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Abstract

This paper presents the XLE+Glue system which provides an interface
between XLE and the Glue Semantics Workbench, a tool for computa-
tional Glue semantics. It describes how to develop grammars encoding glue
premises and how to calculate meanings based on these premises.

1 Overview

In this paper, we present XLE+Glue,! a resource for grammar developers that integ-
rates semantic capabilities into the Xerox Linguistics Environment (XLE; Crouch
et al. (2017)). Although XLE is the main computational implementation of LFG
in general, it mainly focuses on the syntactic components of the grammar the-
ory. While there exist notable approaches to semantic analysis paired with the sys-
tem (see Crouch and King (2006), Crouch (2005)), resources for the theoretically
founded formalism of Glue semantics remain sparse. To address this shortcoming,
we developed an interface for XLE which integrates a glue prover — the Glue Se-
mantics Workbench (GSWB; Mefimer and Zymla (2018)) — making it possible to
derive semantic representations via linear logic (Dalrymple 1999).
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Figure 1: The XLE+Glue pipeline includes a glue prover (GSWB)

Figure 1 illustrates the overall structure of the XLE+Glue system. The system
requires an XLE+Glue grammar, i.e., a grammar which encodes glue premises
(meaning constructors) in its output (see the f-structure in Figure 1). The system
processes the output of the parser using a Prolog rewrite script: on the basis of the
Prolog representation of a given XLE parse, it creates an input file to the GSWB
which is used to derive a glue proof as described in Meflmer and Zymla (2018).

Glue meaning constructors consist of a semantic side (any semantic formalism)
and a glue side (a linear logic expression of linguistic resources of a given type).
The up and down metavariables in lexical entries are instantiated to indices repres-
enting particular f-structures (or s-structures; Dalrymple (1999)), for instance:

(1) a Kim:Te = Kim:k

T Agnieszka Patejuk gratefully acknowledges the Mobilno$é Plus mobility grant awarded by the
Polish Ministry of Science and Higher Education.

! The system is available from https://github.com/Mmaz1988/xle- glueworkbench-interface. For
information on installing and running XLE+Glue, see the README or the manual in the repository.
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b. smile: (T SUBl), — 1, = smile: k., —o s;

In the first part of this paper, we explain the encoding of meaning constructors
in XLE+Glue grammars; for ease of presentation, we make several assumptions.
First, we assume simple untyped meaning representations such as Kim and smile
which serve as placeholders for various potential meaning languages.” Second,
we assume that the glue side of meaning constructors refers to f-structures (as in
our sample grammar glue-basic.1fqg) rather than their semantic projections
or other linguistic levels. However, our system can handle meaning construct-
ors referring to other linguistic levels (as demonstrated in our sample grammar
glue-basic-semstr.1fqg, which includes a semantic projection).

Our system provides two ways of encoding meaning constructors. Both meth-
ods rely on the presence of a special GLUE attribute whose value is a set of meaning
constructors in AVM format. The left-hand side of Figure 1 illustrates the em-
bedded encoding: meaning constructors are encoded in an attribute-value matrix
(AVM) format in which embedding in the AVM mirrors the structure of the glue
side of the meaning constructor. We describe this method in Section 2. In the string-
based method, the meaning constructor is represented as a sequence of substrings
which are values of an ordered set of attributes, as described in Section 5.2.

In the second part of this paper, we explain how XLE interacts with the GSWB
to provide Glue semantics derivations. First, we explain the requirements imposed
by the GSWB in Section 3. Based on this knowledge, we describe in Section 4 the
Prolog rewrite script which serves as the bridge between XLE and the GSWB.

Finally, in Section 5 we describe various ways in which the system can be adap-
ted to particular use cases. As mentioned above, there are two alternative methods
of encoding meaning constructors in the XLE output. Furthermore, the system al-
lows for variation in terms of meaning constructors: we focus on the possibility of
using different semantic formalisms on the meaning side of XLE+Glue meaning
constructors. Section 6 concludes the paper.

2 Encoding meaning constructors as AVMs

(2-a) illustrates the meaning constructor for the proper name Kim in the standard
format, and (2-b) illustrates the corresponding AVM encoding, where the meaning
constructor appears as a member of the GLUE set. In this section, we follow the
usual notational convention of referring to f-structures by means of letters like k
and s, but in later sections we will use numbers instead, since the Prolog rewrite
script relies on the numeric indices assigned to f-structures (or other relevant struc-
tures) in the Prolog output format of XLE. We start with examples where each
GLUE set contains only one meaning constructor, but in other cases several mean-
ing constructors appear as members of the GLUE set, as we show in Section 2.2.

2See Section 3.2 for discussion of the ways in which meanings can be represented in the system,
including as terms of the typed lambda calculus.
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2) a Kim: k.

