The Glue Semantics Workbench: A
modular toolkit for exploring Linear
Logic and Glue Semantics

Moritz MeBmer Mark-Matthias Zymla

Across Systems GmbH University of Konstanz

Proceedings of the LFG’18 Conference

University of Vienna
Miriam Butt, Tracy Holloway King (Editors)
2018
CSLI Publications
pages 268-282

http://csli—-publications.stanford.edu/LFG/2018

Keywords: Glue semantics, linear logic, implementation, Java, workbench

MeBmer, Moritz, & Zymla, Mark-Matthias. 2018. The Glue Semantics Work-
bench: A modular toolkit for exploring Linear Logic and Glue Semantics. In Butt,
Miriam, & King, Tracy Holloway (Eds.), Proceedings of the LFG’18 Conference,
University of Vienna, 268-282. Stanford, CA: CSLI Publications.

http://csli-publications.stanford.edu/LFG/2018
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper we present an easy to use, modular Glue semantic prover
building on the work by Crouch & van Genabith (2000) and implemented
in Java. We take inspiration from a Glue semantics parser written in Pro-
log as well as other existing tools such as the NLTK Glue semantics system.
The architecture of our semantic parser allows us to explore the computa-
tional viability of linear logic as a mechanism for modeling compositional
semantics within LFG. Furthermore, it allows researchers interested in linear
logic (for computational linguistics) to research its usefulness, when applied
to different syntactic models and various formal semantic frameworks. The
goal of this resource is to provide an accessible entry point for both beginners
and adepts in computational semantics. It thus also has prospective uses as a
teaching tool for computational semantics and linear logic.

1 Introduction

In this paper we present an easy to use, modular Glue semantic prover and parser
called Glue semantics workbench building on the work by Crouch & van Genabith
(2000).! Thereby, we revive a Glue semantics parser written in Prolog, since this
first implementation is not readily accessible anymore, due to the commercializa-
tion of the programming language.> Our goal is to translate the system into a more
modern implementation within the Java programming language.

Glue semantics is the formalism of choice for formal semantics within the
LFG framework (Dalrymple, 2001), but has since attracted interest from different
venues, e.g. Asudeh & Crouch (2002); Gotham (2018); Garrette & Klein (2009);
Gotham & Haug (to appear). The composition process in this framework is based
on linear logic which guides semantic composition comparable to types in Mon-
tague semantics (Montague, 1970). Linear logic lends itself well to modelling
compositionality due to its resource-sensitivity (Dalrymple, 2001).

The Glue prover presented in this paper is a rejuvenation of existing theoretical
and practical approaches to modeling Glue semantics. More specifically, the sys-

TWe thank the participants of the 2018 LFG conference for valuable feedback. Many thanks also
for the very helpful comments by the internal and external reviewers. We are particularly grateful to
Richard Crouch and Valeria de Paiva for their support in developing the Glue semantics workbench.
Furthermore, we thank the researchers at the CSLI, Stanford for their assistance.

'The Glue semantics workbench is publicly available on https:/github.com/mmessmer/
GlueSemWorkbench. It is free software and distributed under the conditions of the GNU General
Public License.

The Prolog Glue prover has been designed as part of the Xerox Linguistic Environment (XLE).
In its older iterations, this system relied on SICStus Prolog, a commercial strain of the Prolog family
of programming languages. More recent iterations of XLE do not rely on SICStus Prolog anymore,
however, this is at the cost of certain features of XLE, in particular the transfer system (Crouch et al.,
2017) and other systems that rely on a Prolog interface, such as AKR semantics (Bobrow et al., 2007)
and the mentioned Prolog Glue prover.

269

tem is based on a chart parser devised by Hepple (1996). The main element taken
from Hepple’s work is the compilation process, which is used to deconstruct Glue
premises from higher-order premises into first-order premises. This simplifies the
combinatory process of Glue semantic resources. The Glue prover has been fur-
ther refined with ideas from Gupta & Lamping (1998) that improve efficiency by
reducing unnecessary steps in the computation.

