Attentive Tree-structured Network for Monotonicity Reasoning

Zeming Chen

Department of Computer Science and Software Engineering Rose-Hulman Institute of Technology chenz16@rose-hulman.edu

July 15, 2020

4 E b

- Problem Overview
- Attentive Tree Network
- Data
- Experimental results and analysis
- Conclusion
- Future Work

直と くほと くほと

Natural Language Inference (**NLI**): Determine whether a given premise **P** semantically entails a given hypothesis **H**

Example

- **P**: An Irishman won the Nobel prize for literature.
- H: An Irishman won the Nobel prize.
- P entails H

伺 とく ヨ とく ヨ と

- NLI model needs to perform inferences including lexical and logical inferences.
- Monotonicity Reasoning: A type of logical inference that is based on word replacement

Example (a) All students↓ carry a MacBook↑. (b) All students carry a laptop. (c) All new students carry a MacBook. (a) Not All new students↑ carry a laptop. (b) Not All students carry a laptop.

A > < = > < =

- Many state-of-art neural inference models for NLI did not perform well on monotonicity reasoning.
- Most models have low accuracy on downward inference.
- Most models that do well on upward inference perform poorly on downward inference.

伺 ト く ヨ ト く ヨ ト

- Tree-structured recursive neural networks can learn logical semantics (Bowman et al. 2014)
- Self-attentive network with multiple views of the sentence guide the model to learn the parts that are important to the task. (Conneau et al. 2018)

直とくほとくほと

Attentive Tree Network

- Takes in four inputs: two embeddings and two dependency parse trees
- Glove 840B pre-trained word vectors, Stanford dependency parser
- Siamese neural network structure, identical tree-LSTMs, shared weights and parameters

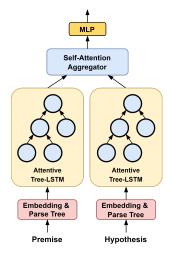


Figure: Overview of the model

イロト イポト イヨト イヨト

Attentive Tree-LSTM

Definition

- Child-sum Tree-LSTM: each node is conditioned on its children's hidden states.
- Attentive Tree-LSTM: soft-attention over hidden states from the children.

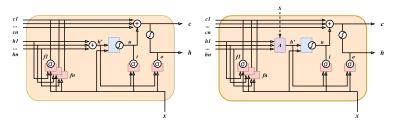


Figure: A comparison between a standard LSTM cell and an attentive LSTM cell

• • **=** • • **=**

Attentive Tree-LSTM

• The information flow in each LSTM cell is controlled by a gating mechanism similar to a sequential LSTM cell:

$$\begin{split} \tilde{h} &= \sum_{1 \le k \le n} h_k, \\ i &= \sigma(W^{(i)}x + U^{(i)}\tilde{h} + b^{(i)}), \\ o &= \sigma(W^{(o)}x + U^{(o)}\tilde{h} + b^{(o)}), \\ u &= tanh(W^{(u)}x + U^{(u)}\tilde{h} + b^{(u)}), \\ f_k &= \sigma(W^{(f)}x + U^{(f)}h_k + b^{(f)}), \\ c &= i \odot u + \sum_{1 < n} f_k \odot c_k, \\ h &= o \odot tanh(c), \end{split}$$

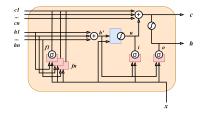


Figure: Child-sum Tree LSTM Cell

Attentive Tree-LSTM

• **Soft Attention**: given hidden states $h_1, h_2, ..., h_n$ and an external vector *s*:

$$\begin{split} m_k &= tanh(W^{(m)}h_k + U^{(m)}s), \\ \alpha_k &= \frac{exp(w^\top m_k)}{\sum_{j=1}^n exp(w^\top m_j)}, \\ g &= \sum_{1 \le k \le n} \alpha_k h_k \end{split}$$

• Apply a transformation to the context vector g:

$$\tilde{h} = tanh(W^{(a)}g + b^{(a)})$$

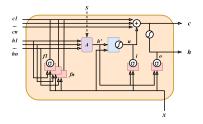


Figure: LSTM cell with attention

- Multi-hop self-attention mechanism
- Three matching methods from Generic NLI Training Scheme:
 - Vector concatenation
 - 2 Absolute difference
 - Selement-wise product

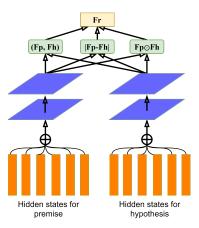


Figure: Self-Attentive Aggregator

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The context of a sentence is formed by multiple components like groups of related words and phrases.