PRED ‘KIM’
b MEANING KIM
: GLUE RESOURCE k
TYPE e

In the AVM encoding,? each glue meaning constructor minimally consists of three
attributes. The value of MEANING is the semantic (left-hand) side of the mean-
ing constructor, while RESOURCE and TYPE specify the glue (right-hand) side:
RESOURCE points to the relevant linguistic resource, while TYPE specifies RE-
SOURCE’s type. In XLE notation, the f-structure constraints contributed by a proper
name like “Kim” are:

(3) (*» PRED) = ’Kim’
($mc MEANING) = Kim
($mc RESOURCE) = *
($mc TYPE) = e

$mc $ (~ GLUE)

$mc is a local name (see Section 2.3.4) used to construct an attribute-value struc-
ture containing attributes specifying the glue meaning constructor (MEANING,
RESOURCE, TYPE). This f-structure is added to the GLUE set by specification
of the constraint $mc $ (~ GLUE).

A glue meaning constructor may also involve implication, as for a verb like
smile in (4), where a resource is consumed in order to produce another resource.
The standard meaning constructor for the verb smile is given in (4-a), and the AVM
translation is given in (4-b). In the AVM encoding, ARG1 is the first resource to be
consumed, ARG?2 the second, etc. The resources to be consumed are specified using
the RESOURCE and TYPE attributes. See (5) for constraints contributed by smile:

4) a.  smile: k., —o 8¢

[PRED ‘SMILE<SUBJ>’
SUBJ k:[]
MEANING SMILE

b. s RESOURCE k
ARG1
GLUE TYPE €
RESOURCE s
TYPE t
(5) (®» PRED) = ’smile<(” SUBJ)>’
($mc MEANING) = smile
($mc RESOURCE) =
($mc TYPE) = t

3Here and in the rest of this section, glue premises are presented in the embedded encoding
format. We discuss the alternative flat encoding format in Section 5.2.
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($mc ARG1 RESOURCE)
($mc ARGl TYPE) = e
$mc $ (~ GLUE)

= (~ SUBJ)

The f-structure for the sentence “Kim smiles” is shown in (6). The Prolog rewrite
component (described in Section 4) collects up all of the premises in the GLUE
sets, rewrites each premise into a format suitable for input to the prover (as shown
in (7)), and passes the complete set of premises to the prover.

[PRED ‘SMILE<SUBIJI>’ T
[ PRED ‘KIM’
MEANING KIM
SUBJ k:
GLUE RESOURCE k
TYPE e
6 s _
MEANING SMILE
RESOURCE k&
ARG1
GLUE TYPE ¢
RESOURCE s
TYPE t
(G
Kim : k_e
smile : k_e -o s_t

}

2.1 Universal quantification over meaning constructors

In (8-b), the f-structure labeled e is the attribute-value encoding of the meaning
constructor for the generalized quantifier “every” given in (8-a). It has two argu-
ments: ARG1 represents the restriction of the quantifier, and ARG2 represents its
scope. The value of the ARG1 attribute encodes the implication (p. — p;) (where
p is the value of the PRED attribute of the noun phrase, as shown in (8-b)), which
corresponds to a common noun meaning.* The value of the ARG2 attribute encodes
an implication from m, to F3, where F'is a variable bound by a universal quantifier,
representing the scope of the quantifier, which is freely chosen: the universal quan-
tifier V allows for a choice among various scope possibilities. At the top level we
have a new attribute FORALL,> which encodes the universal quantifier V in (8-a).

*Our sample grammars make the non-standard assumption that the meaning of a common noun
is a function from its PRED value of type e to its PRED value of type ¢; that is, a common noun like
“person” has a lexical entry of the following form:

person: (1 PRED). —o (1 PRED);
This is done for simplicity, to avoid the introduction of attributes encoding VAR and RESTR as in
standard treatments, and is not a necessary feature of the implementation.

3To display the attribute FORALL in XLE, select “constraints” in “Views” menu (or press “c”) in
the window containing the glue premises in AVM format.
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®) a  every:VE.(p. —op) —o (me — F) — I

[PRED [p
[ MEANING every T
FORALL F
[ RESOURCE
ARG1 [
TYPE e
ARG1
RESOURCE
b. m: | TYPE ¢
GLUE e: ~
ARG RESOURCE m
TYPE e

ARG2
RESOURCE F

| TYPE ¢

RESOURCE F
| TYPE t

2.2 Multiple meaning constructors contributed by a single word

9) a.  every:VE.(pe —o pt) —o (me —o F}) — F
person: Pe —° Pi

[ PRED everyone

[ MEANING every ]

FORALL F
[ RESOURCE
ARG1 [
TYPE e
ARG
RESOURCE
| TYPE t
e: ~
ARG RESOURCE m
TYPE e
b. m: ARG2
GLUE RESOURCE F

| TYPE ¢t

RESOURCE F
| TYPE ¢

MEANING person

RESOURCE
ARG
TYPE e

RESOURCE
TYPE t

Example (9) illustrates the encoding of the meaning constructor for the quantifier
everyone, decomposed into a meaning constructor contributing the “every” part
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of the meaning and another meaning constructor contributing the “person” part.
This allows for the modification of the restriction of the quantifier in examples like
everyone who smiled, and illustrates the possibility for a single word to contribute
more than one meaning constructor to the GLUE set. In (9-b), the f-structure labeled
e is the same as the attribute-value encoding of the meaning constructor for every
given in (8-b) in the previous section. The second member of the set, labeled n, is
the same as the contribution we would expect for the common noun person.

