A Method for Learning Schemas
for Story Understanding and
Inference

7/13/2020

Outline

W N

Motivation

Prior work
Problem statement
Proposed research

a. The protoschema approach

b. Walkthrough of schema language
c. Walkthrough of learning procedure

Evaluation
Timeline

Motivation

Genuine story understanding requires commonsense world knowledge.

Motivation

Genuine story understanding requires commonsense world knowledge.

I crashed my car.

When I finally left the hospital, all I wanted to do was sleep.

I had to call a taxai.

Motivation

Genuine story understanding requires commonsense world knowledge.

I crashed my car.
(the car broke)
(I was hurt)
(I went to the hospital because I was hurt)
When I finally left the hospital, all I wanted to do was sleep.
(it was late at night)
(I wanted to go home to sleep)
I had to call a taxai.
(to go home and sleep)
(because my car was broken)

Motivation

“Schemas” package up related information about a situation.
They can be compared to movie scripts:

e Actors with defined roles

e Props with defined types

e Relationships between actors and props

e A sequence of events involving the actors and props

Piaget, Bartlett, and other psychologists believe schemas are a
key form of human knowledge representation.

Motivation

Minsky (1974), Schank & Abelson (1977), and van Dijk & Kintsch (1978) all provide
models of narrative understanding using schemas, also called “scripts” or “frames”.

“.the process of understanding a passage consists in finding a schema which will
account for it.” (Rumelhart, 1976)

Motivation

Why should we think schemas are necessary to understand story meaning?

Motivation

“You shall know a word by the company it keeps.” (Firth, 1957)

The likes milk.
I adopted a C at the shelter.
A dog is similar to a in that it has four legs.

Motivation

“You shall know a word by the company it keeps.” (Firth, 1957)

“Distributional hypothesis”:

The likes milk. The meaning of a word is the probability
I adopted a at the shelter. distribution of the contexts of its use.

A dog is similar to a in that it has four legs.

Motivation

an event?

“You shall know a-were by the company it keeps.” (Firth; 1957

cat

. I got in my car.
I needed groceries.

[went to the store. .
got a shopping cart.

I bought a stuffed animal.

Custom prompt

Gaurav put his shoes on.
Then, he walked to the store.

GENERATE ANOTHER

Completion

Gaurav put his shoes on.

Then, he walked to the store.

When he arrived, he began looking for shoes in a shoebox with bricks. He
found the shoes on the floor.

Once he did that, he purchased seven rugs from the shop.

He then walked to the community centre, where he bought a mask.

He walked on, taking the mask to his neighbourhood, where he called his
mother on his mobile phone.

Once he was in the neighbourhood, he walked to the edge of the desert.
He went out of the city.

He met an old man by the road.

He then asked him where the hotel is.

The old man was silent for a moment, but then, "

Very complex distributional text
models (like GPT2, shown here)
can predict story text.

But do they really understand
meaning?

Custom prompt

Gaurav puthis shoes on, These “black box” models are
Then, he walked to the store.
ultimately distributions over words.

Question: Was Gaurav wearing shoes?

Answer:
Asking them questions, or assessing
: the semantics they’ve learned, is
Completion o
nontrivial.

Gaurav put his shoes on.
Then, he walked to the store.

Question: Was Gaurav wearing shoes?
Answer: 777?

| felt like throwing something on.

| pointed at Gaurav.

Question: Didn't he take off his shoes?

Answer: 777?

Custom prompt

Gaurav put his shoes on.
Then, he walked to the store.

Question: Was Gaurav wearing shoes?

GENERATE ANOTHER

Answer:

Completion

Gaurav put his shoes on.
Then, he walked to the store.

Question: Was Gaurav wearing shoes?
Answer: No, Gaurav was wearing leather sandalsHe also took a couple of

breaths but when he could not feel his right arm, he had to call an ambulance.

Question: What is Gaurav's name?

Answer: His name is N.N. Nageswaran.

About Gaurav

Gaurav's eyes are small.

He wears clothes. Gaurav also wears shoes. Gaurav is a smart guy. He has
graduated from the Nandan Institute of Information Technology and Public
Relations. Gaurav also owns his own business. G

Custom prompt

Gaurav put his shoes on.
Then, he walked to the store.

Question: Was Gaurav wearing shoes?
Answer:

Completion
But the semantics don’t always seem

Gaurav put his shoes on. logica]ly consistent...
Then, he walked to the store.

Question: Was Gaurav wearing shoes?
Answer: Yes.
In a world where atheism is not a laughing matter, why would you wear

aurav figured that since the God of Exodus was an old man that there was
probably a world when Moses wore shoes. Maybe Gaurav would be able to
get away with this trick. Why not, he thought. Shoes would be too
embarrassing for the secular world. Even the Bible couldn't put a damper on
the existentialist movement. If a believer is ignorant and haughty, then the
outside world will pick up on this and just laugh

Motivation

General schemas let us draw inferences from incomplete information.

Restaurant schema:
1. Person X is hungry
2. X goes to restaurant Y
3. X enters Y
4. Host H shows X seat S
5. X sits at seat S
6. X asks waiter W for menu M

etc...

Motivation

schemas let us draw inferences from incomplete information.

Restaurant schema:
1. Person is hungry
p) goes to restaurant
3 enters
4. Host shows seat
5 sits at seat
6 asks waiter for menu

etc...

Motivation

General schemas let us draw inferences from incomplete information.

“Bill the host showed James his booth.”

Restaurant schema:
1. Person is hungry
p) goes to restaurant
3 enters
4. Host shows seat
5 sits at seat
6 asks waiter for menu

etc...

Motivation

General schemas let us draw inferences from incomplete information.

“Bill the host showed James his booth.”

)

4. Host H shows X seat S

Motivation

General schemas let us draw inferences from incomplete information.

“Bill the host showed James his booth.”

4. Host Bill shows James seat booth

Motivation

General schemas let us draw inferences from incomplete information.

“Bill the host showed James his booth.”

Restaurant schema:
1. Person James is hungry
James goes to restaurant Y
James enters Y
. Host Bill shows James seat booth
James sits at seat booth
James asks waiter W for menu M

v b wWwN

etc...

Motivation

inferences

N R

Ui

. Person James 1is hungry

James goes to restaurant
James enters

James sits at seat booth
James asks waiter for menu

Motivation

Schema steps can be entire sub-stories.

Schemas can represent everything from

recipes to narratives.

/) ; Gall to
Adventurs Supematurz|

Raum aid
(Gft of Threshol
/he God?ies) KNGM\I Gua r;ano(s)
hreshold
UNKNOWN it
ransarm a tiun)
Th I
e Helper
Atonement H e O I S Mentor

1".“*“:!

vv-v‘lll\v’

Trans formatien REVELATION

death & rebirth

Overview

We propose:

1. A schema language with features necessary for natural language, such as:

Typed and inter-related entities

Complex temporal relations

Recursive nesting of schemas within other schemas
Preconditions, postconditions, and agent motivations

e p O @

2. A method for learning these schemas from stories based on the idea of
“protoschemas”---an initial set of very abstract, very general behavioral
schemas covering the knowledge of a very young child.

Overview of Learning Approach

Some example protoschemas:

X gV R W DN

Traveling from one place to another

Performing an action to enable another action

Taking possession of a desirable object

Eating food to eliminate hunger

Asking for help completing a task

Asking for information you don’t know

Transporting an object from one place to another
Helping someone achieve a goal in exchange for them
helping you achieve a goal

Overview of Learning Approach

A trucker ferrying goods to a

Some example protoschemas: store across the country

Traveling from one place to another
Performing an action to enable another action
Taking possession of a desirable object

Eating food to eliminate hunger

Asking for help completing a task

Asking for information you don’t know
Transporting an object from one place to another

SN I O o L

Helping someone achieve a goal in exchange for them
helping you achieve a goal

Overview of Learning Approach
A child going to school

Some example protoschemas:

Traveling from one place to another
Performing an action to enable another action
Taking possession of a desirable object
Eating food to eliminate hunger
Asking for help completing a task
Asking for information you don’t know
Transporting an object from one place to another

X gV WDN

Helping someone achieve a goal in exchange for them
helping you achieve a goal

Let’s look at our schema
language, with this example.

:Roles

Ir1 (?x agent.n) “?e is an episode of ?x traveling from ?11 to ?12”

Ir2 (?11 location.n)

Ir3 (?12 location.n)
Ir4 (not (211 =212))

:Necessities

[nl (!r]1 necessary-to-degree 1.0)

In2 (Ir4 necessary-to-degree 1.0)
:Goals

gl (?x (wantv (to ((adv-a (atp ?12)) be.v))))
:Preconds

il (?x (atp ?11))

?%12 (not (*x (at.p ?12)))
:Postconds

pl (not (*x (atp ?11)))

p2 (?x (atp ?12))

:Roles

Ir1 (?x agent.n) “?e is an episode of x traveling from ?11 to ?12”

Ir2 (?11 location.n)
Ir3 (?12 location.n)

Ir4 (not (211 =212))
:Necessities

[nl (!r]1 necessary-to-degree 1.0)

In2 (Ir4 necessary-to-degree 1.0)
:Goals

gl (?x (wantv (to ((adv-a (atp ?12)) be.v))))
:Preconds

il (?x (atp ?11))

?%12 (not (*x (at.p ?12)))
:Postconds

pl (not (*x (atp ?11)))

p2 (?x (atp ?12))

:Roles
Irl (?x agent.n)
Ir2 (?11 location.n)
Ir3 (?12 location.n)

—Irh (not (11 =212))

“¢x is an agent”
“?11 and ?12 are locations”
“?11 and ?12 are distinct”

:Necessities
Inl (Ir] necessary-to-degree 1.0)
In2 (Ir4 necessary-to-degree 1.0)

“?x is definitely an agent”
“?11 and ¢12 are definitely distinct”

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12)) travel.v)) ?12) ** ?e)
:Roles
Irl (?x agent.n)
Ir2 (?11 location.n)

Ir3 (?12 location.n)
Ir4 (not (211 =212))

:Necessities
Inl (Ir] necessary-to-degree 1.0)
In2 (Ir4 necessary-to-degree 1.0)

:‘Preconds

il (?x (atp ?11))

?%12 (not (*x (at.p ?12)))
:‘Postconds

pl (not (*x (atp ?11)))

p2 (?x (atp ?12))

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12)) travel.v)) ?12) ** ?e)
:Roles
Irl (?x agent.n)
Ir2 (?11 location.n)

Ir3 (?12 location.n)
Ir4 (not (211 =212))

:Necessities
[nl (!r]1 necessary-to-degree 1.0)
In2 (Ir4 necessary-to-degree 1.0)
:Goals
?gl (*x (wantv (to ((adv-a (atp ?12)) be.v))))

“?x is at ?11”
“?x is not at ?12”

:‘Postconds

pl (not (*x (atp ?11)))
p2 (?x (atp ?12))

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12)) travel.v)) ?12) ** ?e)
:Roles
Irl (?x agent.n)
Ir2 (?11 location.n)

Ir3 (?12 location.n)
Ir4 (not (211 =212))

:Necessities

[nl (!r]1 necessary-to-degree 1.0)

In2 (Ir4 necessary-to-degree 1.0)
:Goals

?gl (*x (wantv (to ((adv-a (atp ?12)) be.v))))
:Preconds

il (?x (atp ?11))

?%12 (not (*x (at.p ?12)))

“?x is not at ?11”
“¥x is at ?12”

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12)) travelv)) ?12) ** ?e)
:Roles
Irl (?x agent.n)
Ir2 (?11 location.n)
Ir3 (?12 location.n)

Ir4 (not (211 =212))
:Necessities

Inl (Ir] necessary-to-degree 1.0)

In2 (Ir4 necessary-to-degree 1.0)
:Goals

?gl (*x (wantv (to ((adv-a (atp ?12)) be.v))))
:Preconds

il (?x (atp ?11))

?%12 (not (*x (at.p ?12)))
:Postconds

pl (not (*x (atp ?11)))

p2 (?x (atp ?12))

(

((?x ((adv-a (from.p ¢11)) ((adv-a (to.p ?12))

Irl (?x agent.n)
Ir2 (?11 location.n)
Ir3 (?12 location.n)

Inl (Irl necessary-to-degree 1.0)
In2 (r4 necessary-to-degree 1.0)

gl (?x (want.v (to ((adv-a (atp ?12)) be.v))))

il (?x (atp ?11))
%12 (not (?x (at.p ?12)))

?pl (not (¢x (atp ?11)))
p2 (?x (atp ?12))

) 212) ** 2e)

Let’s match our schema to this story.