Employing these two strategies allows us to present a reasonably efficient algo-
rithm for conducting Glue semantics computations. The modularity of our seman-
tic parser not only allows us to continue the exploration of the computational via-
bility of linear logic as a mechanism for modeling compositional semantics within
LFG but it also allows us to explore the interoperability of linear logic with re-
spect to other syntactic theories as well as different semantic formalisms. For this
purpose, we illustrate the use of the Glue prover in interaction with both LFG and
UD (universal dependency) grammars on the syntactic side and its interaction with
Montague-style lambda calculus on the semantic side. To this end, we have im-
plemented a light-weight Montague-style semantics that can be combined with the
linear logic prover; however, other semantic formalisms can also be plugged-in
without the need to change the overall system.

The paper is structured as follows: In Section 2 we briefly introduce the for-
malities of linear logic and how it can be used in the domain of compositional
semantics. Readers who are familiar with the subject and are interested in the
concrete implementation may jump directly to Section 3. The architecture of the
system is described in Section 4, which involves the assembly of the linear logic
prover with syntactic parsers and formal semantic models. This is of particular in-
terest for readers who intend to work with the Glue semantics workbench. Section
5 concludes.

2 Glue Semantics

Glue semantics is a framework that continues to attract interest not only in the
LFG community. Its elegance in terms of aligning the structure of logic proofs
with the structure of semantic meaning compositions through the Curry-Howard-
Isomorphism has motivated researchers to adapt it for other frameworks such as
HPSG (Asudeh & Crouch, 2002), LTAG (Frank & van Genabith, 2001) and Min-
imalism (Gotham, 2015, 2018). Instead of relying on rules that map the syntactic
structure to semantic composition rules, Glue semantics uses a fragment of linear
logic to constrain the composition of meaning representations.

In this scenario, a semantic representation is a pair consisting of a linear logic
side and a meaning side (in this paper: Montague-style lambda calculus). Thereby,
the logic side constrains the possible combination of semantic elements. L.e. the
linear logic side of a lexical entry constrains the compositional possibilities of its

270

meaning side. This is reflected in the Curry-Howard-Isomorphism. The isomor-
phism describes the correspondence between natural deduction proofs, i.e. the
logic side, and computational models like lambda calculus, i.e. the meaning side.
It is the foundation for the pairing of logics used in the Glue approach. More
concretely, the Curry-Howard-Isomorphism states that lambda abstraction on the
meaning side corresponds to —o introduction and functional application corre-
sponds to —o elimination. This is illustrated in the following figure. On the left
side, it is shown how the introduction of a linear implication affects the meaning
side: A lambda function is generated. On the right side, the correspondence be-
tween a functional application and the combination of a linear implication with its
corresponding resource is depicted. Due to this system, Glue semantics formu-
las can be composed and decomposed on the logic side and the meaning side in
concord.

[CU:.A]i f:A—B a:A
. f(a): B

f(xj:B
Ax.f(x): A— B

I

Figure 1: Implication introduction and elimination

In Glue semantics proofs, the —o g rule is applied when combining two meaning
constructors, while the —o; rule is used for introducing assumptions. In linear logic
proofs, assumptions are a deduction tool for deriving a proof whose premises are
not immediately compatible. For a proof to be valid, all assumptions that have been
made during the deduction have to be reintroduced via implication introduction.
This follows from the general principle of linear logic, which states that a valid
proof needs to consume all available resources. In other words, assumptions are
simply treated as additional resources that emerge during the computation.

(D John j:g¢g
Mary m:h
loves Az.\y.loves(x,y) : g —o (h —o f)

Az A\y.loves(x,y) : g — (h —o f) jig

Ay.loves(j,y) : h — f m:h

loves(j,m) : f
Figure 2: Derivation of John loves Mary.

