
Tractability and Discontinuity

Ronald M. Kaplan
Stanford University

Jürgen Wedekind
University of Copenhagen

Proceedings of the LFG’19 Conference

Australian National University

Miriam Butt, Tracy Holloway King, Ida Toivonen (Editors)

2019

CSLI Publications

pages 130–148

http://csli-publications.stanford.edu/LFG/2019

Keywords: tractability, undecidability, degree of discontinuity, functional domain,
finite boundedness, nonconstructivity, LCFRS, linear context-free rewriting sys-
tem, finite copying grammar, X-bar theory

Kaplan, Ronald M., & Wedekind, Jürgen. 2019. Tractability and Discontinuity.
In Butt, Miriam, King, Tracy Holloway, & Toivonen, Ida (Eds.), Proceedings of
the LFG’19 Conference, Australian National University, 130–148. Stanford, CA:
CSLI Publications.

http://csli-publications.stanford.edu/LFG/2019
http://creativecommons.org/licenses/by/4.0/

Abstract

LFG rule systems that embody the explanatory principles of X-
bar theory appear to allow for arbitrary repetitions of nodes, partic-
ularly complements and coheads, that map to the same f-structure.
Such X-bar compliant grammars thus fail to meet the requirements
for tractable computation that have been identified in recent work
(Wedekind and Kaplan, to appear). This raises the question whether
those grammars also fail of descriptive accuracy in that they provide
for derivations with syntactic dependencies that are not attested in
natural languages. We address what may be regarded as a discrep-
ancy between explanatory and descriptive adequacy by imposing fi-
nite bounds on the degree of discontinuity of grammatical functions
and the number of nodes in functional domains. We introduce ad-
ditional filtering conditions on derivations, along the lines of Com-
pleteness and Coherence and the original nonbranching dominance
prohibition, that make it possible to decide that derivations respect
those bounds. Grammars that embody the principles of X-bar theory
and satisfy these bounds and additional requirements are amenable
to tractable processing.

1 Introduction

It is well known that the recognition/parsing problem is decidable for the
LFG formalism restricted only by the nonbranching dominance condition
(Kaplan and Bresnan, 1982), and the generation problem is decidable for ar-
bitrary LFG grammars as long as the input f-structure is acyclic (Wedekind
and Kaplan, 2012; Wedekind, 2014). But even with these restrictions these
problems are also known to be computationally intractable in the worst
case, as they still belong to the class of NP-complete problems (e.g. Berwick,
1982).

However, grammars for actual languages seem not to exploit all the
mathematical power that the formalism makes available, as witnessed by
the fact that parsing and generation systems, for example, the XLE system,
have been constructed that are practical for broad-coverage grammars and
naturally occurring sentences (Maxwell and Kaplan, 1996; Crouch et al.,
2008). The implementations of these systems must be implicitly taking ad-
vantage of certain patterns of dependencies that are characteristic of lin-
guistic grammars even if those properties have not yet been clearly articu-
lated, and their computational consequences are not yet clearly understood
and have not been explicitly coded.

Wedekind and Kaplan (to appear) (henceforth WK) define a subclass of
LFG grammars with formal properties that, they suggest, are compatible
with linguistic description but make possible the translation into equiv-
alent grammars in the framework of linear context-free rewriting systems
(LCFRS), a mildly context-sensitive grammatical formalism (Seki et al., 1991;

131

Kallmeyer, 2013). The recognition and emptiness problems of LCFRS gram-
mars are decidable, and recognition is tractable in the sense that it requires
time that is proportional to a polynomial (vs. an exponential) function of
the length of the input. WK show that it is decidable whether an arbitrary
LFG grammar in the original Kaplan and Bresnan (1982) formalism meets
the requirements of the restricted subclass and thus admits of an LCFRS
equivalent.

In this paper we summarize the formal properties that WK have identi-
fied, and we indicate informally why computational performance is sensi-
tive to these particular restrictions. These restrictions include imposing fi-
nite upper bounds on the size of functional domains and the c-structure dis-
continuity of functional units. We observe, however, that these bounds are
not realized by grammars whose rules conform to the schematic prescrip-
tions of X-bar theory but are not otherwise constrained. We provide an LFG
formalization that includes two extragrammatical parameters, the degree of
discontinuity (Chomsky, 1953) and the height of the functional domains, and
show that conditions for tractability are achieved if we allow only deriva-
tions that respect finite bounds on these parameters even though a lan-
guage may not limit the number of modifers. Thus, if bounded derivations
can account for all and only the sentences of natural languages, grammars
can instantiate the explanatory principles of X-bar theory and still admit of
tractable computation.

2 Tractable LFG grammars

WK take as a point of departure the severely restricted subclass of LFG
grammars that were shown to be tractable by Seki et al. (1993). The func-
tional annotations of these finite-copying grammars are severely restricted:
they allow categories to be annotated only with at most one function
assignment of the form (↑ G)= ↓ and feature assignments of the form
(↑ A) = v that assert feature values with a single attribute just on the
mother nodes of c-structure expansions.