The monkey can climb a tree.

He climbs the tree and gets a
cocoanut.

He drops the cocoanut to the
ground.

He comes down and eats it.

(

((?x ((adv-a (from.p ¢11)) ((adv-a (to.p ?12))

Irl (?x agent.n)
Ir2 (?11 location.n)
Ir3 (?12 location.n)

Inl (Irl necessary-to-degree 1.0)
In2 (r4 necessary-to-degree 1.0)

gl (?x (want.v (to ((adv-a (atp ?12)) be.v))))

il (?x (atp ?11))
%12 (not (?x (at.p ?12)))

?pl (not (¢x (atp ?11)))
p2 (?x (atp ?12))

) 212) ** 2e)

The English is parsed to Episodic Logic.

(TREE28.SK TREE.N)
(MONKEY27SK MONKEY.N)

(COCOANUT32.SK COCOANUTN)

((MONKEY27SK ((CAN.MD CLIMBY)
TREE28.SK)) ** E26.SK)

((MONKEY27SK (CLIMBV
TREE28.SK)) ** E34.SK)

((MONKEY27SK (GETV
COCOANUT32.5K)) ** E33.SK)

((MONKEY27SK (EATV
COCOANUT32.8K)) ** E35.SK)

(

((?x ((adv-a (from.p ¢11)) ((adv-a (to.p ?12))

Irl (x agent.n)
Ir2 (?11 location.n)
Ir3 (?12 location.n)

Inl (Irl necessary-to-degree 1.0)
In2 (r4 necessary-to-degree 1.0)

gl (?x (want.v (to ((adv-a (atp ?12)) be.v))))

il (?x (atp ?11))
%12 (not (?x (at.p ?12)))

?pl (not (¢x (atp ?11)))
p2 (?x (atp ?12))

) 212) ** 2e)

The English is parsed to Episodic Logic.

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12)) travel.v)) ?12) ** ?e)
:Roles
Irl (x agent.n)
Ir2 (?11 location.n)
Ir3 (212 location.n)

:Necessities

Inl (Irl necessary-to-degree 1.0)

In2 (r4 necessary-to-degree 1.0)
:Goals

gl (?x (want.v (to ((adv-a (atp ?12)) be.v))))
:‘Preconds

il (?x (atp ?11))
22 (not (?x (atp ?12))) %%%Kglgigﬁgzng

:Postconds
?pl (not (¢x (atp ?11)))
p2 (?x (atp ?12))

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12)) travel.v)) ?12) ** ?e)

:Roles
Irl (x agent.n)
Ir2 (?11 location.n)
Ir3 (212 location.n)

:Necessities

Inl (Irl necessary-to-degree 1.0)

In2 (r4 necessary-to-degree 1.0)
:Goals

gl (?x (want.v (to ((adv-a (atp ?12)) be.v))))
:‘Preconds

il (?x (atp ?11))

12 (not (¢x (atp ?12)))
:‘Postconds

?pl (not (¢x (atp ?11)))

p2 (?x (atp ?12))

(WordNet hypernym; a schema match
is triggered)

((MONKEY27SK (CLIMBYV
TREE28.SK)) ** E34.SK)

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12)) travel.v)) ?12) ** te)

:Roles
Irl (x agent.n)
Ir2 (?11 location.n)
Ir3 (212 location.n)

leh (not (11 =212)) —

:Necessities

Inl (Irl necessary-to-degree 1.0)

In2 (r4 necessary-to-degree 1.0)
:Goals

gl (?x (want.v (to ((adv-a (atp ?12)) be.v)})
:‘Preconds

il (?x (atp ?11))

12 (not (¢x (atp ?12)))
:‘Postconds

?pl (not (¢x (atp ?11)))

p2 (?x (atp ?12))

Bind variables

((MONKEY27SK (CLIMBYV
)) ** E34.SK)

(((((adv-a (from.p ?11)) ((adv-a (to.p TREE28.SK))
—CLIMBV)) TREE28.SK) ** E34.SK)

Ir1 (agent.n)
Ir2 (?11 location.n)

Ir3 (TREE28.SK location.n)
lr4 (not (211 = TREE28.SK))

Inl (Irl necessary-to-degree 1.0)
In2 (r4 necessary-to-degree 1.0)

2gl ((wantv (to ((adv-a (atp TREE28.SK)) be.v))))
?il ((atp ¢11))

212 (not ((atp TREE28.SK)))

?pl (not ((atp ?11)))

p2 ((at.p TREE28.SK))

Replace bound variables in rest of schema

:Roles
Irl (MONKEY27SK agent.n)
Ir2 (?11 location.n)
Ir3 (TREE28.SK location.n)

—Irh (not (211 = TREE28SK))

Match score: check schema’s constraints on the matched values against the
“knowledge base” of the story

‘Roles

(MONKEY27.SK MONKEY.N)

Irl (MONKEY27SK agent.n)
Ir2 (?11 location.n) “AGENTN?” subsumes

: “ANIMALN”
Ir3 (TREE28.SK location.n)
— Ir4 (not 211 =TREE28.SK)) “ANIMALN” subsumes

MONKEY.N” in wordnet

+1

‘Roles

—Irh (not (211 = TREE28SK))

Irl (MONKEY27SK agent.n)
Ir2 (211 location.n) /
Ir3 (TREE28.SK location.n)

No subsumption; this
constraint fails the check:

(TREEN)

(MONKEY27.SK MONKEY.N)

((MONKEY27SK ((adv-a (from.p ?11)) ((adv-a (to.p TREE28.SK))

CLIMBV)) TREE28.SK) ** E34.SK)

(TREEN)

(MONKEY27.SK MONKEY.N)

“TRAVELV” subsumes
“CLIMBYV” in WordNet.
And header matches are
worth more!

(epi-schema ((MONKEY27.SK ((adv-a (from.p ?11)) ((adv-a (to.p TREE28.SK))

— CLIMBY)) TREE28.SK) ** E34 SK)
: . OK) (TREEN)
‘Roles

Irl (MONKEY27SK agent.n) (MONKEY27SK MONKEYN)

Ir2 (?11 location.n)
Ir3 (TREE28.SK location.n)

- SK)

‘Necessities :
“TRAVELYV” subsumes
Inl (!r]1 necessary-to-degree 1.0) «ci1MBV” in WordNet

In2 (Ir4 necessary-to-degree 1.0) And header matches are
'GOE[IS worth more!

?gl (MONKEY27SK (want.v (to ((adv-a (at.p TREE28.SK)) be.v))))
:‘Preconds

?il (MONKEY27SK (at.p ?11))

?%12 (not (MONKEY27SK (at.p TREE28.SK))) 51
:‘Postconds 1

tpl (not (MONKEY27SK (atp ¢11))))

?p2 (MONKEY27SK (at.p TREE28.SK))

) SCORE: +2

((((adv-a (from.p ?11)) ((adv-a (to.p TREE28.SK))

»)-TREE28.SK) **)
(agent.n)
(?11 location.n) (COCOANUT32.SK COCOANUTN)
(TREE28.SK location.n) (MONKEY27SK ((CANMD CLIMBY)
(not (21 =TREE28.SK))

TREE28.SK)) ** E26.SK)

(Ir] necessary-to-degree 1.0)

(Ir4 necessary-to-degree 1.0) g;f (S)IgK HT275K (GERVCOCORNIFDASK))
((want.v (to ((adv-a (at.p TREE28.SK)) be.v))))
((atp ¢11))
(not ((at.p TREE28.SK)))
(not ((atp ¢11)))
((atp TREE28.SK))

Incorporate story’s constraints on bound values

(((((adv-a (from.p ?11)) ((adv-a (to.p TREE28.SK))

E28.SK) **)

N
N—
3
,
E

(agent.n)
(?11 location.n) (COCOANUT32.SK COCOANUTN)

(TREE28SK location.n) ((MONKEY27SK ((CANMD CLIMBY)
(not- (211 =TREE28.SK)) TREE28.5K)) ** E26.5K)

Ir5 (TREE28.SK TREE.N)
Ir6 (MONKEY27SK MONKEY.N)

((MONKEY27SK (GETV COCOANUT32.SK)) **
E33.SK)

(Ir] necessary-to-degree 1.0)
(Ir4 necessary-to-degree 1.0)

((want.v (to ((adv-a (at.p TREE28.SK)) be.v))))
((atp ¢11))

(not ((at.p TREE28.SK)))

(not ((atp ?11)))

((at.p TREE28.SK))

) Incorporate story’s constraints on bound values

(epi-schema ((((adv-a (from.p ?11)) ((adv-a (to.p TREE28.SK))
— CLIMBV)) TREE28.SK) ** E34.SK)
:Roles
Irl (agent.n)
Ir2 (?11 location.n)
Ir3 (TREE28.SK location.n)
lr4 (not (211 = TREE28.SK))
Ir5 (TREE28.SK TREE.N)
Iré6 (MONKEY.N)
:Necessities
Inl (Irl necessary-to-degree 1.0)
In2 (r4 necessary-to-degree 1.0)

:Goals

2gl ((wantv (to ((adv-a (atp TREE28.SK)) be.v))))
:‘Preconds

?il ((atp ¢11))

?i2 (not ((at.p TREE28.SK)))
:‘Postconds

pl (not ((atp ?11)))

p2 ((at.p TREE28.SK))

(epi-schema ((MONKEY27SK ((adv-a (from.p ?11)) ((adv-a (to.p TREE28.SK))

. xx SK)

:Roles
Irl (MONKEY27SK agentn)
Ir2 (?11 location.n)
Ir3 (TREE28.SK location.n) After incorporating the extra

] = .)) constraints, we gpnprn]i7p constants

Ir5 (TREE28.SK TREE.N) back to variables...
Ir6 (MONKEY27SK MONKEYN)

:Necessities

Inl (Ir] necessary-to-degree 1.0)

In2 (Ir4 necessary-to-degree 1.0)
:Goals

?gl (MONKEY27SK (want.v (to ((adv-a (atp TREE28.SK)) be.v))))
:Preconds

il (MONKEY27SK (atp ?11))

212 (not (MONKEY27SK (at.p TREE28.SK)))
:Postconds

tpl (not (MONKEY27SK (atp ¢11)))

?p2 (MONKEY27SK (at.p TREE28.SK))

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p 212)) CLIMBYV)) 12) ** te)
:Roles
Irl (?x agent.n)
Ir2 (?11 location.n)

Ir3 (212 location.n)
Ir5 (?12 TREE.N) constraints, we generalize constants
Ir6 (<x MONKEY.N) back to variables...

:Necessities

[nl (!r]1 necessary-to-degree 1.0)

In2 (Ir4 necessary-to-degree 1.0)
:Goals

?gl (?x (want.v (to ((adv-a (atp ?12)) bev))))
:Preconds

il (?x (atp ?11))

212 (not (?x (atp ?12)))
:Postconds

pl (not (¢x (atp ?11)))

p2 (?x (atp ?2))

CLIMBV

Ir5 (?12 TREE.N)
Ir6 (¢x MONKEY.N)

Our “an agent travels” protoschema has now
generated an “a monkey climbs a tree” schema!

R1 (?X_A AGENTN)

IR2 (?X_B INANIMATE_OBJECTN)
'R3 (?L LOCATION.N)

R4 (NOT (?X_A =?X_B))

IR5 (?X_A MONKEY.N)

IR6 (?X_B COCOANUTN)

IR7 (:X_C GROUND.N)

IR8 (*X_B (TO.P ¢X_C))

?G1 (¢! X_A (WANTV (THAT (?X_A (HAVEV X_B)))))

tepi-schema((*x receiving-verb-: to(at-p-arg 1)) **te) v

:Roles ROLES

Irl (?x agent.n)

Ir2 (*o inanimate_objectn)

'r3 (¢l location.n)

Ir4 (not (?x =?0))
:Necessities

Inl (!r]l necessary-to-degree 1.0)

2 (Ir4 necessary-to-degree 1.0) .GOALS
:Goals EEE——

?gl (¢x (want.v (that (?x (have.v 0))))) :PRECONDS
:Preconds

?i1 (not (?x have.v ?0))

212 (¢x (atp ?1))

213 (2o (atp ?1))
:Postconds

?pl (?x have.v ?0)

“He climbs the tree and gets a cocoanut”.

