned traditions; at the
same time however, it has to be acknowledged that many computational analy-
sis tasks (e.g., machine translation, semantic role labeling, coreference resolution)
for which there was no doubt in the late 1980s that they would require carefully
engineered knowledge sources, are quite successfully approached with cascades
composed of statistical modules, each solving a structurally relatively simple input-
output mapping. This is not to say that the importance of linguistic insights is not
acknowledged in the field of NLP – the last few years have brought about many oc-
casions in which the relation between linguistics and language technology has been
discussed (the 2011Linguistic Issues in Language Technologyon “Interaction of
Linguistics and Computational Linguistics” is just one example; here King (2011)
represents the LFG view); the occasionally hostile atmosphere between the camps
from the 1990s has by and large disappeared. However it somehow seems that the
common denominator across fields ended up less sophisticated than many would
have hoped: linguistic insight is clearly needed for high-quality gold-standard cor-
pus annotation; but most other ingredients for effective computational models seem
to be taken from general-purpose machine learning that operates on this training
data, avoiding any tailoring to peculiarities of the data representations. Method-



ologically, if language-specific hard constraints on the search space are used in
some experiment, these are considered to be simplifying working assumptions that
should ultimately be abandoned in favor of purely data-driven acquisition of all
constraints. This is diametrically opposed to linguistic methodology in the genera-
tive tradition, which attempts to identify non-trivial generalizations or implications
that hold across languages and thus help pre-structuring the search space for the
language learner.1

3 Recent developments

It is at this point that I would like to go into some recent developments: As the re-
sults for some of the standard NLP problems that can be addressed with supervised
methods (such as treebank-trained constituent parsing or dependency parsing for
English) are reaching a plateau, a new set of refined researchquestions comes up:2

(i) The standard NLP approach to multi-level analysis (e.g., part-of-speech tag-
ging, morphological analysis, syntactic constituent and/or dependency parsing, se-
mantic role labeling, coreference resolution) is to assumea pipeline of separate
input-output modules, each solving a single intermediate step the output of which
is then fed into the next step. This is conceptually perspicuous, it avoids additional
algorithmic complexity, and allows for module-specific supervised training. How-
ever it comes at the cost of error propagation. This has recently prompted consider-
able attention on “joint modeling”, i.e., effective ways ofsolving combined prob-
lems that span more than one step in the classical pipeline (for tractability, the joint
modeling is often approximated using some flexible combination of modules). Ex-
amples of task combinations are morphological segmentation and parsing (Gold-
berg and Tsarfaty, 2008), part-of-speech tagging and parsing (Bohnet and Nivre,
2012), morphological disambiguation and parsing (Seeker and Kuhn, 2013a), syn-
tactic and semantic parsing (Li et al., 2010), and, in the reverse direction, referring
expression generation and surface realization (Zarrieß and Kuhn, 2013).

(ii) If some approximation of a joint model is assumed, how can the“candidate
set” of intermediate results be best represented? One may for instance assume some
(underspecified or packed) representation of the exhaustive list of candidates, or a
k-best list according to some preliminary scoring, possiblycombining candidates
from different alternative modules. Björkelund et al. (2013) for instance use output
from various parsers to populate a candidate set for ranking, achieving state of the
art results for parsing across various “morphologically rich languages”. Depending
on the data structure, one may even be in a position to combinepartial analyses by a
technique sometimes called “blending” (Sagae and Lavie, 2006; Hall et al., 2007).

1Note however that since both frameworks are motivated by learning/learnability considerations,
theycouldbe related to each other at a substantial level – the differences can be argued to be mainly
in prioritizing the step-by-step lifting of one’s idealizing working assumptions.

2The citations given in this listing are not intended to be exhaustive. Given that this is an indi-
vidual position paper, there is a bias towards examples of work from my group and our department.
This implies by no means that I think there is no other, more important work.



(iii) Related to the previous points, a question arises for applications involv-
ing only a level of analysis that is relatively far “downstream” in the pipeline: if
the typical pipeline could build on alternative intermediate representations, which
do not affect the outcome directly – how can one decide on the type that should
be chosen? For example, should constituent or dependency parses, or both, be
used for the task of coreference resolution (Björkelund and Kuhn, 2012); how
should morphological segmentation be addressed in “morphologically rich” lan-
guages (Goldberg and Tsarfaty, 2008)? Taking this questionto the limit, one may
ask what intermediate (linguistic?) representation to assume in end-to-end tasks
like machine translation. Quernheim and Knight (2012), forinstance, propose a
probabilistic model for Machine Translation that uses a semantic feature structure
as an intermediate representation, which is in the spirit ofearlier LFG work on
translation using f-structures (Kaplan et al., 1989; Riezler and Maxwell, 2006).

(iv) Can latent representations of intermediate levels be induced – e.g., for in-
ducing semantic properties in a grounded learning scenariolike in Richardson and
Kuhn (2012) or for adjusting parsing models across languages, Titov and Hender-
son (2010)? If so, is the induced latent representation superior to an established
intermediate representation, which can be trained directly, evaluated and tuned (to
the extent that annotated resources are available)?

