Mapping Theory and the anatomy of a
verbal lexical entry

Jamie Y. Findlay

University of Oxford

Proceedings of the LFG’20 Conference

On-Line
Miriam Butt, Ida Toivonen (Editors)
2020
CSLI Publications
pages 127-147
http://csli-publications.stanford.edu/LFG/2020

Keywords: mapping theory, argument structure, glue semantics, lexicon, templates

Findlay, Jamie Y. 2020. Mapping Theory and the anatomy of a verbal lexical entry.
In Butt, Miriam, & Toivonen, Ida (Eds.), Proceedings of the LFG’20 Conference,
On-Line, 127-147. Stanford, CA: CSLI Publications.

http://csli-publications.stanford.edu/LFG/2020
http://creativecommons.org/licenses/by/4.0/

Abstract

This paper presents a new formal framework within which to implement
(Lexical) Mapping Theory. It differs from previous accounts in that it is ex-
pressed in terms of vanilla LFG+Glue, rather than relying on any additional,
bolted-on formal machinery.

1 Introduction

This paper proposes a new set of tools for describing the mappings between seman-
tic arguments and their grammatical functions, the kind of linkings that are stan-
dardly handled in LFG by (Lexical) Mapping Theory (LMT).! Although I make
some specific theoretical assumptions here — both for the sake of concreteness, and
as a contribution to one particular strand of research — it is worth highlighting that
the tools I describe in this paper are compatible with a number of different versions
of LMT. As such, these proposals should be of interest even to those coming from
quite different theoretical backgrounds.

The theoretical assumptions I make here are of two types. Firstly, the underly-
ing theory of LMT I will be assuming is that of Kibort (2001, 2007, 2014), with
some adjustments as described in Findlay (2016). Secondly, I will follow the archi-
tectural assumptions of a strand of research originating with Asudeh & Giorgolo
(2012), namely that LFG does not require a dedicated level of a(rgument)-structure,
since the same results can be achieved by using Glue Semantics and a more artic-
ulated s(emantic)-structure (on which see e.g. Asudeh et al. 2014, Findlay 2016,
Lowe 2014, 2015, Lovestrand 2018). That research also emphasises the use of tem-
plates (Dalrymple et al. 2004, Crouch et al. 2017), labelled chunks of functional
description, as a means of modularising the lexicon and capturing generalisations.
The present work shares this focus, whilst also highlighting the role of templates
in presenting complex formalism in a more user-friendly format.

The main goal of this paper is to describe a set tools which allows LMT to
be implemented using only the vanilla LFG+Glue formalism, with no additional
formal machinery required. Although the modular architecture of LFG allows for
different levels of representation to have their own formal properties, I believe that

"This work has benefitted enormously from conversations over the years with Ash Asudeh,
Miriam Butt, Anna Kibort, Joey Lovestrand, and John Lowe, to whom I wish to express my thanks.
They won’t agree with all I have to say here, however, and of course bear no responsibility for any
errors. I would also like to thank the two reviewers for their detailed comments on an earlier draft:
the present paper has been incalculably improved as a result.

"There are various names for the theory of the mapping between arguments and grammatical
functions in the LFG literature: Lexical Mapping Theory is perhaps the most widespread, although
several scholars have pointed out the problems with seeing the theory as applying purely in the
lexicon (e.g. Butt 1995, Alsina 1996), and so often the ‘Lexical’ is dropped, giving us ‘Mapping
Theory’ tout court (as in e.g. Kibort & Maling 2015). Other names include Functional Mapping
Theory (e.g. Alsina 1996) and Linking Theory (e.g. Butt et al. 1997). In this paper [use ‘LMT’ as a
cover term, without taking a particular position on what the theory ought ultimately to be called.

128

we should prefer sparser theories, all things being equal, and so if we can do with-
out these extra mechanisms, we should. What is more, if new objects or operations
are introduced into the framework, their formal properties should be rigorously
defined, and this has not always been the case with LMT proposals.

In Section 2, I discuss some preliminaries, about LMT and about the use of
templates. Sections 3 and 4 give the formal details of my proposal. Section 5 shows
how this can be used to represent Kibort-LMT, and then Section 6 examines argu-
ment alternations using that theory. Section 7 concludes.

2 Background
2.1 Three facets of LMT

In this section, I will discuss what I believe are the three basic components of LMT,
and, in so doing, offer some concrete points of departure for my own proposals.

2.1.1 Linking

In broadly theory-neutral terms, LMT is a theory of the linking between seman-
tic arguments and grammatical functions. But already at this very abstract level
there are technical questions: how should we actually implement this linking? Most
work in LMT (e.g. Bresnan & Kanerva 1989), including the most fully developed
modern implementation, that of Kibort (2001, 2007, et seq.), leaves the mapping
relation totally unanalysed, and says nothing about how it is to be integrated into
the LFG architecture. This is clearly problematic from the point of view of formal-
isation. Butt et al. (1997) were the first to take this problem seriously, proposing
that linking is codescription — specifically, a set of constraints which describe the
correspondence between a-structure and f-structure. Although Asudeh & Giorgolo
(2012) highlight a number of problems with the architecture proposed by Butt et al.
(1997) (see Findlay 2016: 303-309 for discussion), they also agree that linking
should be handled by codescription, and this is the approach I will take here as
well. As mentioned earlier, I assume that a-structure has been replaced by a con-
nected s-structure, and so the mapping equations will describe the relation between
f-structure and s-structure, via the o-projection. This means that the functional de-
scription for a given analysis will contain equations like (1), which says that the
AGENT argument of a predicate is associated with the SUBJ GF:

(I) (1T SUBJ), = (Ts AGENT)

Knowing what the nature of the relation between arguments and GFs is is one
fundamental component of LMT. But it doesn’t address the question of how we
decide which GFs are linked with which arguments. There are two aspects to this.
Firstly, we need an account of the possible GFs an argument can be associated
with, incorporating a degree of flexibility to allow for argument alternations; sec-
ondly, we need a way of resolving this indeterminacy so that we arrive at the final

129

mapping.
2.1.2 Mapping possibilities

The first of these challenges is generally met in LMT by associating each argument
with a pair of GFs, via a feature decomposition which breaks GFs down into pur-
portedly natural classes. The standard breakdown of GFs is as follows (Bresnan &
Kanerva 1989: 24f.):

) | —r +r
—o | SUBJ OBLg
+o0 | OB] OBIJy

Each argument can then be associated with a single feature, say [—o], which allows
it to be realised as one of the two compatible GFs, in this case SUBJ or OBLg. This
is often done on the basis of intrinsic classifications, e.g. Agent-like arguments
are intrinsically [—o], Patient-like arguments are [—r], etc. There is also scope for
cross-linguistic variation in how different kinds of arguments are classified.

