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Abstract

This paper describes an extension of the Glue semantics workbench by
MeBmer & Zymla (2018). In particular, we present a version of the work-
bench that can deal with (at least) semantic formalisms based on (Two-)Sor-
ted Type Theory. We illustrate this by providing a semantic analysis of differ-
ent constructions that involve quantification over the verb: adverbs, raising
verbs, control verbs and attitude verbs. Furthermore, we describe some ad-
ditional features of the workbench that aim at improving the workflow with
the system.

1 Introduction

This paper expands on the effort initiated by MeBmer & Zymla (2018) to provide
a (new) computational implementation of Glue semantics (Dalrymple 2001). This
implementation is called Glue semantics workbench (GSWB) and provides a linear
logic prover based on an algorithm by Hepple (1996) and an implementation of
lambda calculus within a Java program.

We present a user study for the Glue semantics workbench and report on var-
ious issues that have been detected and fixed. This study is based on a situation
semantics implementation as presented in Kallmeyer & Romero (2008) for LTAG.
Their paper discusses several constructions that have been explored in the LFG
literature from a resource logic perspective: adverbs, raising verbs, control verbs
and attitude verbs etc. Example (1) illustrates some expressions we use as working
examples for this paper. We follow the line of work presented in Asudeh (2005,
2000, 2002) and reconcile it with the aforementioned situation semantics approach.
The goal thereby is to achieve an appropriate treatment of the scope interactions
shown to the right in (1).

(D) a.  John sometimes laughs.

b. Every girl sometimes laughs. V>3,3>V
c. John sometimes kisses every girl. V>3,3>V
d. Paul claims Mary apparently loves John. claims > apparently

The case study presented here illustrates how the GSWB works for different
typed semantic systems. The insights described in this paper thus provide a broader
perspective on the use of the GSWB in general.

The paper is structured as follows: in Section 2 we discuss the theoretical back-
ground of situation semantics and the constructions presented in (1). In Section 3.2
we illustrate how we provide derivations for these expressions with the help of the
GSWB. In Section 3.3 we present further smaller additions to the workbench the
need for which arose during this case study. Section 4 concludes this paper.

 We thank the VALIDA project for funding. Furthermore, we thank Maribel Romero and Miriam
Butt for helpful discussion. Finally, we thank the anonymous reviewers as well as the audience of
the LFG2019 conference.
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2 Theoretical background

The original GSWB by Memer & Zymla (2018) provided a Glue semantics prover
and a simple syntax/semantics interface with the help of which basic compositional
issues such as the quantifier interactions in (2) and adjectival modification could be
illustrated.

2) Every man loves a woman.

a.  Vz[man(z) — Jylwoman(y) A love(z,y)]]
b.  Jx[woman(x) A Vy[man(y) — love(x,y)]]

In this paper, we presuppose a basic understanding of Glue semantics that underlies
these kinds of constructions. For reference we refer to Memer & Zymla (2018),
Dalrymple et al. (1999) and Crouch & van Genabith (2000). Our main goal is
to move from quantification and modification in the nominal domain to quantifi-
cation in the domain of verbs. The primary observation, in this domain, is that
quantification scope is much more restricted. More specifically, the semantics of
verbal quantifiers are more strictly intertwined with the verb element they scope
over (Cinque 1999). This is dubbed by Kallmeyer & Romero (2008) the issue of
Quantification at the verbal spine. Their leading point of discussion is provided
by the examples below in (3) and (4). The former illustrates the “rigid scope of
(ad)verbal attachments” (Kallmeyer & Romero 2008). (4) on the other hand illus-
trates the flexible scope of NP quantifiers in relation to verb quantification.

3) John seems to sometimes laugh.
a. seem(sometimes(laugh(j)))
b. *sometimes(seem(laugh(j)))

(4)  John seems to have visited everybody seem > VY,V > seem

Kallmeyer & Romero (2008) proceed to discuss the scope restrictions for both
(ad)verbal elements as well as NP quantifiers. Examples (5) and (6) (still by
Kallmeyer & Romero (2008)) highlight the role of finite clause boundaries. They
state the assumption that NP quantifiers are limited to the first finite clause contain-
ing the NP.