2.3 Templates for meaning constructors

The XLE+Glue system features a number of sample grammars that we refer to
in this paper. These grammars provide a set of templates for encoding meaning
constructors which may be generally useful, though it is of course possible for
grammar writers to develop their own set of templates or to modify the sample
templates as needed. We describe the basic templates here; more discussion and a
detailed description of the sample grammars can be found in the XLE+Glue manual
available in the GitHub repository (see footnote 1) as well as in the comments in
the grammar files.

2.3.1 The basic definitions

All of the templates which are used in defining meaning constructors in the sample
grammars using the AVM encoding call the two basic templates GLUE-RESOURCE
and GLUE-MEANING. The template GLUE-RESOURCE specifies an attribute-
value structure TypedRES as having the value R for the attribute RESOURCE and
the value TY for the attribute TYPE. The attributes RESOURCE and TYPE and their
values must appear in all meaning constructors in the embedded encoding format®
and argument specifications, to identify the relevant linguistic resource and its type.

(10) GLUE-RESOURCE (R TypedRES TY) = (TypedRES RESOURCE) = R
(TypedRES TYPE) = TY.

The template GLUE-MEANING specifies an attribute-value structure TypedRES
as having the value M for the attribute MEANING. This attribute corresponds to the
left-hand (meaning) side of the meaning constructor, and must appear once, at the
top level of all AVM meaning constructors.

(11) GLUE-MEANING (TypedRES M) = (TypedRES MEANING) = M.

2.3.2 Non-implicational meaning constructors: Proper names

In the sample grammar glue-basic. 1£fg, the lexical entry for the proper name
Kim is as in (12):

SThis requirement does not apply to grammars which, instead of the embedded encoding, use
the alternative string-based encoding of glue premises described in Section 5.2.
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(12) Kim N * @ (PROPERNOUN Kim) .

The sample grammar glue-basic.lfg provides the template in (13) for
proper names. It defines the f-structure PRED value, and calls the template
GLUE-PROPERNOUN to define the meaning constructor in AVM format, passing
in the argument P.

(13) PROPERNOUN(P) = (~ PRED) = 'P’
@ (GLUE-PROPERNOQUN P) .

In glue-basic.1fg, the argument P of PROPERNOUN is used to construct the
f-structure semantic form as well as appearing as the value of the MEANING at-
tribute in the AVM meaning constructor. If it is desirable for the f-structure PRED
value to be different from the MEANING value of the AVM meaning constructor,
the PROPERNOUN template would have to be defined to take two arguments, one
providing the PRED value and the other providing the MEANING value.
GLUE-PROPERNOUN simply calls GLUE-REL0-MC (mnemonic for “mean-
ing constructor for relation of arity 0”: in other words, a meaning constructor that
requires no arguments). It specifies the first and second arguments of the template
as ” and e for all proper nouns, and passes in the value of P as the third argument.

(14) GLUE-PROPERNOUN(P) = @ (GLUE-RELO-MC " e P).

In the glue-basic.1lfg grammar, it would also have been possible for the
PROPERNOUN template to call GLUE-RELO-MC directly, providing the arguments
~ and e. The intermediate template GLUE-PROPERNOUN allows for the possib-
ility that in scaling up to a more complete grammar, additional specifications may
be associated with the GLUE-PROPERNOUN template, besides the definition of the
meaning constructor.

The definition of GLUE-REL0-MC is:

@ (GLUE-RESOURCE R %mc TY)
@ (GLUE-MEANING $%mc M)
$mc $ (R GLUE) .

(15) GLUE-RELO-MC (R TY M) =

This template calls two basic templates: GLUE-RESOURCE and GLUE-MEANING.
The call to GLUE-RESOURCE specifies properties of the AVM meaning con-
structor $mc: it has an attribute RESOURCE whose value is R, and it has an at-
tribute TYPE whose value is TY. The call to GLUE-MEANING provides the value
M for the attribute MEANING in $mc. The final line requires $mc to appear as a
member of the GLUE set in the f-structure R.