I1 (NOT (:X_A HAVEV X _B))
12 (¢?X_A (ATP ?L))
I3 (¢?X_B (ATP ?L))

:POSTCONDS

?P1 (?X_A HAVEYV ?X_B)

:NECESSITIES

IN1 ('R1 NECESSARY-TO-DEGREE 1.0)
IN2 (R4 NECESSARY-TO-DEGREE 1.0)

Another protoschema match for “receiving an object”

(EPI-SCHEMA ((*X_A GET346V ?X_B (ATP-ARG ?L)) ** ?E) (epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12))

:ROLES CLIMB.347V)) 12) ** te)
IR1 (?X_A AGENTN) :Roles
IR2 (*X_B INANIMATE_OBJECTN) Irl (?x agentn)
R3 (?L LOCATION.N) Ir2 (?11 location.n)
R4 (NOT (¢?X_A =?X_B)) Ir3 (212 location.n)
R5 (*X_A MONKEY.N) Ir4 (not (?11 =212))
IR6 (*X_B COCOANUTN) Ir5 (212 TREEN)
'R7 (:X_C GROUND.N) Ir6 (?x MONKEY.N)
R8 (?X_B (TO.P :X_C)) :Necessities
:GOALS Inl (r] necessary-to-degree 1.0)
¢G1 (*X_A (WANTV (THAT (¢:X_A (HAVEYV X _B))))) In2 (Ir4 necessary-to-degree 1.0)
:PRECONDS :Goals
1 (NOT (¢ X_A HAVEYV ?X_B)) ?gl (?x (wantv (to ((adv-a (atp ?2)) bev))))
12 (*X_A (ATP L)) :Preconds
13 (¢*X_B (ATP ?L)) 2l (2x (atp ?11))
.POSTCONDS 212 (not (x (atp 12)))
¢P1 (*X_A HAVEYV X_B) :Postconds
:NECESSITIES ?pl (not (?x (at.p ¢11)))
IN1 ('R1 NECESSARY-TO-DEGREE 1.0) $p2 (2x (atp 212))

IN2 ('R4 NECESSARY-TO-DEGREE 1.0))

(EPI-SCHEMA ((?X_A GET346V X_B (ATP-ARG ?L)) ** ?E)
:ROLES
'R1 (*X_A AGENTN)
'R2 (¢*X_B INANIMATE_OBJECTN)
'R3 (L LOCATION.N)
R4 (NOT (¢:X_A =?X_B))
R5 (*X_A MONKEY.N)
IR6 (?X_B COCOANUTN)
'R7 (:X_C GROUND.N)
IR8 (:X_B (TO.P ¢X_C))
:GOALS
?G1 (*X_A (WANTV (THAT (?X_A (HAVEYV X_B)))))
:PRECONDS
11 (NOT (?X_A HAVEYV X_B))
12 (¢X_A (ATP?L))
I3 (¢X_B (ATP ¢L))
:POSTCONDS
¢P1 (¢X_A HAVEYV ?X_B)
:NECESSITIES
IN1 ('R1 NECESSARY-TO-DEGREE 1.0)
IN2 ('lR4 NECESSARY-TO-DEGREE 1.0)

(((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12))

)) 22) ** ze)

(?x agentn)

(?11 location.n)
(?12 location.n)
(not (?11=1212))
(?12 TREE.N)

(¢2x MONKEY.N)

('r] necessary-to-degree 1.0)
(Ir4 necessary-to-degree 1.0)

(?x (want.v (to ((adv-a (at.p ?12)) be.v))))

(¢x (atp ?11))
(not (?x (at.p ?12)))

(not (?x (at.p ?11)))
p2 (?x (atp 212))

We can link pre- and post-conditions to hypothesize
an intentional multi-step schema. (Like GENESIS.)

(EPI-SCHEMA ((*X_A GET.346V X_B (ATP-ARG L)) ** ?E)
:ROLES
'R1 (*X_A AGENTN)
'R2 (:X_B INANIMATE_OBJECTN)
'R3 (*L LOCATION.N)
R4 (NOT (¢*X_A =?X_B))
R5 (*X_A MONKEY.N)
IR6 (?X_B COCOANUTN)
IR7 (:X_C GROUND.N)
IR8 (:X_B (TO.P ¢X_C))

.GOALS

?G1 (?X_A (WANTV (THAT (:X_A (HAVEYV ?X_B)))))
.PRECONDS

?11 (NOT (:X_A HAVEY ?X_B)) X A« x

L — 12

I3 (¢X_B (ATP ¢L))
:POSTCONDS

¢P1 (:X_A HAVEYV ¢X_B)
:NECESSITIES

IN1 ('R1 NECESSARY-TO-DEGREE 1.0)

IN2 ('R4 NECESSARY-TO-DEGREE 1.0)

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p 212))
CLIMB.347V)) 12) ** te)
:Roles
Irl (?x agent.n)
Ir2 (?11 location.n)
Ir3 (?12 location.n)
Ir4 (not (?11 =1?12))
Ir5 (212 TREE.N)
Ir6 (x MONKEY.N)
:Necessities
Inl ('r] necessary-to-degree 1.0)
In2 (Ir4 necessary-to-degree 1.0)
:Goals
?gl (?x (want.v (to ((adv-a (atp ?12)) bev))))
:Preconds
¢l (?x (atp ?11))
22 (not (?x (atp ?12)))
:Postconds
pl (not (?x (at.p ¢11)))

(EPI-SCHEMA ((?x GET:346V ?X_B (ATP-ARG 212)) ** ?E) (epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12))

:ROLES CLIMB347V)) ¢12) ** 2e)
IR1 (¢x AGENTN) :Roles
IR2 (*X_B INANIMATE_OBJECTN) Irl (?x agentn)
'R3 (?12 LOCATION.N) Ir2 (?11 location.n)
R4 (NOT (?x=?X_B)) Ir3 (312 location.n)
IR5 (x MONKEY.N) Ir4 (not (11 =¢12))
IR6 (?X_B COCOANUTN) Ir5 (212 TREEN)
IR7 (?X_C GROUND.N) Ir6 (2x MONKEY.N)
R8 (?X_B (TO.P :X_C)) :Necessities
:GOALS Inl (r] necessary-to-degree 1.0)
¢G1 (?x (WANTV (THAT (?x (HAVEV ¢X_B))))) In2 (Ir4 necessary-to-degree 1.0)
:PRECONDS :Goals
I1 (NOT (?x HAVEYV ?X_B)) ?gl (?x (want.v (to ((adv-a (atp ?12)) bev))))
12 (?x (ATP ?12)) ‘Preconds
I3 (?X_B (ATP?12)) il (¢x (atp ¢11))
.POSTCONDS 202 (not (2x (atp 712)))
¢P1 (?x HAVEYV X_B) :Postconds
:NECESSITIES pl (not (?x (atp ?11)))
IN1 ('R1 NECESSARY-TO-DEGREE 1.0) p2 (?x (atp 2))

IN2 ('R4 NECESSARY-TO-DEGREE 1.0))

(EPI-SCHEMA ((?x GET:346V ?X_B (ATP-ARG 212)) ** ?E) (epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12))

:ROLES CLIMB347V)) ¢12) ** 2e)
IR1 (¢x AGENTN) :Roles
IR2 (*X_B INANIMATE_OBJECTN) Irl (?x agentn)
'R3 (?12 LOCATION.N) Ir2 (?11 location.n)
R4 (NOT (?x=?X_B)) Ir3 (312 location.n)
IR5 (x MONKEY.N) Ir4 (not (11 =¢12))
IR6 (?X_B COCOANUTN) Ir5 (212 TREEN)
IR7 (?X_C GROUND.N) Ir6 (2x MONKEY.N)
R8 (?X_B (TO.P :X_C)) :Necessities
:GOALS Inl (r] necessary-to-degree 1.0)
¢G1 (?x (WANTV (THAT (?x (HAVEV ¢X_B))))) In2 (Ir4 necessary-to-degree 1.0)
:PRECONDS :Goals
I1 (NOT (?x HAVEYV ?X_B)) ?gl (?x (want.v (to ((adv-a (atp ?12)) bev))))
12 (?x (ATP ?12)) ‘Preconds
I3 (?X_B (ATP?12)) il (¢x (atp ¢11))
.POSTCONDS 202 (not (2x (atp 712)))
¢P1 (?x HAVEYV X_B) :Postconds
:NECESSITIES pl (not (?x (atp ?11)))
IN1 ('R1 NECESSARY-TO-DEGREE 1.0) p2 (?x (atp 2))

IN2 ('R4 NECESSARY-TO-DEGREE 1.0))

(EPI-SCHEMA ((?X_D EAT323V X_E) ** E443.SK)

:ROLES
R1 (¢X_D AGENTN)
'R2 (?X_E FOOD.N)
'R3 (?X_D MONKEYN)
R4 (*X_E COCOANUTN)
IR5 (*X_F GROUND.N)
IR6 (*X_E (TO.P ?X_F))
:GOALS
?G1 (*X_D (WANTYV (THAT (NOT (?X_D
HUNGRYA)))))
:PRECONDS
11 (:X_D HAVEYV X _E)
212 (¢X_D HUNGRY.A)
:POSTCONDS
¢P1 (NOT (¢X_D (HAVEV ¢X_E)))
P2 (NOT (¢:X_D HUNGRYA))
:NECESSITIES
IN1 ('R1 NECESSARY-TO-DEGREE 1.0)

(EPI-SCHEMA ((?x GET.346V ?X_B (ATP-ARG 12)) ** E)
:ROLES
R1 (?x AGENTN)
IR2 (*X_B INANIMATE_OBJECTN)
R3 (212 LOCATION.N)
IR4 (NOT (?x =?X_B))
IR5 (2x MONKEY.N)
IR6 (:X_B COCOANUTN)
IR7 (:X_C GROUND.N)
IR8 (:X_B (TO.P :X_C))
:GOALS
?G1 (*x (WANTYV (THAT (¢x (HAVEV ¢X_B)))))
:PRECONDS
J1 (NOT (?x HAVEYV ?X_B))
2 (2x (ATP?2))
I3 (*X_B (ATP?12))
:POSTCONDS
¢?P1 (:x HAVEYV X_B)
:NECESSITIES
IN1 (IR1 NECESSARY-TO-DEGREE 1.0)
IN2 ('IR4 NECESSARY-TO-DEGREE 1.0)

(EPI-SCHEMA ((*X_D EAT323V X_E) ** E443.SK)
:ROLES
R1 (¢X_D AGENTN)
'R2 (?X_E FOOD.N)
'R3 (?X_D MONKEYN)
R4 (*X_E COCOANUTN)
IR5 (*X_F GROUND.N)
IR6 (*X_E (TO.P ?X_F))
:GOALS
?G1 (¢:X_D (WANTV (THAT (NOT (¢X_D
HUNGRYA)))))
:PRECONDS
11 (¢X_D HAVEV ?X_E)
12 (:X_D HUNGRYA)
:POSTCONDS
P1 (NOT (¢:X_D (HAVEYV ?X_E)))
P2 (NOT (:X_D HUNGRYA))
:NECESSITIES
IN1 ('R1 NECESSARY-TO-DEGREE 1.0)

We got this “eat” schema, too, from the same story. We can link this
with the others as well.

