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Abstract

We describe an approach to LFG parsing that is optimized for c-
structure discontinuities that are established through “zipper” unifi-
cation. These are characterized by parallel c-structure paths that carry
the same function assignments. Wedekind and Kaplan (2020) demon-
strated that LFG grammars giving rise to discontinuities with finitely
bounded zipper paths can express only mildly context-sensitive de-
pendencies and thus can be converted to equivalent linear context-
free rewriting systems (LCFRSs). In principle, parsing with LCFRS
grammars can be accomplished in polynomial time, but that may not
be the most effective way of parsing with mildly context-sensitive de-
pendencies. In this paper we propose a hybrid strategy for LFG pars-
ing that is tuned to the common case of bounded zippers but still
allows for putatively rare constructions that do not conform to the
formal restrictions that guarantee finite boundedness. This strategy
automatically takes advantage of mildly context-sensitive dependen-
cies in addition to the context-free dependencies that the XLE parsing
system has focused on (Maxwell and Kaplan 1996).

1 Introduction

The prohibition against c-structures with nonbranching dominance (NBD)
chains ensures the decidability of the recognition/parsing problem for LFG
grammars (Kaplan and Bresnan 1982) but still that problem is known to be
NP-complete (Berwick 1982, Trautwein 1995) and thus intractable in the
worst case. However, grammars for actual languages seem not to exploit
all the mathematical power that the LFG formalism makes available, as
witnessed by the fact that parsing and generation systems, for example,
the XLE system, have been constructed that are practical for broad coverage
grammars and naturally occurring sentences (Crouch et al. 2008, Maxwell
and Kaplan 1996).

The implementations of these systems must be taking advantage im-
plicitly of certain patterns of dependencies that are characteristic of lin-
guistic grammars even if those properties have not been clearly articulated
and explicitly coded. XLE in particular is optimized for context-free struc-
tures in sentences for which disjunctions arising from words and phrases
that are distant from each other in the string are not incompatible. This
optimization is based on the disjunctive constraint and lazy contexted con-
straint satisfaction algorithms developed by Maxwell and Kaplan (1991,
1996) (henceforth the MK algorithms). The XLE experience has shown
these algorithms to be effective for a large majority of sentences in many
languages, even though performance may—and does—degrade for con-
structions with dependencies that are more sensitive to context.

Recent papers (Wedekind and Kaplan 2020, Kaplan and Wedekind 2019)
have identified a class of dependencies that are more sensitive to context
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Figure 1: Zipping of discontinuous constituents.

but may still allow for efficient processing of a broader range of commonly
occurring sentences. These dependencies allow information carried by dis-
tant c-structure nodes of discontinuous constituents to interact as long as
those nodes map to f-structure through c-structure paths that are annotated
with the same function assignments. This pattern has been described as
“zipper” unification (Maxwell and Kaplan 1996) and is illustrated in Fig-
ure 1. The paths from the common mother of A and P to B and Q in the left
tree are labeled in parallel by the (↑ X)= ↓ and (↑ Y)= ↓ function assign-
ments and they can therefore be zipped into the structure on the right. This
represents how information from the separate paths can be systematically
combined. In particular it reveals the inconsistency between the (↑ Z)=1
and (↑ Z)=2 annotations even though the B and Q nodes dominate sub-
strings that are not adjacent.

The key formal property of two nodes n and n′ that zip together is that
they map to the same f-structure (i.e., φ(n)=φ(n′)) or, equivalently, that
n and n′ both belong to φ−1( f ) for some unit of f-structure f . If it can be
established for an LFG grammar G that discontinuities are exclusively cap-
tured through zipper unification and the size of φ−1( f ) is bounded by a
constant for all f-structure units for all sentences, then that grammar can be
converted to a grammar G′ in the formalism of linear context-free rewriting
systems (LCFRSs) (Seki et al. 1991, Kallmeyer 2010), a grammatical formal-
ism that can encode mildly context-sensitive dependencies. The LCFRS
grammar G′ is equivalent to G in that it produces the same f-structures for
the same sentences (Wedekind and Kaplan 2020). Wedekind and Kaplan
describe notational and derivational restrictions, here summarized in Sec-
tion 2, that G must meet in order to determine whether G is convertible.
They observe that grammars in this subclass, the finitely bounded LFG
grammars, are still likely suitable for natural language description (see also
Kaplan and Wedekind 2019).
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The LCFRS conversion identifies and combines the information from
all possible zippers, precomputing and eliminating from G′ the effect of
any combinations that would give rise to unsatisfiable f-descriptions. On
its face, the advantage is that LCFRS parsing algorithms applied to G′

will simulate the recognition of all and only the c-structures whose f-
descriptions are guaranteed to be satisfiable. This crucially differs from
the two-stage process of typical LFG parsing algorithms, including XLE,
of context-free chart parsing that produces a representation of many can-
didate c-structures whose f-descriptions are then checked for satisfiability.
The two-stage process is exponential and intractable in the worst case, be-
cause of the many candidate c-structure constituents that must be evalu-
ated, while one-stage LCFRS parsing is known to take time that is polyno-
mial in the length of the input string.

Realizing the advantages of direct LCFRS parsing for a given finitely-
bounded G depends on the feasibility of carrying out the conversion and
also on the size of the resulting G′. The conversion process for an arbitrary
G may be too expensive and the equivalent LCFRS grammar too large for
practical use. However, following Wedekind and Kaplan (2020) we point
out in Section 3 that the grammar expansion is likely to be limited for LFG
grammars describing natural languages and it may be feasible to apply di-
rect LCFRS parsing to such languages. But that may not be the most effec-
tive way of exploiting the zipper configurations implicit in G’s derivations.

