
Glue semantics for Universal
Dependencies

Matthew Gotham
University of Oxford

Dag Trygve Truslew Haug
University of Oslo

Proceedings of the LFG’18 Conference

University of Vienna

Miriam Butt, Tracy Holloway King (Editors)

2018

CSLI Publications

pages 208–226

http://csli-publications.stanford.edu/LFG/2018

Keywords: universal dependencies, glue semantics

Gotham, Matthew, & Haug, Dag Trygve Truslew. 2018. Glue semantics for Uni-
versal Dependencies. In Butt, Miriam, & King, Tracy Holloway (Eds.), Proceed-
ings of the LFG’18 Conference, University of Vienna, 208–226. Stanford, CA:
CSLI Publications.

http://csli-publications.stanford.edu/LFG/2018
http://creativecommons.org/licenses/by/4.0/

Abstract

Universal Dependencies (UD) is a very widely-used standard for cross-
linguistic annotation of syntactic structure. There is, therefore, interest in
deriving semantic representations from UD structures, ideally in a language-
independent way. In this paper we report on an approach to deriving semantic
representations from UD structures that relies on adapting and exploiting
techniques from Glue semantics for LFG.

1 Introduction

In recent years, the Universal Dependencies initiative (de Marneffe et al., 2014) has
established itself as something of a de facto annotation standard for cross-linguistic
annotation of syntactic structure (treebank development) and subsequent statistical
parsing with models trained on those treebanks. However, many downstream tasks
require not dependency parses but rather more elaborate semantic structures that
must be derived from those parses. The challenge in any attempt to derive such
structures is is to do so while retaining the principal advantages of UD, which
means relying as little as possible on language-specific, typically lexical, resources
that are not available for many of the 60 languages for which there are UD tree-
banks.

In this paper we outline an approach to this problem that builds on techniques
developed for LFG + Glue. There are several motivations for this. First, LFG’s
f-structures track the same aspect of syntactic structure as UD dependency trees.
Second, the particular version of dependency grammar that UD embodies has in-
herited much from LFG via the Stanford Dependencies and the PARC dependen-
cies. Third, unlike many other approaches, LFG + Glue does not assume a one-to-
one mapping from syntactic to semantic structures, but instead develops a syntax-
semantics interface that can map a single syntactic structure to several meaning
representations (i.e. the syntax underspecifies the semantics). The latter point be-
comes especially important because UD—for all its LFG inheritance—is a com-
promise between theoretical concerns such as language-specific and typological
adequacy on the one hand, and computational concerns such as efficient annota-
tion and reliable statistical parsing on the other hand. A typical UD tree therefore
contains much less information than the ideal syntactic representations assumed in
theoretical formal semantics.

The paper is organized as follows. In Section 2 we describe some relevant prop-
erties of UD syntactic structures that illustrate the task we set ourselves. In Section
3 we describe the meaning representation language (version of typed lambda cal-
culus) and meaning composition language (fragment of linear logic) that make up

†This work was conducted during the authors’ fellowship at the Oslo Center for Advanced Study
at the Norwegian Academy of Science and Letters. We gratefully acknowledge their support. We
also thank the members of the CAS research group for valuable feedback, and Johan Bos for help
with the Boxer software.

209

the Glue semantics aspect of our proposal. In Section 4 we describe specifically
how we connect that Glue theory to UD trees of the form described in Section 2.
In Section 5 we discuss the strong points and limitations of our proposal, and point
the way to future work.

2 The challenge of UD syntax

In common with other dependency grammar formalisms, UD structures always
form a rooted tree over the tokens of the sentence. This means that every node
corresponds to an overt token of the sentence (the overt token constraint) and has
exactly one mother (the single head constraint), unless it is the root, in which case
it has no mother.1

Both the single-head constraint and the overt token constraint limit the expres-
sivity of the syntactic formalism in a way that impairs meaning construction. We
illustrate this point on the basis of three example sentences that we will keep re-
turning to, (1)–(3). These are chosen to illustrate different challenges faced by our
endeavour and exemplify, respectively, control, VP coordination and a bare relative
clause.

(1) Abrams persuaded the dog to bark.

(2) He laughed and smiled.

(3) The dog they thought we admired barks.

Figure 1 shows the UD annotation of (1).2 The single head constraint makes it
impossible to express that the dog is simultaneously the object of persuaded and
the subject of to bark, and the overt token constraint makes it impossible to in-
sert any other subject for bark, e.g. a PRO that could be coindexed with the dog.
Compare this with the richer f-structure formalism of LFG, where the relevant in-
formation could be captured either through structure sharing (functional control)
or a coindexed PRO (obligatory anaphoric control).

For similar reasons, there is no way to indicate in the UD annotation of (2),
shown in Figure 2, that he is the subject of smiled. Nor is there any way to indicate
the position of the gap in the UD annotation of a relative clause structure without
a relativizer (relative pronoun or complementizer), such as Figure 3, which is the
annotation of (3).

