Transferring Representations of Logical Connectives

Aaron Traylor, Ellie Pavlick, & Roman Feiman

SuperGLUE

(Wang et al., 2019)

GLUE Leaderboard

Rank	Name	Model	RTE
1	SuperGLUE Human Baselines	SuperGLUE Human Baselines	93.6
2	T5 Team - Google	Τ5	92.5
3	Zhuiyi Technology	RoBERTa-mtl-adv	88.1
4	Facebook AI	RoBERTa	88.2
5	IBM Research AI	BERT-mtl	84.1

GLUE Leaderboard

"Recognizing Textual Entailment"

Name	Model	RTE
SuperGLUE Human Baselines	SuperGLUE Human Baselines	93.6
T5 Team - Google	Т5	92.5
Zhuiyi Technology	RoBERTa-mtl-adv	88.1
Facebook Al	RoBERTa	88.2
IBM Research AI	BERT-mtl	84.1
	SuperGLUE Human Baselines T5 Team - Google Zhuiyi Technology Facebook Al	SuperGLUE Human BaselinesSuperGLUE Human BaselinesT5 Team - GoogleT5Zhuiyi TechnologyRoBERTa-mtl-advFacebook AIRoBERTa

(Wang et al., 2019)

Premise

Premise

Either he has a blind trust or he has a conflict of interest.

Premise

Either he has a blind trust or he has a conflict of interest.

Hypothesis

Premise

Either he has a blind trust or he has a conflict of interest.

Hypothesis

He has a conflict of interest.

Disjunction

Premise

Either he has a blind trust or he has a conflict of interest.

Hypothesis

He has a conflict of interest.

GLUE Inference Diagnostics

- Format
- Design
 - Standards for entailment
 - Handling Coreference
 - Definite Descriptions and Monotonicity
 - Background Knowledge
- Linguistic Categorization
 - Lexical Semantics
 - Lexical Entailment
 - Morphological Negation
 - Factivity
 - Symmetry/Collectivity
 - Redundancy
 - Named Entities
 - Quantifiers
 - Predicate-Argument Structure
 - Syntactic Ambiguity
 - Prepositional Phrases
 - Core Arguments
 - Alternations
 - Ellipsis/Implicits
 - Anaphora/Coreference
 - Intersectivity
 - Restrictivity
 - Logic
 - Propositional Structure
 - Quantification
 - Monotonicity
 - Richer Logical Structure
 - Knowledge and Common sense
 - World Knowledge
 - Common Sense

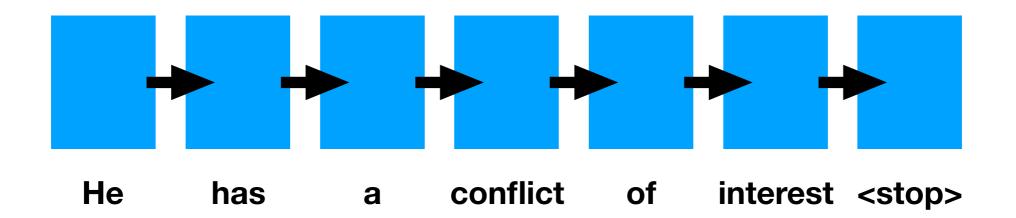
GLUE Inference Diagnostics

- Format
- Design
 - Standards for entailment
 - Handling Coreference
 - Definite Descriptions and Monotonicity
 - Background Knowledge
- Linguistic Categorization
 - Lexical Semantics
 - Lexical Entailment
 - Morphological Negation
 - Factivity
 - Symmetry/Collectivity
 - Redundancy
 - Named Entities
 - Quantifiers
 - Predicate-Argument Structure
 - Syntactic Ambiguity
 - Prepositional Phrases
 - Core Arguments
 - Alternations
 - Ellipsis/Implicits
 - Anaphora/Coreference
 - Intersectivity
 - Restrictivity
 - Logic
 - Propositional Structure
 - Quantification
 - Monotonicity
 - Richer Logical Structure
 - Knowledge and Common sense
 - World Knowledge
 - Common Sense