(5) A student wants to meet every professor I>V,V>3
(6) A student said that you met every professor >V, %V >4
This paper tests some hypotheses made by Kallmeyer & Romero (2008) as well
as researchers within the glue community (e.g. Asudeh (2005), Dalrymple et al.

(1999)). However, we deviate slightly from the typical practice of assuming an
underlying event semantic framework. This is explained in the next section.
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2.1 Situation semantics

In this paper we opt for an approach that uses situation variables of type s in the
object language (i.e. the meaning side in linear logic), next to individuals of type
e. According to Kratzer (2019), situations in natural language semantics date back
to Barwise (1981), where they were used for the semantics of perception reports.
These days, situation semantics is an alternative, or sometimes an extension, to
possible world semantics. Intuitively, linguistic expressions are evaluated with re-
gard to partial worlds and not to complete worlds.

The use of situation semantics departs from the approaches presented in much
previous work on the kind of constructions discussed in this paper. See, e.g.,
Asudeh (2000, 2002, 2005) for control and raising. On the other hand we take
inspiration from works such as Haug (2008) and Lowe (2014) who deal with phe-
nomena such as tense and aspect. Following Kallmeyer & Romero (2008), the
chosen meaning language follows Two-Sorted Type Theory, meaning that each
predicate has a situation argument in its semantic denotation (see (7-a)).

We believe that working with these more complex structures allows us to gen-
eralize to simpler structures.!. In fact, many examples given in the works referred
to here have been tested in the GSWB, although Haug (2008) has been slightly
modified since the GSWB is not able to deal with compound types yet. This is due
to the lack of multiplicative conjunction in the employed linear logic fragment.

In the present paper, the situation variable is assumed to be anchored to the
TNS-ASP node and is, thus, taken to be part of the verb meaning constructor. This
is illustrated in (7-a).2

(7) a.  [laughs ]| = A\xc.Ass.laughs(z,s) : g — (h —o f)
[Tina]=t:g
[ 3-closure | = Apse.3s[p(s)] : (h — f) —o f
b. [ Tina laughs | = 3s[laughs(t,s)]: f

Especially, in the domain of control and raising verbs this opens up questions about
the role of inflection on the embedded verb. This issue will be addressed briefly
when reviewing Asudeh’s proposals for these kinds of constructions in the light of
the present paper in section 2.4.

2.2 Scope restrictions in Glue semantics

The advantage of using Glue semantics as a semantic formalism is, that many scope
interactions fall out naturally as a consequence of the derivation system. This has
long since been shown by Dalrymple et al. (1999) and was the first milestone of
the GSWB. However, Gotham (2019) discusses flexible and rigid scope configura-
tions of NPs and their treatment in LFG + Glue (i.e. Glue Semantics for Lexical

!This is not meant as a critique of the more simple structures employed in some papers since they
aim at resolving issues for which more complex semantics would needlessly complicate the analysis.
*In the derivations to come, we will usually omit the step of existential closure.
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Functional Grammar). Furthermore, many more actual and apparent scope issues
still remain unsolved, e.g. the role of definites (see Heim (2011) for an overview)
as well as a comprehensive overview over the quantification of verbs, which takes
center stage in this paper.

Similarly to Asudeh (2005) (in the domain of control and raising verbs), we
aim at semantics of verb quantification, where the scope interactions are restricted
naturally by the linear logic side of Glue semantics meaning constructors. This is
mainly due to the fact, that we want to keep to the linear logic fragment employed
in the GSWB as is.

To begin with, let us clarify the general semantics we envision for the types
of verbs discussed in this paper. We base our work on Hintikka-style semantics
(Hintikka 1969). An example of this is given in (8).3

®) [ seem] = Apcsis.Aso.Vs'[s" € SEEM (sg) — p(s')]

Example (8) is a standard case of our treatment of adverbs, control and rais-
ing verbs, as well as attitude verbs, as universal quantifiers over situations in the
semantics.* The different kinds of quantifiers are distinguished by different restric-
tors over the situations they bind. Although we propose a fairly similar semantics
for all the phenomena we discuss in this paper, as is to be expected, there will
emerge subtle differences in the following sections of this paper. Some of these are
influenced by the semantic side, e.g. the choice whether propositions or properties
are embedded under a given kind of verb; others help to guarantee certain scope
configurations. This will be done mainly by appropriate anchoring of situation
variables to the f-structure and the use of linear logic variables. The next section
on adverbs will illustrate this procedure.