(EPI-SCHEMA ((?X_D EAT323V X_E) ** E443.SK)

:ROLES
R1 (¢X_D AGENTN)
'R2 (?X_E FOOD.N)
'R3 (?X_D MONKEYN)
R4 (*X_E COCOANUTN)
IR5 (*X_F GROUND.N)
IR6 (*X_E (TO.P ?X_F))
:GOALS
?G1 (¢X_D (WANTYV (THAT (NOT (?X_D
HUNGRYA)))))
:PRECONDS

212 (:X_D HUNGRY.A)
:POSTCONDS

¢P1 (NOT (¢:X_D (HAVEV ¢X_E)))

P2 (NOT (:X_D HUNGRY.A))
:NECESSITIES

IN1 ('R1 NECESSARY-TO-DEGREE 1.0)

(EPI-SCHEMA ((?x GET.346V ?X_B (ATP-ARG 12)) ** E)
:ROLES
R1 (?x AGENTN)
IR2 (*X_B INANIMATE_OBJECTN)
R3 (212 LOCATION.N)
IR4 (NOT (?x =?X_B))
IR5 (2zx MONKEY.N)
IR6 (¢:X_B COCOANUTN)
IR7 (:X_C GROUND.N)
IR8 (*X_B (TO.P :X_C))
:GOALS
?G1 (*x (WANTYV (THAT (¢x (HAVEV ?X_B)))))
:PRECONDS
J1 (NOT (?x HAVEYV ?X_B))
2 (2x (ATP?2))
I3 (*X_B (ATP?12))
:POSTCONDS
?P1 (3x HAVEV ?X_B)
:NECESSITIES
IN1 (IR1 NECESSARY-TO-DEGREE 1.0)
IN2 ('IR4 NECESSARY-TO-DEGREE 1.0)

(EPI-SCHEMA ((?X_D EAT323V X_E) ** E443.SK)

:ROLES

R1 (¢X_D AGENTN)

'R2 (?X_E FOOD.N)

'R3 (?X_D MONKEYN)

R4 (*X_E COCOANUTN)

IR5 (*X_F GROUND.N)

IR6 (*X_E (TO.P ?X_F))
:GOALS

?G1 (¢X_D (WANTYV (THAT (NOT (?X_D

HUNGRYA)))))

:PRECONDS

212 (:X_D HUNGRY.A)
:POSTCONDS

¢P1 (NOT (¢:X_D (HAVEV ¢X_E)))

P2 (NOT (:X_D HUNGRY.A))
:NECESSITIES
IN1 ('R1 NECESSARY-TO-DEGREE 1.0)

X D « x
X E < ?X_B PRECONDS

(EPI-SCHEMA ((?x GET.346V ?X_B (ATP-ARG 12)) ** E)
:ROLES

R1 (?x AGENTN)

IR2 (:X_B INANIMATE_OBJECTN)

R3 (212 LOCATION.N)

IR4 (NOT (?x =?X_B))

IR5 (2zx MONKEY.N)

IR6 (¢:X_B COCOANUTN)

IR7 (:X_C GROUND.N)

IR8 (*X_B (TO.P :X_C))
:GOALS

?G1 (*x (WANTYV (THAT (¢x (HAVEV ?X_B)))))

1 (NOT (?x HAVEV ?X_B))

22 (2x (ATP?12))

213 (?X_B (ATP ?12))
:POSTCONDS

:NECESSITIES
IN1 ('R1 NECESSARY-TO-DEGREE 1.0)
IN2 ('R4 NECESSARY-TO-DEGREE 1.0)

(EPI-SCHEMA ((?x EAT323V ?X_B) ** E443.SK) (EPI-SCHEMA ((?x GET:346V ?X_B (ATP-ARG 12)) ** ?E)

:ROLES :ROLES
'R1 (?x AGENTN) R1 (?x AGENTN)
'R2 (:X_B FOOD.N) IR2 (:X_B INANIMATE_OBJECTN)
R3 (#x MONKEYN) R3 (212 LOCATION.N)
R4 (*X_B COCOANUTN) R4 (NOT (7x =?X_B))
IR5 (*X_F GROUND.N) R5 (#x MONKEYN)
IR6 (*X_B (TO.P ?X_F)) R6 (:X_B COCOANUTN)
:GOALS IR7 (*X_C GROUND.N)
¢GI1 (¢x (WANTV (THAT (NOT (?x IR8 (*X_B (TO.P X_C))
HUNGRYA))))) :GOALS
:PRECONDS ?Gl1 (?x (WANTV (THAT (¢:x (HAVEYV ¢X_B)))))
11 (¢x HAVEYV X _B) :PRECONDS
212 (#x HUNGRY.A) I1 (NOT (?x HAVEV ?X_B))
:POSTCONDS 212 (ex (ATP212))
¢P1 (NOT (?x (HAVEYV X_B))) 213 (?X_B (ATP ?12))
P2 (NOT (2x HUNGRY.A)) :POSTCONDS
:NECESSITIES ¢?P1 (¢x HAVEYV ¢X_B)
IN1 ('R1 NECESSARY-TO-DEGREE 1.0) :NECESSITIES
) IN1 ('R1 NECESSARY-TO-DEGREE 1.0)

IN2 ('R4 NECESSARY-TO-DEGREE 1.0)

(EPI-SCHEMA ((?x EAT:323V X_B) ** E443.SK)

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p 112)) -ROLES
CLIMB.347.V)) ?12) ** ?e) IR1 (?x AGENTN)
:Roles IR2 (:X_B FOOD.N)
Irl (?x agentn) IR3 (2x MONKEY.N)
Ir2 (?11 location.n) IR4 (?2X_B COCOANUTN)
Ir3 (212 location.n) IR5 ?X_F GROUND.N
Irh (not (?]1 = ?]2)) SO, all tOgether.... iRG E;X_B (TOP X F)))
I£5 (312 TREEN) GoaLs
y Ir6 (?x MONKEY.N) ?G1 (2x (WANTV (THAT (NOT (?x
:Necessities HUNGRY.A)))))
Inl (Ir]l necessary-to-degree 1.0) :PRECONDS
In2 (Ir4 necessary-to-degree 1.0) ‘ ?11 (2x HAVEV ?X_B)
:Goals 12 (*x HUNGRY.A)
?gl (x (wantv (to ((adv-a (at.p ?12)) bev)))) -POSTCONDS
:Preconds 1 (o (ato 210) ?P1 (NOT (?x (HAVEYV ?X_B)))
e (atp 12))) (EPI-SCHEMA ((?x GET346V ?X_B (ATP-ARG 12)) ** E) FI2Z4 (DT (7 AEILIIGHNCRY)
P ¢ ! . ROLES :NECESSITIES
:Pos s R — IR1 (?x AGENTN) IN1 ('R1 NECESSARY-TO-DEGREE 1.0)
2p2 (1% (atp 12)) IR2 (?X_B INANIMATE_OBJECTN))

IR3 (212 LOCATION.N)
IR4 (NOT (¢x=?X_B))
IR5 (?x MONKEY.N)
R6 (¢X_B COCOANUTN)
R7 (¢X_C GROUND.N)
IR8 (*X_B (TO.P *X_C))
:GOALS
?G1 (2x (WANTV (THAT (¢?x (HAVEV
X_B))))
:PRECONDS
11 (NOT (?x HAVEYV ?X_B))
12 (vx (ATP 212))
13 (*X_B (ATP 112))
:POSTCONDS
?P1 (x HAVEV X_B)
:NECESSITIES
IN1 ('R1 NECESSARY-TO-DEGREE 1.0)
IN2 (IR4 NECESSARY-TO-DEGREE 1.0)

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12))
CLIMB.347.Y)) ?12) ** e)
:Roles
Irl (?x agent.n)
Ir2 (?11 location.n)
Ir3 (212 location.n)
Ir4 (not (211 =212))
Ir5 (212 TREE.N)
Ir6 (?x MONKEY.N)
:Necessities
Inl (Ir] necessary-to-degree 1.0)
In2 (Ir4 necessary-to-degree 1.0)
:Goals

?gl (x (wantv (to ((adv-a (at.p ?12)) bev))))

:Preconds
2l (?x (at.p ?11))
212 (not (?x (at.p ?12)))
:Postconds
¢pl (not (?x (at.p ?11)))
tp2 (?x (atp ?12))

So, all together....

(EPI-SCHEMA ((?x GET346V ?X_B (ATP-ARG 912)) ** ?E)

X_B)))

:ROLES

:GOALS

IR1 (*x AGENTN)

IR2 (*X_B INANIMATE_OBJECTN)
IR3 (212 LOCATION.N)

IR4 (NOT (¢x=?X_B))

IR5 (?x MONKEY.N)

IR6 (?X_B COCOANUTN)

IR7 (¢X_C GROUND.N)

IR8 (*X_B (TO.P *X_C))

?Gl (2x (WANTV (THAT (?x (HAVEV

:PRECONDS

11 (NOT (?x HAVEV ?X_B))

13 (*X_B (ATP 12))

:POSTCONDS

:NECESSITIES

IN1 ('R1 NECESSARY-TO-DEGREE 1.0)
IN2 (IR4 NECESSARY-TO-DEGREE 1.0)

(EPI-SCHEMA ((?x EAT:323V X_B) ** E443.SK)

:ROLES

:GOALS

IR1 (*x AGENTN)

R2 (*X_B FOOD.N)

IR3 (¢x MONKEY.N)

R4 (:X_B COCOANUTN)
IR5 (?X_F GROUND.N)
IR6 (?X_B (TO.P ?X_F))

?G1 (2x (WANTYV (THAT (NOT (¢x
HUNGRY.A)))))

:PRECONDS

12 (tx HUNGRY.A)

:POSTCONDS

?P1 (NOT (¢?x (HAVEYV ?X_B)))
?P2 (NOT (7x HUNGRY.A))

:NECESSITIES

IN1 ('R1 NECESSARY-TO-DEGREE 1.0)

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12))
CLIMB.347.Y)) ?12) ** e)
:Roles
Irl (?x agent.n)
Ir2 (?11 location.n)
Ir3 (212 location.n)
Ir4 (not (211 =212))
Ir5 (212 TREE.N)
Ir6 (?x MONKEY.N)
:Necessities
Inl (Ir] necessary-to-degree 1.0)
In2 (Ir4 necessary-to-degree 1.0)
:Goals

?gl (x (wantv (to ((adv-a (at.p ?12)) bev))))

:Preconds

2l (?x (at.p ?11))

212 (not (?x (at.p ?12)))
:Postconds

¢pl (not (?x (at.p ?11)))
tp2 (?x (atp ?12))

So, all together....

(EPI-SCHEMA ((?x GET346V ?X_B (ATP-ARG 912)) ** ?E)

XN3))))

:ROLES

:GOALS

IR1 (*x AGENTN)

IR2 (*X_B INANIMATE_OBJECTN)
IR3 (212 LOCATION.N)

IR4 (NOT (¢x=?X_B))

IR5 (?x MONKEY.N)

IR6 (?X_B COCOANUTN)

IR7 (¢X_C GROUND.N)

IR8 (*X_B (TO.P *X_C))

?Gl (2x (WANTV (THAT (?x (HAVEV

:PRECONDS

11 (NOT (?x HAVEV ?X_B))

13 (*X_B (ATP 12))

:POSTCONDS

:NECESSITIES

IN1 ('R1 NECESSARY-TO-DEGREE 1.0)
IN2 (IR4 NECESSARY-TO-DEGREE 1.0)

(EPI-SCHEMA ((?x EAT:323V X_B) ** E443.SK)

:ROLES

:GOALS

IR1 (*x AGENTN)

R2 (*X_B FOOD.N)

IR3 (¢x MONKEY.N)

R4 (:X_B COCOANUTN)
IR5 (?X_F GROUND.N)
IR6 (?X_B (TO.P ?X_F))

?G1 (2x (WANTYV (THAT (NOT (¢x
HUNGRY.A)))))

:PRECONDS

12 (tx HUNGRY.A)

:POSTCONDS

?P1 (NOT (?x (HAVEYV ?X_B)))
?P2 (NOT (7x HUNGRY.A))

:NECESSITIES

IN1 ('R1 NECESSARY-TO-DEGREE 1.0)

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12))
CLIMB.347.Y)) ?12) ** e)
:Roles
Irl (?x agent.n)
Ir2 (?11 location.n)
Ir3 (212 location.n)
Ir4 (not (211 =212))
Ir5 (212 TREE.N)
Ir6 (?x MONKEY.N)
:Necessities
Inl (Ir] necessary-to-degree 1.0)
In2 (Ir4 necessary-to-degree 1.0)
:Goals
?gl (x (wantv (to ((adv-a (at.p ?12)) bev))))
:Preconds
2l (?x (at.p ?11))
212 (not (?x (at.p ?12)))

:Postconds :ROLES

¢pl (not (?x (at.p ?11)))
tp2 (?x (atp ?12))

:GOALS

XN3))))

So, all together....

