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Past ~2 years:

NMe LnAw A~y lanAiLiAaAD

Phenomenon N Acceptable Example Unacceptable Example

ANAPHOR AGR. 2  Many girls insulted themselves. Many girls insulted herself.

ARG. STRUCTURE 9  Rose wasn’t disturbing Mark. Rose wasn’t boasting Mark.

BINDING 7  Carlos said that Lori helped him. Carlos said that Lori helped himself.

CONTROL/RAISING S  There was bound to be a fish escaping. There was unable to be a fish escaping.

DET.-NOUN AGR. 8  Rachelle had bought that chair. Rachelle had bought that chairs.

ELLIPSIS 2 Anne’s doctor cleans one important Anne’s doctor cleans one book and
book and Stacey cleans a few. Stacey cleans a few important.

FILLER-GAP 7  Brett knew what many waiters find. Brett knew that many waiters find.

IRREGULAR FORMS 2 Aaron broke the unicycle. Aaron broken the unicycle.

ISLAND EFFECTS 8  Which bikes is John fixing? Which is John fixing bikes?

NPI LICENSING 7 The truck has clearly tipped over. The truck has ever tipped over.

QUANTIFIERS 4  No boy knew fewer than six guys. No boy knew at most six guys.

SUBJECT-VERB AGR. 6  These casseroles disgust Kayla. These casseroles disgusts Kayla.

Tenney et al (ACL 2019)

Warstadt et al (TACL 2020)
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Challenge Tasks:
How well do models perform
on difficult “tail” events?

Phenomenon N  Acceptable Example Unacceptable Example
ANAPHOR AGR. 2 Many girls insulted themselves. Many girls insulted herself.
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( None of these three circles have the same color as both of the squares .
\ in their own cell )y

On the semantics of phi features on pronouns. Sudo (2012).
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*Example Credit: Julia Hiershberg
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Semantics, Pragmatics,
‘Common Sense’

Did you feed the animals?

\!
I fed the cats...”

*Example Credit: Julia Hirschberg
See also: Marie-Catherine de Marneffe’s work. ..

e Do these model reason about context and
“question under discussion”?



Semantics, Pragmatics,
‘Common Sense’

Is the King of France bald?
)

There is no King of France!

e Do these model reason about context and
“question under discussion”?
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Major Challenges

* Living area of research—we can’t ask linguistics to
just lend us some ready-to-go evaluations

* Good “probing tasks” require situation and
grounding—to vision, dialog, etc—which makes
error attribution very difficult

* Human baselines are hard pin down. Variation is
high and agreement often low. Experimental
designs are usually caretully and highly contrived.
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falke qun
)
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Most babies are little and most
problems are huge: Compositional
Entailment in Adjective-Nouns.
Pavlick and Callison-Burch (2016)

So-Called Nonsubsective Adjectives.
Pavlick and Callison-Burch (2016)
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Inherent Disagreements in Human
Textual Inferences. Pavlick and
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MH = H

American
composer

composer

Subsective

MH = H

alleged criminal

criminal

Plain Non-Subsective

MH = -H

fake gun

gun

Privative



It IS her favorite book

-quivalence MH <= H e entire world.
Reverse MH = H A  Sheis an American
—ntallment H =+ MH composer.
Forward MH == H A sheisthe
= ntai t s M president’s potential
—ntalimen = SUCCeSSor.
nd q MH =5 H A She is the alleged
ndependence o MM hacker
. H= -H A She is a former
Exclusion

H= -MH

senator.
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MH = H H = MH

It IS her favorite book In
the entire world.

—QUIV. Yes Yes

Rev. Ent. Yes Unk ~ddy is a gray cat.

She is the president’s

For. Ent. Unk Yes potential successor.

She is the alleged

Indep. Unk Unk hacker.

—XCl. NO No She is a former senator.
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Classes of Modifiers

Subsective Plain Non-Subsective Privative

MH = H MH = H MH = -H

Greneralizations based on the class of the wmodifier
lead to incorrect predictions more often than not.



sometimes we can____
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without changing

the meaning...
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sometimes we can . [he deadly attack
insert an adjective  killed at least 12
without changing civilians.

the meaning... A

The new series wil|
premiere in January.

T — e —=

A woman rides a bike
on an outdoor trail

® Equivalence through a field. ependence
© Forward Entailmentwr—e=xciusion ———w=wndefined




The entire bill is now
f' subject to approval by
the parliament.

somelimes we can

insert an adjective

without changing
the meaning...

Nia)

Greenberg also was put
under investigation for his
crucial role at the company.

e

| simply love the
actual experience of
being one with the

® Equivalence ocean and the life in it. ndependence
© Forward Entailmen. Jndefined

11




sometimes i we
insert an ad jective,
we appear to
conbradict the
meaning...

@ Equivalence @ Reverse Entailment Independence
© Forward Entailment @ Exclusion ® Undefined



sometimes i we
insert an ad jective,
we appear to
conbradict the
meaning...

Bush travels Monday to
Michigan to remark on the
Japanese economy.

@ Equivalence @ Reverse Entailment Independence
@ Forward Entailment @ Exclusion ® Undefined



in fact this is how
mosk erwa&a\/es
appear to behave...

Wilson signed off to Privative
pay the debts to the | MR = -H
fictitious company.