(v) Are there systematic linguistic constraints that can be exploited for im-
proving a data-driven component, exploiting structural building blocks of linguistic
expressions and detailed knowledge about the synchronization across (underspec-
ified) interface representations? And can the relevant constraints be formulated in
a way that they carry over across typologically different languages?

For the questions under (v) I will provide a relatively detailed illustration from
the study in Seeker and Kuhn (2013b) in section 6 below.

Note that none of the approaches mentioned are modeled in terms of an LFG
grammar or sub-grammar. I would like to claim however that the methodology and
the set of research questions is very much in the ‘spirit of LFG’: as mentioned, part
of the long-term interdisciplinary success of LFG lies in the combination of (or:
Parallel Correspondence across) relatively straightforward representational levels
for which there are good empirical tests. So, typical high-level LFG research ques-
tions could be paraphrased as ‘what are the primitives that should be assumed at
the level of f-structure/a-structure – what effect do the possible choices have on the
neighbouring levels of representation?’

Up until about five years ago, the data-driven paradigm in NLPwas not ques-
tioning the input and output representations assumed in supervised approaches to
particular analysis problems – the available datasets weretaken for granted, and the
challenge was to devise maximally general machine learningtechniques. As the
network of subtasks feeding one another (depending on the assumed architecture)
has been growing as outlined above, questions about appropriate interface repre-
sentations do however gain crucial importance. So, when it comes to deciding on
a global model architecture spanning across subtasks, the field of NLP very much
resembles the problem space that LFG theorists have been addressing all along.



And indeed, most of the major interface representations under discussion in cur-
rent NLP work can be argued to bear close resemblance to the LFG representations,
as is sketched in Figure 1:

LFG Data-driven NLP
c-structure categories part-of-speech tags
morphological f-structure features morphological analysis
c-structure trees constituent syntax
f-structure embeddings (minus functional control) dependency structure
a-structure (incl. functional control) semantic role labeling
anaphoric control coreference resolution

Figure 1: Rough correpondences across levels of representation

In addition, we can note that some of the more controversial parts of the NLP
architecture, like the interplay of morphological segmentation and syntactic pars-
ing, correspond to controversial parts of the LFG architecture (the morphology-
syntax interface).

The major difference is that in classical LFG, the concrete modeling task for
relating the various levels is solved in terms of the formulation of symbolic for-
mal constraints describing the possible correspondence relations (and this task is
addressed by the linguist or grammar writer), whereas in current “multi-level cor-
respondence” NLP, the concrete pairwise (or larger) relation across levels is de-
termined by machine learning methods operating on trainingdata, possibly with
latent intermediate representations. But as the characterof the interface represen-
tations ceases to be fixed a priori in NLP work, the high-levelsearch for the best
possible set of interface representations gains importance: is there a combination of
interface representations that allows for effective modeling of arbitrary languages?
This does not seem to be all that different from linguistic research in the generative
tradition.

4 The broader picture for interface representations in lin-
guistic modeling

In this and the following sections, I take a few steps back to develop a high-level
picture of the role of representations (and in particular interface representations
assumed for interacting “modules”) that is broad enough forcapturing linguistic
work on the theory of grammar on the one hand and data-driven computational
work in Natural Language Processing on the other hand.

This line of reasoning is closely connected to the Stuttgartcollaborative re-
search center SFB 732Incremental Specification in Context, in which linguists and
computational linguists from distinct research paradigmshave been successfully
cooporating. This SFB has been set up to depart from one of themost character-
istic properties of natural language(s) and the human language faculty: the high



degree of ambiguity in linguistic expressions and the mostly effortless ability of
speakers and hearers to deal with it when the expressions arecontextually embed-
ded.

Any model of language interpretation in the face of ambiguity will follow the
general scheme in the top half of Figure 2; models of choice inlanguage generation
follow the same scheme in the reverse direction, as seen in the bottom half.

COMPREHENSION

Empirical Data: e + c → mj

Model: { a1 . . .an } + c′
f
−→ aj

Model: aj
f
←− { a1 . . .an } + c′

Empirical Data: ej ← m + c

PRODUCTION

Figure 2: The general modeling scheme for specification in context

The observable empirical process in comprehension is a hearer’s ability, given
some linguistic expressione that she is confronted with in a particular contextc,
to decide which is the appropriate interpretationmj among a large set of interpre-
tations whiche could have in different contexts. Any theoretical or computational
model characterizes the input expressione in the empirical data by a set of alter-
native analyses of this input and assumes some appropriate representationc′ of the
empirically observed contextc. At the core of the model is some functionf which
picks out one analysisaj among the alternatives, given contextc′. The form of
representation of the competing analyses, and in particular of the target analysisaj
is chosen in such a way thataj contains a representation of the hearer’s interpreta-
tion mj (e.g.,a1 . . .an may be different syntactic trees for an observed string, and
one of the trees reflects the structure that hearers find natural in the given utterance
context). In the same way, the reverse process models a speaker’s choice among
possible expressions for realizing some underlying thought or message in a given
utterance context.