(EPI-SCHEMA ((?x GET346V ?X_B (ATP-ARG 912)) ** ?E)

IR1 (*x AGENTN)

IR2 (*X_B INANIMATE_OBJECTN)
IR3 (212 LOCATION.N)

IR4 (NOT (¢x=?X_B))

IR5 (?x MONKEY.N)

IR6 (?X_B COCOANUTN)

IR7 (¢X_C GROUND.N)

IR8 (*X_B (TO.P *X_C))

?Gl (2x (WANTV (THAT (?x (HAVEV

:PRECONDS

11 (NOT (?x HAVEV ?X_B))

I3 (¢*X_B (ATP

:NECESSITIES
IN1 ('R1 NECESSARY-TO-DEGREE 1.0)
IN2 (IR4 NECESSARY-TO-DEGREE 1.0)

(EPI-SCHEMA ((?x EAT:323V X_B) ** E443.SK)

:ROLES

:GOALS

IR1 (*x AGENTN)

R2 (*X_B FOOD.N)

IR3 (¢x MONKEY.N)

R4 (:X_B COCOANUTN)
IR5 (?X_F GROUND.N)
IR6 (?X_B (TO.P ?X_F))

?G1 (2x (WANTYV (THAT (NOT (¢x
HUNGRY.A)))))

:PRECONDS

12 (tx HUNGRY.A)

:POSTCONDS

?P1 (NOT (?x (HAVEYV ?X_B)))
?P2 (NOT (7x HUNGRY.A))

:NECESSITIES

IN1 ('R1 NECESSARY-TO-DEGREE 1.0)

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12))
CLIMB.347.Y)) ?12) ** e)
:Roles
Irl (?x agent.n)
Ir2 (?11 location.n)
Ir3 (212 location.n)
Ir4 (not (211 =212))
Ir5 (212 TREE.N)
Ir6 (?x MONKEY.N)
:Necessities
Inl (Ir] necessary-to-degree 1.0)
In2 (Ir4 necessary-to-degree 1.0)

So, all together....

:Goals

?gl (x (wantv (to ((adv-a (at.p ?12)) bev))))
:Preconds

2l (?x (at.p ?11))

%2 (not (?x (atp 712))) (EPI-SCHEMA ((?x GET346V ?X_B (AT.P-ARG 212)) ** ?E)
:Postconds :ROLES

#pl (not (?x (atp ?11))) IR1 (?x AGENTN)

?p2 (?x (atp ?2)) IR2 (?X_B INANIMATE_OBJECTN)

IR3 (212 LOCATION.N)
IR4 (NOT (¢x=?X_B))
IR5 (?x MONKEY.N)
IR6 (:X_B COCOANUTN)
IR7 (?X_C GROUND.N)
IR8 (*X_B (TO.P *X_C))

?G1 (2x (WANTV (THAT (¢?x (HAVEV
XN3))))

:PRECONDS
11 (NOT (?x HAVEV ?X_B))

I3 (¢*X_B (ATP

:NECESSITIES
IN1 ('R1 NECESSARY-TO-DEGREE 1.0)
IN2 (IR4 NECESSARY-TO-DEGREE 1.0)

(EPI-SCHEMA ((?x EAT:323V X_B) ** E443.SK)

:ROLES

IR1 (*x AGENTN)

R2 (*X_B FOOD.N)

R3 (?x MONKEY.N)

R4 (:X_B COCOANUTN)

IR5 (?X_F GROUND.N)

IR6 (?X_B (TO.P ?X_F))
:GOALS

?G1 (2x (WANTYV (THAT (NOT (¢x

HUNGRY.A)))))
:PRECONDS

12 (tx HUNGRY.A)
:POSTCONDS

?P1 (NOT (¢x (HAVEYV ?X_B)))

?P2 (NOT (7x HUNGRY.A))
:NECESSITIES
IN1 ('R1 NECESSARY-TO-DEGREE 1.0)

(epi-schema ((?x ((adv-a (from.p ?11)) ((adv-a (to.p ?12))
[CLIMB347)) ?12) ** t¢)
:Roles
Irl (?x agent.n)
Ir2 (?11 location.n)
Ir3 (212 location.n)
Ir4 (not (211 =212))
Ir5 (212 TREE.N)
Ir6 (?x MONKEY.N)
:Necessities
Inl (Ir] necessary-to-degree 1.0)
In2 (Ir4 necessary-to-degree 1.0)

So, all together....

:Goals

?gl (x (wantv (to ((adv-a (at.p ?12)) bev))))
:Preconds

2l (?x (at.p ?11))

%2 (not (?x (atp 712))) (EPI-SCHEMA ((?x GETB46N] :X_B (ATP-ARG 12)) ** ?E)
:Postconds :ROLES

#pl (not (?x (atp ?11))) IR1 (?x AGENTN)

?p2 (?x (atp ?2)) IR2 (?X_B INANIMATE_OBJECTN)

IR3 (212 LOCATION.N)
IR4 (NOT (¢x=?X_B))
IR5 (?x MONKEY.N)
IR6 (:X_B COCOANUTN)
IR7 (?X_C GROUND.N)
IR8 (*X_B (TO.P *X_C))

?G1 (2x (WANTV (THAT (¢?x (HAVEV
XN3))))

:PRECONDS
11 (NOT (?x HAVEV ?X_B))

I3 (¢*X_B (ATP

:NECESSITIES
IN1 ('R1 NECESSARY-TO-DEGREE 1.0)
IN2 (IR4 NECESSARY-TO-DEGREE 1.0)

(EPI-SCHEMA ((?x EAT323W] X _B) ** E443.5K)

:ROLES

IR1 (zx AGENTN)

IR2 (?X_B FOOD.N)

IR3 (?x MONKEYN)

IR4 (?X_B COCOANUTN)

IR5 (?X_F GROUND.N)

IR6 (?X_B (TO.P 7X_F))
:GOALS

?Gl (2x (WANTV (THAT (NOT (?x

HUNGRYA)))))
:PRECONDS

12 (tx HUNGRY.A)
:POSTCONDS

?P1 (NOT (¢x (HAVEYV ?X_B)))

?P2 (NOT (7x HUNGRY.A))
:NECESSITIES
IN1 ('R1 NECESSARY-TO-DEGREE 1.0)

(EPI-SCHEMA ((¢*X_H CLIMB_GET_EAT349.PR ?X_G ?X_I) ** ?E)
:ROLES
R1 (¢*X_G TREE.N)
R2 ?X_I INANIMATE_OBJECTN)
R3 (NOT (¢:X_H =?X_I))
R4 (?X_G LOCATION.N)
R5 (¢X_I FOOD.N)
R6 (¢X_I COCOANUTN)
R7 (¢X_H MONKEY.N)
:PRECONDS
JJ1 (?X_H (ATP ?L1_2))
12 (NOT (:X_H (ATP ?X_QG)))
:STEPS
¢E1 (¢X_H ((ADV-A (FROM.P ¢:L1)) ((ADV-A (TO.P :X_G)) CLIMB.347V)) :X_G)
‘E2 (*X_H GET346V ?X_I (ATP-ARG X_G))
¢E3 (¢X_H EAT.323V X_I)
:POSTCONDS
‘P1 (NOT (*X_H (HAVEV ?X_I)))
P2 (NOT (¢*X_H HUNGRY.A))
:EPISODE-RELATIONS
'W1 (?E1 BEFORE ?E2)
W2 (?E2 BEFORE ¢E3)
'W3 (?E1 DURING ¢E)
W4 (?E2 DURING ?E)

CLIMB_GET_EAT.349.PR

By linking pre- and post-conditions, we’ve
formed a multi-step schema:

“Monkey climbs tree to get cocoanut to eat it”

CLIMB_GET_EAT.349.PR

By linking pre- and post-conditions, we’ve
formed a multi-step schema:

“Monkey climbs tree to get cocoanut to eat it”

CLIMB.347V
GET346V
EAT323V"

(EPI-SCHEMA ((¢*X_H CLIMB_GET_EAT349.PR X_G ?X_I) ** ?E)

:ROLES

R1 (¢*X_G TREE.N)

R2 (?X_I INANIMATE_OBJECTN)

R3 (NOT (¢X_H =?X_I))

R4 (?X_G LOCATION.N)

R5 (:X_I FOOD.N)

R6 (¢X_I COCOANUTN)

R7 (¢X_H MONKEY.N)
:PRECONDS

JI1 (?X_H (ATP ?L1_2))

12 (NOT (:X_H (ATP ?X_QG)))

:POSTCONDS
‘P1 (NOT (*X_H (HAVEV ?X_I)))
P2 (NOT (¢*X_H HUNGRY.A))

New temporal constraints on episodes impose the order

(EPI-SCHEMA ((¢*X_H CLIMB_GET_EAT349.PR ?X_G ?X_I) ** ?E)
:ROLES
R1 (¢*X_G TREE.N)
R2 ?X_I INANIMATE_OBJECTN)
R3 (NOT (¢:X_H =?X_I))
R4 (?X_G LOCATION.N)
R5 (¢X_I FOOD.N)
R6 (¢X_I COCOANUTN)
R7 (¢X_H MONKEY.N)
:PRECONDS
JJ1 (?X_H (ATP ?L1_2))
12 (NOT (:X_H (ATP ?X_QG)))
:STEPS
¢E1 (¢X_H ((ADV-A (FROM.P ¢:L1)) ((ADV-A (TO.P :X_G)) CLIMB.347V)) :X_G)
‘E2 (*X_H GET346V ?X_I (ATP-ARG X_G))
¢E3 (¢X_H EAT.323V X_I)
:POSTCONDS
‘P1 (NOT (*X_H (HAVEV ?X_I)))
P2 (NOT (¢*X_H HUNGRY.A))
:EPISODE-RELATIONS
'W1 (?E1 BEFORE ?E2)
W2 (?E2 BEFORE ¢E3)
'W3 (?E1 DURING ¢E)
W4 (?E2 DURING ?E)

Same idea, different story...

Let’s demonstrate predictions.

(EPI-SCHEMA ((¢X_C GO_FIND_EAT.566.PR ?X_A ?X_B X_D) ** ?E)
:ROLES
R1 (¢*X_A FIELD.N)
R2 (?X_B (OEP (K GRASS.N)))
R3 (?X_B SPOTN)
R4 (?X_C COWN)
IR5 (*X_D FOOD.N)
IR6 (?X_D GRASS.N)
:PRECONDS
J1 (?X_C (ATP ?L1_2))
I2 (NOT (¢:X_C (ATP ?X_A)))
:STEPS
¢E1 (?X_C (OUTADV ((ADV-A (TO.P ¢X_A))
((ADV-A (FROM.P ?L1)) GO.563V))) :X_A)
¢E2 (:X_C FIND.562V X_B)
¢E3 (!X_C EAT564V X_D)
:POSTCONDS
P1 (NOT (?X_C (HAVEYV X_D)))
P2 (NOT (¢:X_C HUNGRY.A))
:EPISODE-RELATIONS
'W1 (?E1 BEFORE ?E2)
W2 (?E2 BEFORE ¢E3)
'W3 (?E1 DURING ¢E)
W4 (?E2 DURING ?E)

The cow left the barn.
It went out to the field.
The other cows were out in the field.

The cow found a spot of grass.
The cow ate the grass.

(EPI-SCHEMA ((¢X_C GO_FIND_EAT.566.PR ?X_A ?X_B X_D) ** ?E)

:ROLES
'R1 (?X_A FIELD.N)
'R2 (*X_B (OFP (K GRASS.N))) The cow left the barn.
IR3 (?X_B SPOTN) It went out to the field.
R4 (*X_C COWN) The other cows were out in the field.
IR5 (*X_D FOOD.N) The cow found a spot of grass.

IR6 (?X_D GRASS.N)
:PRECONDS
J1 (?X_C (ATP ?L1_2))
I2 (NOT (¢:X_C (ATP ?X_A)))
:STEPS
¢E1 (?X_C (OUTADV ((ADV-A (TO.P ¢X_A))
((ADV-A (FROM.P ?L1)) GO.563V))) :X_A)
¢E2 (:X_C FIND.562V X_B)

The cow ate the grass.

E3 (:X_C EAT564V X_D) Schema:

:POSTCONDS
?P1 (NOT (?X_C (HAVEYV X_D))) “A cow goes to a field, finds a spot
P2 (NOT (*X_C HUNGRYA)) of grass, and eats grass”

:EPISODE-RELATIONS
'W1 (?E1 BEFORE ?E2)
'W2 (?E2 BEFORE ?E3)
'W3 (?E1 DURING ¢E)
W4 (?E2 DURING ?E)

(EPI-SCHEMA ((¢X_C GO_FIND_EAT.566.PR ?X_A ?X_B X_D) ** ?E)

:ROLES
'R1 (?X_A FIELD.N)
'R2 (*X_B (OFP (K GRASS.N))) The cow left the barn.
IR3 (?X_B SPOTN) It went out to the field.
R4 (*X_C COWN) The other cows were out in the field.
IR5 (*X_D FOOD.N) The cow found a spot of grass.

