
Approaches to scope islands in LFG+Glue
Matthew Gotham, University of Oxford

26th International LFG Conference 13–16 July 2021

1 Background

Glue semantics crash course

(1) Jim smiles.

f :

[
pred ‘smile’
subj g : [“Jim”]

]
Jim⇝ jim : ge

smiles⇝ smile : ge⊸ fp

jim : ge smile : ge⊸ fp

smile(jim) : fp
⊸E

The subscripts e (entities) and p (propositions) represent semantic types. We can think of p as an
abbreviation for s � t.

every, some :: ((e � p)× (e � p)) � p

everything, someone :: (e � p) � p

not :: p � p

Scope ambiguity

(2) Someone sees everything.
⇒ someone(λx.everything(λy.see(x, y))) (surface scope)
⇒ everything(λy.someone(λx.see(x, y))) (inverse scope)

f :


pred ‘see⟨g, h⟩’
tense pres
subj g :

[
pred ‘someone’

]
obj h :

[
pred ‘everything’

]



1

Multiple proofs

someone⇝ someone : (ge⊸ fp)⊸ fp

sees⇝ λy.λx.see(x, y) : he⊸ (ge⊸ fp)

everything⇝ everything : (he⊸ fp)⊸ fp

Surface scope interpretation

someone :
(ge⊸ fp)⊸ fp

everything :
(he⊸ fp)⊸ fp

λv.λu.see(u, v) :
he⊸ (ge⊸ fp) [y : he]

1

λu.see(u, y) : ge⊸ fp [x : ge]
2

see(x, y) : fp

λy.see(x, y) : he⊸ fp
1

everything(λy.see(x, y)) : fp

λx.everything(λy.see(x, y)) : ge⊸ fp
2

someone(λx.everything(λy.see(x, y))) : fp

Inverse scope interpretation

everything :
(he⊸ fp)⊸ fp

someone :
(ge⊸ fp)⊸ fp

λv.λx.see(x, v) :
he⊸ (ge⊸ fp) [y : he]

1

λx.see(x, y) : ge⊸ fp

someone(λx.see(x, y)) : fp

λy.someone(λx.see(x, y)) : he⊸ fp
1

everything(λy.someone(λx.see(x, y))) : fp

Other manifestations of scope ambiguity

Embedded quantified noun phrases:

(3) A member of every board resigned.
⇒ some(λx.every(board, λy.member-of(x, y)), resign) surface scope
⇒ every(board, λy.some(λx.member-of(x, y), resign)) inverse linking

Scope level

2

f :


pred ‘resign⟨g⟩’

subj g :


pred ‘member⟨h⟩’
spec

[
pred ‘a’

]
obj h :

[
“every board”

]



every board⇝ λP.every(board, P) : (↑e⊸?p)⊸?p

Surface scope : ? := g

Inverse linking : ? := f

How to fix scope level?

Two methods:
1. Inside-out functional uncertainty:

%A = (path ↑)

λP.every(board, P) : (↑e⊸ %Ap)⊸ %Ap

2. Quantification in linear logic:
λP.every(board, P) : ∀X.(↑e⊸ Xp)⊸ Xp

2 Scope islands

Limitations on scope level

(4) A warden thinks that every prisoner escaped.
⇒ some(warden, λx.think(x, every(prisoner, escape)))

⇏ every(prisoner, λy.some(warden, λx.think(x, escape(y))))

• Received wisdom: the finite clause is a scope island—no quantifier inside it can take scope
outside it.

• Does not apply to indefinites (maybe they aren’t quantifiers?):

(5) Every warden thinks that a prisoner escaped.
⇒ every(warden, λx.think(x, some(prisoner, escape)))

⇒ some(prisoner, λy.every(warden, λx.think(x, escape(y))))

3

The received wisdom seems to favour the IOFU approach

f :



pred ‘think⟨g, h⟩’
tense pres
subj g :

[
“a warden”

]

comp h :


pred ‘escape⟨i⟩’
tense past
subj i :

[
“every prisoner”

]



%A =

(gf∗ gf ↑
¬(→ tense)