Thus in Section 4 we consider a strategy that applies not to the given
grammar G but to a specialization of G containing only the annotated rules
that define the f-structures for a particular input string. The specialized
grammar is likely to be finitely bounded even if the entire G is not, and the
LCFRS for the specialized grammar is likely to be much smaller and to op-
erate more efficiently than the LCFRS for the larger grammar. In Section 5
we sketch an alternative strategy for propagating zipper information that
works even if the specialized grammar lies outside the finitely bounded
class. This involves identifying and eliminating the zipper-entailed incon-
sistencies of the specialized grammar and then using MK bottom-up satis-
fiability algorithms to interpret any residual annotations. Performance for
this zipper-driven strategy is proportionately as good as XLE in the context-
free-equivalent case that XLE does particularly well at, is proportionately
better than XLE if the particular sentence has only zipper dependencies,
and is proportionately no worse than XLE if the sentence involves more
complex annotations that interact in more intricate ways.
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2 Finitely bounded LFG grammars

Seki et al. (1993) first established the connection between a restricted sub-
class of LFG grammars and formal systems that can describe only mildly
context-sensitive dependencies. Their finite copying grammars permit rules
with the very limited functional annotations in (1a) and that also satisfy the
bounding condition (1b).

(1) a. Each category on the right-side of a rule can be annotated with at
most one function assignment of the form (↑ F)= ↓ and any number
of atom-value assignments only of the form (↑ A)=V.

b. There is a constant k such that no more than k nodes map to the
same f-structure element f in any derivation. That is |φ−1( f )| ≤ k.

It is decidable whether the bounding condition holds for such a nota-
tionally restricted grammar, and such a bounded grammar can be con-
verted to an equivalent LCFRS. A grammar with these annotations is ex-
pressive enough to specify zipper paths as in Figure 1, but these restric-
tions are obviously too severe for linguistic description. This notation
disallows, for example, the trivial ↑= ↓ annotations that mark the heads
and coheads in the functional domain of a predicate, reentrancies such as
(↑ XCOMP SUBJ)=(↑ OBJ) that represent functional control, multi-attribute
value specifications, such as (↑ SUBJ NUM)= SG, that encode agreement
requirements, and any direct specification of feature values on daughter
nodes, as in (↓ CASE)=NOM.

The finitely bounded grammars of Wedekind and Kaplan (2020) allow
the linguistically more suitable annotations in (2), but they must also satisfy
other conditions whose effect is to limit their expressive power and endow
them with the same mathematical and computational properties, including
LCFRS equivalence, as Seki et. al’s finite copying grammars.

(2) Basic annotations
(↑/↓ A B C · · · )=V general atom-value annotations
(↑ F)= ↓ function assignment
↑= ↓ trivial (co)head identity

Reentrancies
(↑ F G)=(↑ H) functional control
(↑ F)=(↑ H) local-topic link
(↓ G)=(↑ H) daughter-mother control
(↓ G)=(↓ H) daughter sharing
(↓ G)= ↑ promotion
(↑ F) = ↑ mother cycle
(↓ G) = ↓ daughter cycle

The additional conditions that a finitely bounded grammar G must meet
are listed in (3) (Wedekind and Kaplan 2020).
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(3) a. Each right-side category is annotated with at most one function as-
signment (↑ F)= ↓ and trivial (co)head identities ↑= ↓ and function
assignments always appear in complementary distribution (to keep
separate the properties of a head and its complements).

b. The functional domains of G (the collections of ↑= ↓-annotated nodes
that map to the same f-structure) are height-bounded.

c. The reentrancy-free kernel of G (the grammar formed by removing all
reentrancies from G) is bounded as in (1b).

d. Reentrancies are nonconstructive.

There is a simple transformation of a grammar G with height-bounded
functional domains into a strongly equivalent LFG grammar G\↑= ↓ that no
longer contains ↑= ↓ annotations. The transformation is accomplished by
recursively replacing a category annotated with ↑= ↓ in the right side of
one rule by the right sides of all the rules expanding that category, and
making the appropriate replacements of ↑ for ↓ to preserve the f-structure
mappings. The effect of this transformation is illustrated in (4).

(4) G
APn1

(↑ XCOMP)= ↓

A’n2

↑= ↓

An3

↑= ↓

happy

VPn4

(↑ XCOMP)= ↓

Vn5

↑= ↓

to go

n1
n2
n3







PRED ‘HAPPY〈SUBJ, XCOMP〉’

XCOMP
n4
n5

[

PRED ‘GO〈SUBJ〉’
]







G\↑= ↓

APn1

(↑ XCOMP)= ↓

happy VPn4

(↑ XCOMP)= ↓

to go

n1





PRED ‘HAPPY〈SUBJ, XCOMP〉’

XCOMP
n4

[

PRED ‘GO〈SUBJ〉’
]





=⇒

Although the grammar G\↑= ↓ resulting from this simple transformation
may be substantially larger than G, the transformation makes it unneces-
sary to give further consideration to ↑= ↓ annotations. And of relevance to
present purposes, it exposes any zipper paths that trivial annotations may
otherwise obscure, as pictured in Figure 2.

The nonconstructivity condition (3d) ensures that only function assign-
ments (the zipper-forming annotations of finite copying grammars), can
cause two nodes to map to the same f-structure.1 The difference between
constructive and nonconstructive reentrancies is illustrated in Figure 3. On
the left side the reentrancies are constructive because they cause the nodes

1This condition has appeared implicitly in LFG grammars and has also been mentioned
in the LFG literature (Crouch et al. 2008, Zaenen and Kaplan 1995).
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C
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P
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↑= ↓

R

(↑ Z) = 2

Figure 2: Head identities obscure zippers.

n2 and n5 to map to the same f-structure element. If reentrancies are non-
constructive, as in the derivation on the right side, they can only propagate
atom-value information across the f-structure elements. Nonconstructive
reentrancies do not introduce new node-to-f-structure mappings and thus
do not affect the bounds on the φ−1 node classes.