IR6 (?X_D GRASS.N)
:PRECONDS

J1 (?X_C (ATP ?L1_2))

I2 (NOT (¢:X_C (ATP ?X_A)))

The cow ate the grass.

ISIIEPS
?E1 (X_C (OUTADV ((ADV-A (TO.P 1X_A))
((ADV-A (FROM.P ?L1)) GO.563V))) :X_A) Once learned’ thlS Schema
?E2 (:X_C FIND.562V X_B)
'E3 (2X_C EATS64V ?X_D) unexpectedly matched to
POSTCONDS another story..

P1 (NOT (?X_C (HAVEYV X_D)))

P2 (NOT (¢:X_C HUNGRY.A))
:EPISODE-RELATIONS

'W1 (?E1 BEFORE ?E2)

'W2 (?E2 BEFORE ?E3)

'W3 (?E1 DURING ¢E)

W4 (?E2 DURING ?E)

((?X_C GO_FIND_EAT566.PR ?X_A ?X_B ¢X_D) ** tE)

R1 (#*X_A FIELD.N)

R2 (?X_B (OEP (K GRASS.N)))
R3 (?X_B SPOTN)

R4 (?X_C COWN)

IR5 (?X_D FOOD.N)

IR6 (?X_D GRASS.N)

J1 (?X_C (ATP ?L1_2))
I2 (NOT (¢:X_C (ATP ?X_A)))

¢E1 (?X_C (OUTADV ((ADV-A (TO.P ¢X_A))
((ADV-A (FROM.P ?L1)) GO.563V))) :X_A)

¢E2 (:X_C FIND.562V X_B)

¢E3 (?X_C EAT564V ¢X_D)

P1 (NOT (?X_C (HAVEYV X_D)))
P2 (NOT (¢:X_C HUNGRY.A))

'W1 (?E1 BEFORE ?E2)
'W2 (?E2 BEFORE ?E3)
'W3 (?E1 DURING ¢E)

W4 (?E2 DURING ?E)

This is red clover.

The bees like it.

They find sweet nectar in the clover
flowers.

They take the nectar home to make
honey.

Here is white clover.

It is sweet.

It has nectar, and bees like it, too.

It grows in the fields with red clover and
yellow buttercups.

Horses and cows eat clover.

((?X_C GO_FIND_EAT566.PR ?X_A ?X_B ¢X_D) ** tE)

R1 (#*X_A FIELD.N)

R2 (?X_B (OEP (K GRASS.N)))
R3 (?X_B SPOTN)

R4 (?X_C COWN)

IR5 (?X_D FOOD.N)

IR6 (?X_D GRASS.N)

J1 (?X_C (ATP ?L1_2))
I2 (NOT (¢:X_C (ATP ?X_A)))

¢E1 (?X_C (OUTADV ((ADV-A (TO.P ¢X_A))
((ADV-A (FROM.P ?L1)) GO.563V))) :X_A)

¢E2 (:X_C FIND.562V X_B)

¢E3 (?X_C EAT564V ¢X_D)

P1 (NOT (?X_C (HAVEYV X_D)))
P2 (NOT (¢:X_C HUNGRY.A))

'W1 (?E1 BEFORE ?E2)
'W2 (?E2 BEFORE ?E3)
'W3 (?E1 DURING ¢E)

W4 (?E2 DURING ?E)

The schema was invoked because of
some shared words...

This is red clover.

The bees like it.

They find sweet nectar in the clover
flowers.

They take the nectar home to make
honey.

Here is white clover.

It is sweet.

It has nectar, and bees like it, too.

It grows in the fields with red clover and
yellow buttercups.

Horses and cows eat clover.

¢ It ¢ ¢ ** 9
((?*X_C GO_FIND_EAT566.PR ?X_A ¢X_B ¢X_D) ** ?E) The schema was invoked because of

IR1 2X_A FIELD.N) some shared words..and kept because an
IR2 (?X_B (OEP (K GRASSN))) episode in its EL form matched a step.

R3 (?X_B SPOTN)
R4 (?X_C COWN)

IR5 (:X_D FOOD.N) (FLOWERS721.SK ((NN CLOVER.N) (PLUR
IR6 (?X_D GRASS.N) FLOWER.N)))

(BEES715.SK (PLUR BEE.N))

7l (2X_C (ATP 7L1.2)) (NECTAR1.SK SWEET.A)
/12 (NOT (2X_C (ATP ?X_A)))

(NECTAR1.SK NECTAR.N)
¢E1 (?X_C (OUTADV ((ADV-A (TO.P ¢X_A))

((ADV-A (FROM.P ?L1)) GO.563V))) :X_A) (BEES715.SK (PLUR BEE.N))
?E2 (¢X_C FIND.562V ¢X_B)
?E3 (?X_C EAT564V X_D) (FIELD738.SK (PLUR FIELD.N))

((BEES715.SK ((ADV-A (IN.P FLOWERS721.SK))
FIND.562.V) NECTAR1.SK) ** E722.SK)

P1 (NOT (?X_C (HAVEYV X_D)))
P2 (NOT (¢:X_C HUNGRY.A))

'W1 (?E1 BEFORE ?E2)
'W2 (?E2 BEFORE ?E3)
'W3 (?E1 DURING ¢E)

W4 (?E2 DURING ?E)

¢ It ¢ ¢ *4 9
((?*X_C GO_FIND_EAT566.PR ¢X_A ¢X_B ¢X_D) ** ?E) The schema was invoked because of

IR1 (?X_A FIELDN) some shared words..and kept because an
IR2 (2X_B (OEP (K GRASS.N))) episode in its EL form matched a step.

R3 (?X_B SPOTN)
R4 (?X_C COWN)

IR5 (:X_D FOOD.N) (FLOWERS721.SK ((NN CLOVER.N) (PLUR
IR6 (?X_D GRASS.N) FLOWER.N)))

(BEES715.SK (PLUR BEE.N))

11 (2X_C (ATP ¢L1_2)) (NECTAR1.SK SWEET.A)
12 (NOT (?2X_C (ATP ?X_A)))
(NECTAR1.SK NECTAR.N)

’E1 (?X_C (OUTADV ((ADV-A (TOP ?X_A))
((ADV-A (FROMP ?L1)) GO563V))) ?X_A) (BEES715.5K (PLUR BEE.N))

'E2 (X_C| NS x_B)

?E3 (?X_C EAT564V :X_D) (FIELD738.SK (PLUR FIELD.N))

((BEES715.SK ((ADV-A (IN.P FLOWERS721.SK))
FIND.562.V) NECTART:SK) ¥ E722.5K)

‘P1 (NOT (?X_C (HAVEYV X_D)))
P2 (NOT (+X_C HUNGRY.A))

'W1 (?E1 BEFORE ?E2)
'W2 (?E2 BEFORE ?E3)
'W3 (?E1 DURING ¢E)

'W4 (?E2 DURING ?E)

((¢*X_C GO_FIND_EATS566.PR ¢X_A ¢X_B) **2E)

R1 (¢+X_A FIELD.N)

R2 (?X_B (OEP (K GRASS.N)))
R3 (?X_B SPOTN)

R4 (?X_C COWN)

IRS (FOOD.N) (FLOWERS721.SK ((NN CLOVER.N) (PLUR
IR6 (GRASS.N) FLOWER.N)))

(BEES715.SK (PLUR BEE.N))

11 (2X_C (ATP ¢L1_2)) (NECTAR1.SK SWEET.A)
12 (NOT (?2X_C (ATP ?X_A)))

(NECTAR1.SK NECTAR.N)
¢E1 (+X_C (OUTADV ((ADV-A (TO.P X_A))

((ADV-A (FROM.P ?L1)) GO.563V))) :X_A) (BEES715.SK (PLUR BEE.N))
?E2 (¢X_C FIND.562V ¢X_B)
?E3 (?X_C EAT564V) (FIELD738.SK (PLUR FIELD.N))

((BEES715.SK ((ADV-A (IN.P FLOWERS721.SK))

¢P1 (NOT (¢:X_C (HAVEV)
P2 (NOT (+X_C HUNGRY.A)) FIND.562.V) NECTAR1.SK) ** E722.SK)

'W1 (?E1 BEFORE ?E2)
'W2 (?E2 BEFORE ?E3)
'W3 (?E1 DURING ¢E)

'W4 (?E2 DURING ?E)

((¢*X_C GO_FIND_EATS566.PR ¢X_A ¢X_B) **2E)

R1 (¢+X_A FIELD.N)
IR2 (?X_B (OFP (K GRASSN))) ¢X_C <« BEES715.SK

IR3 (*X_B SPOTN) ¢X_B <« NECTAR1.SK (BEES715.SK (PLUR BEE.N))

IR4 (:X_C COWN) ‘E2 <« E722.SK

IR5 (FOOD.N) (FLOWERS721.SK ((NN CLOVER.N) (PLUR
IR6 (GRASSN) FLOWER.N)))

11 (:X_C (ATP ¢L1_2)) (NECTAR1.SK SWEET.A)

2I2 (NOT (?X_C (ATP ?X_A)))

(NECTAR1.SK NECTAR.N)
¢E1 (+X_C (OUTADV ((ADV-A (TO.P X_A))

((ADV-A (FROM.P ?L1)) GO.563V))) :X_A) (BEES715.SK (PLUR BEE.N))
?E2 (¢X_C FIND.562V ¢X_B)
?E3 (?X_C EAT564V) (FIELD738.SK (PLUR FIELD.N))

((((ADV-A (IN.P FLOWERS721.SK))

?P1 (NOT (?X_C (HAVEV) on
?P2 (NOT (:X_C HUNGRYA)) FIND.562.V)))

'W1 (?E1 BEFORE ?E2)
'W2 (?E2 BEFORE ?E3)
'W3 (?E1 DURING ¢E)

'W4 (?E2 DURING ?E)

((?X_C GO_FIND_EAT566.PR ?X_A ?X_B ¢X_D) ** tE)

[R2 (?X_B (OEP (K GRASSN))) X C «

R3 (?X_B SPOTN)
R4 (?X_C COWN)
R5 (?X_D FOOD.N)
IR6 (?X_D GRASS.N)

1 (+X_C (ATP ?L1_2))

2 (NOT (¢X_C (ATP ¢X_A)))

¢E1 (+X_C (OUTADV ((ADV-A (TO.P X_A))
((ADV-A (FROM.P ?L1)) GO.563V))) :X_A)

¢E2 (¢X_C FIND.562V ¢X_B)

¢E3 (¢X_C EAT564V :X_D)

‘P1 (NOT (?X_C (HAVEYV X_D)))
P2 (NOT (+X_C HUNGRY.A))

'W1 (?E1 BEFORE ?E2)
'W2 (?E2 BEFORE ?E3)
'W3 (?E1 DURING ¢E)

'W4 (?E2 DURING ?E)

!X B
'E2 « E722.5K
¢X_A < FIELD738.SK

This formula matched, too.
Not all matched pieces are steps.

(BEES715.SK (PLUR BEE.N))

(FLOWERS721.SK ((NN CLOVER.N) (PLUR
FLOWER.N)))

(NECTAR1.SK SWEET.A)

(NECTAR1.SK NECTAR.N)
(BEES715.SK (PLUR BEE.N))
((PLUR FIELD.N))

((BEES715.SK ((ADV-A (IN.P FLOWERS721.SK))
FIND.562.V) NECTAR1.SK) ** E722.SK)

Just “seeing a field” can remind us of this cow

schema!

