
Formalizations and Implementations of
Monotonicity Reasoning

Larry Moss

NALOMA’20

July 14, 2020

1/32



Non-technical introduction

This is an entry for a United States
National Science Foundation contest
on mathematics outreach for the general public.
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https://www.youtube.com/watch?v=-zBPHuBGZAE&feature=youtu.be
https://www.youtube.com/watch?v=-zBPHuBGZAE&feature=youtu.be


Other examples of arrows

Some “givens”

animal

Sneetch
Star-Belly Sneetch

move

dance

waltz
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Other examples of arrows

Some “givens”

animal

Sneetch
Star-Belly Sneetch

move

dance

waltz

Let’s talk about a situation where

all Sneetches dance.

Which one would be true?

I all Star-Belly Sneetches dance
I all animals dance
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Other examples of arrows

Some “givens”

animal

Sneetch
Star-Belly Sneetch

move

dance

waltz

I all Star-Belly Sneetches dance true
I all animals dance false

We write
all Sneetches↓ dance
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Other examples of arrows

Some “givens”

animal

Sneetch
Star-Belly Sneetch

move

dance

waltz

all Sneetches↓ dance

What arrow goes on “dance”?

I all Sneetches waltz
I all Sneetches move
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Other examples of arrows

Some “givens”

animal

Sneetch
Star-Belly Sneetch

move

dance

waltz

We write
all Sneetches↓ dance↑
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Other examples of arrows

Some “givens”

animal

Sneetch
Star-Belly Sneetch

move

dance

waltz

Let’s put the arrows on the words Sneetches and dance.

1 No Sneetches dance.
2 Most Sneetches dance.
3 If you play loud enough music, any Sneetch will dance.
4 Any Sneetch in Zargonia would prefer to live in Yabistan.
5 If any Sneetch dances, McBean will dance, too.
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waltz

Let’s put the arrows on the words Sneetches and dance.

1 No Sneetches↓ dance↓.
2 Most Sneetches= dance↑. (no arrow)
3 If you play loud enough music, any Sneetch will dance.
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Arrows found by MonaLog: see Hai Hu’s talk tomorrow

No↑ man↓ walks↓

Every↑ man↓ and↑ some↑ woman↑ sleeps↑

Every↑ man↓ and↑ no↑ woman↓ sleeps=

If↑ some↓ man↓ walks↓, then↑ no↑ woman↓ runs↓

Every↑ man↓ does↓ n’t↑ hit↓ every↓ dog↑

No↑ man↓ that↓ likes↓ every↓ dog↑ sleeps↓

Most↑ men= that= every= woman= hits= cried↑

Every↑ young↓ man↓ that↑ no↑ young↓ woman↓ hits↑ cried↑
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Logic enters

The arrows are sites for inference
At this point, we might wonder:

I What would logic look like if simple inferences
like the ones we’ve seen played a central role,
not a supporting part.

I How much of human reasoning is monotonicity reasoning
anyways?
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The simplest logical system “of all”

Fix a set of nouns.

Sentences

all p q

for p, q ∈ nouns.

Semantics: models

A model M is a set M together with an interpretation function

[[ ]] : nouns → P(M).

(Here P(M) is the set of subsets of M.)
Then we say that

M |= all p q iff [[p]] ⊆ [[q]].
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The simplest logic “of all”: semantic notions

We use φ for sentences and Γ for sets thereof.

We say that
M |= Γ

if M |= φ for each φ ∈ Γ.

We then say that
Γ |= φ

if for all models M,

M |= Γ implies M |= φ.
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The simplest logic “of all”

We have a logical system.

It uses the following two rules:

all x x
axiom

all x y all y z

all x z
barbara

Recasting (barbara)

all x↓ y↑

Theorem (Soundness/Completeness/Complexity)

Γ |= φ iff Γ ` φ.

Moreover, this relation is decidable in polynomial time,
and if Γ 6` φ, then there are “small counter-models”.
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Extensions of syllogistic logic

We can extend a number of orthogonal directions:

I by adding names.