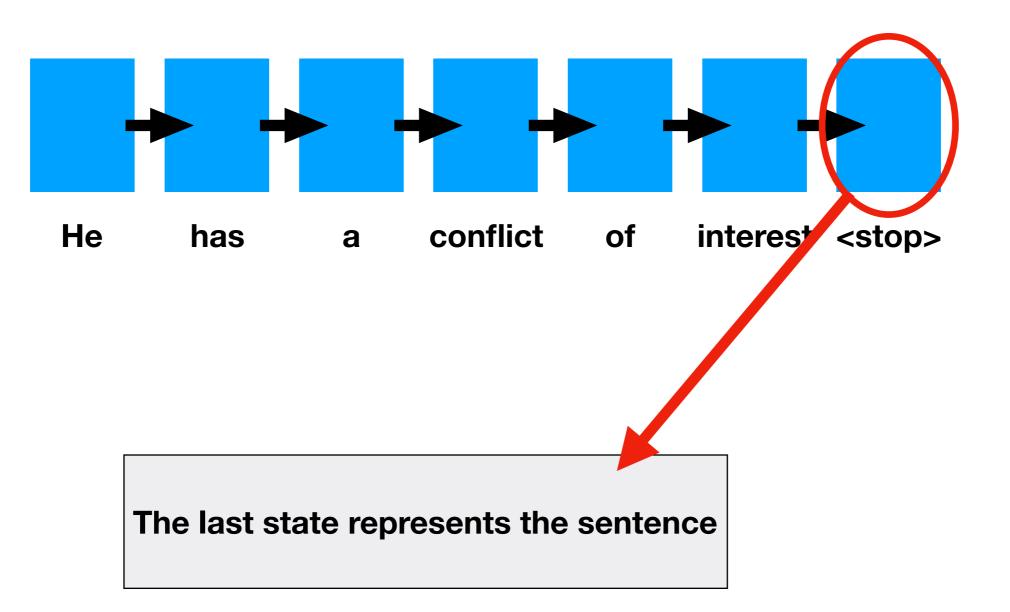
Sentence Representation

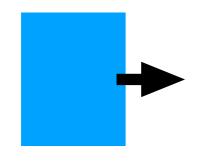
He has a conflict of interest <stop>

Sentence Representation

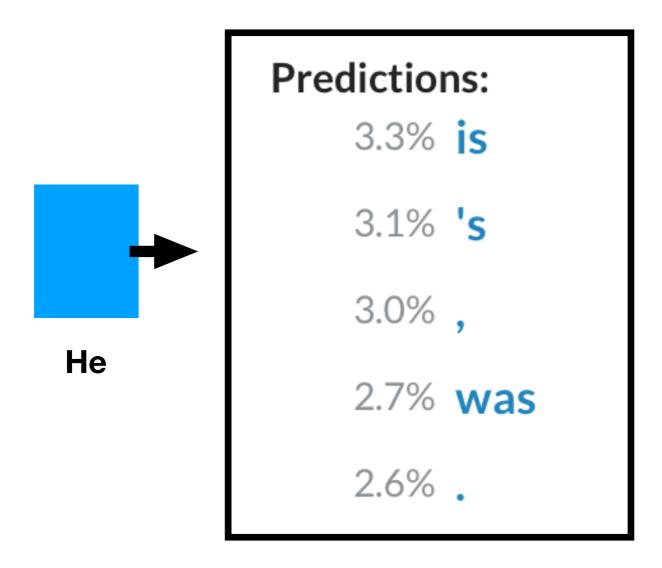


Sentence Representation

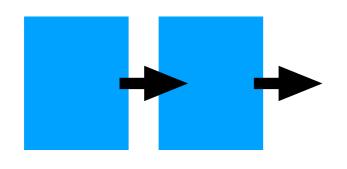




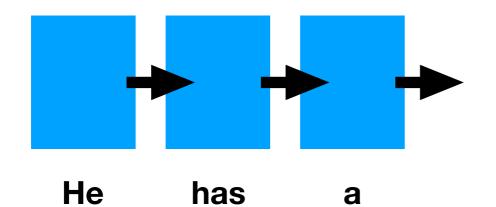
He

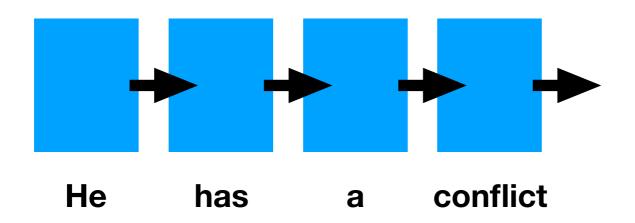


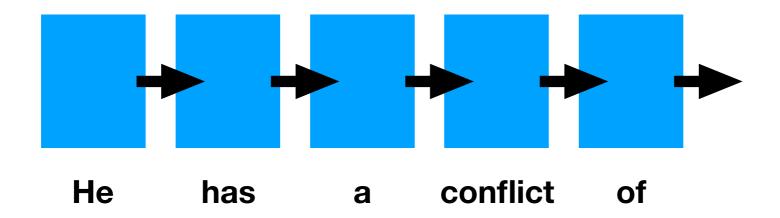
https://demo.allennlp.org/next-token-lm



He has

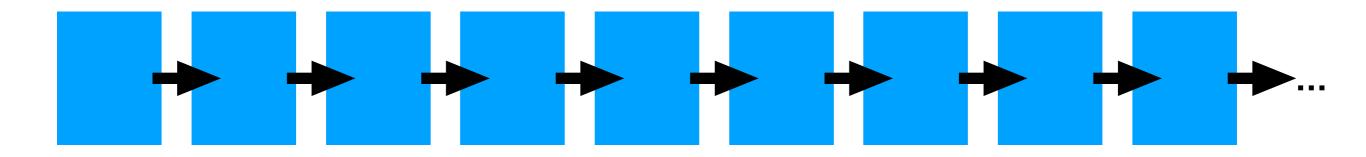


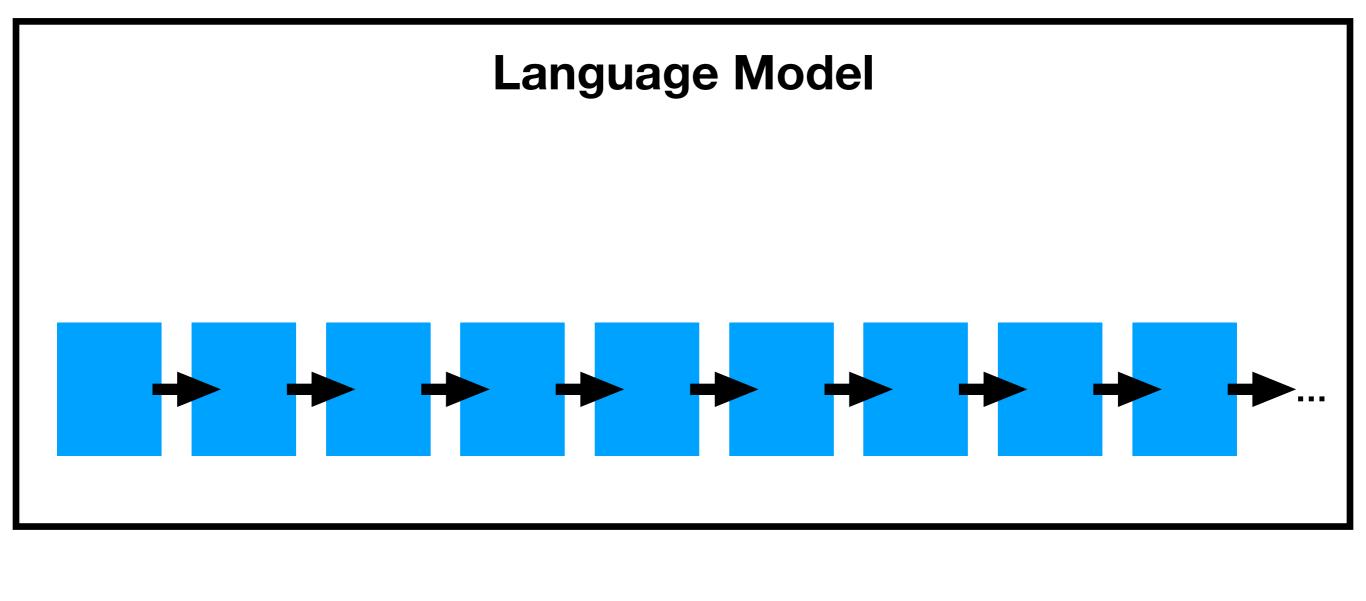