When the template GLUE-RELO-MC is called with arguments *, e, and Kim,
an AVM %mc is created which corresponds to the simple meaning constructor
Kim:T.. This AVM has three attributes: RESOURCE, whose value is *; TYPE,
whose value is e; and MEANING, whose value is Kim. The final line of this tem-
plate specifies that $mc is a member of the GLUE set in the f-structure R. Thus, the
template call @ (PROPERNOUN Kim) produces the f-description given in (3).
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2.3.3 Meaning constructors requiring arguments: Intransitive verbs
In glue-basic.1fg, the lexical entry for the intransitive verb smiled is:

(16) smiled Vv * @ (VERB-SUBJ smile)
@VPAST.

The template VPAST specifies a past tense feature in the f-structure; we do not
discuss this template here. The template VERB-SURJ is defined as:

(I7) VERB-SUBJ(P) = (”~ PRED) = ’'P<(” SUBJ)>'
@ (GLUE-VERB-SUBJ P) .

As with the proper name template described in the previous section, the tem-
plate argument P is used to define both the f-structure semantic form and the
MEANING value of the AVM meaning constructor. If this is not desirable, the tem-
plate VERB-SUBJ should be defined to take two arguments, one specifying the
semantic form and the other the value of the MEANING feature in the AVM mean-
ing constructor. The template GLUE-VERB-SUBJ is defined as:

(18) GLUE-VERB-SUBJ(P) = @ (GLUE-REL1-MC (~ SUBJ) e "~ t P).

As with the GLUE-PROPERNOUN template, the GLUE-VERB-SUBJ template
simply calls GLUE-REL1-MC (mnemonic for “meaning constructor for relation
of arity 1”: in other words, a meaning constructor that requires one argument). In
scaling up to a more complete grammar, there may be additional semantic spe-
cifications associated with GLUE-VERB-SUBJ. The template GLUE-REL1-MC
is defined as:

(19) GLUE-REL1-MC (Al AITY R TY M) =
@ (GLUE-RESOURCE R %mc TY)
@ (GLUE-RESOURCE Al (%$mc ARG1l) A1lTY)
@ (GLUE-MEANING %mc M)
$mc $ (R GLUE) .

The first, third, and fourth lines of this template are the same as for the template
GLUE-RELO-MC: they specify that the meaning constructor in the GLUE set of
this verb is called $mc, that it has an attribute RESOURCE with value R, and that
it has an attribute TYPE with value TY. The additional specification in the second
line adds an attribute ARG1 to the structure, whose value for the RESOURCE fea-
ture is Al, and whose value for the TYPE feature is A1TY. When the template
GLUE-REL1-MC is called with arguments (*~ SUBJ), e, *, t,andsmile,
the resulting f-description is as in (5).

2.3.4 Scope of local names

When writing an XLE+Glue grammar, it is important to be aware of the scope
of local names (variables prefixed with %) in XLE. The scope is limited to the c-
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structure category in which the variable is used.” This means that every time a given
local name (for example: $test) is used within the same c-structure category, it
refers to the same object. For instance, if there are two template calls using the
same local name (%t est) within one lexical entry, these template calls will impose
constraints on the same object (one that corresponds to $test).

Depending on the intended effect, such behaviour of local names with respect
to their scope may be a feature (when it is the intention to constrain the same object
by separate template calls) or it may be undesired (when the intention is to impose
constraints on two distinct objects by separate template calls) — this is why it is
crucial to be aware of this when using local names.

This practical issue arises in sample grammars when a given c-structure
category contributes more than one glue premise (see Section 2.2). For in-
stance, as explained in the sample grammar glue-basic.1fqg, the template
GLUE-NOUNO-MC providing the meaning constructor for (common) nouns uses
the local name $mcn, because it must be different from the local name $mc used
by the template GLUE-QUANT-MC — both templates are called by the template
QUANT which is called in the lexical entry of the quantifier “everyone”. Another
example can be found in the template GLUE-ADJO which provides two meaning
constructors for prenominal adjectives — the call to the template GLUE-REL1-MC
uses the local name $mc to provide the meaning constructor for the basic meaning
of the adjective, while the call to the template GLUE-ADJ-MODIFIER provides
the meaning constructor combining the adjective with the noun by calling the tem-
plate GLUE-MODIFIERI which uses the local name $mcm to build this meaning
constructor.

2.4 Interim summary

So far, we have explained how to encode meaning constructors as AVMs, including
how to make use of templates which are prevalent in grammar development with
XLE. The main benefit of the AVM encoding is that it makes use of XLE’s capabil-
ities to ascertain well-formedness of the underlying structures. Meaning construct-
ors are stored in the Prolog output of XLE, so it is important to provide a principled
way of encoding them that does not clutter the output.