Definition

Multi-hop Self-attention Mechanism: get multiple attentions that each focus on a different part of the sentence.

$$A = Softmax(W_{s2}tanh(W_{s1}H^{\top}))$$
$$M = AH$$

/□ ▶ < 글 ▶ < 글 ♪

- Set of multiplicative interactions combining the two representations. Inspired by **Factored Gated Autoencoder** (Memisevic, 2013)
- A batched dot product between a matrix and the a weight tensor

$$F_p = tanh(\mathbf{bmm}(M_p, W_f)),$$

$$F_h = tanh(\mathbf{bmm}(M_h, W_f))$$

• Apply the matching methods:

$$F_r = [F_p; F_h; |F_p - F_h|; F_p \odot F_h],$$

ヨト イヨト イヨト

- **Multi-layer Perceptron (MLP)**: 3 layer feed-forward network with a 2-way softmax output
- Objective Function: Binary Cross-Entropy Loss

$$-\sum_{c} \mathbb{1}(X,c) log(p(c|X)), \tag{1}$$

直と くほと くほと

Data

Training Data

- HELP
- Multi-Genre Natural Language Inference Corpus (MNLI)
- HELP+SubMNLI
- HELP+SubMNLI+Simple-Monotonicity-Training-Fragments
- HELP+SubMNLI+Hard-Monotonicity-Training-Fragments
- HELP+SubMNLI+Simple/Hard-Monotonicity-Training-Fragments

Test Data

- Monotonicity Entailment Dataset (MED)
- Semantic Fragments (monotonicity part)

ロト (得) (目) (日)

Model	Train Data	Upward	Downward	None	All
BiMPM	SNLI	53.5	57.6	27.4	54.6
ESIM	SNLI	71.1	45.2	41.8	53.8
DeComp	SNLI	66.1	42.1	64.4	51.4
KIM	SNLI	78.8	30.3	53.1	48.0
BERT	MNLI	82.7	22.8	52.7	44.7
BERT	HELP+MNLI	76.0	70.3	59.9	71.6
AttentiveTreeNet (ours)	MNLI	54.7	60.4	37.8	58.6
AttentiveTreeNet (ours)	HELP	55.7	72.6	57.9	66.0
AttentiveTreeNet (ours)	HELP+SubMNLI	81.4	74.5	53.8	75.7

Table: Accuracy of our model and other state-of-art NLI models evaluated on MED.

- Our model had higher overall accuracy and downward inference accuracy
- Our model's upward inference accuracy comes close to BERT's performance

通り イヨト イヨト

Test	Model	Training Data	Upward	Downward	None	All
-	Full Model w/ vector-concat	HELP	55.7	72.6	57.9	66.0
1	-Self-Attentive Aggregator	HELP	65.1	67.1	53.7	65.7
2	-Tree-LSTM	HELP	36.6	65.5	94.8	49.5
3	Full Model w/ mean-dist	HELP	59.3	71.2	46.2	65.9
-	Full Model w/ vector-concat	HELP+SubMNLI	81.4	74.5	53.8	75.7
1	-Self-Attentive Aggregator	HELP+SubMNLI	70.5	66.9	85.6	69.1
2	-Tree-LSTM	HELP+SubMNLI	54.7	60.4	37.8	58.6
3	Full Model w/ mean-dist	HELP+SubMNLI	68.9	73.7	91.0	73.0

Table: Accuracy of ablation test trained on HELP and HELP+SubMNLI.

Three ablation tests:

- **O** Remove self-attentive aggregator (–Self-Attentive Aggregator)
- Replace tree-LSTM with regular LSTM (–Tree-LSTM)
- Subset Were and Use mean distance as a matching method (Full Model w/ mean-dist).

・ 何 ト ・ ヨ ト ・ ヨ ト

Training Data	SF	HF	MED				
Pre-Trained Models							
HELP	57.0	56.8	66.0				
HELP+SubMNLI	46.0	63.0	75.7				
Re-trained Models w/ SF-training fragments							
HELP+frag	98.1	80.6	64.5				
HELP+SubMNLI+frag	97.8	74.8	81.5				
Re-trained Models w/ HF-training fragments							
HELP+frag	74.3	95.6	68.9				
HELP+SubMNLI+frag	73.9	93.2	73.3				
Re-trained Models w/ SF&HF-training fragments							
HELP+frag	96.9	94.6	64.5				
HELP+SubMNLI+frag	96.4	98.3	75.4				

Table: This table shows the testing accuracy on Simple/Hard Monotonicity.

- Pre-trained models did not perform well on simple/hard monotonicity fragments.
- Models re-trained with additional training data can master both simple and hard monotonicity reasoning, while retaining accuracy on original benchmark.

- Incorporating syntactic parse tree can improve the model's performance on monotonicity reasoning.
- Self-structured attention mechanism in the aggregation process provides a more precise guidance regarding learning monotonicity reasoning.

伺 医子宫 医子宫 医子宫

- Replace the LSTM cell with newer and better language models such as the **Transformer** (Vaswani ET AL, 2017).
- Experiment with different attention mechanism such as the Gaussian prior self-attention mechanism (Guo el al. 2019).

御 と く ヨ と く ヨ と

Thank You!

ヘロト 人間 とくほ とくほとう

æ