1These constraints do not apply to enhanced UD (http://universaldependencies.org/u/overview/
enhanced-syntax.html), which is also part of the Universal Dependencies initiative. However, we
restrict ourselves to basic (non-enhanced) UD because (i) enhanced dependency annotations are only
available for a very small proportion of the UD treebanks, and (ii) state of the art parsing speed and
accuracy is significantly worse for enhanced UD than for basic UD. As such, as things currently
stand enhanced UD lacks two of the major attractions of UD.

2In these annotations, the first line of text shows the tokens, the second line the lemmas, and
the third line the parts of speech. Other information (for example, features) is included in full UD
annotations.

210

Abrams persuaded the dog to bark .
Abrams persuade the dog to bark .
NOUN VERB DET NOUN ADP VERB PUNCT

ROOT

NSUBJ

PUNCT

OBJ

DET

XCOMP

MARK

Figure 1: The UD annotation of (1)

He laughed and smiled .
he laugh and smile .

PRON VERB CCONJ VERB PUNCT

ROOT

NSUBJ

CONJ

CC

PUNCT

Figure 2: The UD annotation of (2)

The dog they thought we admired barks .
the dog they think we admire bark .

DET NOUN PRON VERB PRON VERB VERB PUNCT

ROOTNSUBJ

PUNCTDET

ACL:RELCL

NSUBJ NSUBJ

CCOMP

Figure 3: The UD annotation of (3)

211

Kim relied on Sandy . Kim left on Tuesday .
Kim rely on Sandy . Kim leave on Tuesday .

PROPN VERB ADP PROPN PUNCT PROPN VERB ADP PROPN PUNCT

ROOT ROOT

NSUBJ NSUBJ

PUNCT PUNCT

CASE CASE

OBL OBL

Figure 4: The UD annotations of (4)–(5)

We should also mention at this point that some UD design choices pose chal-
lenges from the perspective of semantics that are not shared with other dependency
formalisms. For example, the UD annotation guidelines leave no room for an ar-
gument/adjunct distinction: both kinds of dependency can be annotated with the
relation OBL(ique). An example is shown in Figure 4, which gives the UD anno-
tations of (4)–(5). It can be seen that the two annotations have exactly the same
edges and parts of speech, despite the fact that one ‘on phrase’ is an argument of
the main verb, while the other is an adjunct.

(4) Kim relied on Sandy.

(5) Kim left on Tuesday.

We will return to the discussion of (4)–(5) in Section 5.

3 Semantics

3.1 Meaning representation

Our target meaning representations are Discourse Representation Structures, the
format of which is inspired by Boxer (Bos, 2008). The most obvious difference
from the Boxer format is that we do not have separate DRSs for presupposed and
asserted content. Instead, presupposed conditions are marked with the connective
∂, which is the propositional operator that maps TRUE to TRUE and maps FALSE

or # (undefined) to # (we are working in a trivalent semantics). Presupposed dis-
course referents are given as arguments to the predicate ant; basically, this requires
the discourse referent to have an antecedent. The predicates pron.he/they/we are
sugaring for ant combined with the appropriate gender/number presuppositions.

With these considerations in mind, we can give the target DRSs for (1)–(3) in
Figure 5. As in Boxer, we have three sorts for discourse referents: entities (xn),
eventualities (en) and propositions (pn).

How are these DRSs put together compositionally? Conceptually, we are
assuming an updated version of Partial Compositional Discourse Representation
Theory (PCDRT, Haug 2014) in which, for example, the representation of (2) given
in Figure 5 is an abbreviation of (6).

212

x1 x2 e1 p1
named(x1,abrams)
persuade(e1)
agent(e1, x1)
ant(x2)
∂(dog(x2))
theme(e1, x2)
content(e1, p1)

p1 :

e2
bark(e2)
agent(e2, x2)

x1 e1 e2
pron.he(x1)
laugh(e1)
agent(e1, x1)
smile(e2)
agent(e2, x1)

x1 x2 x3 e1 e2 p1
ant(x1)
∂(dog(x1))
pron.they(x2)
pron.we(x3)
bark(e1)
agent(e1, x2)
∂(think(e2))
∂(agent(e2, x2))
∂(content(e2, p1))

p1 :

e3
admire(e3)
experiencer(e3, x3)
theme(e3, x1)

(1) (2) (3)

Figure 5: Target meaning representations for (1)–(3)

(6) λi.λo.∂(i[xi1 ei1 ei2]o) ∧ ant(o)(xi1) ∧ ∂(male(ν(o)(xi1)))
∧ laugh(ν(o)(ei1)) ∧ agent(ei1, xi1) ∧ smile(ei2) ∧ agent(ei2, xi1)

That is to say, (6) represents a relation between states i and o such that o extends i
by a male individual (identical to one already defined in i) and two events, one of
that individual laughing and one of him smiling. Unlike in other approaches, then,
the lexical semantics of the word he introduces a new discourse referent, albeit
one that must be identified with a contextually available discourse referent. This is
shown in (7), which is an abbreviation of (8).