The propositional implicational fragment of linear logic paired with lambda-
calculus is already capable of deriving simple meaning structures as shown in Fig-
ure 2. However, as soon as scope-taking expressions enter the stage and potentially

271

[PRED ‘kiss<SUBJ,OBJ>’

SPEC [PRED ‘every’}
SUB] m
f PRED ‘man’
SPEC [PRED ‘a’}
PRED ‘woman’

OB] w

Figure 3: F-structure of Every man loves a woman.

introduce ambiguities, this fragment of linear logic does not suffice anymore. A
quantifier expression can take different constituents as its scope, therefore the la-
bels on the linear logic side cannot be fixed to constants. Instead, the scope of a
quantifier is encoded with linear logic variables. These variables are introduced by
a universal quantifier which binds a variable that is instantiated to a linear logic
constant in the derivation process. Consequently, we move from a propositional
linear logic fragment to a higher-order predicate logic fragment of linear logic in-
volving universal quantification over f-structure labels.> Consider the following
sentence and its f-structure.

2) Every man kisses a woman.

) SPEC |PRED ‘every’] VAR ”H
m My

PRED ‘man’ RESTR rH

4) every: [((SPEC 1), VAR) —o ((SPEC 1), RESTR)]
—o VX.[((SPEC 1), — X) —o X]
man: (T, VAR) —o (1, RESTR)

(4) shows the Glue side of the meaning constructor of the quantifying expres-
sion every. The scope part of the quantifier universally quantifies over variables of
type ¢. This can be seen as a quantifier which expresses that any f-structure can be
inserted as the scope of every. Deriving the two scope constellations now requires
us to restructure the proof with the tools of natural deduction: eliminating implica-
tions by combining resources and introducing implications by making (temporary)
assumptions.

Given the following meaning constructors with instantiated labels, we can make
two logically equivalent derivations, which result in two different readings. For
reasons of brevity, the quantified NPs are already combined with their restrictors.

3This is a fairly standard system in the Glue literature. However, it has been argued that a first-
order linear logic fragment is sufficient to model natural language semantics. For discussion on this
topic, see Kokkonidis (2008). Thanks to the external reviewer for bringing this to our attention.

272

every man APVx[man(x) — P(x)] : (ms — fo) — fo
awoman \Q.Jy[woman(y) A Q(y)] : (ws—o f5) —o fo
Kkiss AxAykiss(x,y) @ mg —o (wy —o f5)

In their original form given by the lexical entries, the quantifiers cannot com-
bine with the verb. One (surface scope) or both (inverse scope) lambda slots of
the verb have to be temporally saturated with assumptions. Assumptions need to
be reintroduced into the computation later in the proof in accordance with Figure
1. As shown in Figure 4a and 4b, the assumed resources are marked with square
brackets and indices. They introduce a temporary unbound variable that is bound
later via lambda abstraction when the linear implication is reintroduced via —o in-
troduction.

The Glue semantics fragment introduced above is the foundation for the Glue
semantics workbench. In the next section we show how this system is translated
into a computationally viable Glue semantics parser.

3 The linear logic prover algorithm

While this system of using assumptions in the deduction process to temporarily sat-
urate lambda binders on the meaning side is very elegant for dealing with scope am-
biguities since it is independent of syntactic assumptions about the phenomenon,
it is a very complex system for any automatic proving algorithm. In practice, even
the implicational fragment of linear logic used here is NP-complete and may be
computationally intractable once the formulas reach a certain complexity. An al-
gorithm to circumvent some of the computational complexity was proposed by
Hepple (1996) and is used for our proving algorithm as well. Additionally, our
proving algorithm uses a system, based on Gupta & Lamping (1998), that distin-
guishes between symmetric modifier resources and asymmetric skeleton resources
to further increase its efficiency. The algorithm is based on three principles to trans-
form linear logic proofs into computationally tractable algorithms: (I) indexation
of premises (II) compilation of nested implications (III) separation of modifier-type
premises. In the following, the three principles will be explained and the algorithm
for calculating proofs is outlined.