)
every prisoner⇝ λP.every(prisoner, P) : (↑e⊸ %Ap)⊸ %Ap

%B = (gf∗ gf ↑)
a warden⇝ λP.some(warden, P) : (↑e⊸ %Bp)⊸ %Bp

Wrinkles for the received wisdom

Not all finite clauses are scope islands:

(6) An accomplice ensured that every prisoner escaped.
⇒ some(accomplice, λx.ensure(x, every(prisoner, escape)))

⇒ every(prisoner, λy.some(accomplice, λx.ensure(x, escape(y))))

• ‘ensure’ allows some quantifiers to take scope outside the clause it embeds . . . but not all of
them:

(7) ?An accomplice ensured that no prisoner escaped.
⇒ some(accomplice, λx.ensure(x,not(some(prisoner, escape))))

⇏ not(some(prisoner, λy.some(accomplice, λx.ensure(x, escape(y)))))

Finding a pattern

clause quantifier
embedder a N every N no N

think ✓ × ×
ensure ✓ ✓ ×

(8) A warden thinks that no prisoner escaped.
⇒ some(warden, λx.think(x,not(some(prisoner, escape))))

⇏ not(some(prisoner, λy.some(warden, λx.think(x, escape(y)))))

4

(9) Every accomplice ensured that a prisoner escaped.
⇒ every(accomplice, λx.ensure(x, some(prisoner, escape)))

⇒ some(prisoner, λy.every(accomplice, λx.ensure(x, escape(y))))

The Scope Island Subset Constraint (SISC)

A proposed generalization from Barker (2021):
Given any two scope takers, the set of scope islands that trap one is a subset of the
set of scope islands that trap the other.

Implies an implicational relationship:
• Being a scope island for a N implies being a scope island for every N.
• Being a scope island for every N implies being a scope island for no N.
• Being trapped by ensure implies being trapped by think.
• . . .

Another example

To be licensed, a negative polarity item (NPI) like any N must be interpreted within the scope of
an appropriate ‘negative’ licensor—Fry (1999) shows a method for ensuring this in LFG+Glue.

(10) #Anyone will come to the party.

(11) Jim doubts that anyone will come to the party.

(12) Lyn will be happy if anyone comes to the party.

But where there’s more than one licensor available, can an NPI take any licensed scope position?

NPI licensors as scope island projectors

It seems that any N can take scope out of the complement of doubt so long as it’s otherwise li-
censed.

(13) Lyn will be happy if Jim doubts that anyone is coming to the party.
⇒ if(doubt(jim, someone(come)),happy(lyn))

⇒ if(someone(λx.doubt(jim, come(x))),happy(lyn))

But it can’t take scope out of the complement of if.

(14) Jim doubts that Lyn will be happy if anyone comes to the party.
⇒ doubt(jim, if(someone(come),happy(lyn)))

5

⇏ doubt(jim, someone(λx.if(come(x),happy(lyn))))

Conclusion: if projects a scope island for any N.

Following the pattern

clause quantifier island
embedder an N any N every N no N strength

if ✓ × × × 3
think ✓ ✓ × × 2
doubt ✓ ✓ × × 2
ensure ✓ ✓ ✓ × 1

escaper 3 2 1 0
strength

It seems that attitude verbs and verbs of perception pattern together with doubt/think.

3 Approaching the data

3.1 Blocking features and off-path constraints

Different clause types at f-structure

• We can still use constraints on an IOFU path to enforce scope islands.
• But it’s not clear that we can tie these to independently- given syntactic features. We would

probably need something like this:

thinks V

(↑ comp ScopeIsland) = {0, 1}

ensures V

(↑ comp ScopeIsland) = {0}

everyone N

%C =

(gf∗ gf ↑
¬(1 ∈ (→ ScopeIsland))

)
everyone : (↑e⊸ %Cp)⊸ %Cp

no-one N

%D =

(gf∗ gf ↑
¬(0 ∈ (→ ScopeIsland))

)
λP.not(someone(P)) : (↑e⊸ %Dp)⊸ %Dp

Problems

• The ScopeIsland feature is not independently motivated.

6

• There’s no obvious way to enforce the SISC. For example, there’s nothing to stop a clause-
embedder from containing the description (↑ comp ScopeIsland) = {1}, allowing no-one
to take scope out of it but not everyone.