Language Modeling He conflict has of interest a

Language Modeling He conflict has of interest <stop> a





Outline

Motivation

Experimental Design

Results

Discussion

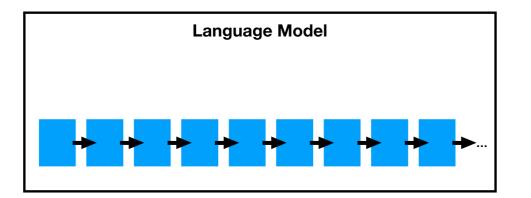
Outline

Motivation

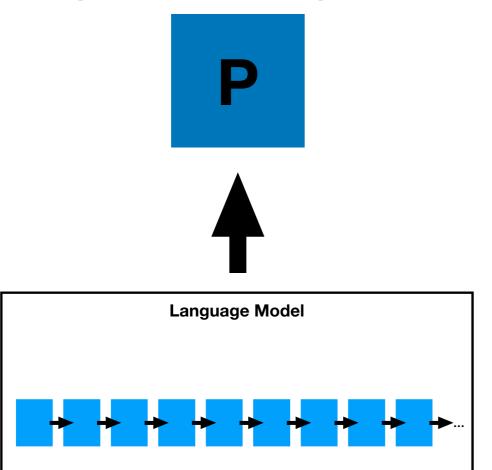
Experimental Design

Results

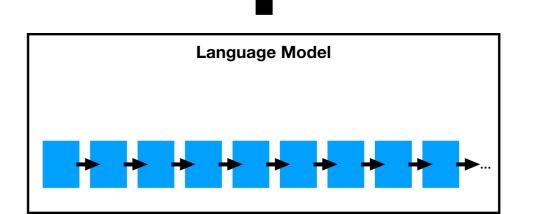
Discussion



Representation of premise



Representation of hypothesis



A street filled with people walking.

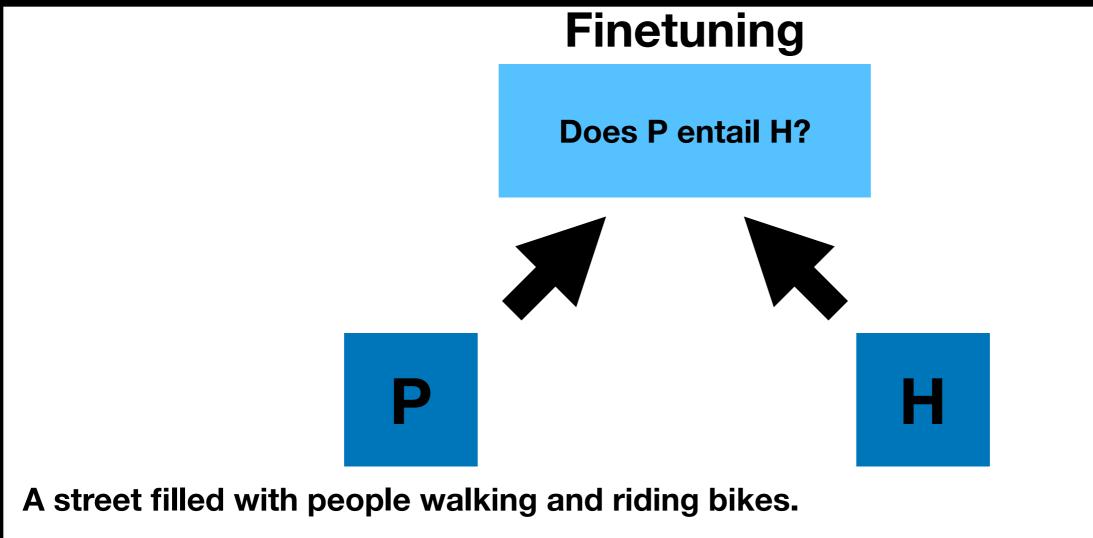
A street filled with people walking and riding bikes.