(7) λP.
x1
pron.he(x1)

;P (x1)

(8) λP.λi.λo.∃j.∂(i[xi1]j) ∧ ant(j)(xi1) ∧ ∂(male(ν(j)(xi1))) ∧ P (j)(o)

We assume PCDRT because:

1. It is defined in typed lambda calculus, and hence is straightforwardly com-
patible with Glue.

2. It has a treatment of unresolved anaphora, which is essential for an adequate
meaning representation for many naturally-occurring examples such as are
collected in treebanks.

3. It is representationally similar to standard DRT, allowing for comparison
with computational linguistic resources prepared on the basis of DRT.

213

The assumption of PCDRT is certainly not crucial, however, any theory that meets
conditions 1–3 would serve equally well. In our current implementation we use
the beta reduction software for λ-DRT described by Blackburn & Bos (2006) and
implemented in Boxer (Bos, 2008).

3.2 Meaning composition

On the meaning composition side, we assume a fragment of propositional linear
logic that has (as the only connective and three undefined propositional func-
tion symbols: e, v and t—mnemonic for entities, eventualities (events and states)
and truth values respectively. Following Andrews (2010), we express the fact that
certain expressions can take scope at multiple locations by means of an inside-out
functional uncertainty (over UD structures), and not in the linear logic fragment
itself, which has no quantification. For example, the linear logic type of a quanti-
fier is usually given in higher order glue as (9), where ↑σ is the semantic structure
of the argument position in which the quantifier occurs, and H is any semantic
structure, representing the fact that the quantifier can scope higher than the pred-
icate of which it is an argument. By contrast, in a propositional glue setting, the
quantification is replaced by a standard functional uncertainty as in (10).

(9) ∀H.(↑σ(H) (H

(10) (↑e((%Ht)) (%Ht,GF* ↑= %H

Using propositional glue makes it easier to exploit existing tools for linear logic.
In our lexicon, we will assign interpretations (and accompanying linear logic

formulae) both to nodes and to edges of UD structures. The up and down arrows
then should be read as shown in (11).3

(11)
↓ ↑

node this node this node’s mother
edge this edge’s target this edge’s source

In our descriptions of linear logic formulae used in lexical entries we also make
use of the Kleene star * and local names. One such local name, %R, is special in
that it always picks out the root node in a dependency structure—this is how we
replicate the treatment of proper names given by Kamp & Reyle (1993) insofar
as they always take widest scope and hence remain as accessible antecedents for
pronouns.

3.3 The form of lexical knowledge assumed

As alluded to above, we are attempting to give our semantics for UD in such a way
as to postpone as much as possible the need for language-specific lexical knowl-

3In the actual UD encoding, edges are treated as features of their target nodes, and so the bifur-
cation given in (11) is strictly speaking unnecessary.

214

edge. This means that our lexical entries are underspecified in various respects.
The principle can best be illustrated by way of an example such as (12),4 which is
what ‘admired’ retrieves from the lexicon when instantiated as in Figure 3 (there
will be more on how this works in the Section 4).

(12) λx.λF.

e1
admire(e1)
nsubj(e1, x)

;F (e1) : e↓NSUBJ ((v↓ (t↓) (t↓

The F argument leaves the event variable open for further modification; we will
explain how existential closure happens in Section 4. There are two main points to
note about how (12) is underspecified. Firstly, we are not assuming that we have
subcategorization information available for individual verbs. Consequently, (12)
involves abstraction over one argument of type e just because the node in Figure 3
has one dependent; we don’t have the information that there’s a ‘missing’ object in
that structure. Secondly, we are not assuming that we have thematic information
available either. The thematic relation name nsubj shown in the DRS is lifted from
the label of the arc going from admired to we. In the same way, the name of the
event predicate admire is taken from the lemma of the linguistic token. For many
purposes these underspecified representations will have to be more fully fleshed
out; we will discuss how we anticipate this working in Section 5.

On the other hand, for our approach to produce anything usable we are going
to have to assume some lexical knowledge, specifically that associated with ‘logic
words’ (determiners and conjunctions). For example, the treatment of conjunction
as exemplified in the case of (2) depends on each of the meaning constructors
shown in (13)–(15) below. The meaning constructor in (13) is triggered by a CONJ

edge with a verb target node, while (14) is triggered by a CC edge with a source
node the mother of which is a verb—hence, in principle, these are independent
of specific lexical knowledge. However, the whole analysis still depends on the
meaning constructor given in (15), which is triggered by the lemma and.5 The
precise nature of how this triggering works will be described in Section 4.