I by adding noun complements p, q, . . .,
and then using these in sentences.

I by adding verbs (e.g., see), and then forming terms

I see all p
I see some p

Then these terms are a productive construct:
e.g., see all (like all cats)

and then the terms can be used in the basic sentences,
as in all (see some dog) (chase all cats)
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A simple fragment
t is for “terms”; their denotations are sets

s→ det t t

t→ v det t

t→ dogs, cats, . . .

det→ all, some, no

v→ see, chase, . . .
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Sentences
t is for “terms”; their denotations are sets

s→ det t t
t→ v det t
t→ dogs, cats, . . .
det→ all, some, no
v→ see, chase, . . .

Examples

all skunks mammals

no skunks mammals

all skunks see all mammals

all skunks see all fear all mammals
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Then as we now can see

Examples

all↑ skunks↓ mammals↑

no↑ skunks↓ mammals↓

all↑ skunks↓ see↑ some↑ mammals↑

all↑ skunks↓ see↑ all↑ fear↓ all↓ mammals↑
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Polarizing our fragment

s↑ → all↑ t↓ t↑ | some↑ t↑ t↑ | no↑ t↓ t↓

t↑ → v↑ all↑ t↓ | v↑ some↑ t↑ | v↓ no↑ t↓ | dogs↑ | cats↑ | · · ·
det↑ → all↑ | some↑ | no↑

v↑ → see↑ | chase↑ | · · ·

t↓ → v↓ all↓ t↑ | v↓ some↓ t↓ | v↑ no↓ t↑ | dogs↓ | cats↓ | · · ·
det↓ → all↓ | some↓ | no↓

v↓ → see↓ | chase↓ | · · ·
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Generalizing

Clearly it’s a bit excessive to list similar things twice.
So we use d as a variable ranging over Pol = {↑, ↓}.

We also introduce an operation − : Pol→ Pol in the obvious way.

And then our rules simplify to:

sd → alld t−d td | somed td td | nod t−d t−d

td → vd alld t−d | vd somed td | v−d nod t−d | dogsd | catsd | · · ·
detd → alld | somed | nod

vd → seed | chased | · · ·
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Adding “most”

Most Sneetches= dance↑

When we add most, we see the need for a third polarity =.

And then we would extend the − operation by taking −= to be =.

The extra productions which we want are

sd → mostd t= td

td → vd mostd t=

detd → mostd
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Moving to inference in language

(1) some↑ dog↑ hit↑ some↑ cat↑

(2) some↑ dog↑ kissed↓ no↑ cat↓

(3) most↑ dog= hit↓ no↑ cat↓

(4) no↑ dog↓ hit↑ no↓ cat↑

(5) at most two↑ dog↓ chased↑ at most three↓ cats↑

knowledge base for nouns, transitive verbs,
determiners, and numbers

dog ≤ animal
cat ≤ animal
poodle ≤ dog
siamese ≤ cat
bird ≤ scooter

kiss ≤ touch
hit ≤ touch
thrash ≤ hit
hit vigorously ≤ hit
hit lightly ≤ hit

every ≤ most
most ≤ some

one ≤ two
two ≤ three
three ≤ four
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What do you think?

Is this valid?

All skunks are mammals
All who fear all who respect all skunks fear all who respect all mammals
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What do you think?

It follows, using an interesting antitonicity principle:

All skunks are mammals
All who respect all mammals respect all skunks
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What do you think?

It follows, using an interesting antitonicity principle:

All skunks are mammals
All who respect all mammals respect all skunks

All who fear all who respect all skunks fear all who respect all mammals

Indeed, in this logic it would be done in one step from the axiom

all (fear all (respect all skunks)) (fear all (respect all skunks↑))

and the background information

skunks ≤ mammals
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A Map of Natural Logics

Arist
otle

Church-Turin
g

Peano-Frege

S

A

S†

S≥ S≥ adds |p| ≥ |q|
R

R∗

R∗(tr)

R∗(tr , opp)
R†

R†∗

R†∗(tr)

R†∗(tr , opp)

FOL

FO2 + trans

FO2

first-order logic

FO2 + “R is trans”

2 variable FO logic

† adds full N-negation

R + relative clauses

R = relational syllogistic

R∗ + (transitive)

comparative adjs

R∗(tr) + opposites

S + full N-negation

S: all/some/no p are q

A: all p are q
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But all of this is not so useful for real-world NLI

One of the many problems

Text doesn’t come to us according to a grammar.