The nonconstructivity of reentrancies is undecidable for grammars with
functional control annotations (Wedekind and Kaplan 2020). However,
in derivations that meet the requirements of the Coherence Condition,
annotations such as (↑ XCOMP SUBJ)=(↑ OBJ) can always be reduced to
daughter-mother control annotations. This is because the controllee (SUBJ)
is a governable function in an open (XCOMP) complement and therefore
must be licensed by the complement’s semantic form. These licensing
semantic forms are always introduced by simple PRED equations asso-
ciated with individual lexical entries, such as (↑ PRED) = ‘WALK〈SUBJ〉’.
Therefore, (↑ PRED) = ‘WALK〈SUBJ〉’ must instantiate to the equation
(φ(n′) PRED) = ‘WALK〈SUBJ〉’ at some node n′, and the f-description must
also entail an equation (φ(n) XCOMP) = φ(n′) that links the complement
to a higher clause and is also available to shorten the control equation.
Wedekind and Kaplan (2020) provide a formal specification of noncon-
structivity, this expected consequence of Coherence, and of other technical
requirements that are sufficient to decide whether an arbitrary LFG gram-
mar belongs to the finitely bounded subclass and therefore has an LCFRS
equivalent.

3 Direct LCFRS parsing

For a k-bounded LFG G the equivalent LCFRS G′ is constructed by precom-
puting the zipper interactions in G. Because trivial annotations obscure
zippers, as depicted in Figure 2, the LCFRS is constructed from G\↑= ↓ rules
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Sn1

NPn2

(↑ OBJ) = ↓

VPn3

(↑ OBJ) = (↓ SUBJ)

VPn4

(↑ SUBJ) = (↓ SUBJ)

Xn5

(↑ SUBJ) = ↓

Sn1

NPn2

(↑ OBJ) = ↓

VPn3

(↑ OBJ) = (↓ SUBJ)

VPn4

(↑ SUBJ) = (↓ SUBJ)

Xn5

(↑ SUBJ AGR) = V

Constructive Nonconstructive

φ(n2) = φ(n5) (φ(n2) OBJ AGR)=V

Figure 3: Constructive and nonconstructive reentrancies.

rather than G rules. Thus the LCFRS for G is constructed in two stages.
In the first stage a ↑= ↓-free LFG grammar G\↑= ↓ is created by eliminating
the ↑= ↓-annotated categories in favor of equivalent collections of flattened
LFG rules. The second stage of the construction produces LCFRS rules for
G\↑= ↓. The LCFRS rule construction is based on locally disclosing structure
sharing through zipper unification, as illustrated in Figure 1. The construc-
tion hypothesizes finite sequences of G\↑= ↓ rules that might expand the cat-
egories realizing a k-bounded zipper, and it builds an LCFRS rule if the
sequence gives rise to satisfiable f-descriptions. The LCFRS rule categories
are refined by atom-value decorations containing the atomic-valued infor-
mation that could be associated with the corresponding f-structure element
in any valid LFG derivation (see Wedekind and Kaplan (2020) for more de-
tails on the construction and the parsing complexity for the LCFRSs G′ that
result from linguistically motivated k-bounded LFG grammars.)

The LCFRS G′ can be used to parse sentences from L(G), provided
the LFG grammar G is finitely bounded. (XLE or some other LFG parser
must be used if G is not finitely bounded.) LCFRS parsing complexity is
O(|G′| · nk(r+1)) (Seki et al. 1991) where n is the length of the input string,
|G′| is the number of rules in G′, k is the fan-out of G′ (the degree of dis-
continuity of G), and r is the rank of G′ (the maximum number of phrasal
categories in any G′ rule). Parsing complexity is polynomial in the length
of the input string (n) but, without further restrictions, parsing with the
equivalent grammar may be impractical because the LCFRS G′ can be ex-
ponentially larger than G (Wedekind and Kaplan 2020).

For linguistically motivated grammars, however, the potential growth
is limited by conventions and principles of LFG theory and the properties
of natural languages. In LFG, the distribution of trivial annotations is regu-
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lated by the principles of X-bar theory and its structure-function mapping
principles (Bresnan 2001, Dalrymple 2001). In this (epsilon-free) framework
the height of a functional domain is effectively bounded by the maximum
number of coheads that can associate to a single predicate plus 1 for the
head (denoted by c), the maximum number k of discontinuous c-structure
phrases that can realize a particular function, and the maximum number
g of different grammatical functions that an individual predicate can gov-
ern. Thus parsing complexity for a linguistically motivated grammar G is
proportional to |G\↑= ↓| ≤ |G|kg+c+1, where k, g, and c are typically rather
small.2 (In the broad-coverage, commercial-grade ParGram grammars, for
example, no word in either lexicon governs more than four functions, and
very few words allow even that many (in English only the word bet)).

In the second phase of the LCFRS construction, sequences of G\↑= ↓ rules
are converted into LCFRS rules with decorated categories. From the obser-
vations above, we can assume that for a linguistically motivated LFG G the
rank of G′ is bounded by g + c, the LCFRS categories for the grammatical
functions are at most k-ary, and the categories for the coheads are unary.
Thus the size bound on G\↑= ↓ accounts for rule sequences of length up to
k and therefore the number of LCFRS rules before they are decorated with
agreement features. Those skeletal rules are refined by the combinations of
agreement features that are associated with particular syntactic categories
and grammatical functions, and the number of these combinations is lim-
ited by morphosyntactic constraints (nouns carry PERS and NUM but not
TNS). Thus, with a denoting the maximum number of attested agreement
feature combinations, the size of G′ is bounded by ag+c+1|G|kg+c+1. (For
instance, for English NP f-structures the number of (fully-specified) agree-
ment feature combinations would be 24 = 3(PERS) · 2(NUM) · 4(CASE); as
shown in Wedekind and Kaplan (2020), the predicate values (semantic
forms) do not have to be distinguished.)