In the next part of the paper, we explain some technical details related to the
encoding of meaning constructors as required by the GSWB. One of the main
contributions of the XLLE+Glue system is the translation between the meaning con-
structors encoded in XLE output and the input format for meaning constructors
required by the GSWB. This is crucial for the system, since the output of XLE is
based on Prolog, while the GSWB uses a more general format aimed at mimicking
the way in which meaning constructors are encoded in Glue semantics theory.

"https://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/notations. html#N4.1.6: “A local name
can be used as a variable whose scope is limited to the schemata associated with a particular cat-
egory or lexical item.”
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3 Semantic representations and the prover

The GSWB takes a set of premises, i.e., instantiated meaning constructors encoded
in a specific string format, as input to calculate the semantics of an utterance. In
this section, we describe the required input for the GSWB: Section 3.1 explains
the encoding of linear logic formulas on the glue side, while Section 3.2 presents
different ways of encoding the meaning side of a meaning constructor.

The GSWB uses a parser for semantic types which is shared between the se-
mantic parser and the linear logic parser. See (20) for the available atomic types.?
Complex types consist of atomic types, commas and angular brackets: see (21).

(20) Atomic types: e, s, v, t
(21) Complex types:

a <e <e,<s§,t>>>

<< 8,0 >, <8, >>
<<et>t>
<<et><<et>t>>
<<e, <8, t>> < s,t>>

oo o

3.1 Encoding the glue side
3.1.1 Parsing linear logic formulas

The GSWB encodes linear logic formulas in a simple string format that is visually
similar to the actual symbols used in linear logic. For example, the — symbol is
replaced by —o. This is illustrated in (22), where some sample formulas from the
fragment of linear logic that is covered by the parser are shown. As shown in (23),
formulas can also be stated without type declarations.’

22) a. g_e
b. (g_e -0 (d_e -0 (i_s -0 h_t)))
C. ((i_s —o h_t) -o (t_s -o f_t))
d. AX_t.((d_e -o X_t) —o X_t)
e. ((g_e -0 g_t) -o AX_t.((d_e -o X_t) —-o X_t))
f. AX_t.AY s.((d_e -o (Y_s -o X_t)) -o(Y_s -o X_t))

(23) ((g -0 g) -0 AX.((d -0 X) -o X))

Examples (24) and (25) describe the formation of linear logic formulas that are
well-formed from the perspective of the parser implemented in the prover. Most
importantly, the parentheses around linear logic formulas are obligatory. Type de-
clarations should either be applied to all constants and variables, or to none. Type

8Types need to be specifically declared in the code of the GSWB, so it is not straightforward
to introduce new types. We intend to address this issue in future iterations of the GSWB. In the
meantime, you can contact the authors to get help with the implementation of new types.

° An element without a type declaration is treated as an element of type 1.

99



declarations are indicated by an underscore, e.g., _t. Universal quantification over
linear logic formulas is encoded using an upper-case A followed by some variable
(e.g. X) and a dot. As of now, the scope of a linear logic quantifier is the rest of
the formula and does not need to be indicated, and in fact should not be indic-
ated via parentheses or brackets.!? This means that linear logic quantifiers behave
differently from the first-order logic quantifiers introduced in Section 3.2.2.

(24) Atomic elements:

a. Constants: String of lower-case alphanumeric characters; optionally
with type declaration

b.  Variables: String of upper-case alphanumeric characters; optionally
with type declaration

(25) Linear logic formulas:

a. Linear implication: (¢ -0 1), where ¢, 1) are well-formed formulas
b.  Linear quantification: AX. ¢, where ¢ is a well-formed formula

3.2 Encoding the meaning side

The GSWB currently supports three modes for encoding meaning representations.
Each mode needs to specify a procedure for encoding functional application and
abstraction. The default mode of the GSWB is a simple concatenation mode.

3.2.1 Concatenation mode

In this mode, any (string-based) format of semantic representation is compatible
with XLE+Glue. In this simple format, functional application is expressed in the
output by wrapping the argument in parentheses and concatenating functor and ar-
gument as in (26-a). Abstraction is handled by introducing a corresponding lambda
binder as in (26-b).

(26) a. Combining (1 — 0) : smile and 1 : Kim
to: 0 : smile(Kim)
b. smile(x) to Ax.smile(x)

3.2.2 Semantic parser mode

This is the second input mode for the GSWB. The semantic parser provided by
the GSWB can parse lambda expressions in accordance with a GSWB-internal
semantic fragment, supporting alpha- and beta-conversion. This section describes
how to use this semantic parser and provides guidelines for writing lambda expres-
sions that can be parsed by it.

To activate the semantic parser, change the value of the variable semParser
to 1 (instead of 0) in the x1erc file. When this mode is active, unparsable input on

10This behaviour is currently investigated and might change in the future.
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the meaning side will result in a parsing error. The current version of the semantic
parser is completely independent of the glue side, which means that type restric-
tions need to be manually added. Furthermore, eta-conversion is not possible. This
may change in the future.