• A completely different theory would be needed for intra-clausal scope rigidity, e.g.

(15) Every warden checked no prisoner(s).
⇒ every(warden, λx.not(some(prisoner, λy.check(x, y))))

⇏ not(some(prisoner, λy.every(warden, λx.check(x, y))))

• (It forces us to use IOFU to fix scope level, rather than linear logic quantification.)

An aside

The particular approach mentioned is one way of using blocking features to enforce scope islands,
but of course there are others. For example, we could achieve the same effect by having:

thinks V

(↑ comp ScopeIsland) = 2

ensured V

(↑ comp ScopeIsland) = 1

everyone N

%C =

(gf∗ gf ↑
(→ ScopeIsland) ̸= {2 | 3}

)
everyone : (↑e⊸ %Cp)⊸ %Cp

no-one N

%D =

(gf∗ gf ↑
(→ ScopeIsland) ̸= {1 | 2 | 3}

)
λP.not(someone(P)) : (↑e⊸ %Dp)⊸ %Dp

Either way, though, the point is that the SISC has to effectively be stated in each lexical entry
either of the clause embedders (first approach) or scope takers (second approach). For exam-
ple, there’s nothing in the second approach to prevent a scope-taker having in its lexical entry
(ScopeIsland) ̸= 1, allowing it to escape from the islands induced by thinks but not ensured.

3.2 Multi-modal Glue semantics

Properties of linear logic for Glue

The base fragment of linear logic used in Glue is equivalent to the Lambek calculus with permu-
tation or LP, and so relates to other substructural type logics like this: LP

L

commut
>>

NLP
assoc

bb

NL
assoc

``
commut

<<

7

Some properties of LP:
Commutativity
(Γ,∆) ⊢ A

(∆,Γ) ⊢ A The order of premises doesn’t matter.
Associativity
((Γ,∆),Σ) ⊢ A

(Γ, (∆,Σ)) ⊢ A The grouping of premises doesn’t matter.
(By ‘base fragment’ I mean, excluding linear logic quantification.)

Reflections on the logic

• LP has been a good choice of logic for Glue: unlike in categorial grammar, the logic is not
meant to account for word order and so it makes sense for it to be commutative.

• So far it has also made sense for the logic to be associative, but scope islands may actually
give us a reason to care about how premises are grouped, and so restrict associativity.

• We can do so selectively by combining elements of LP (as before) and NLP (which is non-
associative) in a multimodal system, where the modes correspond to the island/escaper
strengths outlined above.

Proposed rules of inference for multi-modal Glue

x : A ⊢ x : A
axiom

For modes i, j ∈ { ,11,12,13,$1,$2,$3} :

Γ ⊢ x : A ∆ ⊢ f : A⊸i B

(Γ,∆)i ⊢ f(x) : B
⊸i e (x : A,Γ)i ⊢ y : B

Γ ⊢ λx.y : A⊸i B
⊸i i

(Γ,∆)i ⊢ x : A

(∆,Γ)i ⊢ x : A
p ((Γ,∆)i,Σ)j ⊢ x : A

(Γ, (∆,Σ)j)i ⊢ x : A
ma

provided that j
does not block i

Comments on the rules

• Because we no longer assume generalized associativity, there is bracketing on the left hand
side of sequents.

• The mode indices on those brackets correspond to mode indices on occurrences of⊸.
• Commutativity is ensured by the structural rule p (for permutation), and we have restricted

associativity thanks to the rule ma (mixed associativity).
• ma, in combination with the lexicon, permits just the right scope takers to escape from just

the right islands.

8

Blocking and escaping modalities

if $3 an N 13
think $2 any N 12
ensure $1 every N 11

no N

Mode j blocks mode i iff:
• j = $n for some n, and

– i = , or
– i = 1m for some m < n.