There are certain unanswered questions about the exact status of these features
(see Findlay 2016: 298f. for some discussion), and about whether they have any
real explanatory value (does saying an argument is [+o] say anything more than
that it is realised as an OBJ or OBJy?). As Findlay (2016: 299) concludes, however,
all that is essential is just that each argument should be associated with a pair
of GFs, and we can achieve this in a more explicit way by simply defining four
abbreviations:

(3) a. MINUSO = {SUBJ | OBLy} c. MINUSR = {SUBJ | OBJ}
b. PLUSO = {OBJ| OBy} d. PLUSR = {OBJy|OBLy}

Of course, insofar as the feature decompositions really do capture natural classes,
this arbitrary listing is unsatisfactory. However, as a reviewer laments, the features
[£o/r] in fact describe an unnatural class (no alternation involves the two [+7]
GFs, 0BJy and OBLy) and also fail to describe a natural class, that of terms or direct
GFs, viz. SUBJ, OBJ, and OBJg (Alsina 1996: 29, fn. 9). Other feature decomposi-
tions are certainly possible (Alsina 1996: 19f. uses the features [+obl/subj], for
instance), and may be more satisfactory from a descriptive point of view, but using
explicit disjunctions is the more conservative approach: at worst we are missing
a more profound explanation for our generalisations (though we can still express
such generalisations), but this is preferable to introducing new entities to our for-
mal ontology which may not be well motivated. And although there may be issues
with it, the [+0/7] decomposition, and thus the groupings given in (3), is still very
much the orthodox view (it is the one presented in textbooks/handbooks such as
Bresnan et al. 2016: Ch. 14, Dalrymple et al. 2019: Ch. 9, and Borjars et al. 2019:
Ch. 8, for instance), and so it is the system I will work with here.

130

2.1.3 Mapping resolution

Once we have associated each of a predicate’s arguments with a pair of GFs, the
final step in mapping is to resolve this indeterminacy and select a single GF for
each. How is this done?

All versions of LMT appeal to some kind of ranking of a-structure arguments,
along with a ranking of GFs. Often these take the following forms:

4) Thematic hierarchy (Bresnan & Kanerva 1989: 23)
Agent > Beneficiary > Recipient/Experiencer
> Instrument > Theme/Patient > Location

5 Grammatical function hierarchy (Bresnan & Zaenen 1990: 49)
SUBJ > OBJ, OBLy > OBlJy

Mapping is then a question of correctly harmonising these two hierarchies. In
classical LMT (Bresnan & Kanerva 1989, Bresnan & Zaenen 1990), arguments
in a-structure are ordered left-to-right according to their position in the thematic
hierarchy (with the leftmost argument having the highest thematic role). Various
Mapping Principles then assign mappings according to certain ranking properties:
if the leftmost argument is [—o], it is mapped to SUBJ, otherwise a [—r] argument
is; of the remaining arguments, the highest thematic roles are mapped to the lowest
GFs compatible with their intrinsic features.’

The use of a thematic hierarchy for these purposes is hugely problematic, how-
ever. As has been frequently discussed, a satisfactory list of thematic roles has
never been given (Dowty 1991, Davis 2011), and even when a set of roles is agreed
on, different phenomena seem to call for different orderings in the hierarchy (Rap-
paport Hovav & Levin 2007), all of which renders the explanatory power of a pur-
portedly universal thematic hierarchy highly suspect. For this reason, Kibort (2007)
advocates a separation of a-structure argument positions from thematic roles (a re-
turn to the earlier LFG position of e.g. Bresnan 1982), with a-structures instead
containing sui generis argument positions, drawn from a universally available set
of ordered arguments, each intrinsically associated with one of the LMT mapping
features (arg; is normally associated with [—o], but [—7] is used for unaccusatives):

(6) (arg, arg, args argy ... arg,)
[=ol/[=r] [=r] [+o] [-0] i

This allows Kibort to reduce the classical LMT Mapping Principles to a single
principle: the highest arguments are mapped onto the highest compatible GFs.
However, both the classical and the modern approaches to LMT suffer from

?Classical LMT also requires two well-formedness principles to rule out some unwanted map-
pings that would otherwise be licensed by the Mapping Principles. Firstly, the Subject Condition
ensures that there must be a SUBJ. Secondly, Function-Argument Biuniqueness ensures that no two
arguments map to the same GF, and vice versa. Kibort’s version of LMT makes the Subject Condition
redundant, and the proposals in this paper also make Function-Argument Biuniqueness unnecessary.

131

what seems to me a critical flaw: the actual application of the Mapping Principle(s)
happens ‘off stage’. There is no explanation of how the harmonisation between
the two hierarchies (whichever two are used) might be achieved using the existing
LFG machinery, and in fact no formal details of the implementation are usually
given at all. Once again, Butt et al. (1997) are the exception here, since they give
an explicit algorithm for resolving the final mapping. But their approach uses a
separate system which is wholly outside of the LFG architecture. It seems to me
something of an embarrassment for LMT that carrying out its very raison d’étre,
determining the linking between semantic arguments and GFs, must ultimately be
outsourced. It would be far better if LFG were able to do the heavy lifting ‘in
house’, and one of the goals of this paper is to show that this is indeed possible.

2.2 Modularisation of the lexicon

The other goal is to show that such a theory can be developed in a way which con-
tributes to the ongoing project of modularising the lexicon. This refers particularly
to the use of templates (Dalrymple et al. 2004, Crouch et al. 2017) to factor out
information and allow generalisations to be expressed.