4 Grammar specialization

Even if it is feasible to construct the LCFRS for a linguistically motivated
grammar in its entirety, that may not be the best way of taking advantage
of the mildly context-sensitive dependencies of natural language. As al-
ternatives that may be more effective, we consider parsing strategies that
avoid constructing the LCFRS for the whole grammar and instead only op-
erate on the typically much smaller subset of annotated c-structure rules
that participate in the analysis of a given input string. Such a specialized
grammar may be finitely bounded even if the entire grammar is not, and
the corresponding LCFRS may be much more manageable. Grammar spe-
cialization is also the first stage of a zipper-driven parsing strategy that may

2The exponent is increased by 1 to account for trivial-free rules obtained from functional
domains smaller than kg + c.
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be helpful for broad-coverage grammars that do not meet all the conditions
of finite bounding.

We first apply a context-free chart parser to a given input string s, as
does XLE, but we do not then execute the bottom-up traversal of chart
edges (Maxwell and Kaplan 1996) to check for f-description satisfiability.
Instead, we extract from the resulting parse-chart an LFG grammar Gs that
has all and only the rules and annotations that are specialized to the partic-
ular input s. Grammar specialization depends on the fact that context-free
languages are closed under intersection with regular languages (Bar-Hillel
et al. 1961). As Lang (1992) and others have pointed out, a context-free
grammar specialized to a particular s can be extracted in cubic time by
any number of context-free parsing algorithms, and such an algorithm can
easily be modified to record the annotations associated with the categories
even though those are not evaluated during the context-free parse. The size
of the resulting grammar Gs is proportional to |s|3 (and Gs is k-bounded if
G is k-bounded).

We illustrate grammar specialization with an analysis of the Dutch dou-
ble infinitive construction in (5).

(5) ... (dat) hij het boek heeft kunnen lezen

... (that) he the book has able read

... (that) he has been able to read the book

This sentence is assigned the annotated c-structure and f-structure depicted
in Figure 4.3 For sentence (5) and the grammar G of Bresnan et al. (1982)
we obtain the specialized grammar Gs that includes the rules in (6).

3Johnson (1986) used this example to demonstrate that the natural extension for these
sentences of the Dutch grammar of Bresnan et al. (1982) violates the Nonbranching Dom-
inance Constraint, and thus calls into question the linguistic suitability of the Kaplan and
Bresnan (1982) formulation. In fact, this particular sentence does not violate the later re-
finement of the NBD constraint described by Kaplan and Maxwell (1996) and Dalrymple
(2001) wherein functional annotations are also taken into account in determining whether
a category has repeated. The recursive VPs in this sentence have different annotations,
but sentences with more intransitive verbs and deeper XCOMP embeddings would still be
disallowed. We return to this point below.

178



S

NP

(↑ SUBJ) = ↓

N

↑= ↓

hij

(↑ PRED) = ‘PRO’

(↑ NUM) = SG

VP

↑= ↓

VP

(↑ XCOMP) = ↓

VP

(↑ XCOMP) = ↓

NP

(↑ OBJ) = ↓

DET

↑= ↓

het

(↑ SPEC) = THE

(↑ NUM) = SG

N

↑= ↓

boek

(↑ PRED) = ‘BOOK’

(↑ NUM) = SG

V

↑= ↓

V

↑= ↓

heeft

(↑ PRED) = ‘PERF〈SUBJ, XCOMP〉’
(↑ XCOMP SUBJ) = (↑ SUBJ)

(↑ SUBJ NUM) = SG

V

(↑ XCOMP) = ↓

V

↑= ↓

kunnen

(↑ PRED) = ‘ABLE〈SUBJ, XCOMP〉’
(↑ XCOMP SUBJ) = (↑ SUBJ)

V

(↑ XCOMP) = ↓

V

↑= ↓

lezen

(↑ PRED) = ‘READ〈SUBJ , OBJ〉’













































SUBJ

[

PRED ‘PRO’

NUM SG

]

PRED ‘PERF〈SUBJ , XCOMP〉’

XCOMP



























SUBJ

PRED ‘ABLE〈SUBJ , XCOMP〉’

XCOMP

















SUBJ

OBJ







PRED ‘BOOK’

SPEC THE

NUM SG







PRED ‘READ〈SUBJ , OBJ〉’























































































Figure 4: The Bresnan et al. (1982) analysis of sentence (5). The zipped
functions are indicated in green and red.

(6) 0S6 → 0NP1 1VP6

(↑ SUBJ) = ↓ ↑= ↓
1VP6 → 1VP3 3V6

(↑ XCOMP) = ↓ ↑= ↓

1VP3 → 1VP3

(↑ XCOMP) = ↓
1VP3 → 1NP3

(↑ OBJ) = ↓

3V6 → 3V4 4V6

↑= ↓ (↑ XCOMP) = ↓
4V6 → 4V5 5V6

↑= ↓ (↑ XCOMP) = ↓

0NP1 → 0N1

↑= ↓
1NP3 → 1DET2 2N3

↑= ↓ ↑= ↓

5V6 → 5V6

↑= ↓
0N1 → 0hij1

(↑ PRED) = ‘PRO’
(↑ NUM) = SG

1DET2 → 1het2

(↑ SPEC) = THE

(↑ NUM) = SG

2N3 → 2boek3

(↑ PRED) = ‘BOOK’
(↑ NUM) = SG

3V4 → 3heeft4

(↑ PRED) = ‘PERF〈SUBJ, XCOMP〉’
(↑ XCOMP SUBJ) = (↑ SUBJ)