This notation is clearly unsuitable for linguistic description. It disallows
the trivial ↑= ↓ annotations that mark the heads and coheads in the func-
tional domain of a predicate, the (↑ XCOMP SUBJ) = (↑ OBJ) equations of
functional control, and all other ways of relating the f-structures of differ-
ent nodes. It also disallows longer attribute paths in the specification of
mother-node feature values (e.g. (↑ SUBJ NUM) = SG) and any direct spec-
ification of feature values on daughter nodes, as in (↓ CASE) = NOM.

In terms of formal expressiveness, on the other hand, the function-
assignment annotations in these grammars do allow separate nodes of the
c-structure to map to the same unit of f-structure and thus to share (and
require consistency of) atom-value information in a very constrained way.

132

φ φ
f f

H

S

S

S

S

a

S

a

S

S

a

S

a

S

S

S

a

S

a

S

S

a

S

a

S

C

c

C

c

C

c

B

b

B

b

B

b

A

a

A

a

A

a

|φ−1(f)| = 2H |φ−1(f)| = 3

a. C-structure for grammar (1) b. C-structure for grammar (2)

Figure 1: Zipper nodes in depth-balanced c-structures

This specific type of structure sharing is occasionally referred to as “zip-
per” unification. That is, two distinct nodes n and n′ can map to the same
f-structure in a valid derivation (formally, φ(n) = φ(n′)) if there is a node n̂
dominating both of these nodes and the sequences of function-assignment
annotations on the c-structure paths from n̂ to n and n′, respectively, are
identical, that is, form a “zipper”. As a significant consequence, structure-
sharing nodes for finite-copying grammars must have the same c-structure
depth. This is illustrated by the simple grammars in (1) and (2) and by the
depth-balanced c-structures in Figure 1, where the dashed lines link collec-
tions of nodes that map through φ to the same f-structure.

(1) S → S
(↑ L)= ↓

S
(↑ L)= ↓

S → a
(↑ L) = #

(2) S → A
(↑ L)= ↓

B
(↑ L)= ↓

C
(↑ L)= ↓

A → A
(↑ L)= ↓

a A → a
(↑ L) = #

B → B
(↑ L)= ↓

b B → b
(↑ L) = #

C → C
(↑ L)= ↓

c C → c
(↑ L) = #

While these grammars both meet the very stringent finite-copying nota-
tional restrictions, the difference in these structure-sharing configurations
corresponds to a difference in computational complexity. For all deriva-
tions of grammar (1) the number of nodes that map to a given f-structure f
(= |φ−1(f)|) is an exponential in the height H of those nodes, as illustrated

133

in Figure 1a. In contrast, for all derivations of grammar (2) the number of
nodes in a structure-sharing set is bounded by a constant (3 in this case) that
is independent of their height (Figure 1b). Grammar (2) but not (1) meets
the finite-boundedness property (3) that Seki et al. (1993) also included in
the definition of finite-copying grammars.

(3) A grammar is finitely bounded if and only if there is a grammar-
dependent constant d such that no more than d nodes map to the
same f-structure element f in any derivation. That is, |φ−1(f)| ≤ d.

They established that this is a decidable property of grammars with only
function-assignment and mother-feature annotations and thus whether
any particular grammar belongs to the finite-copying subclass. They fur-
ther demonstrated that for any such finitely-bounded and notationally re-
stricted grammar G there is an equivalent mildly context-sensitive gram-
mar G′ (an LCFRS). It follows that for this grammar class that the empti-
ness problem is decidable, the recognition problem is tractable, and parsing
with G can be accomplished with the equivalent LCFRS G′. The key insight
is that atom-based satisfiability can be tested in zipper domains of no more
than d nodes, even when these are not adjacent in the c-structure. We re-
gard the parameter d as formalizing the linguistic notion of the degree of
discontinuity (Chomsky, 1953).

Finite boundedness is a necessary property for LCFRS equivalence and
tractability. It is a sufficient property for finite-copying grammars, but fur-
ther restrictions are required for grammars which include annotations in
more elaborate formats. WK carefully extend the notation to allow for an-
notations that are commonly used in LFG accounts of syntactic phenomena
and are thus more suitable for linguistic description. These extensions are
introduced with formal restrictions that conserve the LCFRS equivalence
and thus preserve the key advantages of that minimally expressive formal-
ism. They first extend the notation to admit more elaborate atomic-value
annotations on both mother and daughter nodes. This includes annota-
tions such as (↑ SUBJ NUM) = SG and (↓ NUM) = PL and in general any
annotations of the forms (↑ A B C ...) = v and (↓ A B C ...) = v.

They also introduce a broader but still limited range of annotations that
establish relationships between the f-structures associated with different
nodes in a derivation. They allow trivial annotations ↑= ↓, and reentran-
cies of the following forms:1

1WK also allow set-membership annotations (↓ ∈ (↑ ADJ)) that are typically used for
modifiers. Membership annotations only map single nodes to f-structures and do not prop-
agate atomic feature values, and thus are inert with respect to zipper formation, satisfiabil-
ity, and computational complexity. We return to this point below.