(13) λP.λS.λC.λE.C(P (E))(S(C)(E)) : ((v↓ (t↓) (t↓) (
((t↑ (t↑ (t↑) (((v↑ (t↑) (t↑)) (
(t↑ (t↑ (t↑) ((v↑ (t↑) (t↑

(14) λP.λ .P :
((v↑↑ (t↑↑) (t↑↑) ((t↑↑ (t↑↑ (t↑↑) ((v↑↑ (t↑↑) (t↑↑

(15) λp.λq.p; q : t↑↑ (t↑↑ (t↑↑
4To save space and improve readability, we write arguments to the propositional functions as

subscripts rather than in brackets, e.g. we write ‘t↓’ rather than ‘t(↓)’.
5We are directly applying the analysis of coordination given by Asudeh & Crouch (2002), with

CC fulfilling the role of the ‘seed’ conjunct and CONJ fulfilling the role of the non-‘seed’ conjunct(s).

215

Proof
3 // DRS

Multiset
of meaning

constructors +
rewritten

tree

2

77

// . . .

UD tree

1 77

// . . .

Figure 6: The pipeline

4 Our pipeline

4.1 Overview

The overall architecture of our system is shown in Figure 6. As can be seen, we
proceed in three steps. In the first step, the UD tree is simultaneously being (pos-
sibly) enriched and rewritten as a multiset of glue-type meaning constructors in a
non-deterministic manner. This yields a set of pairs 〈T,M〉where T is a (possibly)
enriched tree. One should not read too much into this tree enrichment, however:
As we will see, the tree delivers the correct types for the meaning constructors and
will in many cases show perspicuously which reading the meaning constructors
capture, but it does not otherwise play a role in the further processing. The seman-
tic derivation proceeds as in standard glue semantics, by combining the meaning
constructors in one or more linear logic proofs (step 2) and then getting a mean-
ing term (in our case, a DRS) via the Curry-Howard isomorphism (step 3). As in
standard glue, step 2 is relational (i.e. there can be several different proofs from
a single set of premises) but step 3 is functional (i.e. each proof corresponds to a
single meaning). Steps 2 and 3 are implemented via Miltiadis Kokkonidis’ Instant
Glue linear logic prover6 and Johan Bos’s Boxer (Bos, 2008).

The basic idea behind our approach is to traverse the UD tree depth-first and
create meaning constructors for each node. As meaning constructors are created at
each visited node, the UD tree may be extended non-deterministically; and each of
the extended trees are fed to the algorithm. That is, the function f that creates the
meaning constructors is of type

(16) f :: 〈M,T∗〉 → [〈M,T∗〉]

where M is a multiset of meaning constructors and T∗ is a UD tree with a pointer
to the current node. The function is recursively applied using the bind operator of
the List monad (Haskell’s >>=).

The output of f is governed by a set of hand-written rules for creating meaning
constructors. Each rule has two parts, a criterion, i.e. a tree description that must

6http://users.ox.ac.uk/∼cpgl0036/prover/glue prover.pl

216

left on Tuesday dinner on Tuesday
leave on Tuesday dinner on Tuesday

VERB ADP PROPN NOUN ADP PROPN

CASE CASE

OBL OBL

Figure 7: PP attachment to nouns and verbs

evaluate to true at the current node for the rule to apply, and a meaning constructor
that will be created if the rule applies. Several meaning constructors can be created
from a single node if it maches several criteria. There is a simple control structure
in the rules file: rules are matched in the order that they are listed, and stop rules
with an empty meaning constructor part will stop the algorithm from searching for
more matching rules.

This control structure can be used to encode defaults. For example, in the UD
annotation, prepositions are CASE dependents of what would be their complements
in a phrase structure analysis. For example, as shown in Figure 7, on is a CASE

dependent of Tuesday, rather than the head of a PP with Tuesday as its complement.
Semantically, they denote a relation between their mother and their grandmother
nodes. While the mother is always of type e, the grandmother can be of either type
v or type e, so the type of the preposition is either 〈e, 〈v, t〉〉 or 〈e, 〈e, t〉〉. The
following three rules assign the first type if the grandmother is a verb, otherwise
the second type.

(17) relation = case; ↑↑ pos = VERB ->

λy.λx. :LEMMA:(y, x) : e↑ (v↑↑ (t↓

relation = case; ↑↑ pos = VERB ->

relation = case ->

λy.λy. :LEMMA:(y, x) : e↑ (e↑↑ (t↓

The first rule matches any node whose relation is CASE and whose grandmother is
a verb and assigns the appropriate semantics and type (〈e, 〈v, t〉〉). The second rule
stops further generation of meaning constructors from such nodes, and the final
rule then assigns the default type 〈e, 〈e, t〉〉 to any (other) nodes bearing the CASE

relation.7

Another use of the stop rules is to avoid giving any semantics at all for certain
items. For example, there is a stop rule for elements bearing the PType=Rel

7This was a more or less random choice for our implementation. In a production system, the
choice of default could of course affect performance.