(↑ SUBJ NUM) = SG

4V5 → 4kunnen5

(↑ PRED) = ‘ABLE〈SUBJ, XCOMP〉’
(↑ XCOMP SUBJ) = (↑ SUBJ)

5V6 → 5lezen6

(↑ PRED) = ‘READ〈SUBJ, OBJ〉’

The specialized grammar Gs contains refinements of all and only the G
rules that describe the c-structures of (5). The categories of those rules are
elaborated with indexes that record the beginning and ending positions of
the substrings of s that they dominate. Thus the category 0S6 is the refine-
ment of S that covers the entire sentence and the category 1NP3 covers the
words of the second NP. The terminals are also refined with their particular
string positions, so grammar Gs derives the specialized string in (7)

(7) 0hij1 1het2 2boek3 3heeft4 4kunnen5 5lezen6
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if and only if G derives the original input (5) and both are assigned the same
f-structures. Note that there are infinitely many annotated c-structures for
the specialized input sentence because the VP rule

1VP3 → 1VP3

(↑ XCOMP) = ↓

is recursive and thus allows for derivations that violate the Nonbranching
Dominance Condition.

If the emptiness algorithm for context-free languages establishes that
L(Gs) = ∅, we know that s is ungrammatical with respect to G. Otherwise,
s has at least one annotated c-structure and further analysis is necessary
to determine whether any Gs derivations also meet the functional well-
formedness requirements of LFG theory. As Wedekind and Kaplan (2020)
have demonstrated, it is decidable whether Gs is finitely bounded and thus
whether an equivalent LCFRS G′

s can be constructed to resolve the func-
tional annotations for s. As noted, the complexity of LCFRS parsing for the
entire grammar G (if in fact it is finitely bounded) is O(|G′| · nk(r+1)) where
G′ is bounded by ag+c+1|G|kg+c+1. This formula applies to the special-
ized LCFRS G′

s but with parameters as, ks, gs, cs, rs that are typically much
smaller and more likely to be practical than a, k, g, c, r (for our Dutch exam-
ple sentence, for example, ks is 2, gs is 2, and rs is 2).

The construction of G′
s begins with a top-down traversal of Gs that eval-

uates the annotations for c-structure paths with parallel function assign-
ments to determine whether the zippers are bounded. If the zippers are
bounded, this is followed by a bottom-up pass to detect constructive reen-
trancies and to test compatibility of any atom-valued features that might be
promoted upwards by (nonconstructive) reentrancies. All this effort would
be wasted for the (putatively rare) sentences for which Gs fails to meet the
bounding conditions and parsing reverts to an MK bottom-up execution
sequence. An alternative is to perform only the top-down zipper traversal
in every case and use the information it uncovers to guide the operation
of the bottom-up algorithms. The overall process will approach LCFRS ef-
ficiency automatically for specialized grammars that happen to be finitely
bounded. This is the zipper-driven strategy that we illustrate below.

5 Zipper-driven parsing

We start as above by extracting the specialized grammar Gs from the
context-free parser-chart for s. We then transform the rules of that gram-
mar to produce a zipper-free grammar Gz

s whose annotations are free of
zipper-entailed inconsistencies but continue to define all the f-structures of
Gs and thus also of G. The rules of Gz

s are subsequently interpreted as a
parse-chart that MK algorithms can operate on to check for inconsistencies
that escaped the top-down zipper identification (for example, those arising
from constructive reentrancies), if any. If there are no such inconsistencies,
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the bottom-up satisfiability check will quickly verify that the language of
the annotated context-free grammar Gz

s is not empty. Otherwise, zipper-
driven parsing may degrade to the performance of XLE for constructions
that can only be described by more intricate annotations. In the following
we describe these steps in more detail.

The construction of Gz
s from Gs involves several operations the first of

which is to eliminate trivial ↑= ↓ annotations by promoting the daughter
category strings of the rules that expand a trivially-annotated category. The
trivial-free grammar G\↑= ↓

s that we obtain from Gs through trivial elimina-
tion is shown in (8).

(8) a. 0S6 → 0NP1

(↑ SUBJ)= ↓
1VP3

(↑ XCOMP)= ↓
3heeft4

(↑ PRED)= ‘PERF〈SUBJ, XCOMP〉’
(↑ XCOMP SUBJ)=(↑ SUBJ)

(↑ SUBJ NUM)= SG

4V6

(↑ XCOMP)= ↓

b. 1VP3 → 1VP3

(↑ XCOMP)= ↓

c. 1VP3 → 1NP3

(↑ OBJ)= ↓

d. 4V6 → 4kunnen5

(↑ PRED)= ‘ABLE〈SUBJ, XCOMP〉’
(↑ XCOMP SUBJ)=(↑ SUBJ)

5V6

(↑ XCOMP)= ↓

e. 5V6 → 5lezen6

(↑ PRED)= ‘READ〈SUBJ, OBJ〉’

f. 0NP1 → 0hij1
(↑ PRED)= ‘PRO’
(↑ NUM)= SG

g. 1NP3 → 1het2

(↑ SPEC)= THE

(↑ NUM)= SG

2boek3

(↑ PRED)= ‘BOOK’
(↑ NUM)= SG

We then execute a simple top-down strategy for identifying zippers and
solving their functional constraints. The zippers in this process are repre-
sented as those annotated subsets of specialized terminals and nontermi-
nals that result from expanding categories top-down from the zipper-root
{0S6} and grouping together daughter categories that are annotated with
the same function assignment. Thus the root is expanded with rule (8a),
and the instantiated description of the derived annotated categories is
tested for well-formedness. This test eliminates as ill-formed zipper rules
with inconsistent descriptions and rules that cannot be rendered complete
and coherent through bottom-up propagation. In our example, the descrip-
tion is consistent and the subcategorization requirements of the local pred-
icate are satisfied. Moreover, the XCOMP function assignment common to