134

(4) (↑ F G) = (↑ H) functional control
(↑ F) = (↑ H) local-topic link
(↓ G) = (↑ H) SUBJ in XADJ control
(↓ G) = (↓ H) daughter sharing
(↓ G) = ↑ promotion
(↑ F) = ↑ mother cycle
(↓ G) = ↓ daughter cycle

These annotations allow designators with at most two grammatical func-
tions, in keeping with the Principle of Functional Locality (Kaplan and
Bresnan, 1982). WK hypothesize that this inventory of annotation-types is
sufficient for natural language description, since the notation can account
for function assignments, head and cohead identification, functional con-
trol, and agreement. This claim receives empirical support from an exam-
ination of the large-scale, broad-coverage Pargram grammars of English
and German. There are only a few outliers in the 281 rules and 23,809 lex-
ical entries of the English grammar, for example, and these appear only
in still controversial accounts of oblique prepositional phrases and copular
complements.

WK also demonstrate that this family of linguistically suitable annota-
tions is also expressive enough to make the core computational problems—
recognition (without the nonbranching dominance restriction), emptiness,
and generation from cyclic inputs—undecidable.2

WK then consider a set of restrictions that together ensure LCFRS
equivalence. They conjecture that these restrictions will not undermine the
descriptive utility of the reentrancies and trivial annotations. WK first re-
quire, similar to Seki et al., that nonterminal categories are annotated with
at most one function assignment of the form (↑ G)= ↓, and, furthermore,
that trivial annotations and function assignments always appear in com-
plementary distribution to keep separate the properties of a head and its
complements.

Since finite boundedness is a necessary condition for LCFRS equiva-
lence, clearly there must be a finite bound on the number of nodes in
a functional domain. These nodes are annotated with ↑= ↓ annotations
and typically carry information about heads, coheads, and the local mor-
phosyntactic features of a functional unit. These ↑= ↓ annotations map all
the nodes in a functional domain to the same f-structure, and thus allow

2Their proof strategy is quite straightforward. Following Wedekind (2014), they show
that for an arbitrary context-free grammar an LFG grammar can be constructed whose
c-structures simulate the context-free derivations and whose corresponding f-structures
encode the terminal strings of those derivations. Grammars that encode the strings of
two context-free grammars G1 and G2 can easily be composed so that the core computa-
tional problems for the combined LFG grammar are solvable if and only if the intersection
L(G1) ∩ L(G2) is non-empty. This problem is known to be undecidable.

135

information to propagate up, down, and across the chain of nodes that re-
late to a single head. The grammar may implicitly impose a bound h on the
height of a functional domain if vertical chains bottom out at lexical items
or are terminated by nodes with other annotations. If the grammar does
not establish an implicit bound on the height of the functional domains,
one must be specified as an extragrammatical parameter. Given that such a
bound has been determined, there is a simple transformation of a grammar
G into a strongly equivalent LFG grammar G\↑= ↓ that no longer contains
↑= ↓ annotations. The transformation is accomplished by recursively re-
placing a category annotated with ↑= ↓ in the right side of one rule by the
right sides of all the rules expanding that category, and making the appro-
priate replacements of ↑ for ↓ to preserve the f-structure mappings. The
effect of a simple case of this transformation is shown in (5).

(5) G
APn1

(↑ XCOMP)= ↓

A′
n2

↑= ↓

An3

↑= ↓

happy

VPn4

(↑ XCOMP)= ↓

Vn5

↑= ↓

to go

n1
n2
n3







PRED ‘HAPPY〈SUBJ, XCOMP〉’

XCOMP
n4
n5

[

PRED ‘GO〈SUBJ〉’
]







G\↑= ↓

APn1

(↑ XCOMP)= ↓

happy VPn4

(↑ XCOMP)= ↓

to go

n1





PRED ‘HAPPY〈SUBJ, XCOMP〉’

XCOMP
n4

[

PRED ‘GO〈SUBJ〉’
]





=⇒

The f-structure units are labeled here to illustrate how the size of the φ−1

node sets is reduced when ↑= ↓ annotations are eliminated. This simple
grammar transformation makes it unnecessary to give further considera-
tion to ↑= ↓ annotations.

Without further restriction, the recognition, emptiness, and genera-
tion problems are still undecidable for grammars with height-bounded
functional domains. Thus, finite boundedness, a necessary condition for
LCFRS equivalence, is also undecidable for these grammars.3 WK observe
that every LFG grammar G can be decomposed into two subgrammars,
a reentrancy-free kernel G\R and an atom-free kernel G\A, both with decid-
able recognition and emptiness problems, and they define the necessary
and sufficient restrictions on the LFG grammars G by carefully regulating
the interplay of the functional descriptions of these two grammars. The
reentrancy-free kernel of G is formed by removing all reentrancies from

3This is because it is undecidable whether there is a valid derivation at all (undecidability
of the emptiness problem).

136

its rules and lexical entries, leaving just function assignments and atomic-
value annotations. The atom-free kernel is formed by removing all atomic-
value annotations from its rules and lexical entries, so that only function
assignments and reentrancies remain. We let FD\R and FD\A be the instan-
tiated f-descriptions for derivations in G\R and G\A that correspond to a
derivation in G with f-description FD.