217

feature, which applies before the rule that assigns semantics to pronouns, thereby
ensuring the relative pronouns are treated as gaps with no semantics.

In the next step, the meaning constructors that come from the rules are instan-
tiated. This means that we substitute actual node indices for the ↑ and ↓ metavari-
ables. Furthermore, the function :LEMMA: extracts the lemma from the current
node. For example, if we assume that the nodes in the left example in Figure 7
have indices 1, 2, 3, the meaning constructor produced by the first rule in (17) will
be instantiated as in (18).

(18) λy.λx. on(y, x) : e2 (v1 (t3

Instantiation can be more complex when we are dealing with verbal nodes. The
verb rule looks like (19).

(19) pos = VERB ->

λF.
e

:LEMMA:(e) ;:DEP:(e);F (e) : (v↓ (t↓) (t↓

As mentioned in section 3.3, we do not assume that we have an external valency
lexicon available. Instead, we construct the valency from the syntactic tree. The
function :DEP: extracts the appropriate semantics from the dependents of the verb
according to a separate rule file. For example, if there is an NSUBJ and an OBJ

dependent, the rule in (19) will instantiate as in (20), assuming that the indices of
the subject, verb and object are 1, 2 and 3 respectively and the verb has the lemma
kiss.

(20) λx.λy.λF.
e

kiss(e) ; nsubj(e, x)
obj(e, y)

; F (e) :

e1 (e3 ((v2 (t2) (t2

The F argument here serves as a “handle” for further modification of the event,
without making it possible for such modifiers to scope under the event variable.
We refer to Champollion (2015) for more details. The semantic composition then
ends by saturating F with a property of all events, rather than existential closure
of the event variable itself. The relevant meaning constructor is triggered by the
ROOT relation and is as in (21), where ↓ will be instantiated to the index of the root
verb, in our case 2.

(21) λ . : v↓ (t↓

After the meaning constructors have been instantiated, composition can pro-
ceed as in ordinary Glue Semantics. We show this in more detail in the next sec-
tion.

218

4.2 Worked examples

Let us now see in more detail how we derive the meaning for (1), which has the
UD tree in Figure 1.

The first, and most interesting, step is the creation of a meaning for the root
node persuaded. The relevant rule was given in (19). Instantiation of :DEP: gives
(22).

(22) λP.λy.λx.λF.

e1 x1 p1
persuade(e1)
controldep(e1, x2)
xcomp(e1, p1)
obj(e1, y)
nsubj(e1, x)
p1 : P (x1)(λ .[|])

; F (e1) :

(e↓XCOMP NSUBJ ((v↓XCOMP (t↓XCOMP) (t↓XCOMP) ((e↓NSUBJ) (
(e↓OBJ) ((v↓ (t↓) (t↓

Several noteworthy things happen in (22). First, although we assume no lexical
knowledge at this stage in the derivation, we know that persuade is a control verb,
since it has an XCOMP dependent. But we do not know whether it is a subject or
object control verb. Instead we introduce an individual x1 which bears the relation
CONTROLDEP to the matrix event, and is also fed to the embedded controlled pred-
icate as its subject. Notice that CONTROLDEP is a purely semantic relation which
does not correspond to anything in the syntactic tree. Furthermore, we introduce
a propositional discourse referent p1 for the proposition we get from feeding the
downstairs verb with that subject and closing off the composition (in the way the
ROOT relation would do for the matrix verb). This discourse referent bears the
XCOMP relation to the matrix event.

Next, the meaning constructor in (22) must be instantiated. If we assume that
the nodes in Figure 1 are indexed consecutively from 1, then ↓ instantiates to 2, ↓
NSUBJ to 1, ↓ OBJ to 4 and ↓ XCOMP to 6. But the linear logic type side of (22) also
references the node ↓ XCOMP NSUBJ, which does not exist. When this happens,
the tree is enriched with such a node, yielding the tree in Figure 8. Given this tree,
we can instantiate (22) as (23), where 8 is the index of the newly created node.

(23) persuade: λP.λy.λx.λF.

e1 x1 p1
persuade(e1)
controldep(e1, x2)
xcomp(e1, p1)
obj(e1, y)
nsubj(e1, x)
p1 : P (x1)(λ .[|])

; F (e1) :

(e8 ((v6 (t6) (t6) (e4 (e1 ((v2 (t2) (t2

219

Abrams persuaded the dog to bark . *
Abrams persuade the dog to bark .
NOUN VERB DET NOUN ADP VERB PUNCT

ROOT

NSUBJ

PUNCT

OBJ

DET

XCOMP

MARK

NSUBJ

Figure 8: The enriched UD annotation of (1)

The creation and instantiation of meaning constructors for Abrams, the and dog is
relatively trivial, keeping in mind that we do allow for use of lexical information
about “logic words” such as the. The result is shown in (24).