A template is just an abbreviation for a piece of functional description. It can
be used to label annotations which often appear together, for example. (7) is a very
simple lexical entry for the third-person singular verb form protects in English:

(7) protects V (T PRED) = ‘protect’

(T TENSE) = PRESENT
(1 SUBJ NUM) = SG
(

1 SUBJ PERS) = 3

Since any third-person singular verb form in English will also contain the final two
lines, we can bundle them together into a template called 3SG:

(8) 3SG =
(T SUBJ NUM) = SG
(T SUBJ PERS) = 3

Then we can rewrite the lexical entry using this template:

(9) protects V (T PRED) = ‘protect’
(T TENSE) = PRESENT
@3SsG

The @ symbol is prefixed to a template name to ‘call’ it. Calling a template just
replaces it with its contents. The lexical entries in (7) and (9) are therefore exten-
sionally equivalent — they contain the same functional description — it’s just that
the latter expresses a generalisation rather more transparently. Templates can also
be made more flexible by parametrising them. (10) gives a very simple example:

132

(10) TENSE(X) :=
(1 TENSE) = X

This template can be called with an argument, and that argument will appear as the
value of 1’s TENSE feature. We can thus further modify our running example:

(11) protects V (T PRED) = ‘protect’
@TENSE(PRESENT)
@3SG

There are a number of advantages, both practical and theoretical, to using tem-
plates to break down lexical entries in this way. Firstly, they make grammar engi-
neering much more robust, since if something needs to be changed in a grammar a
single template definition can be modified, rather than having to go in and change
every relevant lexical entry individually, which would inevitably lead to errors.
Secondly, they can make analyses more readable and make theoretical tools more
user friendly, by concealing formal ‘gore’ but leaving the theoretically interesting
claims exposed. This is akin to how modern programming languages abstract away
from the machine code which ultimately implements a program. This kind of mo-
tivation has been present in LFG since the start — for example, in the use of the
more readable 1 to abbreviate the clunkier ¢(M (x)). We can see a thoroughgoing
templatic approach as offering an interface to the LFG formalism which is eas-
ier for the theorist to work with. Lastly, templates can make important empirical
generalisations easier to see and easier to represent. By searching for ways to ab-
breviate lexical entries, we can be led to notice where they share information and
where they differ from one another — and where they do differ, if they do so only in
limited ways (where a template could be parametrised) or more profoundly. In this
way, templates can also help mark the distinction between formalism and theory:
while the LFG formalism itself places relatively weak limitations on what can be
expressed, our choice of basic templates can impose strong limits.

The rest of this paper will present an analysis of verbal lexical entries whereby
they can be broken down into the following parts:

(12) verb V [core information]
[valency information]
[argument alternations]
[other information]

The first three parts of the functional description are the focus of this paper, since
they relate to mapping. Each verb must contain some core information about the
relation it expresses. What exactly this encompasses is the focus of Section 3. It
must also contain information about its valency: this part of the entry identifies
the arguments of a predicate, what roles they play in the eventuality described by
the predicate, and how they are realised syntactically; Section 4 details how this
is accomplished. In addition to a verb’s basic/underived valency frame, there can

133

also be extra information realising various morphosyntactic argument alternations,
like the passive. Section 6 addresses this component. Finally, there will be other
information — about agreement, for example, or relating to idiosyncratic features
of the particular verb. Here too it is to be hoped that sub-regularities can be found
which can then be factored out into templates (as with the example of 3SG above),
but this will not be my focus here.

3 Core information

There are two sides to the core information section of a verbal lexical entry. On the
grammatical side, the entry must provide a PRED value for f-structure, and a REL
value for s-structure. On the meaning side, it must provide a meaning constructor
expressing what kind of eventuality the verb denotes.

The current status of PRED and REL is far from settled: many if not all of
the important functions of PRED have been taken over by Glue Semantics (An-
drews 2008), and REL really has no substantive role in the theory (Lovestrand
2018: 169ff.; although see Lowe 2014), but I include both for consistency with
other work which makes use of them. Assuming that PRED and REL always have
the same value (Lovestrand 2018: 170), the grammatical side of things can easily
be expressed in a template PRED-REL:

(13) PRED-REL(X) :=
(1 PRED) = ‘X"’
(ts REL) = X

We can then combine this with the meaning constructor in a template VERB-
LEXEME:?

(14) VERB-LEXEME(pred-rel, meaning) =
@PRED-REL (pred-rel)
Ae.meaning(e) : (T, EVENT) —o 1,

Let us take the verb give as our running example going forward. Its core informa-
tion would be expressed as in (15), which is equivalent to (16):

(15) give V @VERB-LEXEME(give,give)

(16) give V (1 PRED) = ‘give’
(1o REL) = give
Ae.give(e) : (T, EVENT) —o 1,

31 am making a number of simplifying assumptions here. Firstly, there are well-known problems
with treating verbal meanings as being of type (v,t) relating to scopal interactions (or the lack
thereof), and we should instead use a higher type ((v, t),t), as advocated by Champollion (2015).
But for the sake of simplicity I stick to the lower type here, since this is not a focus of the present
paper. Secondly, the meaning constructor assumes that the verb denotes a predicate of events, and
ignores states — stative verbs will require a subtly different treatment, and this distinction could easily
be factored out by using further templates.

134

4 Valency information

The valency information of a verb has five parts, which will be presented in turn:
1. A meaning constructor which connects the arguments to the event described
by the verb.
2. A set of existential constraints, requiring the presence of these arguments.
. An expression identifying the default logical subject.
. A set of DEFAULT-MAPPING templates, determining the default linking be-
tween the arguments and their GFs.