Because d-boundedness is a necessary condition for LCFRS equiva-
lence, WK first require the reentrancy-free kernel of G\↑= ↓ to be d-bounded
and they show that this is a decidable property. They then proceed to iden-
tify a minimally intrusive restriction that ensures that G conserves the φ

mapping of its d-bounded reentrancy-free kernel. WK relate this restriction
to another notion in the LFG literature, the concept of nonconstructivity.
This has been discussed in the context of functional uncertainty and off-
path constraints (e.g. Dalrymple et al., 1995b; Crouch et al., 2008), the idea
that functional uncertainties pass information along separately motivated
f-structure paths, and it is implicit in the fact that the Completeness Con-
dition tests for the existence of independently specified grammatical func-
tions. WK provide a technical formulation of this notion and propose it as
a general condition on the operation of reentrancy annotations, a condition
that is necessary to ensure LCFRS equivalence. They define nonconstruc-
tive reentrancies in terms of the interplay between the reentrancy-free and
the atom-free kernel in the following way:

(6) G has nonconstructive reentrancies if and only if for every derivation
in G\↑= ↓ and any nodes n and n′, if φ(n) = φ(n′) follows from FD\R,
then φ(n) = φ(n′) also follows from FD\A.

This is a succinct formalization of the idea that reentrancies by themselves,
without the support of function assignments, do not cause different nodes
to project to the same f-structure. Thus a grammar is d-bounded if its
reentrancy-free kernel is d-bounded and its reentrancies are nonconstruc-
tive. WK prove, for any LFG grammar G with only short reentrancies and
a d-bounded reentrancy-free kernel, that it is decidable whether G has non-
constructive reentrancies.

The long reentrancies of the form (↑ F G) = (↑ H) that are found in
descriptions of functional control, for example

(7) (↑ XCOMP SUBJ) = (↑ OBJ)

appear to be just a minor enhancement to the short reentrancies in (4).
However, WK demonstrate that core computational problems are unde-
cidable for (1-)bounded grammars with long reentrancies. Thus, finite
boundedness by itself is not a sufficient condition for LCFRS equivalence
for grammars with long reentrancies that cannot be reduced to short ones.

137

WK observe that long control reentrancies such as (7) can always be
shortened in derivations that meet the requirements of the Coherence Con-
dition. They argue specifically that SUBJ is a governable function in an open
(XCOMP) complement and therefore must be licensed by the complement’s
semantic form. These licensing semantic forms are always introduced
by simple PRED equations associated with individual lexical entries, for
example (↑ PRED)= ‘WALK〈(↑ SUBJ)〉’. Thus, (↑ PRED)= ‘WALK〈(↑ SUBJ)〉’
must instantiate to the equation (φ(n′) PRED) = ‘WALK〈(φ(n′) SUBJ)〉’ at
some node n′, and the functional description must also entail an equation
(φ(n) XCOMP) = φ(n′) that links the complement to a higher clause and is
also available to shorten the control equation.

Even though it is easy to determine whether all long reentrancies can
be shortened in any given derivation, it is not possible in general to con-
struct an LCFRS that exactly simulates the set of all valid derivations of an
LFG grammar. This is because it is also undecidable whether there are any
derivations in which all long reentrancies can be shortened. Therefore, WK
require the derivations to meet the stronger stipulation that the shorten-
ing equations ((φ(n) XCOMP) = φ(n′)) are entailed by the reentrancy-free
kernel. This is formalized in (8).

(8) If FD contains (φ(n) F G) = (φ(n) H), then FD\R entails
(φ(n) F) = φ(n′) for some node n′.

Thus, just as LFG theory classifies as invalid derivations that do not sat-
isfy the Completeness and Coherence Conditions (or that violate, in earlier
specifications, the prohibition against nonbranching dominance chains),
WK propose to remove from grammatical consideration derivations with
recalcitrant control equations. This means that, as in the case of these pre-
vious conditions, some analyses will be excluded that otherwise appear to
lie within scope of the normal derivational machinery of the LFG formal-
ism. In all likelihood the derivations that this restriction eliminates would
also fail to meet the Coherence Condition and thus no linguistically signif-
icant derivations will be lost.

The formal framework and result laid out by WK is summarized in (9).

(9) If G is an LFG grammar such that
G includes only the reentrancies in (4)
no more than one function assignment or ↑= ↓ annotation

is attached to any category,
G’s functional domains are h-bounded,
G’s reentrancy-free kernel is d-bounded, and
G’s reentrancies are decidably nonconstructive

then G is equivalent to an LCFRS.4

4The LCFRS is constructed in two stages. In the first stage a ↑= ↓-free LFG grammar

138

WK also demonstrate that the emptiness and cyclic generation problems
for these grammars are decidable and that sentences can be recognized in
polynomial time.

3 The challenge of X-bar theory

WK suggest that grammars that meet the conditions in (9) and have the as-
sociated computational advantages are also suitable for linguistic descrip-
tion. This suggestion appears to be undermined by the principles of X-bar
theory as they appear in the literature in various forms. These principles
are generally assumed to constrain the organization of c-structure and the
distribution of annotations that map from c-structure to f-structure (e.g.
Bresnan, 2001; Dalrymple, 2001). X-bar prescriptions are typically given as
meta phrase-structure rules that govern the expansion of a generic major
category XP into an X′-labeled head which expands in turn to an X-labeled
lexical head. These expansions branch, either recursively or iteratively, to
other major categories annotated with function assignments (↑ G)= ↓ (for
argument functions) or set-member annotations (↓ ∈ (↑ ADJ) for modifiers).
They also branch to other categories with ↑= ↓ annotations (for coheads).