2.3 Adverbs

In this section we discuss adverbs, in particular, those that attach directly to the
verb. In computational LFG (i.e. in the English XLE grammar) adverbs are
ambiguous between a sentence scope (sadv) reading and a verb scope reading
(vadv). This ambiguity overlaps with the distinction between frequency adverbs
and adverbs of quantification. In this paper, we focus on the latter. From an XLE
perspective, we attribute quantificational adverbs or quantificational readings of
adverbs to the category vadv.

We treat adverbs as simple modifiers. Modifier premises have a particular
structure on their glue side: A linear implication with an equivalent antecedent
and consequent. In the case we discuss below, they take propositions as their ar-

3The notation SEFEM (so) stands for the set {s": s’ conforms to what appears to be the case in
80}

“Not all quantifiers receive a Hintikka-style modal semantics, but they still follow the general
template of universal quantification.

The treatment of sentence adverbs and frequency adverbials (Bennett & Partee 1978) and the
exact distinction between frequency adverbs and quantificational adverbs is left for future work.
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gument. This is illustrated in (9). Although the adverb is attached directly to the
top-level verb by means of the reference to TTNS—-ASP as well as 1, the sentence
has two readings. This is, of course, due to fact that the quantificational NP can
scope under (surface scope) or over the adverb (inverse scope). (10) presents the
appropriate lexical entries. The Glue formulas are demonstrated first in their gen-
eral form and secondly, the resources are instantiated to nodes in the f-structure in
Figure 1.5

[PRED ‘kiss<J ohn,girl>’

PRED ‘sometimes’
ADV-TYPE vpadv

[PRED ‘John’
SUBJ g|NTYPE [NSYN proper}
PERS 3, NUM sg

ADJUNCT {

[PRED ‘girl’

SPEC [PRED ‘every’}
OBJ k
NTYPE [NSYN common}

PERS 3, NUM sg

TENSE pres, PROG -_, PERF -_,
MOOD indicative

TNS-ASP ¢

Figure 1: John sometimes kisses every girl.

(9)  John sometimes kisses every girl.

(10) a [John]=j:g
b. [ sometimes | = Ap<st>.Aso.3s[s < so A p(s)] :
(+ TNS-ASP —o1) —o ( TNS-ASP —o1)
=(t—f) — (t = f)
c. [kiss]=NyeAxe As.kiss(z,y,s) :
4+ OBJ —o (4 SUBJ —o (1 TNS-ASP —o1))
—k o (g o (t — f))
d. [everygirl] = AQ<e,<st>>-As.Vx[girl(z,s) = Q(x)(s)] :
VX,Y.((1 OBJ — (Y — X)) — (Y — X))
=VX,Y.((k —o (Y — X)) — (Y — X))

SCommon nouns also have situation variables as can be inferred from the denotation of the quan-
tifier every girl. It is less clear how to anchor this situation variable in the f-structure. If need be for
anchoring, it would probably be somewhere in the NTYPE grammatical feature that specifies various
semantic features in f-structure. NTYPE is used uniformly across the ParGram XLE grammars (Butt
et al. 2002).
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Note that the quantifier now maps onto elements of type < s,t > both of which are
treated as variables in its denotation. This is how we model the more flexible nature
of NP quantifiers. In contrast to the quantificational NP, there are no Glue variables
needed in the meaning constructor for sometimes, because the adverb takes scope
where it attaches.