5. A set of PREFERRED-MAPPING templates, which implement LMT’s Map-
ping Principle(s).

B~ W

4.1 Valency meaning constructor

The valency meaning constructor consumes a verbal meaning and returns a new
meaning constructor which consumes the arguments of the verb. In other words,
it raises the type of the verb from the simple (v,t) to a higher type with more
dependents: (71, ..., Ty, (v,t)), where 11 is the type of the first argument, and 7,,
the type of the last argument. For our running example, this will be (17):

(17) APAzAyAzXe.P(e) Nagent(e,z) Atheme(e, y) Abeneficiary(e, z) :
[(Ts EVENT) — 1,] —
(Ts AGENT) —o (1, THEME) —o (1, BEN) —o (1, EVENT) — T,

I use thematic role names to label s-structure arguments purely for readability; this
choice has no theoretical significance, and I continue to assume, following e.g.
Kibort (2007) and Asudeh & Giorgolo (2012), that thematic role information is
best left out of the grammar itself and relegated to the meaning language (see also
Findlay 2016: 314). The choice of s-structure argument labels is arbitrary, and we
could as well have used ARG1, ARG2, etc. — the reason I have not done so here is in
order to avoid confusion with the argument positions in Kibort’s valency frame. In
Findlay (2016), I took the two to be equivalent, but this is an unnecessary restriction
to impose on the formalism, and one which weds it too closely to one particular
theory. We will see below how that information can instead be encoded using local
names if we wish to implement Kibort’s theory.

4.2 Existential constraints

Once again in contrast to Findlay (2016: 320, fn. 19), I do not assume that be-
ing mentioned in a meaning constructor is sufficient for an attribute to appear at
s-structure. Instead, the lexical entry for a verb also includes an existential con-
straint for each of the arguments mentioned in the valency meaning constructor,
requiring its presence. A constraint like (1, AGENT)’ requires there to be a posi-
tive specification somewhere in the functional description which provides the con-
tents of the AGENT argument position at s-structure. The normal way for this to

135

happen is for the argument to be linked to a GF — then a lexically-specified REL
value can be passed on. These existential constraints therefore effectively require
that the arguments they mention participate in mapping, unless some argument
suppressing operation can be appealed to.

4.3 Specification of logical subject

Many mapping theories appeal to a privileged, ‘most prominent’, argument struc-
ture position, sometimes called the logical subject, and also denoted 9, for ‘highest
thematic argument’ (Bresnan & Kanerva 1989, Alsina 1996: 36f.). By analogy with
Falk’s (2006) GF, I propose to call this position ARG. Part of the valency informa-
tion encoded in a verbal lexical entry includes which of its arguments is, by default,
the logical subject:

(18) DEFAULT-ARG(arg) :=

{(To /G{\G) = (TG arg) | (Tcr A/R\G>}

This uses the basic approach to defaults described by Dalrymple et al. (2004:
205f.): the left hand disjunct must be true unless something else provides the appro-
priate information, in which case the right-hand side can be true instead — in other
words, the left-hand disjunct will hold by default. The reason we cannot specify
the logical subject once and for all is that certain processes, like causativisation,
can add a new logical subject, which therefore overrides the default.*

In most formulations of LMT, the choice of logical subject follows from other
properties — usually from the ranking of arguments according to the thematic hier-
archy. Here we merely stipulate it, which may seem unsatisfactory by comparison.
However, recall that there is no agreed-upon/adequate thematic hierarchy, and so
appeals to such a mechanism are in fact spurious. Once again, I take the conser-
vative view that encoding this information directly in the lexical entry is not a bad
thing for the time being. It may well be that this information can be made to follow
from other properties, especially if the contents of s-structure is further developed,
for example to include proto-role information. Until then, the direct lexical speci-
fication can be taken as a stand-in for whatever the proper mechanism is.

With that said, we can still capture certain generalisations by using templates,
so that what counts as the logical subject is not precisely a matter of lexical stip-
ulation; rather, it will be a property shared by certain kinds of verbs that express
the same kinds of thematic roles. For example, our running example of give is a
verb which takes an Agent, a Theme, and a Beneficiary argument, and whichever
argument corresponds to the Agent will be the default ARG. Give will share the
valency information we have described so far with other verbs like it, a fact we can
capture in a template called by all such verbs:

4 Although many complex predicates can be handled straightforwardly, along the same lines as
Lowe (2015), recursive causatives will cause problems, and this is an area that needs further work.

136

(19) AGENT-THEME-BENEF-VERB (argl, arg2,arg3) =
APAxAyAzXe.P(e) N agent(e,x) Atheme(e,y) Abeneficiary(e, z) :
(1 BVENT) —o 1,] —o
(1o argl) — (15 arg2) —o (1 arg3) —o (15 EVENT) — 1,

(1o argl) A (15 arg2) A (14 arg3)

@DEFAULT-ARG(argl)

4.4 Default mapping

In Section 2.1, we identified two tasks for a mapping theory: to associate an ar-
gument with a pair of GFs, and then to decide between those GFs in different
situations. In the present proposal, I divide up the task slightly differently. Instead
of describing a set of possible GFs and then deciding between them, we will first
describe, for each argument, a default mapping to a GF, and then we will describe a
preferred mapping. This reflects the two-dimensional information present in many
LMT a-structure representations, owing to the ranking of the arguments alongside
their association with a pair of GFs.

For example, because Kibort’s Mapping Principle links the highest arg posi-
tions to the highest GFs, each position below arg; in Kibort’s theory is essentially
in competition with some higher arg position:’

* argy would prefer to be a SUBJ, the highest ranked [—7] GF, but is generally
blocked from doing so by arg;, and so defaults to OBJ.

* args would prefer to be an OBJ, the highest ranked [+0] GF, but is generally
blocked from doing so by args, and so defaults to OBJy.

* argy would prefer to be a SUBJ, the highest ranked [—o] GF, but is generally
blocked from doing so by arg;, and so defaults to OBLyg.

The next section explains how the preferred mapping is handled; in this section
I show how we can achieve the default effect. In order to do this, we make use of
a two-member disjunction, as we did when describing the default logical subject.
The contents of this disjunction are given by the template DEFAULT-MAPPING,
which takes three parameters: the default GF, the argument name, and a disjunc-
tion identifying the set of disallowed GFs (e.g. if the argument is assigned to the
[—7]/MINUSR pair of GFs in the Kibort mapping theory, this parameter will be set
to PLUSR):

(20) DEFAULT-MAPPING (default-GF, arg, disallowed-GFs) :=

] —~@MAP(default-GF, arg)
{@MAP(default GF, arg) ~@MAP(disallowed-GFs, arg)

31 follow Findlay (2016: 317f.) in assuming that only the first four arguments in Kibort’s va-
lency frame participate in mapping and in argument alternations, the others being treated as ‘derived
arguments’ (Needham & Toivonen 2011) and added via various lexical or syntactic processes.