The problem for finite boundedness is that X-bar compliant rule sys-
tems appear to allow for arbitrary repetitions of nodes, particularly com-
plements and coheads, that map to the same f-structure. Schematically,
the possibilities for specifiers, complements, and coheads are illustrated
in (10). (The infix comma notation is a conventional way of abbreviating
the fact that this scheme is agnostic as to the linear order of constituents,
and any specific categories may or may not appear in the particular rules
that instantiate this general scheme.)

(10) a. XP → X′

↑= ↓

head

, LP | FP
(↑ D)= ↓

spec

b. X′ → X′

↑= ↓
,



















LP
(↑ G)= ↓

FP
↑= ↓



















head comp
cohead

G\↑= ↓ is created by eliminating the h-bounded ↑= ↓-annotated categories in favor of equiv-
alent collections of flattened LFG rules. The second stage of the construction produces
LCFRS rules for G\↑= ↓. It hypothesizes finite sequences of G\↑= ↓ rules that might expand
the categories realizing a d-bounded zipper, and it builds an LCFRS rule that models the
well-formedness conditions and the minimal f-structure for each such sequence.

139

c. X′ → X
↑= ↓

head

, LP
(↑ G)= ↓

comp

In this particular version of the meta-grammatical scheme, the lexical or
functional categories LP or FP in (10a) assign a discourse function (D) to the
specifier. The recursive expansion in (10b) derives complements (labeled
as governable grammatical functions G) and coheads, and the recursion
terminates at the lexical head in (10c).5

We focus our attention on the X′ recursion in (10b). This permits the ob-
ject of a VP, for example, to be realized discontinuously by any number of
NP’s annotated with (↑ OBJ)= ↓, and all of those nodes would contribute
features to the same f-structure. Thus, this general rule schema immedi-
ately licenses derivations that are not finitely bounded. Or, to put it in
more traditional terms, the X-bar framework admits of grammatical rules
that allow for an unbounded degree of discontinuity (Chomsky, 1953). This
scheme also allows for functional domains of unbounded height, to derive
arbitrary numbers of coheads in addition to a possible head. Grammars
formulated according to this specification clearly fail to meet the tractabil-
ity requirements as summarized in (9).

As theoretically appealing as it may be, this configuration may not be
descriptively accurate for real languages. Real languages may have sub-
stantially less potential for repetition, and rules of this type may substan-
tially overgenerate beyond what should be implemented in descriptively
adequate grammars. Indeed, we suspect that the unrestricted X-bar schema
does overgenerate, and that functional units in real languages are not ar-
bitrarily decomposable. Individual lexical predicates subcategorize for a
limited number of governable grammatical functions, there are a limited
number of morphosyntactic and cohead features to be expressed with lim-
ited redundancy, and there may also be categorial cooccurrence restrictions
that limit, for example, which subconstituents internal to an NP can surface
independently (e.g. perhaps agreement markers and determiners must al-
ways appear together). And of course, because semantic forms are instan-
tiated in LFG derivations, there can be at most one lexical head among the
phrases that realize any grammatical function. We thus conjecture that for
each language the X-bar scheme is constrained by two extragrammatical
parameters: the maximum degree of discontinuity d and the maximum
number c of coheads in a functional domain.

The constants d and c provide an upper bound on the height of the X′

recursion in (10b), since there is also a bound on a language-dependent pa-
rameter g, the number of grammatical functions (discourse functions and

5Some presentations make use of an iterative Kleene-star format instead of the recursive,
binary-branching formulation here. Both formulations admit of unbounded repetition and
are thus essentially the same with respect to the formal issues we are concerned with here.

140

governable functions) that can appear together in any subtree.6 The maxi-
mum height h is given by the formula h = c + dg + 1, with the additional 1
accounting for the lexical X expansion in (10b). If a subderivation for XP is
higher than h, then the d bound must be exceeded for at least one grammat-
ical function or the c bound must be violated. For a grammar that respects
this height limit the algorithm for eliminating ↑= ↓ annotations from G will
terminate in a grammar G\↑= ↓ with a finite number of rules.

In the simplest case the succinct recursion in (10) would be converted
to flattened rules that explicitly limit the number of repetitions of any one
function assignment. For d = 2, for example, such a grammar might con-
tain the V′ expansion rule (11) that maps only two nodes to XCOMP and one
node to OBJ.

(11) V′ → (V) VP
(↑ XCOMP)= ↓

NP
(↑ OBJ)= ↓

VP
(↑ XCOMP)= ↓

It is not difficult to see how this rule relates to the recursive X-bar specifica-
tion, and the connection to an iterative Kleene-star X-bar schema would be
even more obvious: a grammar’s *-marked generic rules would be reduced
to particular sequences whose length is restricted by h. The fragmentary V′

expansion shown in (12) demonstrates, however, that restricting the length
of individual rules is by itself not sufficient to ensure that discontinuity is
globally bounded.