Using the meaning constructors in (10), the Glue proofs for both readings of
(9) can be constructed. The proofs are shown in Figures 2 and 3. For readability,
the semantic side is omitted.

k' k—(g—(t—/f))

—op

g—({t—=Ff) 9
t—o f . E
(ko (Y =X)) = (Y =X) ko(t—f)
(t—f) =G0 (=7 g
t—f E
Asp.3s[s < so AVzlgirl(xz,s) — kiss(j,z, s)]]
Figure 2: John sometimes kisses every girl — Surface scope reading
k'  k—o(g—(t—/))
g— (=) 9 ..
(t—of)—olt—f)  t—f _
t— f s E
(k= (Y = X)) = (Y =X) k—o(t—p "
—Fp

t—o f

Aso Vxlgirl(z, so) — 3s'[s" < so A kiss(j, x, s')]]

Figure 3: John sometimes kisses every girl — Inverse scope reading

2.4 Control and Raising verbs

Asudeh (2005) building on Landau (2003) illustrates how Glue semantic accounts
for the differences between control and raising verbs ((11) and (12)). He com-
pellingly argues that an analysis for control and raising comes naturally in Glue
semantics, generalizing over the specific properties of both kinds of verbs. These
specific properties arise from the fact that both of these constructions invoke struc-
ture sharing. In particular, the subject is shared between the matrix verb and the
embedded verb.

(11) Gonzo tried to leave. control

380



(12) Gonzo seemed to leave. raising

The only difference between the two kinds of verbs lies in their PRED structure.
Raising verbs, as the name suggest, treat the SUBJ as a thematic subject. This
is the case for expletive or raising subjects (Asudeh 2005). On the other hand,
the subjects of control verbs are thematic subjects as shown in Figure 4 on the
right. How does this affect their semantics? We begin with explaining the semantic
composition of raising verbs in the present framework.

PRED ‘seem< (XCOMP)>(SUBJ)’ PRED ‘“try<(SUBJ),(XCOMP)>"
SUBJ [PRED ‘Gonzo’] SUBJ [PRED ‘Gonzo’]
PRED ‘I SUBJ)>’ PRED ‘I SUBJ)>’
XCOMP eave<( )> XCOMP eave<(| )>
SUBJ ] SUBJ ||

Figure 4: Structure sharing in control and raising (Asudeh 2005)

The meaning constructor for our treatment of raising verbs, inspired by Asudeh
(2005, 2002, 2000), is shown in (13). The crucial component is the linear logic
side, which almost looks like a modifier, but it is anchored to two different
TNS-ASP nodes. Note that the quantifier denotation proposed in the proof for
adverbs now allows us to derive the scope ambiguity shown in (14). In fact, by
comparison to control verbs, we will see that the meaning constructor presented
above in (13) makes explicit the distinction between de dicto and de re interpreta-
tions in the semantics.

(13)  [seem] = Ap<si>.Aso.Vs'[s' € SEEM (so) — p(s')] :
(T TNS-ASPxcomp — T XCOMP) — (1 TNS-ASP; —o f)
=(i—h)—(t—f)

14) Every girl seems to laugh.

a. every(girl,seem(laugh))
b. seem(every(girl(laugh)))

The proofs for the two readings are given in Figure 5 and 6. As illustrated above,
the verb seem takes a proposition as its argument which, in combination with the
NP quantifier, makes two readings available. Control verbs on the other hand do
not allow for scope ambiguity with subject NP quantifiers. We contrast raising
and control verbs by making raising verbs take propositions as their argument and
control verbs verbs take properties as their argument. This is discussed next.
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o' gl
i —oh (i—oh)—o(t—of)_O
el 71 :
(g =¥ —= X)) = ¥ — X) g—ot—f)
—F
t—o f
Aso.Va|girl(z, so) — Vs'[s' € SEEM (so) — laugh(z, s')]]
Figure 5: Every girl seems to laugh — Surface scope reading
(= =X)) =¥ =X) g—o(i=h
(i—oh) — (t = f) i—h "
t— f E

Asp.Vs'[s' € SEEM (so) — Vxlgirl(z,s') — laugh(z, s')]]

Figure 6: Every girl seems to laugh — Inverse scope reading

Comparing control and raising verbs in a situation semantics account has lead us
an interesting puzzle with respect to the difference between the two. To understand
this, let us look at our proposed denotation for control verbs:

(15) [try] = APce <si>> Axe NS0 Vs [ € INT,(s9) — P(x)(s')] :
(T XCOMP SUBJ — (T TNS-ASPXCOMP —o T XCOMP))
—o (1 SUBJ —o (1 TNS-ASP; —ot))

=(g—o(i—h)) —(g—o(t—f))

Following Asudeh (2000, 2002, 2005), the control verb try is treated as taking a
property of type < e, < s,t >> as argument. The puzzle lies in the relation
between the situation variable and the SUBJ that the antecedent and the consequent
of the linear logic formula are bound to. This remains implicit in the work by
Asudeh (2000, 2002, 2005). Concretely, in the previously cited work, properties
could be understood as having a compound type in the consequent of their linear
logic representation: g. — (hs ® fi). Our own proposal, on the other hand, can
be understood as strengthening the relation between the SUBJ and the situation
variable, by illustrating how each element is bound in the f-structure.