137

Let us look at an example to see how this works. First of all, though, we need
to define the MAP template. It maps its first parameter, a grammatical function GF,
to its second parameter, an s-structure argument arg.

2D MAP(GF,arg) =
(T GF)U = (TU arg)

Consider the case of a Kibort args, i.e. a [—7] argument, and assume it is associated
with a THEME argument at s-structure. Then we would call the template like this:

(22) @DEFAULT-MAPPING(OBJ, THEME, PLUSR)

When expanded, this gives us the following:

= {@MAPmBJ,THEME) ~@MAP(OBJ, THEME) }

—@MAP(PLUSR, THEME)

This disjunction requires either that OBJ is mapped to the THEME argument, or
alternatively that neither OBJ nor one of the [+7] GFs, OBJy or OBLy, is mapped
to it — which leaves only one option for mapping: SUBJ. Crucially, though, this
non-canonical mapping is only indirectly licensed: it is given in negative rather
than positive terms. This is what induces the ‘default’ behaviour: in the absence of
further information, the first disjunct must be true, since the existential constraint
introduced in the verb’s valency template requires that there be some positive spec-
ification of the mapping for the THEME argument. If we try to make the second
disjunct true, we end up with a collection of negative constraints but no positive
ones, and so the relevant existential constraint is not satisfied. Thus, without fur-
ther specification — from an argument alternation like passive, for example — the
default mapping prevails.

The DEFAULT-MAPPING template gives us a general tool for associating an
argument with a pair of GFs, where one of them is identified as a default —i.e. the
GF to which the argument will normally be linked, all things being equal. This can
be used to implement any number of specific theories about the actual connections
between arguments and GFs. In Section 5, it will be one of the tools we use to
implement Kibort’s version of LMT. For now, though, we need one additional tool:
a means of capturing the competition between arguments for GFs.

4.5 Preferred mapping

Of course, arguments do not always surface as their default GFs. There is usually
another GF which an argument will surface as if it is given the opportunity to —
for example, because another argument has been suppressed or had its mapping
possibilities altered by some morphosyntactic process. We call this the argument’s
preferred GF. For example, as I described earlier, a Kibort args will surface as a
SUBJ if nothing else has a better claim to the SUBJ position, i.e. if arg; does not take
it (because there is no arg; or because it is suppressed by passive, etc.). To capture

138

this fact, we define a template PREFERRED-MAPPING, intended to be used along-
side a call of the DEFAULT-M APPING template which involves the same argument.
The PREFERRED-MAPPING template takes two parameters: the preferred GF of an
argument, and the name of that argument.

(24) PREFERRED-MAPPING(GF, arg) =

{1670 = (o an)| ;T S| @VOMARGrD |

To see how this works, let us again look at the example of an argo THEME in
Kibort’s LMT. The appropriate template call for this situation is given in (25):

(25) @PREFERRED-MAPPING(SUBJ, THEME)

When expanded, this gives the following:

(1 suBJ)

(26) {(T SUBJ); = (s THEME) (1 SUBJ)4 # (5 THEME)

@NOMAP(THEME) }

This disjunction offers us three possibilities:

1. The THEME argument is mapped to SUBJ (its preferred GF).

2. Something else is mapped to SUBJ (i.e. there is a SUBJ but it isn’t the THEME
argument).

3. The THEME argument is not mapped to any GF.

The third option is realised by a template NOMAP, defined in (27):

(27) NoMap(arg) ==
(TO’ arg)a—l =9

It describes a situation where no GF is linked to the argument in question (by stat-
ing that the inverse of the o-projection, taking us from s-structure to f-structure,
is empty when applied to it). This will only be relevant in cases of argument sup-
pression, since otherwise the existential constraint on the argument in question
introduced in the verb’s valency template will require that something maps to it.
We will discuss argument suppression in Section 6.2, but for now we can safely
ignore this option, meaning our choice is between the first two disjuncts.

In the canonical mapping for a transitive verb like kill, which has an arg; and
an arge in Kibort-LMT terms, the arg; will map to SUBJ. This means that the first
disjunct in (26) cannot be true, since the o-projection is a function, and so it cannot
link the same f-structure element to multiple s-structure elements.® That means
that in the canonical/default situation, the second disjunct must be true. All this
does is add yet another negative constraint to the mapping possibilities for this

Note that this makes at least one component of Function-Argument Biuniqueness otiose. The
other part, prohibiting multiple GFs from mapping to the same argument, is not necessary either,
provided that the grammar simply never makes such possibilities available: in the present proposal,
the only mapping possibilities are those explicitly introduced in the mapping templates.

139

argument, which once again means it is the first disjunct of the relevant DEFAULT-
MAPPING template which must hold, since that remains the only positive mapping
specification available for the argument in question.

The existential constraint introduced in the second disjunct ensures that the
default mapping only obtains if this argument’s preferred GF is not available. If
nothing else maps to SUBJ, then the THEME argument should do so — that’s what
it means for it to be the argument’s preferred GF. If that does not happen, then
there will be no SUBJ, which means the second disjunct here will be rendered false
because the existential constraint will not be satisfied.

Overall, the PREFERRED-MAPPING template gives us a means of associating
an argument with a preferred GF — one which it will map to if given the opportu-
nity, i.e. if nothing else is required to map to it in preference. Combined with the
DEFAULT-MAPPING template, this allows us to simulate the effects of a hierarchy
of arguments/GFs, commonly appealed to in LMT.

5 Kibort-LMT

In this section, I will show how we can implement (a version of) Kibort’s LMT,
using the tools developed in the previous section. Each of the positions in Kibort’s
valency frame provides a default and a preferred GF, which we now have the means
to represent. What is more, each position can be referred to by other processes, e.g.
locative inversion adds a [+o] specification to arg; specifically, and so we also
need a means of labelling each argument position. We achieve this using local
names (Crouch et al. 2017). A local name, indicated by a prefixed %, is essentially
a variable name: it allows for a particular entity to have a name which can be used
to refer to it within the same local description — here this will mean the same lexical
entry. This enables other templates, e.g. those encoding morphosyntactic argument-
manipulating operations, to refer to specific argument positions by name.