A street filled with people walking.

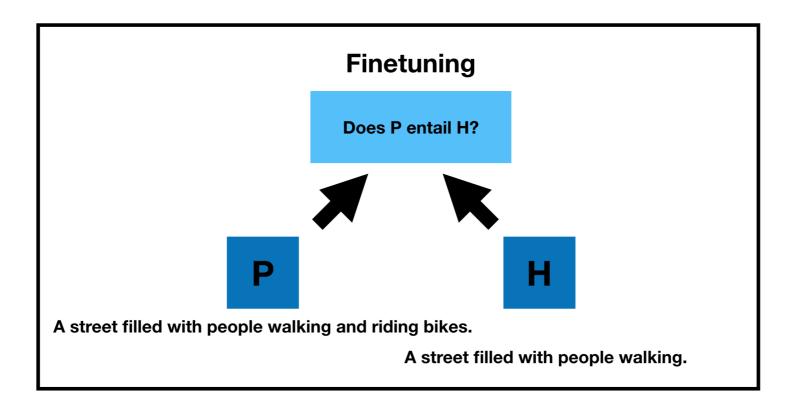


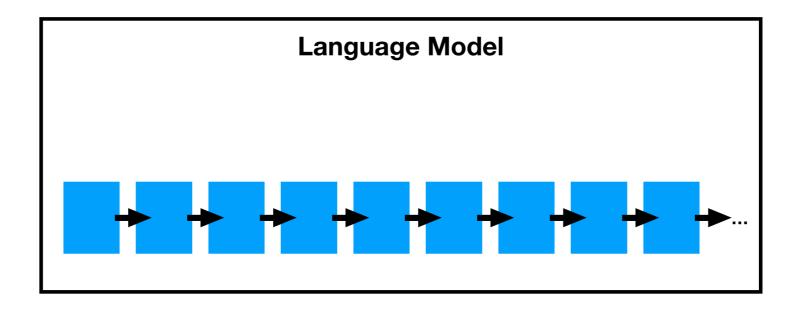
A street filled with people walking and riding bikes.

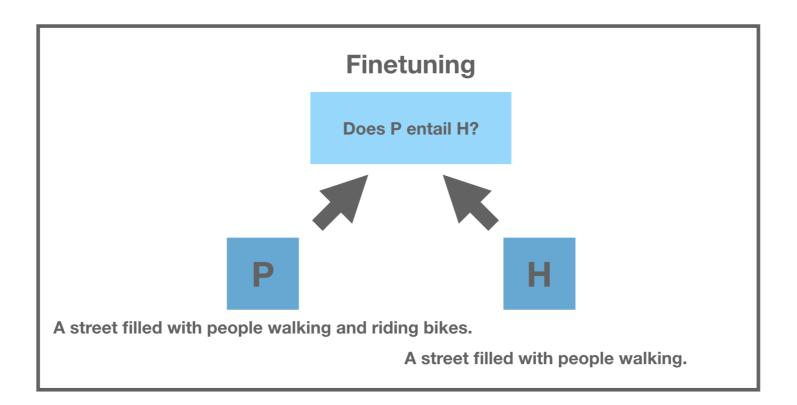
A street filled with people walking.



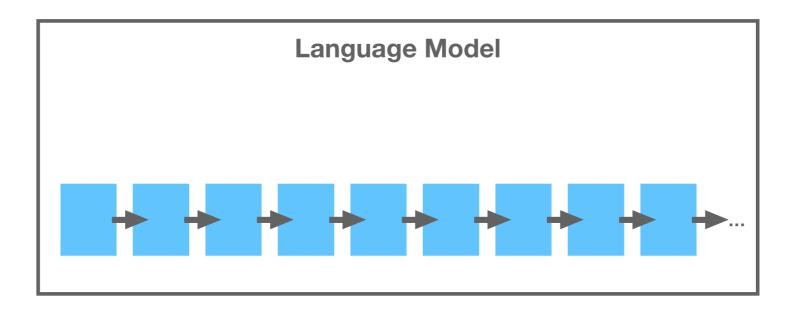
A street filled with people walking.