The semantic parser parses lambda expressions and first-order logic terms.
First-order predicates are encoded in the classic prefix notation. There is no con-
vention with respect to the casing of predicates or constants, thus, the FOL terms
in (27) all express a liking relation between two constants.

(27) a. like(mary,semantics)
b. LIKE (mary, semantics)
C. like (MARY, SEMANTICS)

Lambda expressions are introduced via a scope defining bracket and a slash,
followed by the variable that the lambda operator binds. Variables require a type
declaration to be distinguished from constants. This is done by using an underscore
and a type as specified at the beginning of Section 3. Bound occurrences of a vari-
able should not be typed again. The scope of the lambda function is separated from
the binder via a dot. It can be any kind of well-formed (lambda) expression. See
(28) for some examples of lambda expressions.

(28) a. [/x_e.sleep(x)]
b. [/x_e.[/w_s.sleep(x,w)]]
C. [/P_<e,t>.[/Q <e,t>.[/x_e. (P(x) & O0(x))11]

The basic logic operators A, V and — can be used as infix operators (see
(29-a)—(29-¢)), although their scope has to be defined via brackets or parentheses.
Brackets may indicate operator and quantifier scope simultaneously (see (29-d)).
Other operators must be encoded as FOL predicates in prefix notation (see (29-e)).

29) Logical ‘and’ (A): (P (x) & Q(x))

Logical ‘or’ (V): (P (x) v Q(x))

Logical ‘implication’ (—=): (P (x) -> Q(x))
Variant with brackets: Ex_e [P (x) & Q(x)]

Prefix notation: equals (x, y)

oo o

Quantifiers are introduced via the upper-case letters A and E, and the typed
variable that they bind. The scope is defined via brackets as shown in (30).!!

(30) a. Ex_e[dog(x) & bark(x)]
b. Ax_e[cat(x) -> sleep (x)]

Functional application steps such as in the semantic terms for quantifiers are
determined contextually. Consider P (x) and Q (x) in example (31). The P and ()

Since A and E are reserved for quantifiers, these letters should not be used to encode other
terms, e.g., variables, or constants.
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variables over predicates followed by the = variable as an argument are translated as
functional application steps (apply P/Q to x), rather than as a one-place predicate
with a bound variable (P(x)).

(Bl) [/P_<e,t>.[/Q <e,t>.Ex_e[P(x) & Q(x)]1]]

Abstraction is handled in the same way as in the concatenation mode: by adding a
lambda binder to semantic formula, that is represented in terms of the A symbol.

3.2.3 Prolog mode for external semantic representations

The third mode supported by the GSWB is the Prolog mode, which shows how the
GSWB can be made compatible with other semantic resources. It can be activated
by setting the semParser value to 2 in the x1erc file. This mode implements
an alternative string encoding of semantic objects based on the system presented
in Blackburn and Bos (2006). Using this system means that all constants are ex-
pressed in terms of lower-case letters and all variables are encoded as (starting
with) upper-case letters. Functional application is expressed in terms of the two-
place predicate app/2, where the first argument is the functor and the second
argument is the argument. Lambda expressions, and, thus, lambda abstraction, are
introduced by wrapping a term in the two-place predicate 1am/2. The first argu-
ment denotes the variable that is bound by the lambda and the second argument of
lam/ 2 denotes the body of the function. (32-a) is an example of a lambda expres-
sion in Prolog notation. This corresponds to the functional application shown in
(32-b). In the complex argument of this formula, x is combined with Av.bone(v),
which is visually indicated as a function in terms of the square brackets. The vari-
able x is then abstracted over by adding Ax to combine with the quantifier.

(32) a. app(lam(R,lam(S,every (Y, imp (app (R, Y),app(S,¥))))),
lam (X, app (lam(V,bone (V)),X)))
b. ARASVy[R(y) — S(y)](Az.[\v.bone(v)](x))

4 Prolog rewrite component

The Prolog rewrite component takes the Prolog output of an XLE parse'? as input

and translates it into a set of premises based on the specifications introduced in
the previous section. It does not rely on any particular assumptions about where
the GLUE attributes must appear; GLUE attributes and their values are a part of
f-structure in our sample grammar glue-basic.1lfg, while our sample gram-
mar glue-basic-semstr.1fg places them at s-structure. Indeed, the system
works even if some GLUE attributes appear at f-structure, and others appear in other
structures. It is also not necessary for the meaning constructors to be distributed in
any particular way in the structure in which they appear; the system simply gathers

Phttps://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/xle. html#Prolog_Output
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up all members of every GLUE set in the input representation, rewrites them into the
standard format, and passes the resulting set of standard-format meaning construct-
ors to the prover. Thus, decisions about which structure hosts the GLUE attribute
and its values should be made on the basis of linguistic considerations, and are not
determined by properties of the implementation. Attributes other than the GLUE
attributes and their values are ignored and discarded by the rewrite component.