However, note that we co-bind the individual type variable and the situation
variable with the matrix verb. Thus, the result is a semantics of fry whose com-
plement is neither a property nor a proposition, but a truth value. While this point
requires more research, we tentatively assume that this allows us to explain why
raising complements allow for aspectual modification, while control verbs do not.”

"Following this idea, aspectual features would be modifiers from propositions to propositions.
The following data can explained by this:
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In this paper we pay particular attention to the scopal restrictions of control
and raising verbs. As Asudeh (2005) notes “scopal elements can take both wide
and narrow scope with respect to raising verbs but can only take wide scope with
respect to control verbs”. This observation is in agreement with (4) from Kallmeyer
& Romero (2008) and is captured in the approach presented above. A proof using
the control verb try is shown in Figure 7. In contrast to the previously discussed
raising verb seem, only one reading is available as predicted.

g—(i—h) (g—o(i—oh))—(g—o(t—f))

(g—= ¥ —=X)) = (Y —=X) g—o(t—f)

—op

—op

t—o f

As.Vxlgirl(xz,s) = Vs'[s" € INT,(s) — laugh(z, s')]]

Figure 7: Glue proof without meanings: Every girl tries to laugh.

2.5 Attitude verbs

In contrast to control and raising verbs (in English), attitude verbs embed a finite
clause. We already established that NP quantifiers are restricted to the first finite
clause they occur in. However, we did not provide a concrete implementation for
this. The intuitive idea is, that in LFG, the boundaries of such a clause are provided
by the governing f-structure. In the XLE grammars of the ParGram project, finite
clauses are distinguished by having a CLAUSE-TYPE feature. This does not exist
in f-structures embedded under e.g., control and raising verbs, which, in English,
describe non-finite clauses. Consequently, a quantificational NP can scope over a
control verb like try and over a raising verb like seem, but not over an attitude verb
like think. Thus, only the surface scope reading should be possible for (16).

(16) Mary thinks John loves every girl.

To model this difference between the verbs involving functional control and atti-
tude verbs in the Glue semantics analysis of this paper, the lexical entry for the
quantificational NP has to be modified in the scope of a COMP, if we want to pre-
serve the general idea pursued in this paper. Thus, we require a mechanism that
anchors the variables scoping over situations in the denotation of quantifiers to spe-
cific Glue constants, i.e. TNS—ASP nodes. This makes the situation variable the
pivotal element in scope restrictions (section 3.1).

@) a. John seems to have visited everybody. Kallmeyer & Romero (2008)
b.  Mary seems to be going to the park.

(i1) a. ?7?John tries to have visited everybody.
b. #John tries to be going to the park.
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[PRED ‘think<Mary,love>’

[TENSE pres

TNS-ASP ¢
PROG -_, PERF -_

SUBJ g[PRED ‘Mary’ }
[PRED ‘love<girl,horse>’ |
TNS-ASP TENSE pres

f I PROG -_, PERF -
[PRED ‘horse’

COMP k| OBJ d
SPEC |DET [PRED a]]

[PRED “girl’
SUBJ e i

SPEC |QUANT [PRED ‘every’]]

Figure 8: Mary thinks every girl loves a horse.

We illustrate the general idea in terms of example (17). It has two readings, as a
can scope over every within the embedded finite clause. This means, within the
scope boundary provided by the COMP quantifiers are to work as expected.

a7 Mary thinks every girl loves a horse.