The representations and functions assumed for a particularmodel process are
chosen in a way that they satisfy certain meta-theoretical principles and allow for
the prediction of some corpus of empirical language data. Wewill go into details
of the modeling choices below, but note at this point that a wide-spread objective
is to follow some principle of economy. For a process of specification in context,
economical modeling can often be fleshed out as follows: Rather than assuming
an explicit listing of the entire set of choices{a1 . . . an} prior to contextual disam-
biguation, the representation language is designed to provide a compact represen-
tation for this set – this is the widespread notion ofunderspecificationin linguis-
tic modeling, especially in its symbolic guise. Design decisions in probabilistic
modeling are typically influenced by additional constraints, such as the attempt to
exploit the information available in a given data sample/corpus in the best possible



way for deriving generalizations, without overfitting the model parameters to the
training data.

In summary, the relationship between the two levels of representation is gen-
erally determined by meta-principles and a combination of considerations, which
can have various forms depending on the theoretical framework.

Adopting a plain and simple common schematic core structurefor all ap-
proaches to ambiguity in language is very useful for identifying the commonalities
(and distinctions) between alternative approaches in the study of language – across
disciplines, theoretical paradigms, and language families and languages. While
the entities, representations and functions/processes under consideration may dif-
fer, the common scheme of specification in context makes it possible to pinpoint
systematic similarities and differences – for instance thepotential/justification for
using underspecification in different modeling tasks.

5 The internal interface architecture of models of specifi-
cation in context

The schematic process in Figure 2 captures the ordinary language notion ofambi-
guity: many natural language expressions can have various different interpretations
or readings, but language users normally have the competence to pick a single one
(or, more generally, reduce the set of choices) in a given context of usage.

In order to be able to model this process systematically, therelevant proper-
ties of expressions have to be accessible in some representation, and since various
properties are known to interact in the process of context-sensitive specification,
or disambiguation, the simple scheme requires some furtherexplication. To cap-
ture different properties in the general case, each of the representationsai from
the set{a1 . . . an} of candidate analyses for some expressione can be thought of
as a bundle〈ℓ1i , ℓ

2

i , . . . ℓ
k
i 〉 of properties – maybe atk different levels of linguistic

representation, or layers, soℓ3
1

may be the constituent syntax representation for
reading 1 of an utterancee, ℓ3

2
the representation of a different reading ofe, andℓ5

2

the corresponding representation at some more abstract linguistic level.
Since the cognitive process of picking a particular readingin context is ex-

tremely complex (and for instance involves extra-linguistic knowledge), it is com-
mon to focus attention on a subprocess with defined linguistic interface representa-
tions, typically relating two (or more) established levelsof linguistic descriptions,
such as syntactic constituent structure and grammatical functions, etc. The sub-
process can then, quite conveniently, be seen as a small-scale version of the full
process; and it suggests itself to construe the full processas a cyclic chain of for-
mally similar subprocesses, as indicated in Figure 3.

The underlying assumption is that at each layeri, a specification processf i re-
duces a set of possible alternatives{ℓi

1
. . . ℓini

} for this layer to a particular choice
ℓiji , which then again defines the choice of options for the next layer i+ 1, and so
on. Note that if we view the cascade as a series of contextually driven specification



COMPREHENSION

Empirical Data:
e + c →mj

Model:

{ ℓ1
1

. . .ℓ1n1
} + c1

f1

−→ ℓ1j1

{ ℓ2
1

. . .ℓ2n2
} + c2

f2

−→ ℓ2j2
...

ℓk−1

jk−1

{ ℓk
1

. . .ℓknk
} + ck

fk

−→ ℓkjk

Figure 3: The cyclic (pipeline) model of specification in context

steps, the relevant context for each step is not just determined by the empirically
observed (presumably largely extra-linguistic) contextc, but each layer contributes
highly relevant bits of information for the specification context at the next layer.
For instance, layer 2 may be the level at which inflectional feature values such
as number (on verbs with subject agreement and on nominal elements) are deter-
mined, and layer 3 may be the level at which the syntactic structure for this input
string is determined. Then, due to agreement constraints, the feature values deter-
mined in layer 2 will affect the specification in layer 3.

Classical feature underspecification at intermediate levels of representation is
typically motivated by the observation that certain choices stay open across lay-
ers at which the relevant feature type would normally be resolved. Clearly, the
modeling decision for interface representations is intimately tied to the assumed
sequence of cyclic specification decisions, i.e., the architectural design. Modeling
alternatives can be decided on the grounds of economical considerations.

The cyclic specification sequence goes along with strong assumptions: growth
of specificity has to follow the same sequence across layers for all analysis prob-
lems; in a classical pipeline architecture, specification decisions cannot normally
be undone later. Often, the contextual clues at a particularlayer give strong indi-
cations for a certain specification, but the decision can be overridden later. This
effect cannot be modeled appropriately in a plain pipeline.While earlier work in
Generative Linguistics (e.g., the GB model) was based on a clear concept of sub-
sequent levels of information, more recent models (Minimalism and Distributed
Morphology) have abandoned the idea of a step-by-step sequence of specification.
Largely, problems of ambiguity are resolved at the interfaces with the articulatory
and the perceptual system, respectively.