Lexicon

Clause embedders:
if⇝ λp.λq.if(p, q) : ↑p⊸$3 ((adj ∈ ↑)p⊸ (adj ∈ ↑)p)

thinks⇝ λp.λx.think(x, p) : (↑ comp)p⊸$2 ((↑ subj)e⊸i ↑p)
ensured⇝ λp.λx.ensure(x, p) : (↑ comp)p⊸$1 ((↑ subj)e⊸i ↑p)

Scope takers:
a⇝ λP.λQ.some(P,Q) : ∀X.(↑e⊸ ↑p)⊸ ((↑e⊸13 Xp)⊸ Xp)

any⇝ λP.λQ.some(P,Q) : ∀X.(↑e⊸ ↑p)⊸ ((↑e⊸12 Xp)⊸ Xp)

every⇝ λP.λQ.every(P,Q) : ∀X.(↑e⊸ ↑p)⊸ ((↑e⊸11 Xp)⊸ Xp)

no⇝ λP.λQ.not(some(P,Q)) : ∀X.(↑e⊸ ↑p)⊸ ((↑e⊸ Xp)⊸ Xp)

• ⊸ (with no mode shown) means⊸−.
• ⊸i means free choice of mode.

We now have the choice (once again) of using either linear logic quantification (as above) or IOFU
to fix scope level. If we use IOFU we don’t expect to have to impose any constraints on the path.

[ensured [every . . .]]

(6) An accomplice ensured that every prisoner escaped.

9

f :


pred ‘ensure⟨g, h⟩’
subj g :

[
“an accomplice”

]
comp h :

pred ‘escape⟨i⟩’
subj i :

[
“every prisoner”

]


[an accomplice] := λP.some(accomplice, P) : (ge⊸13 fp)⊸ fp

[ensured] := λp.λx.ensure(x, p) : hp⊸$1 (ge⊸13 fp)

[every prisoner] := λP.every(prisoner, P) : ∀X.(ie⊸11 Xp)⊸ Xp

[escaped] := escape : ie⊸11 hp

Surface scope

[escaped] ⊢
escape :
ie⊸11 hp

....
[every prisoner] ⊢

λP.every(prisoner, P) :
(ie⊸11 hp)⊸ hp

([escaped], [every prisoner]) ⊢
every(prisoner, escape) : hp

[ensured] ⊢
λp.λx.ensure(x, p) :
hp⊸$1 (ge⊸13 fp)

(([escaped], [every prisoner]), [ensured])$1 ⊢
λx.ensure(x, every(prisoner, escape)) : ge⊸$3 fp

....
[an accomplice] ⊢

λP.some(accomplice, P) :
(ge⊸13 fp)⊸ fp

((([escaped], [every prisoner]), [ensured])$1, [an accomplice]) ⊢
some(accomplice, λx.ensure(x, every(prisoner, escape))) : fp

Beginning inverse scope

y : ie ⊢
y : ie

[escaped] ⊢
escape :
ie⊸11 hp

(y : ie, [escaped])11 ⊢
escape(y) : hp

[ensured] ⊢
λp.λx.ensure(x, p) :
hp⊸$1 (ge⊸13 fp)

((y : ie, [escaped])11, [ensuped])$1 ⊢
λx.ensure(x, escape(y)) : ge⊸13 fp

....
[an accomplice] ⊢

λP.some(accomplice, P) :
(ge⊸13 fp)⊸ fp

(((y : ie, [escaped])11, [ensuped])$1, [an accomplice]) ⊢
some(accomplice, λx.ensure(x, escape(y))) : fp

Structural rules

(((y : ie, [escaped])11, [ensured])$1, [an accomplice]) ⊢
some(accomplice, λx.ensure(x, escape(y))) : fp

We need to ‘move’ y to the outside of the structure so it can be abstracted. This is licit:

10

(((y : ie, [escaped])11, [ensuped])$1, [an accomplice]) ⊢
some(accomplice, λx.ensure(x, escape(y))) : fp

((y : ie, ([escaped], [ensuped])$1)11, [an accomplice]) ⊢
some(accomplice, λx.ensure(x, escape(y))) : fp

ma

(y : ie, (([escaped], [ensuped])$1, [an accomplice]))11 ⊢
some(accomplice, λx.ensure(x, escape(y))) : fp

ma

(([escaped], [ensuped])$1, [an accomplice]) ⊢
λy.some(accomplice, λx.ensure(x, escape(y))) : ie⊸11 fp

⊸11 i

Inverse scope

(([escaped], [ensured])$1, [an accomplice]) ⊢
λy.some(accomplice, λx.ensure(x, escape(y))) :

ie⊸11 fp

....
[every prisoner] ⊢

λP.every(prisoner, P) :
(ie⊸11 fp)⊸ fp

((([escaped], [ensured])$1, [an accomplice]), [every prisoner]) ⊢
every(prisoner, λy.some(accomplice, λx.ensure(x, escape(y)))) : fp

[thinks [every . . .]]