(18) a.  [think] = Ap<st>.Axe.As0.Vs'[s" € DOX,(s0) — p(s)] :
(+ TNS-ASPcoymp —o T COMP)
—o (1 SUBJ —o (1 TNS-ASP; —o1))
= —~k)—(g—(t—1/))
b.  [every girl | = A\Q<e <s 15> .As.Vx[girl(xz,s) = Q(z)(s)] :
VX.((1 COMP SUBJ —o (1 TNS-ASPcomp — X))
—0 (T TNS—ASPCOMP —o X))
—YX.((e — (j — X)) —o (j — X))
c. [ahorse] = Qe <si>>.-As.3x[horse(x,s) N Q(z)(s)] :
VX.((1 COMP OBJ —o (+ TNS-ASPcoyp —o X))
o (1 TNS-ASPcomp —o X))
—YX.((d o (j — X)) — (j — X))

The combination steps are those for the typically expected quantifier ambiguity
within the complement (see Figure 9 and 10). The result is then simply combined
with the attitude verb, which in turn is combined with the subject of the matrix
sentence to yield the final result.
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e —o (j—k) [e]
—©F
j—k
——— 051
(d—o(j— X)) —(j —X) d—o (j — k)
j—k )
_— 972
(e—o(j—ok)) —(j—k) e—o(j—k)
j—k (j—k)—(g—(t—f))
—OF
g—o (t—of) g
—OF
t—o f
every > a:

Aso.Vs'[s' € DOXp,(s0) — Ya[girl(z,s') — Jy[horse(y, s’) Alove(z,y, s')]]]

Figure 9: Glue proof without meanings:
Mary thinks every girl loves a horse — Reading: every > a

¢ o<k  (c—o(—=X)) (X
j—ok :
_ 071
(d—o (j —o k)) — (j — k) d—o (j — k)
—OF
ok (k) —= (g (t — f))
—OF
g—o (t—f) g
—OF
t—of

a > every:
Aso.Vs'[s' € DOX,,(so) — Jylhorse(y, s’) ANVzlgirl(z,s') — love(z,y, s')]]]

Figure 10: Glue proof without meanings:
Mary thinks every girl loves a horse — Reading: a > every
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3  GSWB Case Study

In this section we test the analysis presented above within the GSWB. We discuss
the challenges that arose during this case study and present a solution based on Lev
(2007). The case study follows a simple procedure. We designed a small Treebank
and produced a list of premise sets for each sentence manually. Testing them in
the workbench revealed a number of issues, the most crucial of which and their
solution we discuss in the next section.

3.1 Scope restrictions

As discussed in the previous section, most of the scope predictions discussed in
the previous section fall out naturally due to the chosen Glue semantics represen-
tation. However, the final example of attitude verbs does not fit into the general
picture of this paper in the sense that we modified the involved NP quantifiers. In
particular, we anchored the situation variable used in NP quantifiers to constants
corresponding to certain TNS—ASP nodes.

We assume that this operation is done by means of some rewriting system (in
particular, the rewrite system in XLE). As Gotham (2019) points out, this is not
desirable from a theoretical point of view, but we want to avoid changing the lin-
ear logic fragment of the GSWB. This rules out the Gotham (2019) approach and
leaves us with constraining either proofs or meaning constructors. We chose to do
the latter. Concretely, quantifiers that occur with in a specific COMP are rewritten
such that they are anchored to the specific COMP’s TNS—-ASP node.

3.2 Typed semantics in the GSWB

This section describes the main results of our exploration of the capabilities of
the workbench. The primary issue was that the GSWB could not deal properly
with typed semantic representations. To understand this, let us first describe the
implementation of the Hepple (1996) algorithm in the Glue semantics workbench
MeBmer & Zymla (2018).

The algorithm presented in MeBmer & Zymla (2018) is a recursive algo-
rithm following the proposal made by Hepple (1996) quite strictly. Higher-order
premises (i.e. premises which have a linear implication as antecedent) are com-
piled. The compilation process is a simplification of complex linear logic formulas
with the result of only having to deal with simple combination steps between atoms
and corresponding linear implications. The main issue with the algorithm used in
MeBmer & Zymla (2018) lies within this compilation process.