Despite the conceptual limitations tied to the strong implications for the se-
quence of specification decisions, pipeline models typically form the baseline sys-
tems in data-driven approaches in Natural Language Processing. Here, a layer
corresponds to some analysis tool trained on annotated corpus data following the
classical levels of linguistic representation. When applied on new input data, the
tools make no strict choice of specification, but assign probability scores to the var-
ious options. In the typical pipeline setup, the highest-scoring prediction is passed
on to the next layer, which may of course occasionally bring asubsequent layer in
the situation where it can no longer make correct predictions – even though it may
locally have strong evidence available.

As has become obvious, the pipeline architecture is not fully adequate to model
situations where two independent linguistic subsystems interact in constraining the
space of possibilities of further specification. An alternative abstract architecture is
the joint model sketched in Figure 4, which does not pre-specify any particular se-
quence of subsequent specification, but posits a simultaneous decision, in principle
allowing for arbitrary global interaction across layers.

COMPREHENSION

Empirical Data: e + c → mj

Model: { ℓ1
1
, ℓ1

2
. . .ℓ1n1

} + c1
f1

−→ ℓ1j1

{ ℓ2
1
, ℓ2

1
. . .ℓ2n2

} + c2
f2

−→ ℓ2j2
...

{ ℓi
1
, ℓi

2
. . .ℓini

} + ci
fi

−→ ℓiji
...

{ ℓk
1
, ℓk

2
. . .ℓknk

} + ck
fk

−→ ℓkjk

Figure 4: The joint model of specification in context

In the joint model, any subprocess of layer-specific specification can (at least
abstractly) be informed by the output of any other subprocess; i.e., effectively the
specification decisions mutually contribute context information for each other.

Of course, any concrete model following this idealized setup has to break up
the circularity in its design. Moreover, complex model architectures can combine
ideas from the pipeline and from the joint model, yielding a vast space of possible
system architectures. This essentially characterizes thearchitectural status quo for
several of the recent research questions in NLP, addressed in section 3.

Let me now come back to the question of representational interfaces. We note
that despite considerable methodological differences, the various approaches tend
to “meet at” common interface representations – mostly the classical levels of lin-
guistic descriptions, such as segmental and prosodic phonological representations,
representations of core aspects of morphological and syntactic structure, and mean-



ing representations of key notions of semantic interpretation.
This representational interfacing has been a key element for many of the suc-

cessful examples of collaborations between linguistics and Natural Language Pro-
cessing, providing hubs both for model combination across layers and for cross-
paradigm comparison (or combination) of models addressingthe same layer with
alternative approaches. However, as research has proceeded to address advanced
implications of modeling decisions, the fields are at a pointwhere one can and
should start lifting some of the simplifying assumptions – such as the assumption
that the interface representations can be carried over without adjustment from one
research paradigm/modeling approach to another. While it is convenient to use an
existing treebank annotation for training a submodule, it is unlikely that the as-
sumptions that informed the original annotation guidelines do actually hold in all
respects for the context in which the trained submodule is currently supposed to be
used.

The set of recently developing research questions (section3) is a sign that a
process of re-thinking the simplifying architectural and representational assump-
tions is happening. By looking at such activities with the coordinate system from
classical linguistic modeling in mind, there is a (maybe somewhat unexpected)
chance to take advantage of lessons learned from theoretical work in linguistics –
or, as I am pointing out in this paper, the ‘spirit of LFG’.

To provide a more concrete illustration of how one should imagine this linguis-
tically informed view on recent data-driven modeling, I will briefly review some
high-level conclusions from the study by Seeker and Kuhn (2013b), which shows
very clearly that it can be crucial to question the justification of particular repre-
sentational decisions even in well-established standard NLP scenarios.

6 Questioning standard representations – an illustration

Data-driven parsing of text from the newspaper domain is oneof the most es-
tablished standard tasks in modern NLP. People have spent two decades on im-
proving the processing pipeline to achieve the best possible results for syntactic
analysis (and in particular contextual disambiguation) ina domain for which siz-
able amounts of hand-labeled training data, so-called treebanks, are available. The
supervised scenario makes it possible for machine learningto exploit clues from
various levels of representation for the disambiguation decision, possibly including
non-linguistic statistical tendencies from the real-world domain – such as the fact
that it is more likely for managers to employ people than for athletes.

Most recent advances in this task have thus been due to techniques that al-
low machine learning methods to capture more and more complex and potentially
subtle constellations of contextual clues for the disambiguation decision. For in-
stance, in statistical dependency parsing, the complexityof exploitable machine
learning features has been subsequently increased to include combinations of two
or three dependency arcs (some relevant contributions wereCarreras (2007); Koo



and Collins (2010); Bohnet and Kuhn (2012)). Training a reranker among the most
promising candidate analyses from an initial parser has been very successful in
constituent parsing (the best known work here is Charniak and Johnson (2005), but
the technique is widely used, and computational work in the LFG framework was
among the first studies to this end (Riezler et al., 2000, 2002)).