(4) A warden thinks that every prisoner escaped.

Surface scope:

[escaped] ⊢
escape :
ie⊸11 hp

....
[every prisoner] ⊢

λP.every(prisoner, P) :
(ie⊸11 hp)⊸ hp

([escaped], [every prisoner]) ⊢
every(prisoner, escape) : hp

[thinks] ⊢
λp.λx.think(x, p) :
hp⊸$2 (ge⊸13 fp)

(([escaped], [every prisoner]), [thinks])$2 ⊢
λx.think(x, every(prisoner, escape)) : ge⊸13 fp

....
[a warden] ⊢

λP.some(warden, P) :
(ge⊸13 fp)⊸ fp

((([escaped], [every prisoner]), [thinks])$2, [a warden]) ⊢
some(warden, λx.think(x, every(prisoner, escape))) : fp

Attempting inverse scope

y : ie ⊢
y : ie

[escaped] ⊢
escape :
ie⊸11 hp

(y : ie, [escaped])11 ⊢
escape(y) : hp

[thinks] ⊢
λp.λx.think(x, p) :
hp⊸$2 (ge⊸3 fp)

((y : ie, [escaped])11, [thinks])$2 ⊢
λx.think(x, escape(y)) : ge⊸3 fp

[a warden] ⊢
λP.some(warden, P) :

(ge⊸3 fp)⊸ fp

(((y : ie, [escaped])11, [thinks])$2, [a warden]) ⊢
some(warden, λx.think(x, escape(y))) : fp

11

y : ie is stuck inside the structure. ma is not applicable:

((Γ,∆)11,Σ)$2 ⊢ A ⊬ (Γ, (∆,Σ)$2)11 ⊢ A

So we can’t get inverse scope.

Rounding out the SISC

The same thing happens if we have no N embedded under ensure, think or if

((Γ,∆),Σ)$1/2/3 ⊢ A ⊬ (Γ, (∆,Σ)$1/2/3) ⊢ A,

every N embedded under if

((Γ,∆)11,Σ)$3 ⊢ A ⊬ (Γ, (∆,Σ)$3)11 ⊢ A,

or any N embedded under if

((Γ,∆)12,Σ)$3 ⊢ A ⊬ (Γ, (∆,Σ)$3)12 ⊢ A.

So the implicational relationship is enforced by the structural rules for the fragment.

4 Discussion

Comparing the approaches

• The blocking features-based approach is much more conservative, making use only of es-
tablished LFG+Glue technology.

• It does make use of features that aren’t independently motivated, but that would hardly be
unusual.*

• More troublingly, the SISC has to take the form of a generalization over all lexical entries.
• In the multi-modal Glue approach the formulation of the ma rule is itself ad-hoc but, that

given, the SISC follows automatically.
• To finish, let’s look at intra-clausal scope rigidity for further considerations.

* One example of a comparable use of features would be the ldd feature used by Dalrymple, Lowe
& Mycock (2019) in their account of bridge verbs for long-distance dependencies.

Scope freezing

(15) Every warden checked no prisoner(s).
⇒ every(warden, λx.not(some(prisoner, λy.check(x, y))))

⇏ not(some(prisoner, λy.every(warden, λx.check(x, y))))

12

f :


pred ‘check⟨g, h⟩’
subj g :

[
“every warden”

]
obj h :

[
“no prisoner”

]


Because there’s no embedded clausal f-structure there’s no choice of scope level and hence no
way to account for this in the blocking features approach.
In Gotham 2019 I proposed an account of intra-clausal scope rigidity in Glue, but

• it uses yet another complication of the linear logic fragment, and
• it isn’t ideally suited to this kind of quantifier-determined scope rigidity.

What I mean by the last point is that it’s not the case in general that direct objects can’t scope
over subjects in English—unlike in e.g. German with canonical SVO order, which is more the point
of my 2019 paper. Rather, it seems to be the case that downward-monotonic objects can’t scope
over upward-monotonic subjects.