Each element of the GLUE set provides one premise: as explained in Section 2
for the embedded encoding format of premises, the value of MEANING provides
the semantic side, while RESOURCE, TYPE, and the ARGI...N attributes provide
the glue side.'?

The values of the RESOURCE attributes are instantiated to the numeric labels
provided by XLE. Because the numeric indexing for semantic forms in the Prolog
output format is independent of the numeric indexing for other structures (for ex-
ample, there may be an f-structure with numeric index 1 and also a semantic form
with numeric index 1 in the same f-structure), the numeric index of a semantic
form is additionally prefixed with an S, e.g., S1, to ensure uniqueness of indices.
As described in Section 2.1, the FORALL attribute is used to encode linear quanti-
fication. Different quantified variables are distinguished by combining the label F
with the unique f-structure index.

(33) a. AFll_t.((sl_e -o sl_t) -o ((4_e -o Fll_t) -o Fll_t))
b. VFllt.((Sle —0 81t> —0 ((46 —0 Fllt) —0 Fllt))

[PRED 1
[ MEANING every ]
FORALL F11
[ RESOURCE 1] |
ARG
TYPE e
ARG1
RESOURCE 1
TYPE ¢
. 4 L J
¢ GLUE ;
RESOURCE 4
ARG1
TYPE e
ARG2
RESOURCE F11
| TYPE ¢ |
RESOURCE F11
TYPE ¢

Example (33-a) shows the output produced by the rewrite component for a gener-

B1n fact, only the attributes MEANING, RESOURCE, TYPE, and FORALL have a special status in
the embedded encoding format. All other attributes are assumed to represent arguments, which are
consumed according to alphabetical order. It would also be possible to use A, B, C; Al, A2, A3;
or any other alphabetically ordered series of attributes for arguments. It is not possible to substitute
other names for the special attributes MEANING, RESOURCE, TYPE, FORALL when the embedded
encoding format is used.
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alized quantifier encoded in AVM format as (33-c) (as discussed in example (8)),
corresponding to the standard format meaning constructor in (33-b). All of the
conventions discussed above are illustrated in (33-a): F11 is bound by a universal
quantifier, s1 refers to the semantic form whose index is 1, and 4 refers to the
f-structure whose index is 4.

S Illustrating the flexibility of the system

In this section, we present a variety of different modifications of the XLE+Glue
system, including the possibility to use different semantic formalisms, as well as
alternative encodings of glue premises in XLE. We also show how additional (se-
mantic) resources can be added to the pipeline. Through this, we demonstrate how
to enhance the functionality and coverage of the system.

5.1 Different semantic representations
5.1.1 Event semantics (with semantic parser)

While glue-basic-semparser.lfqg is the sample grammar using the se-
mantic parser (see Section 3.2.2), glue-basic-semparser_ND.1fqg is its
modified version using Neo-Davidsonian event semantics (Parsons 1990).

Rather than using predicates with variable arity (depending on the number of
arguments of the predicate), in event semantics the predicate has only one argu-
ment, the event variable, while the dependents of the predicate are related to it us-
ing separate predicates whose names correspond to the semantic role of the given
dependent (such as agent, theme, etc.).

The examples below provide semantic representations of the running example
“Kim smiled” produced by the grammars glue-basic-semparser.lfg
and glue-basic—-semparser_ND. 1fg, respectively: in (34-a) the predicate
smile has one argument (K ¢m), while in (34-b) the only argument of smile is
the event variable (here: z), while Kim is related to the event z using the agent
predicate (K¢m is the agent of z).

(34) a. smile(Kim)

b. exists ([Az_v.and(smile(z),agent (z,Kim))])

5.1.2 DRT semantics (with Prolog mode)

In Section 3.2.3, we demonstrated that the GSWB supports Prolog-style encod-
ing of semantic formulas as output. Using this mode, we provide a DRT-mode in
XLE+Glue to illustrate the possibility to interact with different semantic resources.
To activate the DRT-mode, set the following values of variables in the x1erc file:
processDRT to 1, semParser to 2 (Prolog mode on).

The DRT-mode makes use of the Boxer DRT system (Bos 2008, 2015, Black-
burn and Bos 2006) optimized to interpret A-DRT formulas as described in Gotham
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Figure 2: Boxer-style DRT representation: Every man saw a woman

and Haug (2018).!* To include those two components, we extended the A-DRT sys-
tem with some simple wrapper code to execute it from within XLE+Glue. Thanks
to the Prolog-style encoding option of the GSWB, the lambda DRT component can
directly process the GSWB’s output and produce a graphical Boxer-style repres-
entation of the Prolog term that is presented in the output window of XLE+Glue.
This is shown in Figure 2.