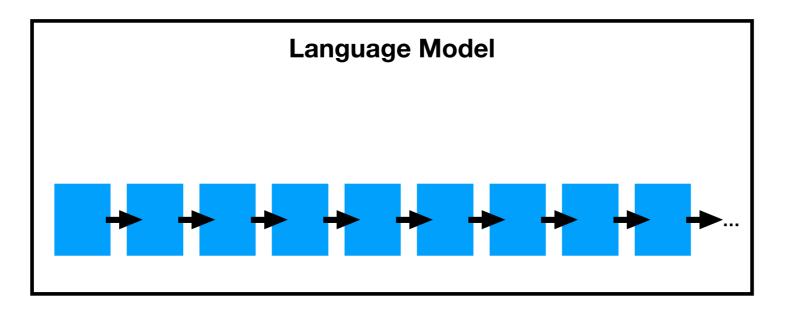




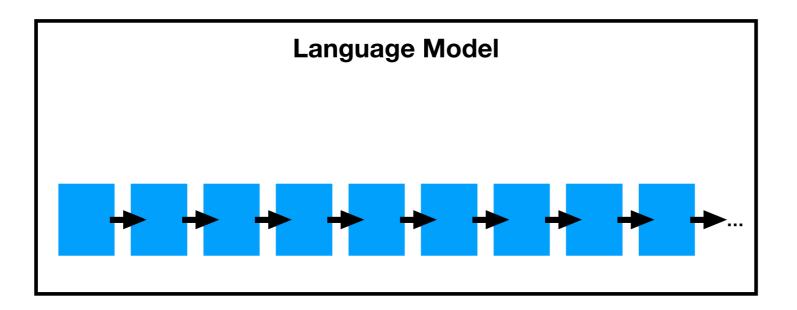
Why would logical reasoning emerge from this process?



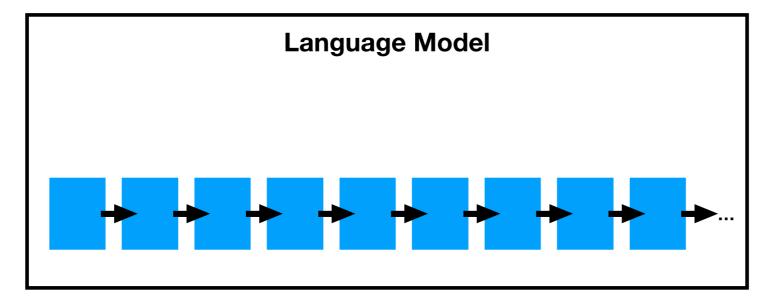
Reasons Logic Might Not Emerge From Pretraining-Finetuning



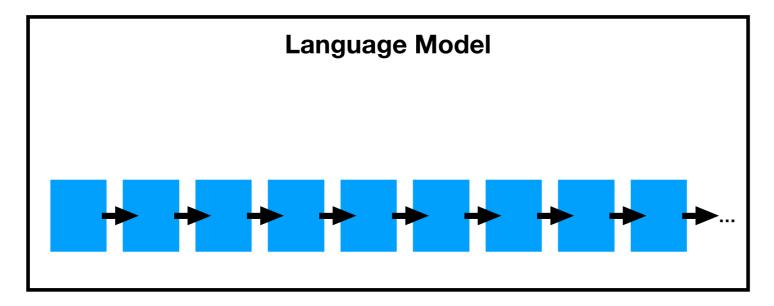
1.



1. Language models do not access truth assignments.

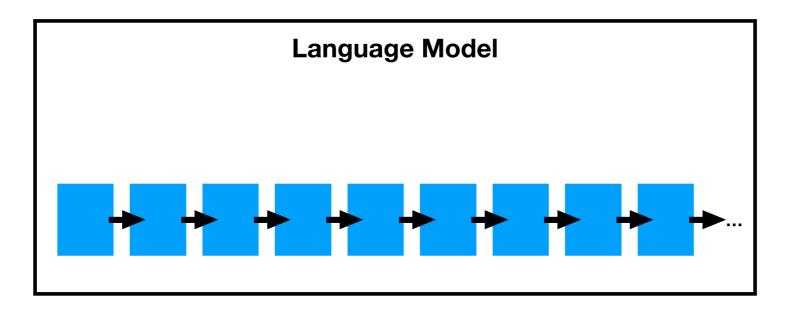


A street filled with people walking and riding bikes.

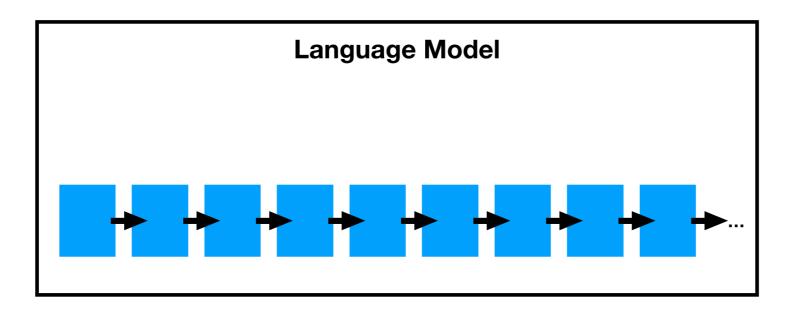


A street filled with people walking and riding bikes.