(EPI-SCHEMA ((BEES715.SK GO_FIND_EAT.861.PR FIELD738.SK NECTARILSK ?X_D) ** ?E)
:ROLES
IR1 (FIELD738.SK FIELD.N)
IR2_1 (NECTAR1L.SK NECTAR.N)
IR2_2 (NECTARLSK SWEETA)
IR2_3 (NECTARI.SK (OEP (K GRASS.N)))
'R2_4 (NECTAR1.SK SPOTN)
R4 (BEES715.SK COWN)
IR5 (¢!X_D FOOD.N)
IR6 (¢!X_D GRASS.N)
IR7 (BEES715.SK (PLUR BEE.N))
IR8 (FLOWERS721.SK ((NN CLOVER.N) (PLUR FLOWER.N)))
'R9 (BEES715.SK ANIMAL.N)
:PRECONDS
?I1 (BEES715.SK (ATP ?L1_2))
212 (NOT (BEES715.SK (ATP FIELD738.SK)))
ESINEIRS
il (BEES715.SK (OUTADV ((ADV-A (TO.P FIELD738.SK)) ((ADV-A (FROM.P HOME724.SK)) GO.860V))) FIELD738.SK)
E722.SK (BEES715.SK ((ADV-A (IN.P FLOWERS721.SK)) FIND.562V) NECTAR1.SK)
?E3 (BEES715.SK EAT564V ¢X_D)
:POSTCONDS
?P1 (NOT (BEES715.SK (HAVEYV X_D)))
?P2 (NOT (BEES715.SK HUNGRY.A))
:EPISODE-RELATIONS
W1 (?E1 BEFORE E722.SK)
W2 (E722.SK BEFORE ?E3)
W3 (E722.SK (AT-ABOUT NOW178))
:CERTAINTIES
IC1 ('R4 CERTAIN-TO-DEGREE (/1 2))
IC2 (IR7 CERTAIN-TO-DEGREE (/1 2))
IC3 ('IR9 CERTAIN-TO-DEGREE (/ 2 2))

(EPI-SCHEMA ((BEES715.SK GO_FIND_EAT.861.PR FIELD738.SK NECTARILSK ?X_D) ** ?E)
:ROLES
IR1 (FIELD738.SK FIELD.N)
IR2_1 (NECTARLSK NECTAR.N)
IR2_2 (NECTARL.SK SWEETA)
IR2_3 (NECTARI.SK (OEP (K GRASS.N)))
IR2_4 (NECTAR1.SK SPOTN)

IR5 (¢!X_D FOOD.N)
IR6 (?!X_D GRASS.N)

IR8 (FLOWERS721.SK ((NN CLOVER.N) (PLUR FLOWER.N)))

:PRECONDS
?I1 (BEES715.SK (ATP ?L1_2))
212 (NOT (BEES715.SK (ATP FIELD738.SK)))
:STEPS
?El (BEES715.SK (OUTADV ((ADV-A (TO.P FIELD738.SK)) ((ADV-A (FROM.P HOME724.SK)) GO.860V))) FIELD738.SK)
E722.SK (BEES715.SK ((ADV-A (IN.P FLOWERS721.SK)) FIND.562V) NECTARI1.SK)
*E3 (BEES715.SK EAT564V X_D)
:POSTCONDS
?P1 (NOT (BEES715.SK (HAVEYV X_D)))
?P2 (NOT (BEES715.SK HUNGRY.A))
:EPISODE-RELATIONS
W1 (?E1 BEFORE E722.SK)
W2 (E722.SK BEFORE ?E3)
IW3 (E722.SK (AT-ABOUT NOW178))
:CERTAINTIES

(EPI-SCHEMA ((BEES715.SK GO_FIND_EAT.861.PR FIELD738.SK NECTARIL.SK ¢X_D) ** ?E)
:ROLES
'R1 (FIELD738.SK FIELD.N)
'R2_1 (NECTARIL.SK NECTAR.N)
'R2_2 (NECTARI1.SK SWEETA)

Ui (BT TR (DI (€ CRGENO), WordNet lowest common hypernym of
IR2_4 (NECTAR1SK SPOTN) COWN and BEEN is ANIMALN
IR4 (BEES715.SK COWN) au -

IR5 (¢X_D FOOD.N)
IR6 (?X_D GRASS.N)
IR7 (BEES715.SK (PLUR BEE.N))
'R8 (FLOWERS721.SK ((NN CLOVER.N) (PLUR FLOWERN)))
IR9 (BEES715.SK ANIMALN)
:PRECONDS
¢J1 (BEES715.SK (ATP ¢L1_2))
J2 (NOT (BEES715.SK (ATP FIELD738.SK)))
:STEPS
8]l (BEES715.SK (OUTADV ((ADV-A (TO.P FIELD738.SK)) ((ADV-A (FROM.P HOME724.SK)) GO.860V))) FIELD738.SK)
E722.SK (BEES715.SK ((ADV-A (IN.P FLOWERS721.SK)) FIND.562V) NECTARI.SK)
'E3 (BEES715.SK EAT564V X_D)
:POSTCONDS
¢P1 (NOT (BEES715.SK (HAVEY X_D)))
P2 (NOT (BEES715.SK HUNGRY.A))
:EPISODE-RELATIONS
W1 (?E1 BEFORE E722.SK)
W2 (E722.SK BEFORE ?E3)
W3 (E722.SK (AT-ABOUT NOW178))

.CERTAINTIES))
IC1 (IR& CERTAIN-TO-DEGREE (/1 2)) New schema is only 50% sure agent is bee or cow, but
IC2 ('R7 CERTAIN-TO-DEGREE (/12)) 100% sure it’s an animal.

IC3 ('R9 CERTAIN-TO-DEGREE (/ 2 2))

(EPI-SCHEMA ((BEES715.SK GO_FIND_EAT.861.PR FIELD738.SK NECTARILSK ?X_D) ** ?E)
:ROLES
IR1 (FIELD738.SK FIELD.N)
IR2_1 (NECTAR1L.SK NECTAR.N)
IR2_2 (NECTARLSK SWEETA)
IR2_3 (NECTARI.SK (OEP (K GRASS.N)))
'R2_4 (NECTAR1.SK SPOTN)
R4 (BEES715.SK COWN)
IR5 (¢!X_D FOOD.N)
IR6 (¢!X_D GRASS.N)
IR7 (BEES715.SK (PLUR BEE.N))
IR8 (FLOWERS721.SK ((NN CLOVER.N) (PLUR FLOWER.N)))
'R9 (BEES715.SK ANIMAL.N)
:PRECONDS
?I1 (BEES715.SK (ATP ?L1_2))
212 (NOT (BEES715.SK (ATP FIELD738.SK)))
ESINEIRS
il (BEES715.SK (OUTADV ((ADV-A (TO.P FIELD738.SK)) ((ADV-A (FROM.P HOME724.SK)) GO.860V))) FIELD738.SK)
E722.SK (BEES715.SK ((ADV-A (IN.P FLOWERS721.SK)) FIND.562V) NECTAR1.SK)
?E3 (BEES715.SK EAT564V ¢X_D)
:POSTCONDS
?P1 (NOT (BEES715.SK (HAVEYV X_D)))
?P2 (NOT (BEES715.SK HUNGRY.A))
:EPISODE-RELATIONS
W1 (?E1 BEFORE E722.SK)
W2 (E722.SK BEFORE ?E3)
W3 (E722.SK (AT-ABOUT NOW178))
:CERTAINTIES
IC1 ('R4 CERTAIN-TO-DEGREE (/1 2))
IC2 (IR7 CERTAIN-TO-DEGREE (/1 2))
IC3 ('IR9 CERTAIN-TO-DEGREE (/ 2 2))

(EPI-SCHEMA ((BEES715.SK GO_FIND_EAT.861.PR FIELD738.SK NECTARILSK ?X_D) ** ?E)
:ROLES
IR1 (FIELD738.SK FIELD.N)
IR2_1 (NECTARLSK NECTAR.N)
IR2_2 (NECTARL.SK SWEETA)
IR2_3 (NECTARI.SK (OEP (K GRASS.N)))
IR2_4 (NECTAR1.SK SPOTN)
R4 (BEES715.SK COWN)
IR5 (¢!X_D FOOD.N)
IR6 (?!X_D GRASS.N)
IR7 (BEES715.SK (PLUR BEE.N))
IR8 (FLOWERS721.SK ((NN CLOVER.N) (PLUR FLOWER.N)))
'R9 (BEES715.SK ANIMAL.N)
:PRECONDS
?I1 (BEES715.SK (ATP ?11_2))
212 (NOT (BEES715.SK (ATP FIELD738.SK)))

:POSTCONDS
?P1 (NOT (BEES715.SK (HAVEYV X_D)))
?P2 (NOT (BEES715.SK HUNGRY.A))
:EPISODE-RELATIONS
W1 (?E1 BEFORE E722.SK)
W2 (E722.SK BEFORE ?E3)
IW3 (E722.SK (AT-ABOUT NOW178))
:CERTAINTIES
IC1 ('R4 CERTAIN-TO-DEGREE (/1 2))
IC2 (IR7 CERTAIN-TO-DEGREE (/1 2))
IC3 ('IR9 CERTAIN-TO-DEGREE (/ 2 2))

(EPI-SCHEMA ((BEES715.SK GO_FIND_EAT.861.PR FIELD738.SK NECTARILSK ?X_D) ** ?E)
:ROLES
IR1 (FIELD738.SK FIELD.N)
IR2_1 (NECTARL.SK NECTAR.N)
IR2_2 (NECTARL.SK SWEETA)
IR2_3 (NECTARI.SK (OEP (K GRASS.N)))
IR2_4 (NECTARLSK SPOTN)
R4 (BEES715.SK COWN)

15 DR OINY Only one step is “confirmed”
IR6 (:X_D GRASS.N) ¢ the st
IR7 (BEES715.SK (PLUR BEEN)) rom the story...

IR8 (FLOWERS721.SK ((NN CLOVER.N) (PLUR FLOWER.N)))
'R9 (BEES715.SK ANIMAL.N)
:PRECONDS
11 (BEES715.SK (ATP ?L1_2))
12 (NOT (BEES715.SK (ATP FIELD738.SK)))
:STEPS
*E1 (BEES715.SK (OUTADV ((ADV-A (TO.P FIELD738.SK)) ((ADV-A (FROM.P HOME724.SK)) GO.860V))) FIELD738.SK)

¢E3 (BEES715.SK EAT564V ?X_D)
:POSTCONDS

?P1 (NOT (BEES715.SK (HAVEY ¢X_D)))

P2 (NOT (BEES715.SK HUNGRY.A))
:EPISODE-RELATIONS

W1 (?E1 BEFORE E722.SK)

W2 (E722.SK BEFORE ?E3)

IW3 (E722.SK (AT-ABOUT NOW178))
:CERTAINTIES

IC1 (IR4 CERTAIN-TO-DEGREE (/12))

IC2 (IR7 CERTAIN-TO-DEGREE (/1 2))

IC3 ('IR9 CERTAIN-TO-DEGREE (/ 2 2))

(EPI-SCHEMA ((BEES715.SK GO_FIND_EAT:861.PR FIELD738.SK NECTAR1.SK ?X_D) ** ?E)
:ROLES
IR1 (FIELD738.SK FIELD.N)
IR2_1 (NECTARL.SK NECTAR.N)
IR2_2 (NECTARL.SK SWEETA)
IR2_3 (NECTARI.SK (OEP (K GRASS.N)))
IR2_4 (NECTARLSK SPOTN)
R4 (BEES715.SK COWN)

:EZ Ei?g 2(1?((/3551\12) But instead of “unconfirmed steps”,
. 14 W . 2 (13 . . »
IR7 (BEES715SK (PLUR BEEN)) couldn’t we call these “predictions™?