Although it is acknowledged that the choice of appropriate linguistic represen-
tations is also important, most researchers assumed that after many years of tuning,
no further improvements could be made by adjusting the representational assump-
tions behind the standard task (which depends on the initialdecisions made in the
original treebanking effort).

For the syntactic parsing task, the ultimate structural disambiguation decision
depends on a constellation of morphosyntactic features (among other things): what
are the inflectional person/number features of a verb, what is the case and number
of a noun, etc.? The German sentence provided in figure 5 belowfor example is in
OSV order, and it is not just selectional preferences of the verb that indicate this
order; the inflectional marking of the initial determiner, in combination with the
noun, makes it a clear accusative, and in addition, there is plural subject agreement
on the verb.

Since the morphological features cannot be read off deterministically from the
surface form (the two nouns in the example, by themselves, are ambiguous be-
tween nominative and accusative), data-driven parsing is typically split up into
several subtasks: part-of-speech tagging, morphologicaltagging and structural de-
pendency parsing. Although in morphological disambiguation, strict grammatical
rule knowledge plays a more decisive role than in syntactic disambiguation (where
it is obvious that data-driven techniques are needed to helpwith certain decisions),
it has been established that training the inflectional disambiguator on the full sen-
tences is important for achieving competitive results. Onemay intuitively imagine
that the system can pick up corpus-specific statistical tendencies in the lineariza-
tion of certain forms, so the morphological disambiguator effectively anticipates
certain syntactic decisions.

Ideally, the syntactic parser should be able to override decision from an earlier
morphological step, but the search space of all possible combinations of inflec-
tional options for the words in a sentence is huge (at least for languages with a rel-
atively rich inflectional morphology that displays syncretism). Even with a fairly
large manually annotated treebank, a parser that is learning to make structural de-
cisions and inflectional decisions jointly, without any side constraints, has too few
indications from the corpus data to pick up some important patterns. Thus, it is
more effective to break up the task in a pipeline of two subsequent decisions. The
occasional errors in the earlier inflectional decisions areoutweighed by the major-
ity of cases where there are enough helpful clues available in the surface string;
the second step, syntactic disambiguation can thus use the available training data
very effectively for making decisions within the inflectionally constrained search
space. Even the idea of allowing the syntactic parser to fallback on the second or
third most likely morphological analysis of a word will typically lead to an overall



decrease in parsing performance (on the standard in-domaintest data).
As the considerations and experiments in Seeker and Kuhn (2013b) show, there

is however one point in the established standard setup for data-driven parsing that
can be improved substantially, and this is where questioning the representations
assumed at the interfaces between subprocedures is highly effective.

As just discussed, training a morphological disambiguatorin the full sentence
context is empirically superior to a purely symbolic approach that will feed the
syntactic parser with all possible morphosyntactic options for each word. Conve-
niently, a syntactic treebank can be used as gold-standard data for this task too:
the treebank annotators used their grammatical knowledge and understanding of
the real-world context to determine exactly the right inflectional feature values for
each word in the string. For instance, each word in the GermanNP das kleine
Auto(“the small car”), when used in a treebank context likethe small car is parked
in a side streetwill receive an unambiguous marking for case, number and gen-
der, although each form is ambiguous in several ways, and even the full NP –
out of context – is ambiguous between nominative and accusative. Of course, the
morphological disambiguator trained on such fully disambiguated data will not be
perfect – it will occasionally make incorrect predictions for a syncretic inflectional
form – but it can nicely exploit the tendencies mentioned above.

There seem to be just two alternatives: either feeding a subsequent syntactic
parser with the word-by-word predictions of the statistically trained morphological
disambiguator, or leaving all but the strictly symbolic decisions to the syntactic
parser. This however ignores what in modern linguistics hasbeen captured by the
notion of underspecification, and cyclically increasing specification as more infor-
mation becomes available: in the space of available analyses for the full sentence
string, the adjectivekleine as part of the NPdas kleine Autocannot be plural –
although the word form certainly can. It is the local phrasalcontext that partially
disambiguates the word forms. However, recognizing the three-word sequence as
an NP still leaves the case feature for each of the three wordsopen: they could be
nominative or accusative (but all of them have to be the same).

The standard architectural scenario for input-output training of (token-based)
machine-learning classifiers does not provide a basis for capturing this middle
ground state of information half-way between the full set interpretation options for
an ambiguous (syncretic) word form and the one contextuallysingled out interpre-
tation. Note that it is not just a question of assigning different weight to potential
interpretation options: a machine-learning classifier canquite well provide a prob-
ability distribution over the potential morphosyntactic feature values in the given
string context. But this still does not capture the interdependencies across words
(mediated through the syntactic structuring decision): ifkleineends up accusative,
Autowill not end up nominative, unless there is some other syntactic structure in
which they do not form an NP.