(24) a. Abrams: λP.
x1
named(x1,abrams) ;P (x1) : (e1 (t2) (t2

b. the: λP.λQ.

x1 p1
ant(x1)
∂(p1)
p1 : P (x1)

;Q(x1) : (e4 (t4) ((e4 (t2) (t2

c. dog: λx. dog(x1)
: e4 (t4

The meaning for the definite article requires some comment. It introduces a dref
x1. P is the restrictor argument, which in the case of a definite description is pre-
supposed. To capture this, we introduce a propositional dref p1 for the proposition
P (x1) and put it in the scope of ∂.

The interesting part comes when we reach bark. The uninstantiated meaning
constructor will be as in (19). And the NSUBJ dependent that was created during
the processing of persuaded will now make sure that :DEP: triggers a dependency
on the subject so that we get (25).

(25) bark: λx.λF.
e

bark(e) ; nsubj(e, x) : e8 ((v6 (t6) (t6)

Once we have the meaning constructors in (23), (24) and (25), we can assemble
them in an ordinary glue proof, as shown in Figure 9. The lambda term corre-
sponding to t2 in that proof beta reduces to (26).

220

JAbramsK :
(e1 (t2) (t2

...
JtheK(JdogK) :

(e4 (t2) (t2

JpersuadeK :
((v6 (t6) (t6) (

e4 (e1 ((v2 (t2) (t2

JbarkK :
(v6 (t6) (t6

JpersuadeK(JbarkK) : e4 (e1 ((v2 (t2) (t2 [u : e4]
1

JpersuadeK(JbarkK)(u) : e1 ((v2 (t2) (t2 [v : e1]
2

JpersuadeK(JbarkK)(u)(v) : (v2 (t2) (t2
JrootK :
v2 (t2

JpersuadeK(JbarkK)(u)(v)(JrootK) : t2
λu.JpersuadeK(JbarkK)(u)(v)(JrootK) : e4 (t2

1

JtheK(JdogK)(λu.JpersuadeK(JbarkK)(u)(v)(JrootK)) : t2
λv.JtheK(JdogK)(λu.JpersuadeK(JbarkK)(u)(v)(JrootK)) : e1 (t2

2

JAbramsK(λv.JtheK(JdogK)(λu.JpersuadeK(JbarkK)(u)(v)(JrootK))) : t2

Figure 9: Linear logic proof for (1)

(26)

x1 x2 x3 e1 p1
named(x1,abrams), ant(x2)
∂(dog(x2)), persuade(e1)
nsubj(e1, x1), obj(e1, x2)
controldep(e1, x3), xcomp(e1, p1)

p1 :

e2
bark(e2)
nsubj(e2, x3)

This, then, is the output we derive for Figure 9. In section 5 we will compare it to
the target representation that we showed in Figure 5.

To illustrate another feature of our algorithm, we will now see how we derive
the correct meaning constructor for bare relative clauses, as in (3), with the UD
tree in Figure 3. The challenge in this case is that there is no indication of where
the gap in the relative clause is. On the other hand, we do know (by virtue of the
ACL:RELCL relation) that there is a gap somewhere. Drawing on the LFG appa-
ratus, we model this using a functional uncertainty. The uninstantiated meaning
constructor triggered by ACL:RELCL is as in (27).

(27) λP.λV.λx.P (x);V (x)(λ .[|]) :
(e↑ (t↑) ((e↓DEP∗ DEP{PType=Rel} ((v↓ (t↓) (t↓) (e↑ (t↑

We see that this takes a predicate and a clause with a gap and turns it into a new
predicate – in other words, it turns the clause with the gap into a modifier of pred-
icates, as we expect for a relative clause. The type of the clause with the gap is
(e↓DEP∗ DEP{PType=Rel} ((v↓ (t↓) (t↓), where (v↓ (t↓) (t↓) is the by
now familiar type of verbs. The gap itself is e↓DEP∗ DEP{PType=Rel}, that is, a type e
resource associated with some downstairs node (at any level of embedding, hence
the Kleene star) bearing the feature PType=Rel. If there is none – as in our case –
that node will be created. Let us assume the new node bears the index 9. Then the
instantiation of (27) will be as in (28).

221

The dog they thought we admired barks . *
the dog they think we admire bark .