3.1 Basic first-order chart prover

As has been pointed out by Crouch & van Genabith (2000), Glue semantics
strongly resembles categorial grammar systems and a Glue semantics proof re-
sembles the principles of syntactic chart parsing techniques. In both systems indi-
vidual items (premises in linear logic and words or constituents for chart parsers)
are taken from the agenda and combined to obtain intermediate results which in
turn are combined again until the agenda is empty. The proving system by Hepple
(1996) makes use of this resemblance by adapting the chart parsing technique for
linear logic proofs in the form of indexation. The Glue premises are each assigned
a set of indices in Hepple’s prover algorithm. Initial premises are added to an

273

Ho—

ann ur Aymsiquie eynueng) 4 9In3I

2doos as1oAul uputom v sassy uvui L1247 :Jooid anio (q)

of t[[(fi‘x)ssry <« (z)uew]zp \/ (fi)uewom]Aig

of o— (of o— 2m) 1 [(A)® v (A)uewom]AE ¢y °f o— °m : [(fi‘z)ssy « (T)uew]zp fiy

T To—

°of 1 [(X‘x)ssTy « (x)uewr|xA

Ho—
of o— 2w : (£ ‘w)ssoy iy of o— (°f o— 2w) : [(2)g + (T)uew]zA' Y
T'To—
of (X X)ssmy
Ho—
em e &] of o— om : (fi‘x)ssoyfiy
Ho—
(°f o— 2m) o— 2w : (fi‘x)ssoy iy zy Pw s x]

9doos ooeyIns uvwom v sassiy uvw L1247 :yooid an[o) (e)

of t[[(fifx)ssny v (fi)uewom]fig < (x)uew]zp

o

of o— 2w [(A‘x)ssy Vv (A)uewiom])Ag oy °f o— (°f o— 2w : [(2)d <« (T)uew]zA JY

TTo—

of 1[(Ax)ssty Vv (fi)uewom]fig

of o= (°f o= 2m) 1 [(A)O v (f)uewom]ip-BY °f o— om : (fi‘x)ssuy fix

Ho—

(°f o— °m) o— 2w : (fi‘x)ssy iy Ty Pw s]

274

agenda and each is assigned a single index. For each combination of two premises,
the index sets of the two premises are also combined and the joined index set is as-
signed to the newly created premise. If a premise A : [0], for example, is combined
with a premise A — B : [1] then the newly created premise is B : [0, 1]. In order
to ensure that each possible combination is checked, the algorithm works with an
agenda, containing all “fresh” premises and a database containing all the premises
which have already been taken from the agenda. For each premise taken off the
agenda, the algorithm checks combinatory possibilities with all premises in the
database. If the current premise combines with one from the database, the newly
created premise is also added to the agenda. After all checks have been made, the
current premise is moved from the agenda to the database and the algorithm pro-
ceeds with the next premise from the agenda. Unnecessary or invalid steps in the
computation can thus be avoided by requiring that when combining two premises,
their index sets must be disjoint.

3.2 Compilation of higher-order premises

As mentioned above, this simple chart prover algorithm reaches its limits as soon
as the proof contains higher-order premises. For our algorithm, higher-order linear
logic formulas are nested implications where the antecedent is itself an implica-
tion.* In a natural deduction-style proof, these formulas require making assump-
tions and discharging them at some points of the proof. It would take an algorithm
a great deal of computational effort to determine when it is necessary to make
an assumption and when to discharge it. Therefore Hepple’s prover implements
a computationally feasible solution to that problem: every higher-order premise
is compiled by separating its antecedent as an additional premise and adding it
to the agenda, marked as an assumption.> The premise from which the auxiliary
premise is taken is marked with a dependency on the respective auxiliary premise.
This step is repeated until only first-order premises are left. In the notation of our
proving algorithm, auxiliary premises are marked with {} and their dependencies
(discharges) are marked on the original premise with []°. More concretely, these
references are implemented in our code such that each premise has two lists asso-
ciated with it, one for assumptions and one for discharges.

) (a - b) —o ¢ [0] = compile b[a] —o c[0];

“Note that this does not correspond to higher-order linear predicate logic formulas as discussed
in the previous section.

In Hepple (1996) the term assumption is used to describe these auxiliary premises. In this
paper, both of these terms refer specifically to premises that have been generated via the compilation
process; i.e. premises that have been cut off from a higher-order premise.

%In the original algorithm by Hepple, references to auxiliar premises are made via their indices.
The premise from which an assumption is compiled out will from now on be called the assumption’s
host premise. For our system we decided to add references to the Glue resources themselves, as that
makes the proofs more readable and is easily implemented due to Java’s object-oriented program-
ming paradigm.