Of course it is not at all trivial to set up an architecture that is able to cap-
ture these very interdependencies, while at the same time still taking advantage of
the statistical tendencies when predicting the distribution over possible inflectional



values/syntactic structures. But it is possible, using themeta-level framework of
Integer Linear Programming (ILP) for navigating the searchspace of interrelated
options, as Seeker and Kuhn (2013b) show. The present position paper is not the
place to go into the technical details of how this works. The crucial point is that
the frameworks allow a linguistically informed modeller toexpress interrelations
across the choices for the various word-level and sentence-level decisions. The
knowledge that NPs are a structural domain with important implications for the
distribution of inflectional features within the sentence string is thus a priori knowl-
edge that the machine learning system does not have to pick upfrom the available
training data. Moreover, the way in which syncretic forms hold for several cells
in the morphological paradigms for various inflectional classes can be stated ex-
plicitly as a quasi-underspecification of combinations of inflectional features. And
finally, certain aspects of verb subcategorization can be enforced when assembling
the predictions for a verb’s arguments – mainly what corresponds to LFG’s func-
tional uniqueness principle: there cannot be two argumentsthat aresubject.3

Diesen Unterschied sehen die Versuchspersonen
this distinction sehen the experimental.subjects

1. ACC NOM/ACC/DAT NOM /ACC NOM/ACC

2. - - - - - NP - - - - - - - - - - NP - - - - -
3. → ✘

✘✘NOM/ACC/✘✘DAT NOM /ACC NOM/ACC

4. → NOM/✘✘ACC NOM/✘✘ACC

5. OBJECT SUBJECT

Figure 5: Illustration of the intuitive flow of information for disambiguation

The intuitive flow of information is sketched for a locally ambiguous (but glob-
ally unambiguous) German example in Figure 5, ignoring morphosyntactic fea-
tures other than case. Both nouns in the sentence are case ambigous by themselves.
Since the dependency parser considers possible readings with the transitive main
verb, it is clear that there must be two NPs. The NPdiesen Unterschiedis dis-
ambiguated by the demonstrative determiner. Because of functional uniqueness,
this excludes the accusative/object reading fordie Versuchspersonen, although it is
locally ambiguous.

Figure 6 sketches more far-reaching interactions involving different inflectional
paradigms for German adjectives and certain nouns, depending on the choice of
determiner, plus the interaction with subject agreement onthe finite verb. Note that
the final noun has the same form in all instances (Befragte), but this is a syncretic
form that could be nominative/accusative of feminine singular or plural.

In the transition from the second to the third variant of the example, changing
only the wordviele (“many”) to die (the definite article) turns an ambiguous sen-
tence into an unambiguous one, because the article forces the de-adjectival noun

3Any more far-reaching subcategorization constraints tendto be empirically problematic, because
of a fair degree of variation in real corpus data.



Stuttgarts größten Verein erwähnten viele Befragte
Stuttgart’s largest club mentioned (3pl) many interviewees

- - - - - - - OBJECT- - - - - - - - - SUBJECT- - -

Stuttgarts größte Vereine erwähnten viele Befragte
Stuttgart’s largest clubs mentioned (3pl) many interviewees

- - - - - - - - ? - - - - - - - - - - - ? - - - -

Stuttgarts größte Vereine erwähnten die Befragte
Stuttgart’s largest clubs mentioned (3pl) the interviewee

- - - - - - - SUBJECT- - - - - - - - - OBJECT- - -

Stuttgarts größte Vereine erwähnte die Befragte
Stuttgart’s largest clubs mentioned (3sg) the interviewee

- - - - - - - OBJECT- - - - - - - - - SUBJECT- - -

Figure 6: Illustration of subtle interactions between inflectional paradigms, NP-
internal agreement and subject/verb agreement

Befragteto be a feminine singular rather than a plural. To complicatethings some
more, it is not the article indie Befragtealone that enforces this reading. With a
singular subject agreement on the verb, as in the forth variant, the subject/object
interpretation in the complete sentence is flipped, since all word forms in the NPs
are syncretic for nominative/accusative. This illustration should give some intu-
itive indication that a syntactic parser that does not have to rely on some locally
informed morphological prediction may have a real empirical advantage.

Czech German Hungarian
NO-C C PRED-M NO-C C PRED-M NO-C C PRED-M

subject 85.4187.23* 85.46 90.0292.91* 90.59 85.0587.67* 86.53
predicative 87.1390.09* 87.11 72.8680.70* 74.33 74.1678.88* 74.79
obj (nom) 47.4853.19* 38.74 – – – – – –
obj (gen) 70.1572.54 70.27 31.41 42.98 34.26 – – –
obj (dat) 79.99 80.42 79.54 65.2177.78* 71.05 75.3377.92* 73.49
obj (acc) 84.2786.79* 84.12 83.7487.96* 84.86 91.9693.21* 92.53
obj (instr) 67.36 68.76 65.02 – – – – – –
all arg funcs 84.3386.37 84.21 86.27 90.11 87.24 86.87 89.04 87.78
all other 81.37 81.37 81.05 89.79 89.88 89.98 82.73 82.86 83.43

Table 1: Table from Seeker and Kuhn (2013b): Parsing resultsfor the uncon-
strained (NO-C) and the constrained (C) ILP models, and the Bohnet parser with
predicted morphology output (PRED-M) in terms of labeled attachment f-score.