IR8 (FLOWERS721.SK ((NN CLOVER.N) (PLUR FLOWER.N)))
IR9 (BEES715.SK ANIMAL.N)
:PRECONDS
11 (BEES715.SK (ATP ?L1_2))
212 (NOT (BEES715.SK (ATP FIELD738.SK)))
:STEPS
?El (BEES715.SK (OUTADV ((ADV-A (TO.P FIELD738.SK)) ((ADV-A (FROM.P HOME724.SK)) GO.860V))) FIELD738.SK)
E722.SK (BEES715.SK ((ADV-A (IN.P FLOWERS721.SK)) FIND.562V) NECTAR1.SK)
?E3 (BEES715.SK EAT564V ?X_D)
:POSTCONDS
?P1 (NOT (BEES715.SK (HAVEY ¢X_D)))
P2 (NOT (BEES715.SK HUNGRY.A))
:EPISODE-RELATIONS
W1 (?E1 BEFORE E722.SK)
W2 (E722.SK BEFORE ?E3)
IW3 (E722.SK (AT-ABOUT NOW178))
:CERTAINTIES
IC1 (IR4 CERTAIN-TO-DEGREE (/12))
IC2 (IR7 CERTAIN-TO-DEGREE (/1 2))
IC3 ('IR9 CERTAIN-TO-DEGREE (/ 2 2))

(EPI-SCHEMA ((BEES715.SK GO_FIND_EAT.861.PR FIELD738.SK NECTARILSK ?X_D) ** ?E)
:ROLES
IR1 (FIELD738.SK FIELD.N)
IR2_1 (NECTARL.SK NECTAR.N)
IR2_2 (NECTARL.SK SWEETA)
IR2_3 (NECTARI.SK (OEP (K GRASS.N)))
IR2_4 (NECTARLSK SPOTN)
R4 (BEES715.SK COWN)

IR5 (+X_D FOOD.N) “I observe that some bees found
IR6 (:X_D GRASS.N) .
IR7 (BEES71SSK (PLUR BEEN)) some sweet nectar in some clover
IR8 (FLOWERS721.SK ((NN CLOVER.N) (PLUR FLOWER.N))) flowers...”
IR9 (BEES715.SK ANIMALN)

‘PRECONDS

11 (BEES715.SK (ATP ?L1_2))
12 (NOT (BEES715.SK (ATP FIELD738.SK)))
:STEPS
*E1 (BEES715.SK (OUTADV ((ADV-A (TO.P FIELD738.SK)) ((ADV-A (FROM.P HOME724.SK)) GO.860V))) FIELD738.SK)

¢E3 (BEES715.SK EAT564V ?X_D)
:POSTCONDS

?P1 (NOT (BEES715.SK (HAVEY ¢X_D)))

P2 (NOT (BEES715.SK HUNGRY.A))
:EPISODE-RELATIONS

W1 (?E1 BEFORE E722.SK)

W2 (E722.SK BEFORE ?E3)

IW3 (E722.SK (AT-ABOUT NOW178))
:CERTAINTIES

IC1 (IR4 CERTAIN-TO-DEGREE (/12))

IC2 (IR7 CERTAIN-TO-DEGREE (/1 2))

IC3 ('IR9 CERTAIN-TO-DEGREE (/ 2 2))

(EPI-SCHEMA ((BEES715.SK GO_FIND_EAT.861.PR FIELD738.SK NECTARILSK ?X_D) ** ?E)
:ROLES
IR1 (FIELD738.SK FIELD.N)
IR2_1 (NECTARL.SK NECTAR.N)
IR2_2 (NECTARL.SK SWEETA)
IR2_3 (NECTARI.SK (OEP (K GRASS.N)))
IR2_4 (NECTARLSK SPOTN)
R4 (BEES715.SK COWN)

IR5 ~ (*X_D FOOD.N) “Maybe they left their home to go
IR6 (:X_D GRASS.N) to a field first?”
IR7 (BEES715SK (PLUR BEEN)) 0 a fiela Trste

IR8 (FLOWERS721.SK ((NN CLOVER.N) (PLUR FLOWER.N)))
'R9 (BEES715.SK ANIMAL.N)
:PRECONDS
11 (BEES715.SK (ATP ?L1_2))
12 (NOT (BEES715.SK (ATP FIELD738.SK)))
:STEPS
E1 (BEES71SSK (OUTADV ((ADV-A (TOP FIELD7385K)) ((ADV-A (FROM.P HOME724SK)) GO.860V))) FIELD738.SK)
E722.SK (BEES715.SK ((ADV-A (IN.P FLOWERS721.SK)) FIND.562V) NECTAR1.SK)
¢E3 (BEES715.SK EAT564V ?X_D)
:POSTCONDS
?P1 (NOT (BEES715.SK (HAVEY ¢X_D)))
P2 (NOT (BEES715.SK HUNGRY.A))
:EPISODE-RELATIONS
W1 (?E1 BEFORE E722.SK)
W2 (E722.SK BEFORE ?E3)
IW3 (E722.SK (AT-ABOUT NOW178))
:CERTAINTIES
IC1 (IR4 CERTAIN-TO-DEGREE (/12))
IC2 (IR7 CERTAIN-TO-DEGREE (/1 2))
IC3 ('IR9 CERTAIN-TO-DEGREE (/ 2 2))

(EPI-SCHEMA ((BEES715.SK GO_FIND_EAT.861.PR FIELD738.SK NECTARILSK ?X_D) ** ?E)
:ROLES
IR1 (FIELD738.SK FIELD.N)
IR2_1 (NECTARL.SK NECTAR.N)
IR2_2 (NECTARL.SK SWEETA)
IR2_3 (NECTARI.SK (OEP (K GRASS.N)))
IR2_4 (NECTARLSK SPOTN)
R4 (BEES715.SK COWN)

IRS (?X_D FOOD.N) “And maybe they ate some grass

»
IR7 (BEES715SK (PLUR BEEN)) afterward?
IR8 (FLOWERS721.SK ((NN CLOVERN) (PLUR FLOWER.N)))
IR9 (BEES715.SK ANIMALN)
.PRECONDS
?T1 (BEES715.SK (ATP ?L1_2))
?12 (NOT (BEES715.SK (ATP FIELD738.SK)))
STEPS
’E1 (BEES715SK (OUTADV ((ADV-A (TO.P FIELD738SK)) ((ADV-A (FROM.P HOME724.SK)) GO.860V))) FIELD738.SK)
E722.SK (BEES715.SK ((ADV-A (IN.P FLOWERS721.SK)) FIND.562V) NECTAR1.SK)

:POSTCONDS
?P1 (NOT (BEES715.SK (HAVEY ¢X_D)))
P2 (NOT (BEES715.SK HUNGRY.A))
:EPISODE-RELATIONS
W1 (?E1 BEFORE E722.SK)
W2 (E722.SK BEFORE ?E3)
IW3 (E722.SK (AT-ABOUT NOW178))
:CERTAINTIES
IC1 (IR4 CERTAIN-TO-DEGREE (/12))
IC2 (IR7 CERTAIN-TO-DEGREE (/1 2))
IC3 ('IR9 CERTAIN-TO-DEGREE (/ 2 2))

(EPI-SCHEMA ((BEES715.SK GO_FIND_EAT.861.PR FIELD738.SK NECTARILSK ?X_D) ** ?E)
:ROLES
IR1 (FIELD738.SK FIELD.N)
IR2_1 (NECTARL.SK NECTAR.N)
IR2_2 (NECTARL.SK SWEETA)
IR2_3 (NECTARI.SK (OEP (K GRASS.N)))
IR2_4 (NECTARLSK SPOTN)
R4 (BEES715.SK COWN)

IR5 (zX_D FOOD.N) (Note: that prediction is weaker,
o (EEECRASS.N) because it still has an unmatched
IR7 (BEES715SK (PLUR BEEN))
IR8 (FLOWERS721SK ((NN CLOVER.N) (PLUR FLOWER.N))) variable inside it.)
IR9 (BEES715SK ANIMALN)

.PRECONDS

11 (BEES715.SK (ATP ?L1_2))
12 (NOT (BEES715.SK (ATP FIELD738.SK)))
:STEPS
8]l (BEES715.SK (OUTADV ((ADV-A (TO.P FIELD738.SK)) ((ADV-A (FROM.P HOME724.SK)) GO.860V))) FIELD738.SK)
E722.SK (BEES715.SK ((ADV-A (IN.P FLOWERS721.SK)) FIND.562V) NECTAR1.SK)
¢E3 (BEES715.SK EAT564V ¢XED)
:POSTCONDS
?P1 (NOT (BEES715.SK (HAVEY ¢X_D)))
P2 (NOT (BEES715.SK HUNGRY.A))
:EPISODE-RELATIONS
W1 (?E1 BEFORE E722.SK)
W2 (E722.SK BEFORE ?E3)
IW3 (E722.SK (AT-ABOUT NOW178))
:CERTAINTIES
IC1 (IR4 CERTAIN-TO-DEGREE (/12))
IC2 (IR7 CERTAIN-TO-DEGREE (/1 2))
IC3 ('IR9 CERTAIN-TO-DEGREE (/ 2 2))

Evaluation

We have a corpus of 561 simple children’s stories taken from ROCstories
(Mostafazadeh et al,, 2016) and a children’s “first reader” collection.

We will split these stories (and any more we acquire) into development and test sets.
(The former to develop new protoschemas & our matching code.)

The test set will be used to learn as many schemas as possible.

Evaluation

Once the schemas are learned, we will evaluate their usefulness for story
understanding by rating the appropriateness of their predictions.

We will use two rating methods: human judges and an automated narrative cloze task.

Human Evaluation

Our schemas will generate three kinds of prediction:

1. Temporal predictions (What happened before that? What happened after that?)
2. Attribute predictions (“He ate a cocoanut.” => “He was a monkey.”)

3. Motivational predictions (“He climbed the cocoanut tree because he was hungry.”)

Human Evaluation

We’ll render the Episodic Logic predictions to English.

Untrained human judges (e.g. turkers) will rate the likelihood and novelty of the

predictions.

Automated Narrative Cloze Evaluation

Chambers & Jurafsky (2008) introduced the “narrative cloze” test for evaluating their
scripts.

It rated a model’s ability to predict “held-out” events from a sequence.

“He got in his car.”

“He drove to the store.” \

“He bought something.”

/ “He bought something.”

Automated Narrative Cloze Evaluation

We can modify this to allow the schemas to predict held-out EL formulas.

(T28.SK TREE.N)

(M27SK MONKEY.N)

(C32.SK COCOANUTN)

((M27SK (CLIMBYV T28.SK)) ** E34.SK)
((M27SK (GETV C32.8K)) ** E33.SK)

((M27SK (EATV C32.8K)) ** E35.SK)

/ ((M27SK (GETV C32.SK)) ** E33.SK)

Thank you!

Thank you!

Thank you!

References

Marvin Minsky. A Framework for Representing Knowledge. Tech. rep. Cambridge, MA, USA, 1974.

R.C. Schank and R.P. Abelson. Scripts, Plans, Goals, and Understanding: An Inquiry Into Human Knowledge Structures. The
Artificial Intelligence Series. Lawrence Erlbaum Associates, 1977. isbn: 9780470990339. url: https : / /
books.google.com/books?id=YZ99AAAAMAA].

Teun Adrianus Van Dijk and Walter Kintsch. Strategies of discourse comprehension. Academic press New York, 1983.

David E. Rumelhart and Donald A. Norman.. Accretion, tuning and restructuring: Three modes of learning.. Tech. rep.
CALIFORNIA UNIV SAN DIEGO LA JOLLA CENTER FOR HUMAN INFORMATION PROCESSING, 1976.

J. R. Firth. “A synopsis of linguistic theory 1930-55.” In: 1952-59 (1957), pp. 1- 32

Michael Lebowitz. “Generalization and Memory in an Integrated Understanding System.” AAI8109800. PhD thesis. New Haven,
CT, USA, 1980

Raymond J. Mooney. “A General Explanation-Based Learning Mechanism and its Application to Narrative Understanding.” PhD
thesis. Department of Computer Science, University of Illinois at Urbana-Champaign, 1988. url: http:
[[www.cs.utexas.edu/users/ai-lab/?mooney:phd88.

Nathanael Chambers and Dan Jurafsky. “Unsupervised learning of narrative event chains.” In: Proceedings of ACL-08: HLT
(2008), pp. 789-797.

References

Karl Pichotta and Raymond] Mooney. “Learning statistical scripts with LSTM recurrent neural networks.” In: Thirtieth AAAI
Conference on Artificial Intelligence. 2016.

Lenhart K. Schubert and Chung Hee Hwang. 2000. Episodic Logic meets Little Red Riding Hood: A comprehensive natural
representation for language understanding. In Lucja M. Iwanska and Stuart C. Shapiro, editors, Natural Language Processing
and Knowledge Representation, pages 111-174. MIT Press, Cambridge, MA, USA.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases
and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26, pages 3111-3119. Curran Associates, Inc.

Nasrin Mostafazadeh et al. “A corpus and evaluation framework for deeper understanding of commonsense stories.” In: arXiv
preprint arXiv:1604.01696 (2016).

William Holmes McGuffey. The New McGuffey First Reader. American Book Company, 1901

Gene Kim et al. “Generating Discourse Inferences from Unscoped Episodic Logical Formulas.” In: Proceedings of the First
International Workshop on Designing Meaning Representations. 2019, pp. 56—65.

Matching Algorithm

Algorithm 1 Basic algorithm for matching a story to a schema

INPUT: set of story EL formulas STORY , a candidate schema SCH, number of
shuffles SHU F

OUTPUT: best schema match
match < null
for i from 0 to SHUF do
STORY < shuf fle(STORY)
for ¢ in STORY do
for v in SCH do
if ¢ and v unify with variable bindings B then
SCH <+ SCH with all bindings in B applied
if score(SCH) > score(match) then
match < SCH