The process works as follows: the antecedent of a given complex premise is
divided into antecedent and conclusion. This antecedent is cut off from the original
formula. The result is two formulas: the remains of the original formula and a
compiled-out assumption. The process is shown in (19).®8 The new assumption

8The indices in brackets are used to track premises. Introducing a new assumption also introduces
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receives an unused variable as meaning representation. This variable is indirectly
anchored to the original meaning representation. First, the whole representation
is wrapped by a lambda binder which binds another unused variable. Second,
the original meaning representation receives as argument a lambda function which
binds the variable of the compiled out assumption and scopes over the previously
introduced fresh variable.

(19) a:(a—ob) —o c[0] = compite Au.c(Av.u) : bla] —o ¢ [0];
v:{a}[1]

A formally undesirable consequence of Hepple’s (1996) algorithm it, that it relies
on accidental binding. The newly introduced lambda binder in the argument of the
meaning representation o needs to bind the compiled-out variable v.° A concrete
example is given in figure 11.

g1 — [ : Ay.sleep(y) {g2}:v
H{[g2] — H : Au.AP.Vx[person(x) A P(x)](Av.u) f{g2} : sleep(v) H/f)
[+ AP.Vx[person(x) A P(x)](Av.sleep(v))
[ ¥x[person(x) A sleep(x)]

(3-conversion

Figure 11: Every person sleeps. — Hepple style

This process works for compiling simple antecedents, however, the implementation
in MeBmer & Zymla (2018) does not deal properly with the recursive nature of the
algorithm. To illustrate this, consider the nominal quantifier every girl translated
into a version that includes situations as semantic objects of type s in the ontology.

(20) a.  [Every] = APcc <sit>> AQ<e,<st>>A85.V2[P(z)(5) = Q()(5)]
b. [ student | = Ax..\ss.student(x, s)
c. [ Everystudent |= Q< <s>> -ASs.Va[student(z,s) = Q(x)(s)]

This corresponds to the following linear logic formulas:'®

21) a. g-—(h—1)
b. (g—o(h—1i) —oVX,Y.(j = (t o X)— (t - X))

This requires a compilation step that is not anticipated in the algorithm that was
previously implemented in the workbench. It is not difficult to imagine, how the
compilation goes on the linear logic side: First the resource g would be compiled
out. In a next step the resource h would be compiled out. This would result in
two accidental lambda bindings which are in fact desired (Hepple 1996). However,
the part of the linear logic formula that is quantified over also requires compilation.

a new index. However, this is not relevant for discussing the flaw of the algorithm.

°Thus, the functional application used within the linear lambda calculus (the lambda calculus used
for the compilation) is different from classical functional application in so far that it does allow for
this accidental binding. As a result of this, Hepple’s (1996) original version is not readily compatible
with out-of-the-box beta conversion tools. Another issue, that the present paper remedies.

'9The issue occurs in particular in COMP embedded NP quantifiers, since our original quantifier
denotation results in a modifier resource, which is not compiled (MeBmer & Zymla 2018).
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This adds up to a total of four lambda binders, introducing four lambda functions in
its scope. This means the compiled meaning representation (M R) of the quantifier
in (20-a) is bound by four lambdas after the compilation steps.

(22) AMAP AT AU M R(Av.u)(As.r)(Ag.p)(An.m) ()

a.
b. MR(M.As.\g n.«a)

(23) A AmpAps AT AU 1 M R(Ave.w) (Ass.1) (Age.p) (Ang.m) (o) (5)
b.  MR(AsAe.«t)(Ave.\Ss.3)

The issue here is the number of arguments that are created during the compila-
tion process. At first glance, (22) suggests, that there are four arguments to the
denotation of the quantifier. However, it is apparent that there should only be two
arguments (corresponding to AP and AQ in (20-a)). In the original single-type
version of the prover, saturating the outermost lambda results in a number of unde-
sired lambda applications. The result of these applications is, that there is only one
argument, instead of two, that has been passed along through all the lambda slots.
There are several possible solutions to this problem. We opt for a solution along
the lines of Lev (2007).

However, first some fundamental issues have to be fixed. The first step is to
properly type the lambda binders as in (23) to achieve the desired solution given
in the example. This approach runs into a number of problems still. While the
formula given in (23) technically works, deriving it via the compilation process is
not straightforward. To solve this issue, let us look at it from another perspective:

There is a second problem with the original Hepple (1996) approach, namely,
that it requires accidental binding. Lev (2007) presents a way to circumvent the
need for this semantically “unsound” approach. The gist of his improved algorithm
is that the meaning side of the compiled resource is not modified, but as before,
the compilation process creates a new meaning side variable of the type of the
resource that has been compiled out on the meaning side. However, this step does
not coincide with adding a new argument to the meaning representation as done
in (22) (the four lamba binders that apply to the meaning representation MR are
introduced by the compilation step).