Table 1 shows a summary of the results that Seeker and Kuhn (2013b) report
for the different variants in the combination of data-driven syntactic and morpho-
logical models.4 The datasets considered were standard treebanks for Czech,Ger-

4
∗ marks statistically significant differences when comparing the performance on a grammatical

function for the C model to thePRED-M model.



man and Hungarian (three languages with relevant case marking in NPs). The
ILP-constrained search (system outputC) of the combination of predictions from
the morphological disambiguator and a dependency parser leads to a significant
improvement for the (case-marked) argument functions whencompared with a
parser that does not use the linguistically informed constraints (system outputNO-
C). The constrained combination is also superior to the state-of-the-art Bohnet
parser (Bohnet, 2010), provided with morphological predictions as input to syntac-
tic parser (system outputPRED-M): Note the increase of more than two percentage
points for the argument functions (“all arg funcs”) in Czechand German over the
morphological prediction based parsers (84.21→ 86.37 and 87.24→ 90.11).5 For
the other functions, which are independent of case marking,no decrease of per-
formance is incurred. These overall results are quite remarkable, given that the
baseline systems are very competitive parsers.

To conclude this section, we have seen an example of advancedNLP research
that takes advantage of principled linguistic knowledge about the interaction across
interface representations in the setup of a modeling architecture. Running the best
available machine learning techniques on gold standard input/output pairs alone
does not suffice. For best results, it is crucial to know aboutthe role of intermediate
interfaces and the status of the corresponding representations.

7 Conclusion: Is it the ‘spirit of LFG’ rather than the
spirit of linguistic thinking more generally?

The interactions are subtle and the technical solution is quite involved – but I
think the discussion of Seeker and Kuhn (2013b) in the previous section makes
it clear that even in advanced statistical NLP modeling, targeted, linguistically in-
formed constraining of the search space can have a very noticable effect. Reaching
the same effect in an exclusively data-driven way would be extremely hard, even
when powerful general-purpose machine learning techniques are applied for pick-
ing up the constraints from training data: there is always just a limited amount
of high-quality training data, and if an unconstrained model has to learn that
case/number/gender feature agreement occurs inside of NPs, and person/number
agreement holds between subjects and inflected verbs (but noagreement occurs
in other configurations), the “signal” in the same data cannot be used to induce
other important generalizations.6 In particular, the wide-spread syncretism in the
morphosyntactic feature paradigms tends to blur many of thedata points, so pre-
structuring the space in terms of underspecified abstract representations makes the

5The advantage from the constraints is least pronounced for Hungarian, which has very few cases
of sycretism in its inflectional paradigms.

6One might speculate that some of these configurational hard constraints reflect an aspect of
Universal Grammar, but I do not want to go into this here. Notethat the standard treebank-trained
parser experiments may fail to reflect some bootstrapping scenario which human language learners
are exposed to and whichdoesallow for a more data-driven induction of the relevant constraints.



available data much more informative.
The critical reader will probably think, alright, this shows the importance of lin-

guistic awareness about important interface representations even for heavily data-
driven NLP – but is there really any specific point related to the ‘spirit of LFG’
that can be made? Or in other words, thereare similarities for various LFG levels
of representation and important interface representations in recent NLP work, as
sketched in Figure 1 on page 6 – but these may reflect some rather unsurprising
convergence which any empirical account has to undergo sooner or later, simply to
capture the systematic patterns in the data!? After all, theaffected levels also re-
semble traditional levels from descriptive grammar. So it would seem that similar
parallels as listed in Figure 1 could be drawn for any other grammatical paradigm,
especially constraint-based ones (such as HPSG or CCG) thatshare the conceptual
view of simultaneous interaction across interface representations.

To a certain degree, this reservation is of course justified:if we look just at
the representations at the established “hub” levels of grammatical analysis, and
we ignore differences in the theoretical assumptions and mechanisms that different
approaches assume to relate them to one another, we must expect structural simi-
larities across all approaches at a relatively high level ofabstraction (maybe with
the exception of heavily derivational approaches).

However, I would nevertheless like to make a stronger point,and I think it
is justified to argue that LFGis closer than other established grammatical frame-
works to the emerging picture in NLP research sketched in section 3 and discussed
in more detail in sections 5 and 6. I think there is an explanation for this circum-
stance at the level of sociology of science. Throughout its development, the LFG
framework has been shaped in an interdisciplinary dialogue, involving theoreti-
cal linguists, descriptive linguists and computational linguists (as discussed in sec-
tion 2). This circumstance can have an effect on the characteristics of the canonical
interface representations that are being established: if one particular modeling goal
dominates the design process, principles advocating formal uniformity and theo-
retical simplicity (which are of course important in any systematic approach) will
have a stronger effect than in a multi-disciplinary setup. In the latter case, new uni-
formity assumptions about some level of representations will immediately prompt
a debate if they are not compatible with the various points ofview that the represen-
tation is relevant for. So, empirically grounded applicability of the interfaces ranks
higher than aesthetic/theoretical considerations of cross-level uniformity (and as
a side-effect, a multidisciplinary framework may be somewhat more conservative
and keep up established assumptions). At points in time whenit turns out that
relevant interactions across levels are more complex than previously assumed (like
in the examples discussion in section 3), this has the advantage that new accounts
do not have to work around simplifications that are orthogonal to the issue under
consideration.7