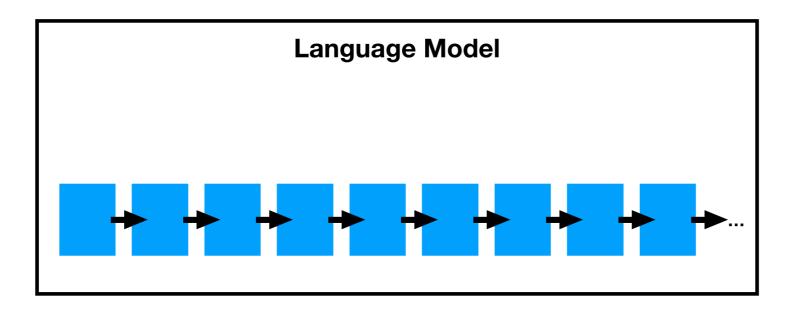
There is a street. There are shops. There are people. There is a giraffe. True True True False



Language models do not access truth assignments.
2.

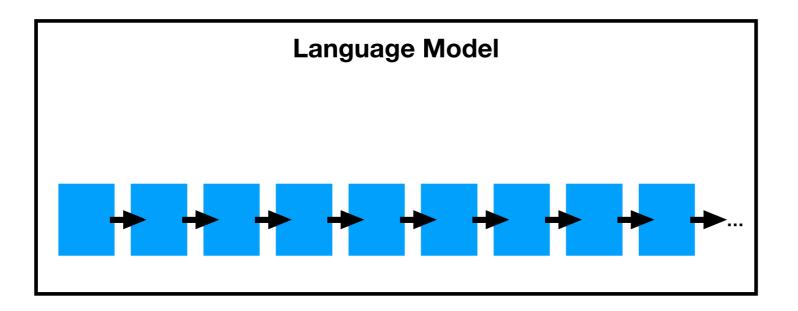


- 1. Language models do not access truth assignments.
- 2. Language models only ever observe "positive" examples.



2. Language models only ever observe "positive" examples.

A street filled with people walking and riding bikes.



2. Language models only ever observe "positive" examples.

A street filled with people walking and riding bikes.

The street is full of people and not full of people.

Can language modeling allow representations of logical reasoning to emerge?

- Can language modeling allow representations of logical reasoning to emerge?
- Because we expect the answer to be no, what modifications would allow emergence?

- Can language modeling allow representations of logical reasoning to emerge?
- Because we expect the answer to be no, what modifications would allow emergence?
 - Observing truth assignments?

- Can language modeling allow representations of logical reasoning to emerge?
- Because we expect the answer to be no, what modifications would allow emergence?
 - Observing truth assignments?
 - Observing "negative" examples?

Outline

Motivation

Experimental Design

Results

Discussion

We create a dataset of propositional logic sentences

We create a dataset of propositional logic sentences because:

NLI datasets are biased

	Entailm	ent	Neutra	1	Contrad	iction
	outdoors	2.8%	tall	0.7%	nobody	0.1%
	least	0.2%	first	0.6%	sleeping	3.2%
SNLI	instrument	0.5%	competition	0.7%	no	1.2%
	outside	8.0%	sad	0.5%	tv	0.4%
	animal	0.7%	favorite	0.4%	cat	1.3%
	some	1.6%	also	1.4%	never	5.0%
	yes	0.1%	because	4.1%	no	7.6%
MNLI	something	0.9%	popular	0.7%	nothing	1.4%
	sometimes	0.2%	many	2.2%	any	4.1%
	various	0.1%	most	1.8%	none	0.1%

NLI datasets are biased

NLI datasets are biased

Hypothesis-only score: 67% SNLI, 53% MNLI

(Gururangan et al., 2018)

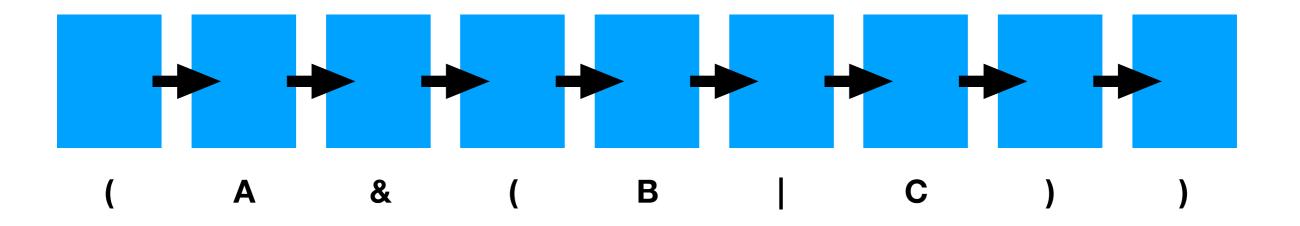
We create a dataset of propositional logic sentences because:

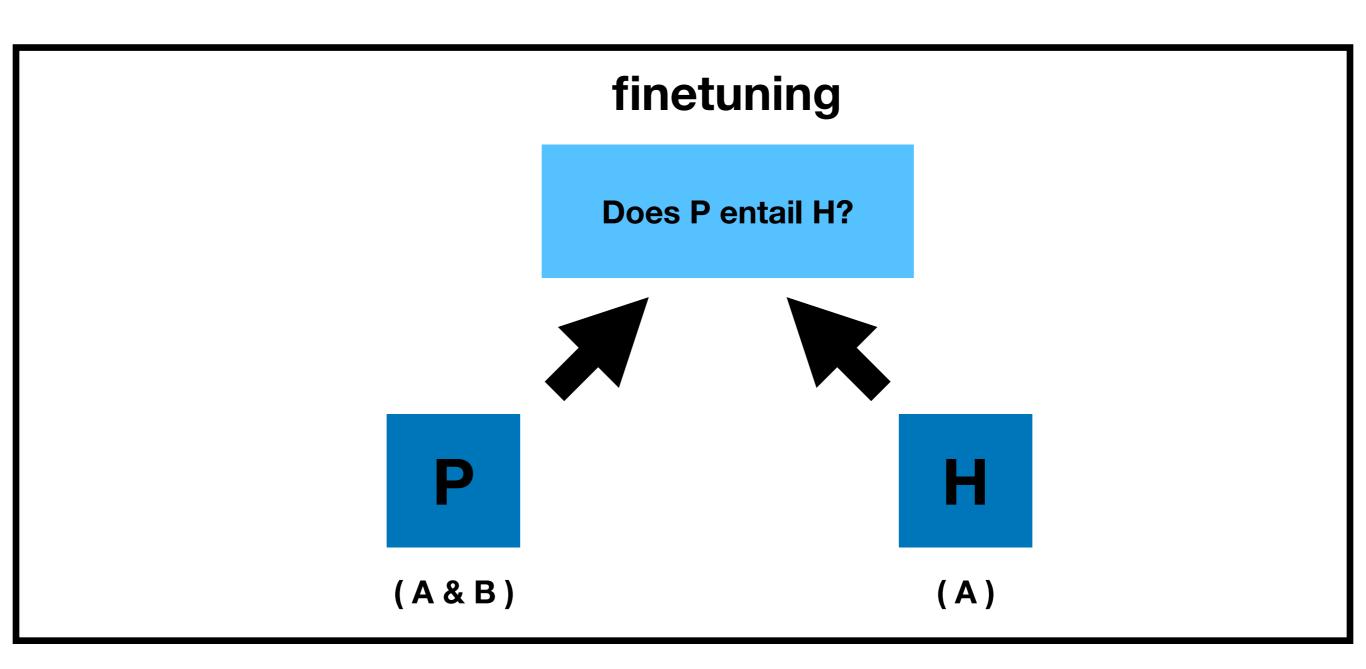
• Full control: minimize dataset bias

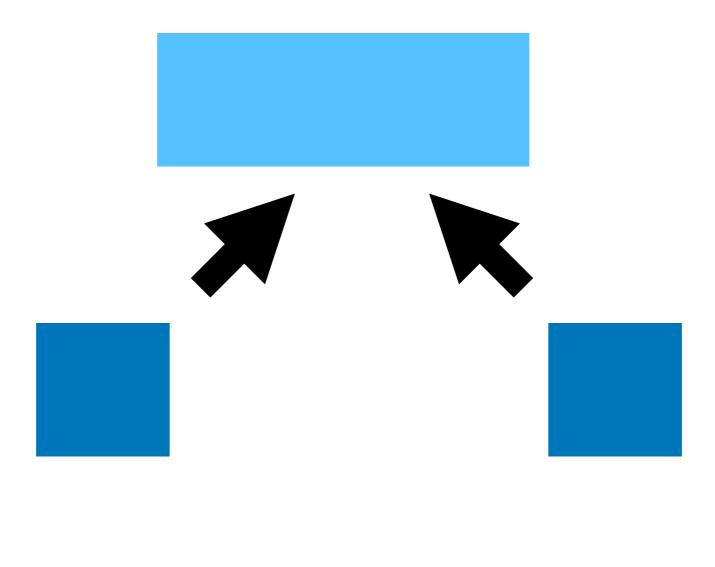
We create a dataset of propositional logic sentences because:

- Full control: minimize dataset bias
- No lexical priors / pragmatic effects to exploit: only logical information