So to handle this in a way to have logic and semantics
but not a simple form of grammar,
we turn to categorial grammar.

Indeed to use off-the-shelf parsers, we use CCG.

The last part of this talk is a very high-level description of
MonaLog,
and you’ll hear more in Hai Hu’s talk tomorrow.
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Preorder enrichment of grammar

To derive the ↑ and ↓ polarities, we need to change the entire
architecture of CG,
and indeed to change everything about the semantics,
going from sets to preorders.

(For preorders and their theory, see the end of this slide set.)

For example, standard CG has function types X → Y .

In the preorder enrichment, we have

I X
+→ Y (monotone functions)

I X
−→ Y (antitone functions)

I X
·→ Y (all functions)

We start with

Pe = the flat order on some set
Pt = 2
Pnum = N
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A lexicon
By flatness, e → t is the same as e

+→ t and e
−→ t

item category type

Fido, Felix np e

cat, dog n pr = (e → t)

swim, run iv = s\np pr

chase, see, hit, kiss tv = iv/np e → pr

every det = np/n pr
−→ np+

some np/n pr
+→ np+

no np/n pr
−→ np−

most np/n pr
·→ np+

didn’t iv/iv pr
−→ pr

tv/tv (e → pr)
−→ (e → pr)

and x/(x\x) x
+→ (x

+→ x)

one, two, three num num

more than det/num num
−→ (pr

+→ np+)

less than det/num num
+→ (pr

−→ np−)

if . . . then . . . (s\s)/s t
−→ (t

+→ t)
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Polarizing the CCG rules

Unpolarized rules

u : x → y v : x
uv : y >

u : x
tu : (x → y)→ y

t
u : x → y v : y → z

buv : (x → z)
b

Polarized rules

ud : x
m→ y vmd : x

(uv)d : y
>

umd : x

(tu)d : (x
m→ y)

+→ y
t

umd : x
n→ y vmd : y

n→ z

(buv)d : (x
mn−→ z)

b

umd : e → b

(rmu)d : npm
+→ b

k
ud : x

m→ y

ud : x
·→ y

m
u= : x

m→ y

ud : x
m→ y

w
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m→ y vmd : x
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(tu)d : (x
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umd : x
n→ y vmd : y
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(buv)d : (x
mn−→ z)
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(rmu)d : npm
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k
ud : x

m→ y

ud : x
·→ y

m
u= : x

m→ y

ud : x
m→ y

w

The > in the application rule is function application.

The t in the type-raising rule is the Montague lift.

The b in the type-raising rule is function composition, backwards.

The rm in the K rule is from our refinement of the Justification Theorem.

In the m rule, we have a trivial inclusion.

The w rule is trivial.
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Polarizing the CCG rules

Unpolarized rules

u : x → y v : x
uv : y >

u : x
tu : (x → y)→ y

t
u : x → y v : y → z
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m→ y
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m
u= : x

m→ y

ud : x
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w

We combine markings and polarities as in the table below:

md + − ·
↑ ↑ ↓ =

↓ ↓ ↑ =

= = = =
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Examples

Fido↑ : e

didn’t↑ : pr
−→ pr

chase↓ : e
+→ pr

chase↓ : np+
+→ pr

k every↓ : pr
−→ np+ cat↑ : pr

every cat↓ : np+
>

chase every cat↓ : pr
>

didn’t chase every cat↑ : pr
>

Fido didn’t chase every cat↑ : t
<

some↑ : pr
+→ np+ dog↑ : pr

some dog↑ : pr
+→ t

>

chased↓ : e
+→ pr

chased↑ : np−
+→ pr

k no↑ : pr
−→ np− cat↓ : pr

no cat↑ : np−
>

chased no cat↑ : pr
>

some dog chased no cat↑ : t
>
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Dowty’s armadillos