275

{a} [1]

By adding a reference to the extracted assumption to its host premise, the
algorithm prevents invalid proofs where the assumption might be used, without
later discharging it. This restriction is achieved by adding two rules to the proving
algorithms. First, a premise P containing a set of discharges 6 may only combine
with a premise whose list of assumptions « is a subset of . In that case, all
matching assumption and discharge pairs are removed from the newly created
premise. Second, if two premises contain (or are themselves) assumptions, their
lists of assumptions are joined. With these modifications, a proof is now only valid
if the resulting premise, besides containing all initial indices, does not have any
assumptions or discharges associated with it.

b{a}[L,2] bla] — C[3]

© 1,23

So far, only the linear logic side has been dealt with, but of course the semantic
side of a premise is affected by the compilation process as well. As mentioned
before, operations on linear logic proofs and operations on lambda-expressions
on the semantic side of premises are aligned via the Curry-Howard isomorphism.
Implication elimination on the Glue side of a premise can therefore be seen as a
functional application operation on the semantic side, while implication introduc-
tion amounts to functional abstraction. This becomes relevant when proofs contain
assumptions. Auxiliary premises that are introduced into a Glue semantics proof
carry unbound variables on the semantic side. When an assumption is combined
with another premise, this variable is then inserted into the semantic representation
of that other premise via functional application. Later in the proof, when the as-
sumption is discharged, the assumption variable is bound by a lambda term again.

This elegant system of temporarily saturating A-slots in semantic computation
is one of the reasons why Glue semantics interests formal semanticists. It allows
a system of formally resolving ambiguities without having to rely on additional
abstract systems such as a logical form or Cooper-storage (Cooper, 1983). The se-
mantic aspect of Glue proofs is covered by Hepple (1996) as well. In his algorithm,
auxiliary premises created in the compilation process carry temporary variables as
well, but the re-binding of the variables is done via an additional lambda binder
that is functionally applied to the semantic representation of the host premise. As
soon as the premise containing the unbound assumption variable combines with its
host the lambda term binds the variable. The lambda term binding the variable can
then be applied to the original meaning representation. In regular lambda calculus
such an “accidental” binding an unbound variable by adding a lambda binder is
not a legal operation. However, Hepple’s algorithm uses this operation in a delib-
erate and controlled manner. By using different variables for each newly created
formula during the compilation process, the algorithm therefore ensures that free
variables are accidentally bound by the wrong lambda binder. In our prover algo-

276

rithm the creation of new variables is handled centrally for all formulas in a proof.
This allows full control of which variables are used and inserted into formulas. The

compilation of glue formulas with semantic representations is illustrated in Figure
5.

g1 —o f: Ay.sleep(y) {g2}:v
Hlgz] — H : Au.AP.Vx[person(x) A P(x)](Av.u) f{gz2} : sleep(v)
[+ AP.V¥x[person(x) A P(x)](Av.sleep(v))
[¥x[person(x) A sleep(x)]

(7

[H/t]

(B-conversion
Figure 5: Every person sleeps. — Hepple style

3.3 Treating modifier premises

While this algorithm is already capable of handling linear logic formula of the
implicational fragment, it is still rather inefficient if a proof contains modifier-type
premises. Modifiers as defined by Gupta & Lamping (1998) are premises whose
linear logic side has a certain pattern. This pattern can be seen if occurrences of
linear logic atoms, or in the case of Glue semantics, type labels, are assigned a
polarity depending on whether they occur in the antecedent or the consequent of a
linear implication: the consequent has the same polarity as the whole implication
and the antecedent has the opposite polarity. Assuming that linear logic formulas
as a whole always have positive polarity, the polarity of each atom can thus be
assigned:

® ((f+ —9-)- = (f- —g4)+)+
@ (o4 —r_)- = ((g4 = X_)- = X1)1)4

The formula in (8) is considered to be a modifier type because all positive occur-
rences of Glue labels are matched up with negative occurrences. In Glue seman-
tics, lexical entries for adjuncts are usually modifier types because they modify
the meaning of an f-structure node without altering its type. Other lexical entries
are mostly purely skeleton-type because they only consist of singular positive or
negative occurrences of each label.