7To give an example, LFG has generally used relatively “flat” collections of features in the f-
structure, whereas HPSG has established sophisticated, hierarchically organized feature structures
bundling groups of features. Using inheritance hierarchies over sorted feature structures, the HPSG



Even if this explanation is not correct, it is a fact that LFG has consciously
adapted an extensible projection architecture of heterogeneous representation
structures. This allows users of the framework to consider alternative paths in
the connection between representational layers. By assumption, all layers are in
parallel correspondence, so there cannot be any non-monotonic effects that would
strictly exclude more indirect cross-level effects (e.g.,c-structure information be-
coming relevant for some decision that is normally made exclusively at f-structure).
Yet, it is considered to be the scientific goal to identify thesystematic, “direct” ef-
fects that are behind the empirical generalizations derived from the data.

And it is this architecture of parallel correspondence across formally heteroge-
neous representation structures represents that I would characterize as the ‘spirit of
LFG’ in the present context. More than most other frameworks, LFG has avoided
superimposing theory-internally motivated meta principles on the modeling ap-
proach and has thus kept an open eye on how empirically observable effects can
help to make a design decision in one way or another. As a consequence, a con-
siderable number of LFG contributions have looked at a network of levels of rep-
resentations (the LFG projections) in an explorative way, trying to find arguments
that help decide what are the most fundamental correspondence relations across
levels, and what are the derived relations. As a matter of fact, with the availabil-
ity of inverse projection functions and functional composition of projections, there
are essentially no effects that cannot be modeled at least indirectly. Examples of
relevant considerations are the questions under what circumstances the inverse of
theφ projection (from c-structure to f-structure) is needed (e.g., Halvorsen and Ka-
plan (1988/1995); Bresnan (1995) and more recently Asudeh (2009)), or whether
some local level of morphological structure is projected from c-structure or from
f-structure (Butt et al., 1996; Frank and Zaenen, 2002). In computational work in
the LFG framework, there have also been discussions of alternative approaches to
the same underlying problem, e.g., disambiguation using symbolic constraint rank-
ing (Frank et al., 2001) vs. data-driven training of discriminative models (Riezler
et al., 2002); for disambiguation, it is a combination of therespective strengths of
approaches that is effectively being applied in the large-scale ParGram grammars.

LFG’s way of not treating any particular architectural assumption as a strict
given opens up the research paradigm to the possibility of what one might call
conditional interface effects, i.e., seemingly incompatible cross-level effects that
could not be explained by a single pipeline sequence of modules.8 As I also ar-

formalism can thus model theories about cross-feature interactions in an aesthetically appealing way,
and more uniformly than LFG. It turns out however that it is extremely difficult, if not impossible, to
establish a single hierarchical structuring of the featuregeometry that is consensus among different
points of view, as is reflected in long debates. In LFG, therepresentationsof linguistic expressions
were tentatively chosen in a way that does not reflect sophisticated theoretical assumptions (these
are rather reflected in the constraints ordescriptionsof the objects, e.g., the mechanism of functional
uncertainty).

8I would say that other constraint-based frameworks have made stronger commitments in terms
of turning one particular assumption into a guiding representational principle – enforcing that other
assumptions will be subordinate to it. (Of course, such statements are always somewhat subjective.)



gued in Kuhn (2007), it is a strength of constraint-based approaches to the theory
of grammar that different systematic effects involving thesame interface represen-
tation may quite well be based on different interface-to-interface correspondence,
without enforcing the prediction that one of them is more fundamental than the
other. Another way of stating this observation is that LFG never assumed a strict
pipeline architecture, according to the classification from section 5 – which is of
course what can be expected from a non-derivational approach, at a technical level,
but the observation is also true at a more abstract conceptual level.

The benefit of being able to use “conditional interfaces effects” in the mod-
eling extends quite naturally from classical symbolic modeling of the interface-
to-interface relations, using some logic language to input-output modeling as it is
done in current machine learning work.9 Hence, the observations made throughout
this paper about more and more cross-level relations (seemingly) deviating from
the step-by-step processing pipeline are not at all surprising from the LFG point of
view of the architecture of grammar and interfaces.

So, in conclusion, as far as I can see, LFG’s architecture of parallel corre-
spondence seems to be closer to the current NLP situation than most other lin-
guistic frameworks. This implies that there may be lessons to be learned from
the LFG experience, and if the ultimate goal is to develop a satisfactory overall
framework that makes sense both to linguists and to NLP researches working in
the current paradigm, LFG’s parallel correspondence architecture may be a good
starting point. Such a framework would also provide the basis for assessing the
implications of important developments in NLP work from a linguistic point of
view, and thus revive the cross-fertilization between linguistics and computational
linguistics.
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