(12) VP

V VP
(↑ XCOMP)= ↓

V VP
(↑ XCOMP)= ↓

NP
(↑ OBJ)= ↓

VP
(↑ XCOMP)= ↓

NP
(↑ OBJ)= ↓

VP
(↑ XCOMP)= ↓

VP
(↑ XCOMP)= ↓

NP
(↑ OBJ)= ↓

VP
(↑ XCOMP)= ↓

Although only two VP nodes map to the same f-structure at each level of
recursion, the overall effect of the parallel subderivations (with zipper uni-
fication) is that the four discontinuous VP nodes at the bottom map to the

6The grammatical functions attested in any language are drawn from a finite universal
set GF, and g cannot be greater than |GF|. The number of governable functions included
in GF can be determined for any particular language by inspecting the subcategorization
frames in its lexicon. For the broad-coverage, commercial-grade Pargram grammar of En-
glish (approximately 25,000 lexical entries) there are 10 different governable functions, and
for the German Pargram grammar there are 13. But a tighter bound on g comes from the
fact that no word in either lexicon governs more than four functions, and very few words
allow even that many (in English only the word bet). The inventory of lexical subcatego-
rization frames further restricts the cooccuring combinations of governable functions. For
the English and German grammars the number of combinations (32 and 41 respectively) is
much less than the theoretical maximum of all up-to-four combinations of the attested set
of governable functions.

141

same XCOMP XCOMP f-structure. While it is possible in principle to convert
an X-bar compliant grammar (either recursive or iterative) to one that is
descriptively accurate for a language with a global bound on the degree of
discontinuity, the resulting grammar will have an elaboration of rules and
a refinement of features and categories that will likely be convoluted and
opaque, and its relation to the explanatory generalizations of X-bar theory
will be obscure.

We propose to address this discrepancy between explanatory and de-
scriptive adequacy, for a language with a bounded degree of discontinuity
and a bounded number of coheads, in a direct and brute-force way. Such a
language is described by an X-bar compliant grammar together with sepa-
rate d and c values that bound its degree of discontinuity and the number of
coheads under a single XP. If a grammatical function can be realized by no
more than d separate XP’s one of which contains a lexical head, and each XP
can have no more than c coheads, then the number of nodes that can map to
a single f-structure is bounded by dc + 1. We simply declare as invalid and
disallow any derivation if |φ−1(f)| for any f exceeds that number.7 This
is a further filtering condition on derivations, along the lines of Complete-
ness and Coherence and the original nonbranching dominance prohibition
of Kaplan and Bresnan (1982). Once the c-structure and the minimal solu-
tion of the f-description have been constructed, derivations are discarded
if their structure-function mapping exceeds this bound.

Derivations that survive the d-c restriction also satisfy the bounding re-
quirements as stated in (9). This at least removes the specific challenge to
tractability that comes with the unbounded repetition of arguments and
coheads implied by the principles of X-bar theory. If grammars for natural
language also meet the constraints on notation and reentrancies in (9), as
WK conjecture, then it is possible to construct linear context-free rewriting
systems for such grammars that simulate all and only their valid deriva-
tions.8

4 Modifiers: Height and discontinuity

Modifiers are represented as sets in f-structure precisely because they are
not selected by particular predicates and because there are no natural lim-
its on how many may appear. They therefore pose a different kind of chal-
lenge to the bounding conditions necessary for LCFRS equivalence. One

7Note that dc + 1 is also an upper bound for a single grammatical function. This ar-
chitecture is flexible enough to account for much more fine-grained distinctions where, for
example, the major categories or grammatical functions differ in their degree of discontinu-
ity and/or their number of coheads.

8In constructing an LCFRS for derivations with extragrammatical bounds, only reen-
trancies in the bounded derivations must be checked for nonconstructivity. This can be
decided along the lines of the shrinking argument of WK.

142

aspect of the problem is illustrated by the Kleene-starred adjunct phrases
of Bresnan’s (2001) alternative X-bar schema in (13).

(13) XP → X′

↑= ↓
, YP∗

↓ ∈ (↑ ADJ)

These rules can be normalized to rules of the recursive form by translating
the Kleene-starred adjunct phrases into right-linear expansions. The trans-
lation is done by replacing the iteration of the phrasal adjunct in (13) by
a new optional trivially-annotated category YPADJ, and by introducing the
rule (14) to properly expand that category.

(14) YPADJ → YP
↓ ∈ (↑ ADJ)

(YPADJ

↑= ↓
)

Immediately we see that there is no apparent bound on the height of the
functional domain and thus no way of eliminating these trivial annotations.
But, as it turns out, the LCFRS construction does not require the removal of
trivials in this particular configuration. This is because these YPADJ nodes
and their subtrees are inert with respect to zipper interactions. Therefore
these nodes can be ignored when determining the height of the functional
domain, the degree of discontinuity, and the finite bound as given in (3).