1VP3 and 4V6, depicted in green, gives rise to a two-element set for the dis-
continuous zipper constituent {1VP3, 4V6}. This reflects the fact that the
discontinuity bound for this construction (and for Dutch as a whole) is two.
The zipper conversion of (8a) is illustrated in (9).
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(9) 0S6 → 0NP1

(↑ SUBJ)= ↓
1VP3

(↑ XCOMP)= ↓
3heeft4

(↑ PRED)= ‘PERF〈SUBJ, XCOMP〉’
(↑ XCOMP SUBJ)=(↑ SUBJ)

(↑ SUBJ NUM)= SG

4V6

(↑ XCOMP)= ↓

⇓
{0S6} → {0NP1}

(↓ NUM)= SG

(↑ SUBJ)= ↓

{1VP3, 4V6}
(↓ SUBJ NUM)= SG

(↑ XCOMP)= ↓
(↓ SUBJ)=(↑ SUBJ)

{3heeft4}
(↑ PRED)= ‘PERF〈SUBJ, XCOMP〉’

The shared assignment also allows the functional control equation to
be shortened to a mother-daughter control that specifies the identity of
the matrix and embedded clause subjects. Because of the SUBJ assignment
to the initial NP, the agreement requirement of the verb migrates to the
{0NP1} so that it can propagate top-down and eventually come into contact
with the singular pronoun. The number agreement feature also transfers to
{1VP3, 4V6} against the possibility left open by (↓ SUBJ)=(↑ SUBJ) that the
subject is realized in the embedded clause.

Now consider the decorated zipped 1VP3, 4V6 daughters of the zipper
rule in (9) depicted in (10).

(10) {1VP3, 4V6}
(↓ SUBJ NUM)= SG

G\↑= ↓
s has the two alternative expansions (11a,b) for 1VP3 but only a single

rule for 4V6 (11c).

(11) a. 1VP3 → 1NP3

(↑ OBJ)= ↓

b. 1VP3 → 1VP3

(↑ XCOMP)= ↓

c. 4V6 → 4kunnen5

(↑ PRED)= ‘ABLE〈SUBJ, XCOMP〉’
(↑ XCOMP SUBJ)=(↑ SUBJ)

5V6

(↑ XCOMP)= ↓

Here, the expansion with (11a,c) yields the daughter combinations in (12a)
and the one with (11b,c) the combinations in (12b). The atom-value infor-
mation that is inherited from the decoration of the mother (10) is shown in
blue. (By convention, we assume that this information is inherited to the
leftmost daughter.)

(12) a. 1NP3

(↑ OBJ)= ↓
(↑ SUBJ NUM)= SG

4kunnen5

(↓ SUBJ NUM)= SG

(↑ PRED)= ‘ABLE〈SUBJ, XCOMP〉’
(↑ XCOMP SUBJ)=(↑ SUBJ)

5V6

(↑ XCOMP)= ↓

b. 1VP3

(↑ XCOMP)= ↓
(↑ SUBJ NUM)= SG

4kunnen5

(↓ SUBJ NUM)= SG

(↑ PRED)= ‘ABLE〈SUBJ, XCOMP〉’
(↑ XCOMP SUBJ)=(↑ SUBJ)

5V6

(↑ XCOMP)= ↓
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Because the daughter combination in (12a) cannot be rendered coherent
through bottom-up propagation (the object is not subcategorized by the
predicate ABLE) the expansion with (11a,c) does not result in a well-formed
zipper rule. For the expansion with (11b,c) on the other hand we obtain the
zipper rule in (13).

(13) {1VP3, 4V6}
(↓ SUBJ NUM)= SG

→ {1VP3, 5V6}
(↓ SUBJ NUM)= SG

(↑ XCOMP)= ↓
(↓ SUBJ)=(↑ SUBJ)

{4kunnen5}
(↑ PRED)= ‘ABLE〈SUBJ, XCOMP〉’

The entire zipper grammar Gz
s is shown in (14).

(14) {0S6} → {0NP1}
(↓ NUM)= SG

(↑ SUBJ)= ↓

{1VP3, 4V6}
(↓ SUBJ NUM)= SG

(↑ XCOMP)= ↓
(↓ SUBJ)=(↑ SUBJ)

{3heeft4}
(↑ PRED)= ‘PERF〈SUBJ, XCOMP〉’

{1VP3, 4V6}
(↓ SUBJ NUM)= SG

→ {1VP3, 5V6}
(↓ SUBJ NUM)= SG

(↑ XCOMP)= ↓
(↓ SUBJ)=(↑ SUBJ)

{4kunnen5}
(↑ PRED)= ‘ABLE〈SUBJ, XCOMP〉’

{1VP3, 5V6}
(↓ SUBJ NUM)= SG

→ {1NP3}
(↑ OBJ)= ↓

{5lezen6}
(↑ PRED)= ‘READ〈SUBJ, OBJ〉’

{0NP1}
(↓ NUM)= SG

→ {0hij1}
(↑ PRED)= ‘PRO’
(↑ NUM)= SG

{1NP3} → {1het2}
(↑ SPEC)= THE

(↑ NUM)= SG

{2boek3}
(↑ PRED)= ‘BOOK’
(↑ NUM)= SG

The analysis of sentence (5) provided by the zipper grammar (14) appears
in Figure 5.