There are some cases where skeleton and modifier-type occurrences are mixed
inside a formula. Quantifiers, like the one in (9), for example, are mostly skeleton-
types except for the matching positive and negative occurrence of the Glue variable
(X in the example above) which denotes the scope. These mixed-type quantifiers
are also compiled. In general, all premises that are not pure modifiers are com-
piled until they are either pure skeletons or have the form a — M, where a is an
atomic type and M is a pure modifier type. The latter sort of premise is treated like
a skeleton during the deduction process (until the atomic antecedent is consumed
and the premise becomes a pure modifier). Such cases occur for certain kinds of
modifiers. One such example would be recursive modification as described in Dal-
rymple (2001). In order to obtain the correct meaning for the phrase apparently

277

Swedish man, Dalrymple (2001) proposes an internally structured meaning of ad-
jectival and adverbial modifiers. This in principle means that the meaning of these
modifies is deconstructed into two separate modifiers. One constructor contributes
the lexical information of the respective modifier and the second constructor con-
tributes the structure for semantic composition, i.e. it guarantees that apparently
modifies the complete noun phrase swedish man and not just man. This leads to
the following lexical entries:

Swedish1 Az, Swedish(x) (gv — go)
Swedish2 AQAP.Az.Q(x) A P(x) (gv —o go) — ((v—o 1) —0 (v —o 1))
apparentlyl AP, apparently(P) : (hy —o ho)
apparently2 AQ.AR.\z.Q(R(z)) : (hv =0 ho) — ((gv — go) —° (9v —° go))
man Ay.man(y) t(v—or)
ap. sw. man \z.apparently(swedish(z) A (v—r)

man(x))

In the above case the meaning constructors of Swedish2 and apparently2 would
each be compiled once, so they have the appropriate form. The adjective Swedishl
may then combine either directly with Swedish2 so it can be applied to the noun;
or it may first combine with the two lexical entries for apparently to yield the fully
modified phrase. The former combination would be possible and one of the partial
solutions, but not a valid one, as it does not contain all initial premises. Only the
second option would be recognized as a valid solution by the prover.

4 Structure of the workbench

This section presents the overall structure of the system. Thereby, we want to give
the reader a brief overview of the packages and how they are organized to allow
for extension with one’s own work.

When implementing this program, the intention was not only to provide an
easily-accessible Glue prover, but also to create a tool that is interesting for formal
linguists, especially formal semanticists and those working at the syntax-semantics
interface, and also for users who are interested in NLP applications. In order to
make the workbench extendable for any of these purposes, the code was modular-
izedFigure 6 shows the structure of the program, with arrows indicating the flow of
data. Blue boxes represent packages and green boxes represent Java classes. The
prover itself, as the core component of the workbench, has its own module. It takes
a list of lexical entries as input and then searches for all valid solutions using the
algorithm outlined above. The deduction process, as well as all valid solutions are
printed and displayed to the user. Input for the prover module can be generated in
two ways: by directly entering all lexical entries or by using an interface to XLE
or to the Stanford CoreNLP dependency parser (Manning et al., 2014).”

7 As of the publication of this paper, there exists no interface with non-Java libraries in the work-
bench. This means that the dependency structure is generated at run-time upon entering a sentence
since it can use the Stanford CoreNLP Java library. On the other hand, XLE parses still need to be
generated externally. We hope to integrate this functionality for future iterations of the workbench.

278

parser

Input:

constructors - -
LinearLogicParser

linearLogic

g
1.5
I

Qutput:
glue derivation

lexicon — lambda

Input:
f-structure Ifg
files

Input:
raw dependency
sentences

Figure 6: Module diagram

The Workbench also has a built-in parsing system by using the programming
interface of the Stanford CoreNLP tools to create dependency structures. This
allows users to parse single sentences and create the appropriate lexical entries
from a small toy lexicon. This is discussed in more detail in section 4.1.