NPs as scope island inducers?

At the moment we have

every warden⇝ λQ.every(warden, Q) : ∀X.((↑e⊸11 Xp)⊸ Xp)

no prisoner⇝ λQ.not(some(prisoner, Q)) : ∀X.((↑e⊸ Xp)⊸ Xp)

We can make every N block no N from taking scope over it by changing the mode on the second
linear logic implication:

every warden⇝ λQ.every(warden, Q) : ∀X.((↑e⊸11 Xp)⊸$1 Xp)

Surface scope

13

x : ge ⊢
x : ge

y : he ⊢
y : he

[checked] ⊢
λv.λu.check(u, v) :
he⊸ (ge⊸11 fp)

(y : he, [checked]) ⊢
λu.check(u, y) : ge⊸11 fp

(x : ge, (y : he, [checked]))11 ⊢
check(x, y) : fp

(y : he, (x : ge, [checked])11) ⊢
check(x, y) : fp

p,ma

(x : ge, [checked])11 ⊢
λy.check(x, y) : he⊸ fp

⊸ i

....
[no prisoner] ⊢

λP.not(some(prisoner, P)) :
(he⊸ fp)⊸ fp

((x : ge, [checked])11, [no prisoner])
not(some(prisoner, λy.check(x, y)))

(x : ge, ([checked], [no prisoner]))11
not(some(prisoner, λy.check(x, y))) : fp

ma

([checked], [no prisoner])
λx.not(some(prisoner, λy.check(x, y))) : ge⊸11 fp

⊸11 i

....
[every warden] ⊢

λP.every(warden, P) :
(ge⊸11 fp)⊸$1 fp

(([checked], [no prisoner]), [every warden])$1 ⊢
every(warden, λx.not(some(prisoner, λy.check(x, y)))) : fp

Attempting inverse scope

y : he ⊢
y : he

[checked] ⊢
λv.λu.check(u, v) :
he⊸ (ge⊸11 fp)

(y : he, [checked]) ⊢
λu.check(u, y) : ge⊸11 fp

....
[every warden] ⊢

λP.every(warden, P) :
(ge⊸11 fp)⊸$1 fp

((y : he, [checked]), [every warden])$1 ⊢
every(warden, λu.check(u, y)) : fp

• y : he is now trapped by the $1 bracket, so it can’t ‘move’ to the outside of the structure for
abstraction.

• Therefore, inverse scope is impossible.

The problem with NPs as scope island inducers

The proposal just considered would also block the surface scope interpretation in a sentence like
(16)

(16) No warden checked every prisoner.

by creating the structure

((x : ge, [checked]), [every prisoner])$1

from which x : ge would not be able to escape for abstraction.

14

Avenues for dealing with the problem

At the moment the (non-) modes keep track of
• blocking vs. escaping: $ vs. 1, and
• strength thereof: 1–3.

To enforce intra-clausal scope rigidity by using NPs as island inducers, the modes might also have
to keep track of

• argument structure,
• linear order, or
• c-structure embeddedness?

This might be too much cateogorial grammar in LFG for many people’s tastes, but either way
the question of how to enforce (intra- and extra-clausal) scope rigidity in LFG+Glue remains very
much open.
Acknowledgement

This research is supported by an Early Career Fellowship from the Leverhulme Trust.

References
Barker, Chris. 2021. Rethinking scope islands. Linguistic Inquiry. Advance publication. https://
doi.org/10.1162/ling_a_00419.

Dalrymple, Mary, John J. Lowe & Louise Mycock. 2019. The Oxford reference guide to Lexical Functional
Grammar. Oxford: Oxford University Press.

Fry, John. 1999. Proof nets and negative polarity licensing. In Mary Dalrymple (ed.), Semantics
and syntax in Lexical Functional Grammar: The resource logic approach, 91–116. Cambridge, MA: MIT
Press.

Gotham, Matthew. 2019. Constraining scope ambiguity in LFG+Glue. In Miriam Butt, Tracy Hol-
loway King & Ida Toivonen (eds.), Proceedings of the LFG’19 conference, Australian National Univer-
sity, 111–129.

15