DET NOUN PRON VERB PRON VERB VERB PUNCT

ROOTNSUBJ

PUNCTDET

ACL:RELCL

NSUBJ NSUBJ

CCOMP DEP

Figure 10: One enrichment of the UD annotation of (3)

(28) (e2 (t2) ((e9 ((v4 (t4) (t4) (e2 (t2

However, there are many possibilities for situating the new node 9 in the tree, since
all we know is that a path of DEP relations leads down to it from the verb of the
relative clause. In Figure 10 we show the correct enrichment, with the new node
attached under admired, but our system generates all four possible attachments
(i.e. under they, thought and we as well as admired). Of these, the two readings
that attach the gap to a pronoun will fail to produce a correct proof, since there is
no interpretation of a gap under a pronoun. But both the attachment under thought
and admired will produce possible meanings as shown in (29).

(29)

x1 x2 x3 e1 e2 p1
ant(x1)
∂(dog(x1))
pron.they(x2)
pron.we(x3)
bark(e1)
nsubj(e1, x2)
∂(think(e2))
∂(nsubj(e2, x2))
∂(ccomp(e2, p1))

p1 :

e3
admire(e3)
nsubj(e3, x3)
dep(e3, x1)

x1 x2 x3 e1 e2 p1
ant(x1)
∂(dog(x1))
pron.they(x2)
pron.we(x3)
bark(e1)
nsubj(e1, x2)
∂(think(e2))
∂(nsubj(e2, x2))
∂(ccomp(e2, p1))
∂(dep(e2, x1))

p1 :

e3
admire(e3)
nsubj(e3, x3)

The choice between these two readings can in fact only be made once we use
valency information to discard the reading where thought takes a subject, a com-
plement clause and a third nominal argument. We return to this point in the next
section.

Finally, let us have a look at the coordination example (2), with the UD anno-
tation in Figure (2). The uninstantiated meaning constructors were shown in (13)
for the CONJ relation, so ↓= 4 and ↑= 2, (14) for the CC relation (↑= 4, ↓= 3) and

222

(15) for the lemma and (↑= 4). Using these instantiations, we get the meaning
constructors in (30)–(32).

(30) conj: λP.λS.λC.λE.C(P (E))(S(C)(E)) : ((v4 (t4) (t4) (
((t2 (t2 (t2) (((v2 (t2) (t2)) (
(t2 (t2 (t2) ((v2 (t2) (t2

(31) cc: λP.λ .P :
((v2 (t2) (t2) ((t2 (t2 (t2) ((v2 (t2) (t2

(32) and: λp.λq.p ; q : t2 (t2 (t2

In addition we will have the meaning constructors for he-laughed and smiled in
(33) and (34).

(33) he-laughed: λF.
e1 x1
laugh(e1)
nsubj(e1, x1)

;F (e1) : (v2 (t2) (t2

(34) smiled: λF.
e1
smile(e1)

; F (e1) : (v4 (t4) (t4

We see that cc can take he-laughed as its first argument, and conj can take smiled.
Next, cc(he-laughed) fits as the argument of conj(smiled). Finally, we can apply
the result to and, which results in the merger of the two DRSs in (33) and (34),
which gives the end result in (35).

(35)

x1 e1 e2
pron.he(x1)
laugh(e1)
nsubj(e1, x1)
smile(e2)

In effect, what has happened is that, since the UD annotation does not distinguish
between VP and sentence coordination, we are forced to treat everything as sen-
tence coordination. Our representation does not therefore capture the fact that he
is the subject of both verbs.

5 Discussion

Let us take stock at this stage and compare the target meaning representations
shown in Figure 5 with what our system gets us so far, shown in (26), (29) and (35).
While we anticipate that these underspecified representations will be adequate for
many purposes, they are of course lacking plenty of information present in Figure
5. We expect that much of this information can be recovered with some addition
of language-specific lexical information at this late stage.

223

First of all, let us take the θ-role names. As alluded to above, these have sim-
ply been lifted from the respective UD edge labels and as such are uninformative.
With the aid of meaning postulates such as those shown in (36), however, more
informative thematic relations can be inferred.

(36) ∀e∀x((persuade(e) ∧ nsubj(e, x))→ agent(e, x))
∀e∀x((persuade(e) ∧ obj(e, x))→ theme(e, x))
∀e∀p((persuade(e) ∧ xcomp(e, p))→ content(e, p))
∀e∀x((bark(e) ∧ nsubj(e, x))→ agent(e, x))
∀e∀x((laugh(e) ∧ nsubj(e, x))→ agent(e, x))
∀e∀x((think(e) ∧ nsubj(e, x))→ agent(e, x))
∀e∀p((think(e) ∧ ccomp(e, p))→ content(e, p))
∀e∀x((admire(e) ∧ nsubj(e, x))→ experiencer(e, x))

Next, let us look at the control example. As mentioned above, what has happened
in (26) is that the meaning constructor triggered by the token of persuade accom-
panied by an XCOMP dependent has introduced an xcomp relation between the
persuading event e1 and the proposition p1 that there is a barking event e2, and
introduced an individual x3 as the nsubj of e2 and the controldep of e1. To go
further, we need lexical knowledge, specifically the knowledge that persuade is
an object control verb. That knowledge can be encoded in the meaning postulate
shown in (37).