5.2 Meaning constructors encoded as strings

Section 2 describes the f-structure encoding of meaning constructors as AVMs, us-
ing the attributes RESOURCE, TYPE, MEANING, and ARG1...ARGN. In this encod-
ing, the embedding in the AVM representation reflects the structure of the linear
logic expression that is encoded, since material on the left-hand side of a linear
implication is represented as the f-structure value of an attribute such as ARGI.

This section describes an alternative encoding: the string-based, flat encoding.
In this encoding, the substrings of the meaning constructor are encoded as values
of the attributes in a single AVM, which are concatenated together to produce the
input to the prover. This is in some ways a simpler encoding, since it does not re-
quire the construction of a complex AVM to reflect the structure of the linear logic
term. However, it requires a detailed understanding of the input format required by
the GSWB prover, and it is also easier to make mistakes in the encoding, which
can make it harder to use.

The flat encoding is illustrated in (35), where 1 is the label assigned by XLE to
the outermost f-structure:

'“We thank Johan Bos and Matthew Gotham for making their A-DRT tools available to us.
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(35) a. Kim:1_e

[PRED ‘KIM’ i
Al KM
A2
b. 1 GLUE A3 1
A4
A5 e
c. Kim : 1 _ e

Al A2 A3 A4 A5

In this encoding, the substrings of the meaning constructor input to the GSWB
prover are encoded directly. By convention, this encoding uses the attributes
Al,A2,..., but in fact any attributes can be used except for the special attribute
MEANING, which indicates to the transfer component that the embedded encoding
is being used. It is possible to have meaning constructors encoded in the string-
based format and the standard embedded format coexisting in the same f-structure,
or even in the same GLUE set.

In the transfer component using the flat encoding, the attributes are sorted into
alphabetical order, and the substrings of the meaning constructor are concatenated
according to that ordering. (35-c) shows the correspondence between the attributes
of the f-structure in (35-b) and the resulting meaning constructor. A cautionary
note: if there are 10 or more meaning constructor substrings encoded via attributes
Al...Al10Q... inan AVM, the attribute A10 will sort alphabetically between the
attributes A1 and A2; in that case, therefore, the single-digit attributes should be
prefixed with 0 (201,202, ...A10,A11, .. .) to ensure that the values of the
attributes are concatenated in the correct order.

In the sample grammar glue-basic-flat-encoding.lfg, the lexical
entry for Kim shown in (12) calls the PROPERNOUN template in (13), which in
turn calls the template GLUE-RELO-MC defined in (14). In the string-based, flat
encoding, GLUE-RELO-MC is defined as follows:

(36) GLUE-RELO-MC (R TY M) = (%mc Al) = M
($mc A2) = ‘:
($mc A3) = R
($mc A4d) = _
($mc A5) = TY
$mc $ (R GLUE) .

The value of the attribute A1 is the meaning term, which is the first component
of the meaning constructor for Kim. The value of A2 is the colon separating the
meaning side of the meaning constructor from the glue side, which must be quoted
with a backquote. The value of A3 is the f-structure for Kim, the value of A4 is the
underscore separating the f-structure from its type, and the value of A5 is its type,
as specified by TY in the template call to GLUE-RELO-MC. Further examples can
be found in the sample grammar glue-basic-flat-encoding.1lfgq.
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6 Conclusion

In this paper we presented the XLE+Glue system, which provides an interface
between XLE and the GSWB with the goal to contribute to the ongoing reinvigor-
ation of computational Glue semantics.

We paid particular attention to the encoding of glue formulas within XLE gram-
mars for which we have presented several alternatives to show that the system can
deal flexibly with different ways of tackling the issue. In particular, we presented
a novel encoding of glue premises in terms of AVMs, where linear logic terms are
encoded in a hierarchical structure. However, we also demonstrated that an altern-
ative flat encoding is possible. Furthermore, we showed how the XLE+Glue system
can be made compatible with different semantic formalisms as well as additional
semantic resources.

Although this paper presents the XLE+Glue resource in terms of a co-
descriptive approach to Glue semantics in the sample grammars, the encodings
presented in this paper are in fact agnostic with respect to ideas about the syn-
tax/semantics interface and the choice of semantic formalism. This means that we
provide a flexible system for computational Glue semantics that can be optimized
to cater for the needs of an individual grammar developer and the needs of the
given grammar theory that the developer wants to implement.

This paper provides an introduction to the XLE+Glue system and describes
some of the more important technical details. However, we strongly encourage the
reader to consult the manual provided in the XLE+Glue GitHub repository (see
footnote 1) before starting to work with the system, as it describes its technical
underpinnings in more detail. For a quick start guide to experiment with the system,
see the README file in the repository which provides a minimal description for
setting up the system. Both of these resources will be continuously updated as new
features are introduced to XLE+Glue to make the system a long-lasting resource
for computational linguists.
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