We define a template for each of the arg positions. These templates take a single
parameter: the name of an s-structure argument. For the first position in Kibort’s
valency frame, arg;, we include only a default mapping, not a preferred one, since
its default is already the highest available GF. Arg; can have two specifications.
Normally it will be [—o]:

(28) ARG (arg) =
@DEFAULT-MAPPING(SUBJ, arg, PLUSO)
arg = %argl

For unaccusatives, however, it is [—r]:

(29) ARGI-UNACCUSATIVE(arg) =
@DEFAULT-MAPPING(SUBJ, arg, PLUSR)
arg = %argl

I defer discussion of arge momentarily, since it involves a small additional com-

140

plexity. The other two arg positions are straightforward, however:’

(30) ARG3(arg) =
@DEFAULT-MAPPING(OBJy, arg, MINUSO)
@PREFERRED-MAPPING(OBJ, arg)
arg = %arg3

(31) ARG4(arg) =
@DEFAULT-MAPPING(OBLg, arg, PLUSO)
@PREFERRED-MAPPING(SUBJ, arg)
arg = %arg4

The argy position requires one extra constraint, which is boxed in (32):

(32) ARG2(arg) =
@DEFAULT-MAPPING(OBJ, arg, PLUSR)
@PREFERRED-MAPPING(SUBJ, arg)

(1 SUBJ)o # (1o arg) = (1 SUBJ), = (15 ARG)
arg = %arg?2

This conditional constraint (Bresnan et al. 2016: 60f.) says that if this argument is
not mapped to SUBJ, then the argument that is must be the ARG. Since the logical
subject is the highest ranked argument in a-structure, this means that the only time
the arga won’t map to SUBJ is when the (higher ranked) arg; does. This gives args
priority for the subject slot over argy, correctly capturing their hierarchical ranking.

Let us illustrate how these templates can be used via our running example. Give
participates in the dative shift alternation, which means that in Kibort-LMT terms
it has two possible argument structures and corresponding alignments of semantic
arguments with arg positions:

(33) a. Odogg, gave a giftyg, to Kirayyg, . b. Odogyg, gave Kirayg, a giftarg, -
(arg, argy, arg,) (arg, arg, argg)
[=o] [=r] [=o] [=o] [=r] [+o]

Here the dative-shifted version (33b) completely replaces one argument (argy) with
another (args), and also realigns the participants — the Theme, a gift, is now an
args, and argy represents the Beneficiary, Kira, when in (33a) it was arge which
corresponded to the Theme and arg, which represented the Beneficiary. In order to
capture this in the current system, we give both options in a disjunction:®

"It is not altogether clear whether args ever actually participates in any (strictly morphosyntactic)
alternations. For example, the Patient/Theme argument of the Chichewa instrumental applicative can
never trigger the appearance of an object marker on the verb, even in the passive (Alsina & Mchombo
1993), which means that even when the active-voice object is promoted to subject, the Patient/Theme
argument remains an OBJg, and does not occupy the now vacant OBJ position. If this pattern obtains
generally, then it might be sensible to simply specify args concretely as an OBJgy, and avoid the
unnecessary complexity of the mapping templates.

8 A reviewer comments that it would be better if these possibilities followed from some semantic

141

(34) EN-DATIVE-SHIFT-MAPPING(ag, th, ben) =

@ARGI (ag)
@ARG2(th) | @ARG2(ben)
@ARG4(ben) | @ARG3(th)

Our running example, give, now has the following lexical entry:’

(35) give V @VERB-LEXEME(give, give)
@AGENT-THEME-BENEF-VERB(AGENT, THEME, BEN)
@EN-DATIVE-SHIFT-MAPPING(AGENT,THEME,BEN)

6 Argument alternations and argument suppression

In this section, we will see how argument alternations, like the locative inversion,
and argument suppressing operations, like the short (agentless) passive, can be han-
dled in the present system. The first kind involve a straightforward translation of
Kibort’s theory into the present formalism. However, Kibort-LMT has little to say
about true argument suppression, since it simply assumes that obliques are always
optional, and does not consider the semantic implications. We therefore have a little
more work to do in that area.

6.1 Argument alternations

In keeping with the monotonic approach of Kibort-LMT, argument alternations
involve adding further positive feature specifications to certain argument positions.
We can emulate this directly, using the abbreviations PLUSO and PLUSR along with
the MAP template. Let us consider the familiar locative inversion in Chichewa to
see how this works.

This alternation was one of the first given an analysis in LMT, by Bresnan &
Kanerva (1989). It is illustrated in (36), taken from Bresnan & Kanerva (1989: 2):

(36) a. [Chi-tsime]gyp; chi-li [ku-mu-dzi]opy, o -
7-well 7SUBIJ-be 17-3-village
‘The well is in the village.’

b. [Ku-mu-dzi]syg; ku-li [chi-tsTme]og;.
17-3-village 17SUBJ-be 7-well
‘In the village is a well.’

These predicates’ a-structures contain an arg; and an argy in Kibort-LMT terms —
hence in the uninverted construction, (36a), they surface as a SUBJ and an OBLg.

properties of the verb, rather than being lexically stipulated. Once again, they are not strcitly lexically
stipulated, since the template in (34) will be called by all verbs of this class. And again, a more fully
developed theory of s-structure, perhaps along the lines of Jackendoff (1990), might help here — for
example, by giving us somewhere to encode lexical semantic properties such as aspectual class.

°It would likely be sensible to collapse the second and third templates into one macro-template
for verbs of this type, but I leave them separate here for the sake of exposition.

142

Kibort (2007) models locative inversion as the adding of a [+o] feature to a [—7],
unaccusative, arg, fully specifying it as an OBJ; this allows the argy to take the
vacant SUBJ position, giving us the arrangement in (36b). We can represent this
process using the following template:

37 LOCATIVE-INVERSION =
@MAP(PLUSO, %arg])

Because the template ARG1-UNACCUSATIVE gives its argument the local name
%arg]1, other pieces of functional description, like the template in (37), can refer to
that argument without worrying about what the actual s-structure attribute name is
(it might be THEME, it might be ARG1, or it might be something else altogether).