B——

@ Equivalence @ Reverse Entailment Independence
@ Forward Entailment @ Exclusion ® Undefined



but in wmost cases,
deleting the adjective was
rakted as ’Qw&v fenkailed

Flawed eounterfeit software Privative
can corrupt the information MH = =H
entrusted to it. ‘

He also took part in a
meock debate Sunday.

T —
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The plants were grown under
artifieial light and the whole

@ Equivaler  gperation was computerised.  *ndence
® Forwardb_ e ned
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lakeaways

* Classes of modifiers provide a clear example of why its
hard to naively translate semantic theories into NLI-style

tasks

* |Inferences “in practice” may be determined by factors not
covered in the theory, so we can't make assumptions
about which labels our models should produce

* We could constrain eval to settings in which theory makes
correct predictions, but the theories themselves are still
under study and under debate, so what would we learn
from these evaluations?




Three Case Studies
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)
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Classes of Verbs
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Classes of Verbs

They think that the answer is 5.
]

The answer Is 5.

They do not think that the answer is 5.
!

The answer Is 5.



Classes of Verbs

Positive Negative

Context Context Exampie

They know that the answer Is 5.

They managed to get it right.

hey think that the answer is 5.



Positive  Negative

Context Context Example

They know that the answer is 5.
They managed to get it right.
They failed to get it right.

They suspect that the answer is 5.
They attempted to get it right.
They refused to answer.

They confirmed that the answer is 5.

They think that the answer is 5.

see: Karttunen (2012),
http://web.stanford.edu/group/csli_ Inr/Lexical_Resources/
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lakeaways

e \Verb classes echoes the same themes seen with
modifier classes

* Inferences “in practice” are not governed by the
theory alone

 We could constrain eval, but is this what we want”?
We need an explicit definition of what it is we are
trying to study before we can define these tasks.



Three Case Studies

Moditier-Noun
Composition

falke qun
)

gun

Most babies are little and most
problems are huge: Compositional
Entailment in Adjective-Nouns.
Pavlick and Callison-Burch (2016)

So-Called Nonsubsective Adjectives.

Pavlick and Callison-Burch (2016)

Verb-Complement
Composition

attempt to sing

Do NLI models capture verb
veridicality? Ross and Pavlick (2019)

Sentence-Level
Inference

A man is standing
under a kree

l

A person s oubside,

B train [
test

Inherent Disagreements in Human
Textual Inferences. Pavlick and
Kwiatkowski (2020)
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Annotating “Ground Truth”

A guy in a yellow shirt performs A young woman stands by a
a balancing act on a barbecue.

taught chain near a canal. |
The young female is near a

A boy Is doing a trick by water. machine.

0
Contra. Neutral Entail. Contra. Neutral Entail.



Entaillment Datasets

Stanford Natural Language Inference Dataset (SNLI)
Three dogs on a sidewalk = There are more than one dog here.

A red rally car taking a slippery turn in a race — The car is stopped at a traffic light.

Multigenre Natural Language Inference Dataset (MNLI)

Historical heritage is very much the theme in Ichidani = Ichidani’s historical heritage is
important.

okay i uh i have five children altogether — | do not have any children.

Recognizing Textual Entailment Il (RTE2)
Self-sufficiency has been turned into a formal public awareness campaign in San
Francisco, by Mayor Gavin Newsom. — Gavin Newsom is a politician of San Fransisco.

The unconfirmed case concerns a rabies-like virus known only in bats = A case of rabies
__was confirmed.

Johns Hopkins Ordinal Common Sense Inference (JOCI)
It was Charlie’s first day of work at the new firm. = The firm is a business.

A young girl is holding her teddy bear while riding a pony. = The bear attacks.

Diverse Natural Language Inference Corpus (DNC)
Tony bent the rod. = Tony caused the bending.

When asked about the restaurant, Jonah said “sauce was tasteless”. = Jonah liked the
restaurant.



e 50 ratings each
e Continuous scale (-50 to 50)
e z-normalized by annotator (min 20 ratings each)
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Simple Gaussian Mixture Models

A young woman stands by a barbecue.

The young female is near a machine.

contra. NeUtral Entaih



Simple Gaussian Mixture Models
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Simple Gaussian Mixture Models

Paula swatted the fly .
The swatting happened in a forceful manner .

B train
test L g
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Simple Gaussian Mixture Models

someone confessed that a particular thing happened .

that thing happened .
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Simple Gaussian Mixture Models

The capital of Slovenia is Ljubljana, with 270,000 inhabitants.

Slovenia has 270,000 inhabitants.

B train
test

- 8

-7/
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* |ts tempting to say that rather than using theories to
assign ground-truth labels, we can just always rely
on human judgments...

* But this presents new challenges. Humans exhibit
varying sensitivity to ambiguities, and resolve
ambiguities in different ways

* As we try to study more interesting phenomena,
using naive "majority vote” is unlikely to lead us
toward meaningful/informative tasks
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Conclusion

 Hot Take: Text-Only evals are dead. Maybe we just need
to be working with situated language.

 Cooler Take: We need new eval tools. Many of the
iInteresting phenomena we care about don't manifest
neatly as inference or acceptability tasks.

* Theories of semantic representations in humans are not
cut-and-dry, which makes it hard to establish meaningful
eval standards. We should be engaging more with (and
contributing to!) psych/ling research on these topics.