Either way, the user input is converted to a list of premises as input for the
prover. The components for parsing lexical entries directly are situated inside the
parser module, while the LFG and dependency structure input is handled in sep-
arate packages inside the synlnterface module. All Java resources that are related
to linear logic and the underlying proof system are part of the linearLogic module.
Classes used for representing semantic formalisms can be found inside the seman-
tics module. It contains an implementation of Montague-style lambda calculus that
is used as a default semantic framework for the prover. In the /lexicon module all
classes for creating lexical entries from syntactically parsed input can be found.
The distribution of the workbench contains a toy lexicon, but it can be extended, or
even completely replaced, as desired by the user. In the remainder of this section,
the two methods of providing input for the prover will be outlined.

4.1 Generating lexical entries

The systems for creating lexical entries are very similar for LFG and dependency
structures. therefore only the generation of lexical entries based on LFG structures
will be described here. The f-structure parser in the syninterface module reads
f-structure files in Prolog syntax and generates lexical entries from the syntactic
information extracted from the input file. The XLE interface is thus compatible
with stand-alone XLE distributions and also with Prolog output generated by the

279

INESS XLE-Web service (Rosén et al., 2012). It also has a small toy lexicon inte-
grated that can be extended and modified. In the original release of the Workbench,
it contains classes for verbs (intransitive, transitive and ditransitive), common and
proper nouns, determiners (including quantifiers) and adjectival modifiers.

Both syntactic frameworks access the lexicon module for generating lexical
entries. In this module, the information given by the syntactic analysis is used to
generate a semantic representation for the semantic side and a linear logic formula
for the Glue side of the lexical entry. These lexical entries are then converted into
premises that can be used by the prover. The generation of lexical entry objects
from the input data follows the same principle in both systems. First, the root
predicate and its arguments are determined. The arguments are resolved first so the
appropriate template for the verb can be chosen, based on the subcategorization
frame. The head of an argument f-structure is resolved first and afterwards its
subordinate items, such as modifiers and determiners. Such dependents of an f-
structure head include structural information about their head in their Glue meaning
constructors.

(10) PRED 'man’
ADJ { [PRED ’swedish’} }

(1) man Az.man(x):v —or
Swedish AP.\y.Swedish(y) A P(y): (v— 1) —o (v —o7T)

Consider the lexical entries for the NP ’Swedish man’ in (11) (Dalrymple, 2001).
The adjectival modifier *’Swedish’ is part of the f-structure of the NP and therefore
uses the same Glue labels as its head. The noun itself has the semantic type <
e,t > and as the adjective modifies this meaning, its type is << e, t >, < e, t >>.
These semantic types are reflected in the Glue labels. The lexical resource we
provide uses a top-down algorithm for generating meaning constructors. In the
example above, ((10)), this would be the constructor for man. The modifier swedish
which is subordinated from an f-structure perspective can thus access the relevant
Glue elements which have been generated for the governing structure. Thus, in
((11)) the entries share the Glue constants v and r. In other words, the head of
each dependent is always resolved first and therefore the necessary information of
a given (partial) f-structure can be passed down to its modifiers. In the toy lexicon
that is provided with the Glue Workbench modifiers only take the Glue labels of
their heads as arguments, but as all lexical and functional information of the parent
f-structures is available during the instantiation of the lexical entry for the modifier,
other restrictions, such as semantic types could be passed as well.

4.2 Parsing Glue premises

As Glue semantics is a framework with growing interest from different semantic
and syntactic backgrounds, the Workbench tries to honor that diversity by provid-

280

ing the possibility of directly entering and parsing Glue meaning constructors that
can then be fed into the Glue prover. The “native” system of the Workbench is
a Montague-style lambda calculus, but it is possible to use other semantic frame-
works, such as DRT. However, by default, the compilation algorithm employed by
the prover uses lambda abstraction and lambda application operations to modify
the meanings accordingly. The compilation algorithm was implemented in such a
way that it is possible to add a different semantic formalism (via Java interfaces).

When entering lexical entries manually, the prover will use the “default” classes
for generating the meaning side. This means that all semantic representations will
be treated as an atomic string of characters that is not modified. During the deriva-
tion process lambda abstractions may be added and modified, but the core meaning
provided in the original lexical entry will remain untouched. That way, the Work-
bench allows using any kind of semantic framework as input and the semantic
representations that are derived by the prover can be evaluated manually or with a
beta reduction tool.