The effect of (37) is to give a positive specification to the Theme argument,
stating that the GF that maps to it must be either OBJ or OBJy (i.e. a [+0] GF).
This is now incompatible with the default mapping, which is SUBJ. The only
other possibility permitted by the DEFAULT-MAPPING template called by ARG -
UNACCUSATIVE (see (29)) is for the argument to be linked to OBJ, although it
does not provide this possibility directly. The template in (37) does, however, and
so now the only positive mapping specification which can hold is that OBJ maps to
the argument in question. Given this, the preferred GF of the Location argument,
SUBJ, is now available, and so it is mapped to this argument. If it was not, then the
constraints in the PREFERRED-MAPPING template called by ARG4 would not be
satisifed, since the argument in question would not be linked to SUBJ (first disjunct
is false), but nor would any other argument (second disjunct is also false).

The long passive in English can be given a similar analysis:'°

(38) LONG-PASSIVE :=
@MAP(PLUSR, %arg])

This restricts a regular, [—o] arg; in Kibort-LMT terms so that it can only appear as
a [+r] GF, i.e. one of OBJy or OBLy. This prohibits the default mapping, which is to
SUBJ, and the only other possibility permitted by the relevant DEFAULT-MAPPING
template is OBLg, hence this argument emerges as a prepositional by-phrase.

6.2 Argument suppression

Argument suppressing operations carry an extra challenge compared with argu-
ment alternations, since the argument being suppressed will have both grammatical
and semantic dependencies which must be dealt with. On the grammatical side, we
must find a way to satisfy the existential constraint which would normally ensure
that the argument is mapped to a GF. On the semantic side, we must do something

17 follow Huddleston & Pullum (2002: 1428) in referring to the version of the passive where the
active-voice subject is expressed as a by-phrase as the ‘long’ passive, and the version where it is
unexpressed as the ‘short’ passive. A reviewer comments that this overlaps with a different usage in
Romance linguistics, which is unfortunate, but I think the current usage is well enough established
not to change it.

143

about the valency meaning constructor, which will contain a dependency on the ar-
gument — if we don’t, there will be a resource deficit and no successful Glue proof
will be possible for the sentence. The template SUPPRESS handles both these tasks:

(39) SUPPRESS(arg, template) =
@NOMAP(arg)
(1o arg REL) = var
@template(arg)

This template takes two parameters: the argument to be suppressed, and a template
name. The first line of SUPPRESS indicates that the argument in question is not
mapped to any GF. The second introduces a dummy REL value ‘var’ for it, in order
to satisfy the corresponding existential constraint by providing its s-structure with
some content. The template name passed to SUPPRESS as a parameter is applied to
the argument being suppressed, and describes how any semantic dependencies are
to be resolved.

Perhaps the most straightforward way of resolving the dependency on an ar-
gument in the semantics is to existentially close the dependency. This is what the
template CLOSURE describes:

(40) CLOSURE(arg) ==
AP3x[P(2)] : [(To arg) — 15] — 1o

The short passive uses this template, for example — the default SUBJ argument is not
realised syntactically and is interpreted existentially in the semantics: The cake was
eaten is truth-conditionally equivalent to Someone ate the cake. We can represent
the short passive using the SUPPRESS template as follows:

(41) SHORT-PASSIVE :=
@SUPPRESS(%argl, CLOSURE)

A full template for the English passive will then incorporate both templates:!!

42) PASSIVE =
(T VOICE) = PASSIVE
{ @SHORT-PASSIVE | @LONG-PASSIVE}

Another way of suppressing an argument in the semantics is to bind its interpre-
tation to another, syntactically realised argument (cf. Alsina 1996: 116ft.). This is
what happens in the French reflexive. Grimshaw (1982: 112ff.) gives good reasons

T A reviewer complains that having this disjunction misses a generalisation, since “there is just one
passive and two ways of realizing the logical subject in the passive”. In fact, that is precisely what
this formulation shows: there is one PASSIVE template, which contains two additional templates
expressing alternative ways of realising the logical subject/more Agent-like argument. There is also
a typological significance to dividing the mapping possibilities up in this way: some languages may
make use of one but not the other. Although no language has only long passives, there are languages
like Latvian which have only short passives (Keenan & Dryer 2007: 331f).

144

to believe that reflexive sentences like (43) in French are syntactically intransitive,
unlike their English translations:

43) Kira se voit.
Kira REFL sees
‘Kira sees herself’

But a verb like voir ‘see’ is semantically a two-place predicate, so in (43) one of
its arguments has been suppressed. In this case, its second argument is interpreted
as being identical to, or bound by, its first. This is what BIND describes:

(44) BIND(argg, arga) =
APAz.P(z)(z) : (15 arga) — (1o argg) — 1] — (15 argg) — 1o

This meaning constructor consumes a dependency on two different arguments and
replaces it with a dependency on just one of them, while passing that one argument
to the predicate in both of its argument positions. Assuming the clitic se contributes
a feature [REFL +], we can then capture Grimshaw’s (1982) lexical-rule based anal-
ysis using the following template instead, which can be added to a transitive verb
to turn it into a reflexive:

(45) FR-REFLEXIVE =
@SUPPRESS(%arg2, BIND(%arg1))
(T REFL) =, +

The first line of the template can be read as ‘suppress %arg2 by binding it to
Joargl’. Notice that since template parameters are just treated as strings when the
template is expanded, we can include complex expressions with some parameters
already filled in as the second parameter of SUPPRESS.?

7 Conclusion

This paper has presented a new framework for representing claims about the map-
ping between semantic arguments and grammatical functions, and given a few ex-
amples of its application. It differs from previous implementations of LMT in that
the formalism which underlies it is vanilla LFG+Glue rather than some additional,
novel mechanism. Although I have demonstrated how it can be used to encode at
least one version of LMT, the framework is theory-agnostic, and could be applied
to different versions of LMT, and in settings which make different architectural
assumptions: for example, it is also compatible with a version of LMT which uses
a dedicated level of a-structure, provided this takes the form of an AVM, as in Butt
et al. (1997). It is my hope that this paper has contributed tools that can be used
both to make existing theories more explicit and to enable more transparent com-
parisons between them, potentially revealing new insights into the data and new
perspectives on existing analyses.

12T am assuming that @ TEMPLATE(X)(Y') is intepreted in the same way as @ TEMPLATE(X,Y').