For our Dutch grammar the top-down strategy for Gz
s is certainly suffi-

cient to ensure that Gz
s will be a finite encoding of all and only the deriva-

tions of s in G. But that is not always the case even for finitely bounded
LFGs. The top-down pass is insufficient if completeness and coherence
depend on predicates or governable functions that propagate bottom-up.
Moreover, the top-down construction may also fail to detect all inconsis-
tencies. The top-down process creates a single descending branch for all
daughter categories that share the same function assignment (↑ F)= ↓ and
separate zipper branches for daughters with other assignments (↑ G)= ↓.
Those branches are typically independent with respect to agreement fea-
tures, but that is not necessarily the case if the separate branches have
annotations that lift agreement features from daughter nodes. For exam-
ple, if the F and G branches have promotions (↓ X)= ↑ and (↓ Y)= ↑, then
the X and Y values of the separate branches come into contact at the com-
mon mother and therefore must be consistent. Similarly, if the separate
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{0S6}

{0NP1}
(↓ NUM)= SG

(↑ SUBJ)= ↓

{0hij1}
(↑ PRED)= ‘PRO’
(↑ NUM)= SG

{1VP3, 4V6}
(↓ SUBJ NUM)= SG

(↑ XCOMP)= ↓
(↓ SUBJ)=(↑ SUBJ)

{1VP3, 5V6}
(↓ SUBJ NUM)= SG

(↑ XCOMP)= ↓
(↓ SUBJ)=(↑ SUBJ)

{1NP3}
(↑ OBJ)= ↓

{1het2}
(↑ SPEC)= THE

(↑ NUM)= SG

{2boek3}
(↑ PRED)= ‘BOOK’
(↑ NUM)= SG

{5lezen6}
(↑ PRED)= ‘READ〈SUBJ, OBJ〉’

{4kunnen5}
(↑ PRED)= ‘ABLE〈SUBJ, XCOMP〉’

{3heeft4}
(↑ PRED)= ‘PERF〈SUBJ, XCOMP〉’

Figure 5: The zipper grammar analysis of sentence (5).

branches are annotated with control equations of the form (↓ X)=(↑ Z) and
(↓ Y)=(↑ Z), then the lower X and Y values must be consistent as values
of the common (↑ Z). Annotation combinations such as these may not be
typical of linguistically motivated grammars, but additional tests through
bottom-up propagation are necessary if they are encountered as the top-
down process unfolds (as described in Wedekind and Kaplan (2020)).

Thus suppose that Gs happens to be top-down complete in the sense that
the top-down traversal is sufficient to guarantee that Gz

s encodes all and
only the valid derivations of s in G. Then the bottom-up MK algorithms
will quickly check that there is at least one derivation of s in Gz

s and arrange
it so that all of its f-structures can be read out each in linear time.

In sum, the incremental zipper-driven parsing algorithm performs the
following steps:

1. Specialize G to an LFG grammar Gs characterizing all/only annno-
tated c-structures for s in G. If L(Gs) 6= ∅, move to step 2. Otherwise,
stop and report that there is no parse for s.

2. Construct LFG rules for zipper grammar Gz
s of Gs:

Step 2a: Eliminate identity annotations to produce G\↑= ↓
s .

Step 2b: Create Gz
s from candidate subsets of G\↑= ↓

s rules.4

3. Use MK algorithms to test L(Gz
s ) 6= ∅ and prepare for the enumera-

tion of the f-structures assigned to s.

4It is also possible to interleave ↑= ↓-elimination (Step 2a) with zipper identification
(Step 2b) for epsilon-free grammars, but the process would have been more difficult to il-
lustrate. The interleaved elimination process will terminate even without an explicit bound
on the height of functional domains if rules that would obviously generate nonbranching
dominance chains in Gz

s are discarded.
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S

A

(↑ X)= ↓

B

(↓ Z)= 1

C

(↑ Z)= 1

P

(↑ X)= ↓

Q

(↓ Z)= 1

R

(↑ Z)= 2

S

A

(↑ X)= ↓

B

(↑ Y)= ↓

C

(↑ Z)= 1

P

(↑ X)= ↓

Q

(↑ Y)= ↓

R

(↑ Z)= 2

Figure 6: Illustration of the dependencies locally captured by XLE (left) and
zipper parsing (right).

In Step 3 we apply to Gz
s the MK algorithms that XLE in essence applies

to Gs to determine whether there are any derivations with satisfiable func-
tional descriptions. These algorithms are particularly efficient for disjunc-
tive systems with inconsistencies that are relatively few in number and
arise from combinations of nearby constituents. Thus the optimal situa-
tion for XLE is illustrated by the schematic derivation on the left side of
Figure 6. Here the derivation will fail quickly when the mother-daughter
inconsistencies are encountered, and there is no need to evaluate the con-
stituents that make up the large triangle (unless they also belong to an al-
ternative derivation).

The situation illustrated on the right is much less optimal because the
inconsistency is not discovered until bottom-up processing reaches the
common mother of A and P. Significantly, the entire intermediate sub-
derivation will also be processed before the failure is detected. In con-
trast, the top-down zipper traversal identifies the A and P subtrees as two
branches of the discontinuous X–Y functional unit, as shown earlier in Fig-
ure 1. The inconsistency of the C and R annotations becomes apparent
when those nodes are brought together by the expansion of the zipped
category {B, Q} in Gz

s . The failure is discovered immediately, before any
computation is wasted in the evaluation of the intermediate subtree.

The improved performance for discontinuous constituents at Step 3 is
purchased with the additional expense of the top-down traversal and zip-
per grammar construction of Step 2. This depends on the degree of dis-
continuity of Gs, the number of different rules for each specialized cate-
gory, and the way the annotations of those rules interact when they are
combined to form candidate expansions for a zipper set-category. It can
be shown that the overall Step 2 effort is bounded by a polynomial in the
length of the input.
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0S6

. . . 1VP3

(↑ XCOMP)= ↓

1VP3

(↑ XCOMP)= ↓

1VP3

(↑ XCOMP)= ↓

1NP3

(↑ OBJ)= ↓

3heeft4

(↑ PRED)= ‘PERF〈· · · XCOMP〉’

. . .