(37) ∀e∀x((persuade(e) ∧ controldep(e, x))→ obj(e, x))

The DRS shown in (38) then follow logically from (26) and the meaning postulates
given in (36)–(37). If we further assume thematic uniqueness, then we can infer
that x2 = x3 in this case and hence derive a representation equivalent to (1) in
Figure 5.

(38)

x1 x2 x3 e1 p1
named(x1,abrams), ant(x2)
∂(dog(x2)), persuade(e1)
agent(e1, x1), theme(e1, x2)
theme(e1, x3), content(e1, p1)

p1 :

e2
bark(e2)
agent(e2, x3)

As for the bare relative clause example, if lexical information is to help in selecting
the right interpretation of the two shown in (29), and then enriching dep to theme
(possibly via obj), the way in which it does so will have to be somewhat less direct
than simple entailments on the basis of meaning postulates. We can write one to
the effect that every event of admiring has a theme (for example), but that won’t
in and of itself guarantee that x1 is that theme, even if we know that it is some

224

dependent. A different kind of lexical information and/or reasoning process will
be needed.

The situation with (2) is similar. We can write a meaning postulate to the effect
that every smiling event has an agent, but to get from there to the inference that x1 is
that agent requires a bit more work. The different meanings of on are also a difficult
case: while rely in (4) clearly subcategorizes for on, which does not contribute any
meaning, it can be hard to reliably guess exactly what meaning of on is present in
non-subcategorized examples, although the presence of the complement Tuesday
is a robust cue for a temporal meaning. In all these cases, it might turn out useful
to use default reasoning captured in a non-monotonic logic.

Ours is not the first work on semantics for UD; in particular, Reddy (2017)
presents a much more developed system. The choice of Glue semantics has certain
advantages and disadvantages in comparison with that system: on the plus side,
with Glue there is no need for the UD trees to be binarized to get composition
off the ground, and we get a flexible approach to scope taking yielding different
readings that aren’t derivable in a more rigid approach. However, that flexibility
comes at a cost: practically it quicky becomes costly to compute lots of uninterest-
ing scope differences, and in terms of design it can be hard to exclude non-existant
readings.

In summary, the work described in this paper constitutes a proof of concept
tested on carefully crafted examples, where we have applied LFG techniques (func-
tional uncertainties) to enrich underspecified UD syntax, and applied Glue seman-
tics to dependency structures. We have achieved some encouraging results, how-
ever we are very far from something practically useful: while we have basic cov-
erage of the UD relations (though not yet VOCATIVE, DISLOCATED, CLF, LIST,
PARATAXIS, ORPHAN), there has not yet been much work on interactions, special
constructions or real data noise. These, and the limitations we have identified,
provide plenty of opportunity for further work in this framework.

References

Andrews, Avery D. 2010. Propositional glue and the projection architecture of
LFG. Linguistics and Philosophy 33(3). 141–170.

Asudeh, Ash & Richard Crouch. 2002. Coordination and parallelism in Glue se-
mantics. In Miriam Butt & Tracy Holloway King (eds.), Proceedings of the
LFG02 conference, 19–39. Stanford, CA: CSLI Publications.

Blackburn, Patrick & Johan Bos. 2006. Working with Discourse Representa-
tion Theory. Unpublished book draft. http://www.let.rug.nl/bos/comsem/book2.
html.

Bos, Johan. 2008. Wide-coverage semantic analysis with Boxer. In Proceedings
of the 2008 conference on semantics in text processing STEP ’08, 277–286.

225

Stroudsburg, PA, USA: Association for Computational Linguistics. http://dl.
acm.org/citation.cfm?id=1626481.1626503.

Champollion, Lucas. 2015. The interaction of compositional semantics and event
semantics. Linguistics and Philosophy 38(1). 31–66. doi:10.1007/s10988-014-
9162-8. https://doi.org/10.1007/s10988-014-9162-8.

Haug, Dag Trygve Truslew. 2014. Partial dynamic semantics for anaphora. Journal
of Semantics 31. 457–511.

Kamp, Hans & Uwe Reyle. 1993. From discourse to logic (Studies in Linguistics
and Philosophy 42). Dordrecht: Kluwer.

de Marneffe, Marie-Catherine, Timothy Dozat, Natalia Silveira, Katri Haverinen,
Filip Ginter, Joakim Nivre & Christopher D. Manning. 2014. Universal Stan-
ford dependencies: A cross-linguistic typology. In LREC, Reykjavik, Iceland:
ELRA.

Reddy, Siva. 2017. Syntax-mediated semantic parsing: University of Edinburgh
dissertation.

226