145

References

Alsina, Alex. 1996. The role of argument structure in grammar: evidence from
Romance. CSLI Publications.

Alsina, Alex & Sam A. Mchombo. 1993. Object asymmetries and the Chichewa
applicative construction. In Sam A. Mchombo (ed.), Theoretical aspects of
Bantu grammar, 17—45. CSLI Publications.

Andrews, Avery D. 2008. The role of PRED in LFG+Glue. In Miriam Butt &
Tracy Holloway King (eds.), Proceedings of the LFGO8 Conference, 46—67.
CSLI Publications.

Asudeh, Ash & Gianluca Giorgolo. 2012. Flexible composition for optional and
derived arguments. In Miriam Butt & Tracy Holloway King (eds.), Proceedings
of the LFG12 Conference, 64—84. CSLI Publications.

Asudeh, Ash, Gianluca Giorgolo & Ida Toivonen. 2014. Meaning and valency. In
Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG14 Confer-
ence, 68—88. CSLI Publications.

Borjars, Kersti, Rachel Nordlinger & Louisa Sadler. 2019. Lexical-Functional
Grammar: an introduction. Cambridge University Press.

Bresnan, Joan. 1982. The passive in lexical theory. In Joan Bresnan (ed.), The
mental representation of grammatical relations, 3—86. MIT Press.

Bresnan, Joan, Ash Asudeh, Ida Toivonen & Stephen Wechsler. 2016. Lexical-
functional syntax (2nd edn.). Wiley-Blackwell.

Bresnan, Joan & Jonni M. Kanerva. 1989. Locative inversion in Chichewa: A case
study of factorization in grammar. Linguistic Inquiry 20(1). 1-50.

Bresnan, Joan & Annie Zaenen. 1990. Deep unaccusativity in LFG. In Katarzyna
Dziwirek, Patrick Farrell & Errapel Mejias Bikandi (eds.), Grammatical rela-
tions: a cross-theoretical perspective, 45-57. CSLI Publications.

Butt, Miriam. 1995. The structure of complex predicates in Urdu. CSLI Publica-
tions.

Butt, Miriam, Mary Dalrymple & Anette Frank. 1997. An architecture for linking
theory in LFG. In Miriam Butt & Tracy Holloway King (eds.), Proceedings of
the LFG97 Conference, CSLI Publications.

Champollion, Lucas. 2015. The interaction of compositional semantics and event
semantics. Linguistics and Philosophy 38(1). 31-66.

Crouch, Dick, Mary Dalrymple, Ronald M. Kaplan, Tracy Holloway King, John T.
Maxwell IIT & Paula Newman. 2017. XLE documentation. Palo Alto Research
Center (PARC), Palo Alto, CA.

Dalrymple, Mary, Ronald M. Kaplan & Tracy Holloway King. 2004. Linguistic
generalizations over descriptions. In Miriam Butt & Tracy Holloway King (eds.),
Proceedings of the LFGO4 Conference, 199-208. CSLI Publications.

Dalrymple, Mary, John J. Lowe & Louise Mycock. 2019. The Oxford reference
guide to Lexical Functional Grammar. Oxford University Press.

Davis, Anthony R. 2011. Thematic roles. In Claudia Maienborn, Klaus von
Heusinger & Paul H. Portner (eds.), Semantics: an international handbook of

146

natural language meaning, vol. 1, 399-420. Mouton de Gruyter.

Dowty, David. 1991. Thematic proto-roles and argument selection. Language
67(3). 547-619.

Falk, Yehuda N. 2006. Subjects and Universal Grammar. Cambridge University
Press.

Findlay, Jamie Y. 2016. Mapping theory without argument structure. Journal of
Language Modelling 4(2). 293-338.

Grimshaw, Jane. 1982. On the lexical representation of Romance reflexive clitics.
In Joan Bresnan (ed.), The mental representation of grammatical relations, 87—
148. MIT Press.

Huddleston, Rodney & Geoffrey K. Pullum. 2002. The Cambridge grammar of the
English language. Cambridge University Press.

Jackendoff, Ray. 1990. Semantic structures. The MIT Press.

Keenan, Edward L. & Matthew S. Dryer. 2007. Passive in the world’s languages. In
Timothy Shopen (ed.), Language typology and syntactic description (2nd edn.).
Volume I: clause structure, 325-361. Cambridge University Press.

Kibort, Anna. 2001. The Polish passive and impersonal in Lexical Mapping The-
ory. In Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFGO1
Conference, 163—183. CSLI Publications.

Kibort, Anna. 2007. Extending the applicability of Lexical Mapping Theory. In
Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFGO7 Confer-
ence, 250-270. CSLI Publications.

Kibort, Anna. 2014. Mapping out a construction inventory with (Lexical) Mapping
Theory. In Miriam Butt & Tracy Holloway King (eds.), Proceedings of the
LFG14 Conference, 262-282. CSLI Publications.

Kibort, Anna & Joan Maling. 2015. Modelling the syntactic ambiguity of the active
vs. passive impersonal in LFG. In Miriam Butt & Tracy Holloway King (eds.),
Proceedings of the LFG15 Conference, 145-165. CSLI Publications.

Lovestrand, Joseph. 2018. Serial verb constructions in Barayin: typology, descrip-
tion and Lexical-Functional Grammar. D.Phil. thesis, University of Oxford.

Lowe, John J. 2014. Gluing meanings and semantic structures. In Miriam Butt &
Tracy Holloway King (eds.), Proceedings of the LFG14 Conference, 387-407.
CSLI Publications.

Lowe, John J. 2015. Complex predicates: an LFG + glue analysis. Journal of
Language Modelling 3(2). 413-462.

Needham, Stephanie & Ida Toivonen. 2011. Derived arguments. In Miriam Butt &
Tracy Holloway King (eds.), Proceedings of the LFG11 Conference, 401-421.
CSLI Publications.

Rappaport Hovav, Malka & Beth Levin. 2007. Deconstructing thematic hierar-
chies. In Annie Zaenen, Jane Simpson, Tracy Holloway King, Jane Grimshaw,
Joan Maling & Chris Manning (eds.), Architecture, rules, and preferences: Vari-
ations on themes by Joan W. Bresnan, 385-402. CSLI Publications.

147