The expansion of a category is syntactically inert if the zippers within its
subtrees in all possible derivations cannot interact with the zippers outside.
This is certainly true of the YP expansion in (14), since membership anno-
tations, unlike function assignments, form barriers that prevent daughter
attributes and values from escaping to higher levels. The expansions of
the trivially-annotated YPADJ categories are also inert because they domi-
nate only inert category expansions. Thus the YPADJ nodes need not enter
into the calculation of boundedness and their ↑= ↓ annotations need not
be eliminated. We mark that fact simply by replacing those equalities with
a variant ↑

.
= ↓ that is opaque to the trivial-elimination procedure. It can

be carried along by the LCFRS translation algorithm and interpreted as a
node identity only during f-structure construction.

Internal adjuncts of discontinuous NPs are another instance of inert-
ness. A Latin example taken from Haug (2017) is shown in (15).

143

(15) S

NP
(↑ SUBJ)= ↓

N
↑= ↓

Maximilianus
(↑ PRED)= ‘MAX’

NP
(↑ OBJ)= ↓

AdjP
↓ ∈ (↑ ADJ)

Adj
↑= ↓

bonum
(↑ PRED)= ‘GOOD’

I
↑= ↓

trusit
(↑ PRED)= ‘PUSH〈SUBJ, OBJ〉’

NP
(↑ OBJ)= ↓

N
↑= ↓

Fredericum
(↑ PRED)= ‘FRED’

Haug (2017) investigates the degree of discontinuity of Latin based on
the nonprojective dependencies occurring in several dependency treebanks
and argues that there is no principled bound on Latin discontinuities. In
his examples, however, the adjunct NP expansions that seem to lead to this
conclusion are—as in (15)—inert with respect to zippers, because no in-
formation can escape from their AdjP daughters. This might result in an
unbounded number of constituents that map to the same f-structure, but
crucially only the f-structures of a bounded number of them can interact
and thus give rise to zipper dependencies.

In this situation the adjunct expansion of the NP can be marked as inert,
as indicated by the superscript i in (16),

(16) NPi → AdjP
↓ ∈ (↑ ADJ)

and the NP occurrence in the S rule can be replaced by NPi with a vari-
ant annotation (↑ OBJ)

.
= ↓ that explicitly indicates that this function as-

signment does not give rise to discontinuities that prevent the construction
of an equivalent LCFRS. Instead of (15) we thus obtain the annotated c-
structure in (17).

144

(17) S

NP
(↑ SUBJ)= ↓

N
↑= ↓

Maximilianus
(↑ PRED)= ‘MAX’

NPi

(↑ OBJ)
.
= ↓

AdjP
↓ ∈ (↑ ADJ)

Adj
↑= ↓

bonum
(↑ PRED)= ‘GOOD’

I
↑= ↓

trusit
(↑ PRED)= ‘PUSH〈SUBJ, OBJ〉’

NP
(↑ OBJ)= ↓

N
↑= ↓

Fredericum
(↑ PRED)= ‘FRED’

Alternatively, such examples can be reanalyzed as in (18) so that inert nodes
are no longer present in the c-structure, as suggested by Snijders (2016).
This also ensures that the number of nodes that map to the same f-structure
is finitely bounded.

(18) S

NP
(↑ SUBJ)= ↓

N
↑= ↓

Maximilianus
(↑ PRED) = ‘MAX’

AdjP
↓ ∈ (↑ OBJ ADJ)

Adj
↑= ↓

bonum
(↑ PRED) = ‘GOOD’

I
↑= ↓

trusit
(↑ PRED)= ‘PUSH〈SUBJ, OBJ〉’

NP
(↑ OBJ)= ↓

N
↑= ↓

Fredericum
(↑ PRED) = ‘FRED’

There may be no limit on the number of discontinuous nominal adjuncts in
Latin, but their inertness means that a d-bounded LFG can still account for
them, contrary to Haug’s supposition.

Haug also recalls Johnson’s (1986) observation that the Bresnan et al.
(1982) analysis of Dutch cross-serial dependencies does not extend to in-
transitive verb complexes without violating the nonbranching dominance
constraint. In response, Zaenen and Kaplan (1995) covered both transitive
and intransitive examples with a functional uncertainty solution that short-
ens the nonbranching chains. Haug notes that the newer formulation is less
transparent, linguistically less attractive, and still less often cited than the
original 1982 account. Because of this and because of apparently similar
examples in Latin, Haug is willing to give up the prohibition against non-
branching dominance chains and its guarantee that recognition is decidable

145

for unrestricted LFG grammars, in favor of simpler nonbranching specifi-
cations. However, the simpler specifications can be implemented in the
bounded-grammar framework, and WK have demonstrated that the non-
branching dominance constraint is not needed for recognition decidability
and can be omitted from the restricted formalism.

5 Conclusion

Wedekind and Kaplan (to appear) have shown that there is a mildly
context-sensitive grammar, an LCFRS, for every LFG grammar with the
properties set forth in (9). The grammars in this class are mathematically
and computationally well behaved: for languages that can be described by
such grammars, the recognition problem is decidable and tractable (even
without the prohibition against nonbranching dominance chains), and the
emptiness and cyclic generation problems are decidable. The explanatory
principles of X-bar theory admit grammars that appear not to meet the
bounding conditions that WK have identified and thus seem to lie outside
of the tractable class.