The role of making sure that the compiled out variables are inserted into the
proof appropriately is taken by the discharge system in Lev (2007). Discharges
mark where a specific variable has been compiled out. Now, if a variable that has
been compiled out (or any element that has combined with that variable) combines
with the meaning representation that has discharged it, a modified functional ap-
plication procedure is applied. Lev (2007) formalizes this as shown in Figure 12.

¢:A:S §: A — B:Sy provided SyNSo=@and L C 5
5(Avi1,...,)\vin.¢) :B:SiUS, andL = [i17~--ain]

Figure 12: Functional Application in Lev (2007) style compilation

Given a function and an argument with compatible linear logic resources, the two
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are combined only if the discharges of the function are a subset of the assumptions
made for the argument. In that case, for all discharges a lambda introduction step
is executed. This requires the discharges to be a list rather than set, to preserve ap-
propriate types. Elements that are cut off (i.e. discharged) have to be reintroduced
in the reverse order. The whole procedure is exemplified in (24) to (26).

(24) Premises: a, — by — f;: «
ae —o by : ﬁ

(25) Compiled: b[a] — fi: «
{ac} : ve

ae —o by : B
(26) ae —o by : B {ac} : ve
bi{ae} : B(ve) bila] —o fi: «

ft : O‘()‘U@ﬁ(ve))

3.3 Further additions to the GSWB

This section very briefly describes some additional features of the workbench
which were added when implementing the verbal scoping analysis described in
this paper. These involve a debugging mode and improved file handling.

The debugging mode provides some basic information about performance of
the system. This is illustrated in Figure 13. As shown there, the computation time
is measured. Additionally, information about attempted inference (combination)
steps is collected. This includes those leading up to the proof as well as those that
are not used in the final derivation. Furthermore, the number of compilation steps is
counted. This metric has been added to provide transparency about the conversion
from higher-order linear logic formulas to first-order formulas.

Debugging report:

The following data was collected:
computationTime: 12ms

Number of iterations through Sequent: 18
Number of combination steps: 12

Number of proper compilation steps:2

Figure 13: Debugging mode sample output

In addition to the debug mode, several file handling features have been added. Pri-
marily, the system now allows the user to specify input and output files, which
makes it easier to use the workbench in a pipeline architecture. Furthermore,
the workbench now also allows the user to process multiple proofs from a single
file, another functionality that has been developed with the creation of pipelines in
mind. In general, the modular nature of the GSWB was been improved.
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4 Conclusion

In this paper we presented a case study of computational Glue semantics that serves
as the first use case of the Glue semantics workbench. This study was based on
two-type situation semantics and allowed us to cover phenomena in the domain of
quantification over and within certain kinds of verbs, such as control and raising
verbs. Our main goal was to explore scope interactions between quantificational
NPs and kinds of verbs that are semantically quantifiers. We have shown that many
scope interactions can be derived by anchoring quantifiers to specific TNS—-ASP
nodes, which are assumed to map to situation variables. We highlighted further
possible roles of TNS—-ASP nodes in the distinction of control vs. raising verbs.
Furthermore, we established that quantifier scope cannot be simply restricted by
TNS-ASP nodes when embedded under an attitude verbs. This is due to the fact
that quantifiers do not distinguish between matrix clause NPs and COMP clause
NPs. We have provided a tentative technical solution but more work needs to be
done in this area.

By virtue of implementing a situation semantics approach for Glue, we could
test the GSWB intensively. Although the case study has shown that there is a lot of
work yet to be done with respect to the GSWB, it helped get a better understanding
of what has to be done. The result is a more functionally robust and flexible sys-
tem for working with Glue semantics. The next important step is to improve the
syntax/semantics interface. Both co-descriptive and description-by-analysis ap-
proaches are currently being developed and help to push the improvement of the
GSWB.
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