4V6

(↑ XCOMP)= ↓

4kunnen5

(↑ PRED)= ‘ABLE〈· · · XCOMP〉’

. . .

5V6

(↑ XCOMP)= ↓

5lezen6

(↑ PRED)= ‘READ〈· · · OBJ〉’

Figure 7: Recursive expansion of the 1VP3 rule.

We close this section with a remark on the nature of the NBD con-
straint in LFG theory. Formally, this constraint guarantees (for epsilon-free
grammars) the decidability of the recognition problem because it bounds
as a function of the length of an input string s the number of annotated
c-structures and thus the number of f-structures assigned by the special-
ized grammar Gs. The refined NBD constraint (Kaplan and Maxwell 1996)
and Dalrymple (2001) that takes category annotations into account does
not eliminate the intended analysis of sentence (5). This is because only
one expansion by the recursive rule (11b) is required to match the depth of
the governable function OBJ on the left branch with its governing predicate
READ on the right. But this rule can apply without limit to produce arbi-
trarily many nonbranching Gs derivations for this sentence, as indicated by
the dashed line in Figure 7. The NBD condition removes those additional
derivations from further consideration so that they do not have to be eval-
uated one by one to discover that the OBJ is ungoverned in each of them.

For this example the NBD condition only suppresses derivations with
incoherent and incomplete f-structures, but that would not be the case for
longer sentences with more subject-controlled intransitives appearing in
the verb sequence on the right. As an example, the sentence (15) is admitted
by the Bresnan et al. (1982) grammar.

(15) ... (dat) hij het boek moet hebben kunnen lezen

... (that) he the book must have able read

... (that) he must have been able to read the book

Nonbranching chains would be required to match the level of the OBJ in
this and longer sentences with the level of its governing predicate. Unfor-
tunately those derivations would be marked as inadmissible by the NBD
condition on Gs, and s would not be accepted as a sentence of G. The prob-
lem is that NBD decisions are made separately on each branch of an an-
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notated c-structure with no awareness of relevant information, for exam-
ple subcategorization requirements, carried by parallel branches. The NBD
condition for G (effectively narrowed to a condition on Gs derivations) does
not correctly differentiate between all intended and unintended analyses.

We note, however, that the zipper grammar Gz
s in (14) does not con-

tain a nonbranching rule corresponding to the recursive (11b) in Gs. The
top-down traversal of the XCOMP zipper components matches each of the
specialized VPs on the left with the corresponding predicate on the right,
resulting in an internally well-formed zipper rule that necessarily branches.
Thus the zipper derivation in Figure 5 has no nonbranching dominance
chains. Importantly, by the same reasoning neither would the zipper
derivations for sentences with more intransitive verbs: they would be ad-
mitted to the language even though all their derivations in Gs violate the
NBD condition. These observations lead us to propose a revision to the LFG
formalism whereby the original (annotation-insensitive) restriction against
nonbranching dominance chains is displaced from derivations of G/Gs to
derivations of the zipper grammar Gz

s . This makes a larger set of deriva-
tions available for bottom-up validation, but it still guarantees a bounded
number of derivations for a given input string and thus the decidability of
the recognition problem for arbitrary LFG grammars.

6 Conclusion

In this paper we have explored parsing strategies that follow from the
strong equivalence between mildly context-sensitive grammatical for-
malisms and restricted subclasses of Lexical-Functional Grammar. That
connection was first recognized by Seki et al. (1993) and characterized in the
definition of finite copying grammars (1), but this key result went largely
unnoticed because its notational constraints were so severe. Here we build
on the recent work of Wedekind and Kaplan (2020) that demonstrates the
same formal equivalence for the subclass of finitely bounded LFG gram-
mars. These are defined with functional annotations and derivational con-
ventions that are much more appropriate for linguistic description.

An LFG grammar that meets all the conditions of finite boundedness
can be converted to a linear context-free rewriting system that provides
exactly the same f-structures for exactly the same sentences. This enables
what we have called the direct LCFRS parsing strategy wherein an LCFRS
parser applies the converted grammar to individual input sentences. The
LCFRS computation is polynomial in the length of the input and thus
tractable in a technical sense. But the computation is likely dominated
by another factor that enters into the complexity formula, the size of the
converted grammar. While it may be feasible to construct an LCFRS for
a finitely-bounded broad-coverage LFG grammars, given natural limits on
the parameters of expansion, this may not be the most effective way of
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parsing with mildly context-sensitive dependencies.
We therefore consider alternative strategies that avoid constructing the

LCFRS for all rules and features of an entire grammar and instead only
operate on the LFG rules that participate in the context-free analyses for a
given input. The specialized grammar is more likely to meet all the bound-
ing conditions even if the entire grammar does not, and the most straight-
forward approach in that case is to build the LCFRS at parse-time only
for the specialized grammar. This approach will typically increase perfor-
mance because parsing complexity still conforms to the general polynomial
formula for LCFRS parsing but with parameters that pertain only to indi-
vidual inputs and not to the language as a whole. We must revert to con-
ventional parsing algorithms, however, for the (putatively rare) sentences
for which the specialized grammar is not bounded.

As another alternative, we propose a more heuristic zipper-driven strat-
egy that incrementally resolves only those mildly context-sensitive zippers
that can be identified through a top-down traversal of the rules of that spe-
cialized grammar. Zipper-driven parsing is particularly efficient for the
majority of inputs with only mildly context-sensitive dependencies because
it limits the complexity of subsequent f-structure consistency checking af-
ter the polynomial top-down phase is complete. Performance will likely
degrade for inputs with more intricate dependencies, but zipper driving
offers the benefit of eliminating many candidate f-descriptions before they
are subjected to full-scale LFG equation solving.
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