This may be an unintended consequence of the simple way in which
the X-bar principles are typically laid out, and may in fact result in the
overgeneration of strings and structures. We have provided a formal
definition of a traditional linguistic notion, the degree of discontinuity
for grammatical functions of a language, in terms of the c-structure to f-
structure mapping of LFG, the φ projection. If the degree of discontinuity
and the number of coheads for a language are bounded, then the deriva-
tions of an otherwise X-bar compliant grammar can be restricted to meet
the conditions necessary for tractability. Notably, these bounds generally
do not apply to modifier repetition because modifiers are typically iso-
lated from their environments by set membership annotations. Thus, we
suggest adding to the meta-theory of LFG these bounding requirements
as a stronger replacement for the previous prohibition of nonbranching
dominance chains. We conjecture that this will enable explanatory gram-
mars that are not only descriptively accurate but also computationally
tractable.

References

Berwick, Robert C. 1982. Computational complexity and Lexical-
Functional Grammar. American Journal of Computational Linguistics, 8(3–
4):97–109.

Bresnan, Joan. 2001. Lexical-Functional Syntax. Blackwell Publishers, Ox-
ford.

146

Bresnan, Joan, Ronald M. Kaplan, Stanley Peters, and Annie Zaenen. 1982.
Cross-serial dependencies in Dutch. Linguistic Inquiry, 13(4):613–635.

Chomsky, Noam. 1953. Systems of syntactic analysis. Journal of Symbolic
Logic, 18(3):242–256.

Crouch, Dick, Mary Dalrymple, Ronald M. Kaplan, Tracy Holloway King,
John T. Maxwell, III, and Paula S. Newman. 2008. XLE Documentation.
Palo Alto Research Center, Palo Alto, CA.

Dalrymple, Mary. 2001. Lexical-Functional Grammar. Academic Press, New
York.

Dalrymple, Mary, Ronald M. Kaplan, John T. Maxwell, III, and Annie Za-
enen, editors. 1995a. Formal Issues in Lexical-Functional Grammar. CSLI
Publications, Stanford University.

Dalrymple, Mary, Ronald M. Kaplan, John T. Maxwell, III, and Annie Za-
enen. 1995b. Non-local dependencies. In Mary Dalrymple, Ronald M.
Kaplan, John T. Maxwell, III, and Annie Zaenen, editors, Formal Issues
in Lexical-Functional Grammar. CSLI Publications, Stanford University,
pages 131–135.

Haug, Dag. 2017. Syntactic discontinuities in Latin. In Victoria Rosén and
Koenraad De Smedt, editors, The Very Model of a Modern Linguist: In
Honor of Helge Dyvik. Bergen Language and Linguistic Studies, Bergen,
pages 75–96.

Johnson, Mark. 1986. The LFG treatment of discontinuity and the dou-
ble infinitive construction in Dutch. In Proceedings of the Fifth West Coast
Conference on Formal Linguistics, pages 102–118, Stanford Linguistics As-
sociation, Stanford.

Kallmeyer, Laura. 2013. Linear context-free rewriting systems. Language
and Linguistics Compass, 7(1):22–38.

Kaplan, Ronald M. and Joan Bresnan. 1982. Lexical-Functional Grammar:
A formal system for grammatical representation. In Joan Bresnan, editor,
The Mental Representation of Grammatical Relations. MIT Press, Cambridge,
Mass., pages 173–281. Reprinted in Dalrymple et al. (1995a, 98–111).

Maxwell, John T., III and Ronald M. Kaplan. 1996. Unification parsers that
automatically take advantage of context freeness. In Proceedings of the
LFG’96 Conference, CSLI publications, Stanford University.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami.
1991. On multiple context-free grammars. Theoretical Computer Science,
88(2):191–229.

147

Seki, Hiroyuki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko Ando, and Tadao
Kasami. 1993. Parallel multiple context-free grammars, finite-state trans-
lation systems, and polynomial-time recognizable subclasses of Lexical-
Functional Grammars. In Proceedings of the 31st Annual Meeting of the
Association for Computational Linguistics, pages 130–139, Association for
Computational Linguistics, Columbus, OH.

Snijders, Liselotte. 2016. An LFG account of discontinuous nominal expres-
sions. In Proceedings of the Workshop on Discontinuous Structures in Natural
Language Processing, pages 1–11, Association for Computational Linguis-
tics, San Diego, California.

Wedekind, Jürgen. 2014. On the universal generation problem for unifica-
tion grammars. Computational Linguistics, 40(3):533–538.

Wedekind, Jürgen and Ronald M. Kaplan. 2012. LFG generation by gram-
mar specialization. Computational Linguistics, 38(4):867–915.

Wedekind, Jürgen and Ronald M. Kaplan. To appear. Tractable Lexical-
Functional Grammar. Computational Linguistics.

Zaenen, Annie and Ronald M. Kaplan. 1995. Formal devices for linguistic
generalizations: West Germanic word order in LFG. In Jennifer Cole,
Georgia M. Green, and Jerry L. Morgan, editors, Linguistics and Compu-
tation. CSLI Publications, Stanford, pages 3–27. Reprinted in Dalrymple
et al. (1995a, 215–239).

148