5 Conclusion

In this paper the Glue Semantics Workbench was outlined as a tool for research
at the syntax/semantics interface. The Workbench is centered around a Glue prov-
ing algorithm which is able to process Glue semantic expressions that are part of
the implicational subset of linear logic, commonly used in the newer style of Glue
semantics. Our implementation resolves issues with the computational tractability
and implements some improvements in efficiency, using the algorithms outlined
by Hepple (1996) and Gupta & Lamping (1998). Due to its modularized imple-
mentation via Java packages, the Workbench allows some flexibility for the user. It
offers three modes for providing lexical entries as input for the parser: entering and
parsing them directly or letting the lexicon and syninterface modules derive them
either from LFG f-structures or dependency parses. The modular structure allows
relatively easy modification and extension of its modules.

References

Asudeh, Ash & Richard Crouch. 2002. Glue Semantics for HPSG. In Proceedings
of the 8th International HPSG Conference, 1-19.

Bobrow, Daniel G., Bob Cheslow, Cleo Condoravdi, Lauri Karttunen, Tracy Hol-
loway King, Rowan Nairn, Valeria de Paiva, Charlotte Price & Annie Zaenen.
2007. PARC’s Bridge and Question Answering System. In Proceedings of the
GEAF 2007 Workshop, 1-22.

Cooper, Robin. 1983. Quantification and Syntactic Theory, vol. 21 Synthese Lan-
guage Library, Texts and Studies in Linguistics and Philosophy. Dordrecht:
Springer.

281

Crouch, Dick, Mary Dalrymple, Ronald M. Kaplan, Tracy Holloway King, John T.
Maxwell III & Paula Newman. 2017. XLE Documentation. Palo Alto Research
Center.

Crouch, Richard & Josef van Genabith. 2000. Linear Logic for Linguists. http:
//www2.parc.com/istl/members/crouch .

Dalrymple, Mary. 2001. Lexical Functional Grammar, vol. 34. Academic Press.

Frank, Anette & Josef van Genabith. 2001. GlueTag-Linear Logic Based Semantics
for LTAG - and What It Teaches Us About LFG and LTAG. In Proceedings of
the LFGOI Conference, CSLI Publication.

Garrette, Dan & Ewan Klein. 2009. An Extensible Toolkit for Computational Se-
mantics. In Proceedings of the eighth international conference on computational
semantics, 116—127. Association for Computational Linguistics.

Gotham, Matthew. 2015. Towards Glue Semantics for Minimalist Syntax. Cam-
bridge Occasional Papers in Linguistics 8. 5683.

Gotham, Matthew. 2018. Making Logical Form Type-Logical: Glue Semantics for
Minimalist Syntax. Linguistics and Philosophy 1-46.

Gotham, Matthew & Dag Haug. to appear. Glue semantics for Universal Depen-
dencies. In Proceedings of the 23rd lexical functional grammar conference, tbd.

Gupta, Vineet & John Lamping. 1998. Efficient Linear Logic Meaning Assem-
bly. In Proceedings of the 17th international conference on computational
linguistics-volume 1, 464—470. Association for Computational Linguistics.

Hepple, Mark. 1996. A Compilation-Chart Method for Linear Categorial Deduc-
tion. In Proceedings of the 16th conference on computational linguistics-volume
1, 537-542. Association for Computational Linguistics.

Kokkonidis, Miltiadis. 2008. First-Order Glue. Journal of Logic, Language and
Information 17(1). 43—-68.

Manning, Christopher, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard
& David McClosky. 2014. The Stanford CoreNLP Natural Language Processing
Toolkit. In Proceedings of 52nd Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, 55-60.

Montague, Richard. 1970. English as a formal language. In Bruno Visentini (ed.),
Linguaggi nella societa e nella tecnica, 188-221. Edizioni di Communita.

Rosén, Victoria, Koenraad De Smedt, Paul Meurer & Helge Dyvik. 2012. An
Open Infrastructure for Advanced Treebanking. In Meta-research workshop on
advanced treebanking at lrec2012, 22-29. Hajic, Jan.

282