F↑ : e

ch↑ : e
+→ pr

ch↑ : np+
+→ pr

k some cat↑ : np+

and : np+
+→ (np+

+→ np+) some arm↑ : np+

and some arm : np
+→ np

>

some cat and some armadillo↑ : np
<

chased some cat and some armadillo↑ : pr
>

Fido chased some cat and some armadillo↑ : t
<
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General theory:
preorders and monotone functions

Definition

A preorder is a pair P = (P,≤) consisting of a set P together
with a relation ≤ which is
reflexive and transitive.

This means that the following hold:

I p ≤ p for all p ∈ P.
I If p ≤ q and q ≤ r , then p ≤ r .
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Examples of preorders

The set of truth values 2 = {T,F} is a preorder, with F ≤ T.

The set of real numbers R is a preorder, with the usual ≤.

Definition

For any preorder P and any set X ,
we have a new preorder called X → P.

The domain of this preorder is the function set

X → P

The order on PX is the pointwise order:

f ≤ g iff for all x ∈ X , fx ≤P gx .
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Three more constructions of preorders

Definition

For any preorder P, there is an opposite preorder Pop.
Its domain set is P, the same domain set as for P.

p ≤ q in Pop iff q ≤ p in P

Definition

For any preorder P, there is an flattened version P[.
Its domain set is P, the same domain set as for P.

p ≤ q in P[ iff p = q

Definition

For any preorders P and Q, there is a product preorder P× Q.
Its domain set is the cartesian product P × Q.

(p, q) ≤ (p′, q′) in P× Q iff p ≤ p′ in P, and q ≤ q′ in Q
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Monotonicity in algebra

An algebraic expression like

z − (v + |w |)

is increasing in z , and decreasing in v , and
there’s nothing we can say about w .

If we assume

I z1 ≤ z2
I v2 ≤ v1
I w2=w1

Then we are entitled to conclude

z1 − (v1 + w1) ≤ z2 − (v2 + w2)
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Further

We had
z − (v + |w |)

We would write
v↓ w= z↑

(z − (v + |w |))↑ (1)

The responsible parties here are the facts that

+ : R× R→ R is increasing (monotone) in both arguments
− : R× R→ R is increasing in the first argument

and decreasing (antitone) in the second argument
| | : R→ R is neither

And we can write (1) as
v ,w , z 7→ z − (v + w) is an increasing function

Rop × R[ × R→ R
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Historical influences on this project

I van Benthem 1986, 1991: combine vanilla CG with inference

I Nairn, Condoravdi, and Karttunen 2006:
something similar (!),
but not noticed as such,
not using CG, and not aimed at the same issues

I Steedman: CCG, a working system

I Dowty 1994: internalization of inferential features
in the type system

I MacCartney and Manning 2009: get something to work.
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The place of logic in this area

Logic-based approaches to NLI

I Tableau (Muskens, Abzianidze)

I Translation to a richer logical form,
then call a theorem prover
(Bekki, Martinez-Gomez, Mineshima, Yanaka)

I Using a Graphical Knowledge Representation Parser
(Crouch, de Paiva, Kalouli)

I Natural Logic: monotonicity calculus + special rules
(Icard, Pratt-Hartmann, M., Hu)
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My wonderful collaborators on these topics

Jörg Endrullis
Jason Hemann
Hai Hu
Thomas Icard
Katerina Kalouli
Alex Kruckman
Tri Lai
Valeria de Paiva

Ian Pratt-Hartmann
Charlotte Raty
Livy Real
Cameron Swords
Selcuk Topal
Will Tune
Chloe Urbanski
Michael Wollowski

I hope you find our workshop to be stimulating!
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