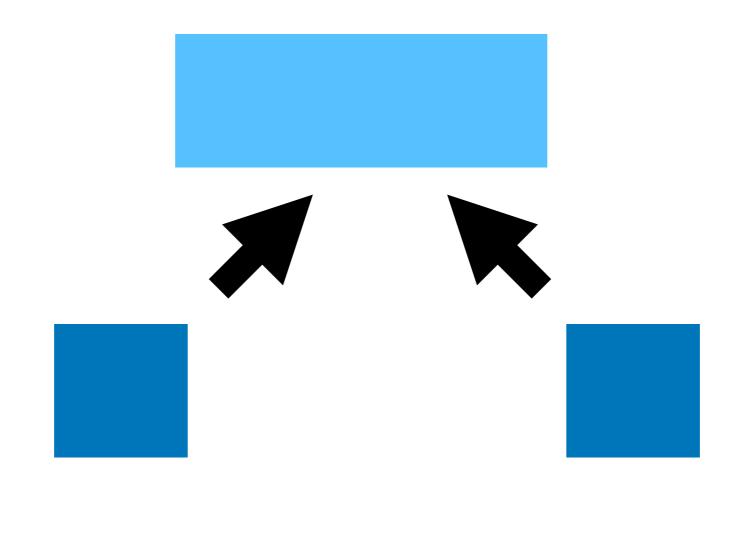
language modeling





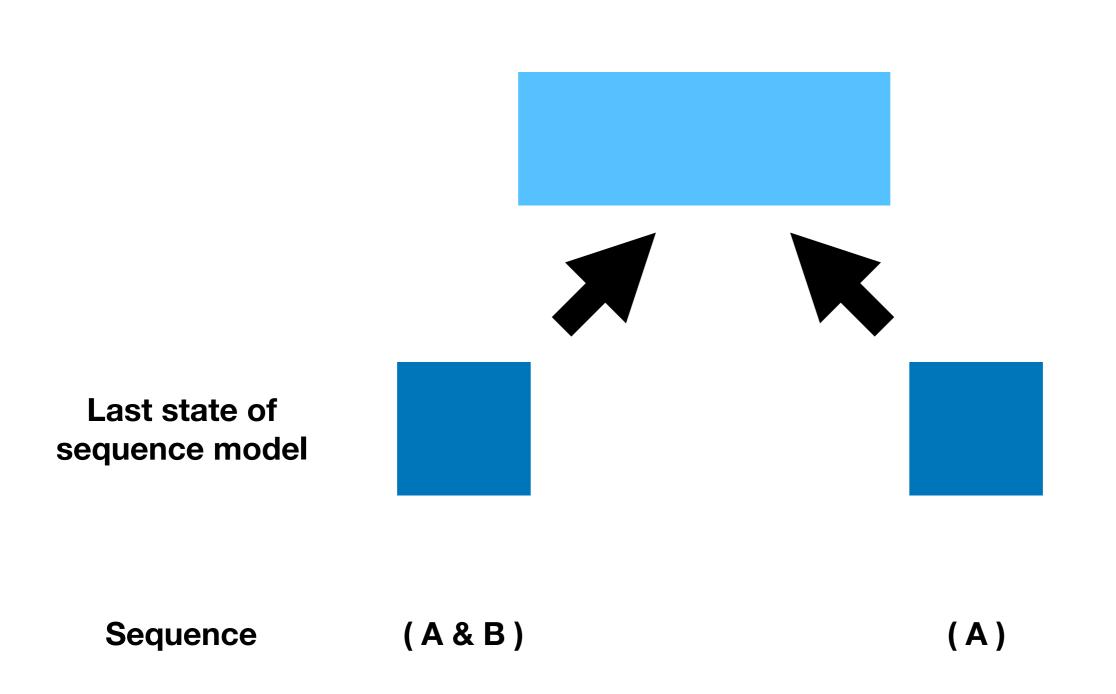


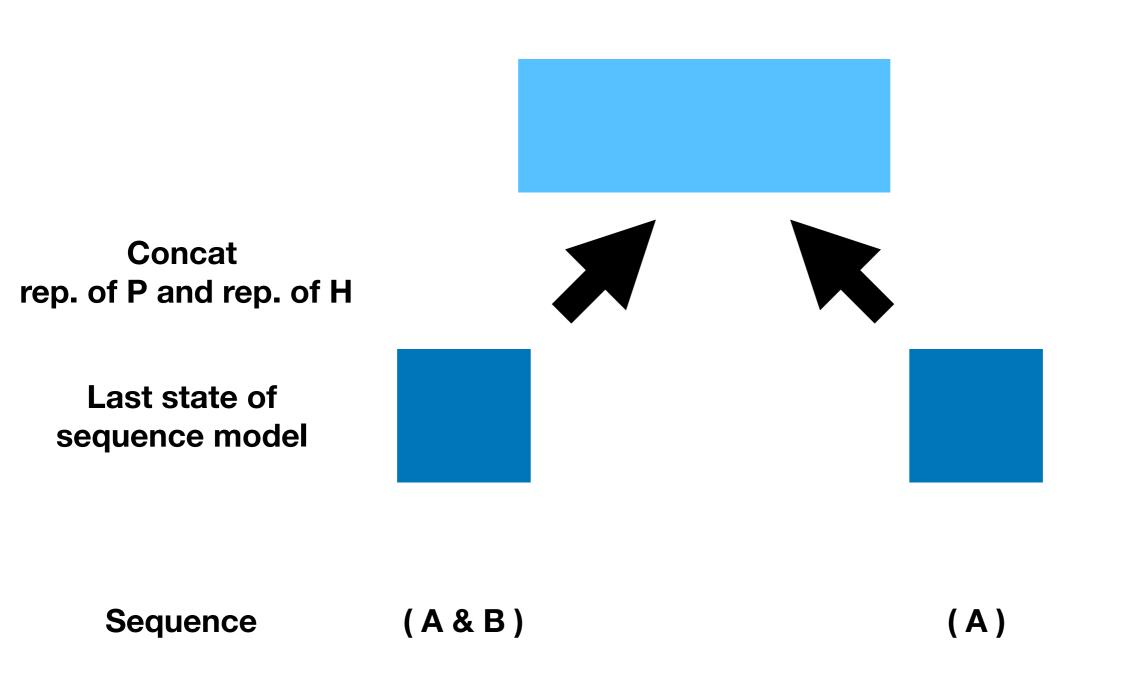
(A&B) (A)

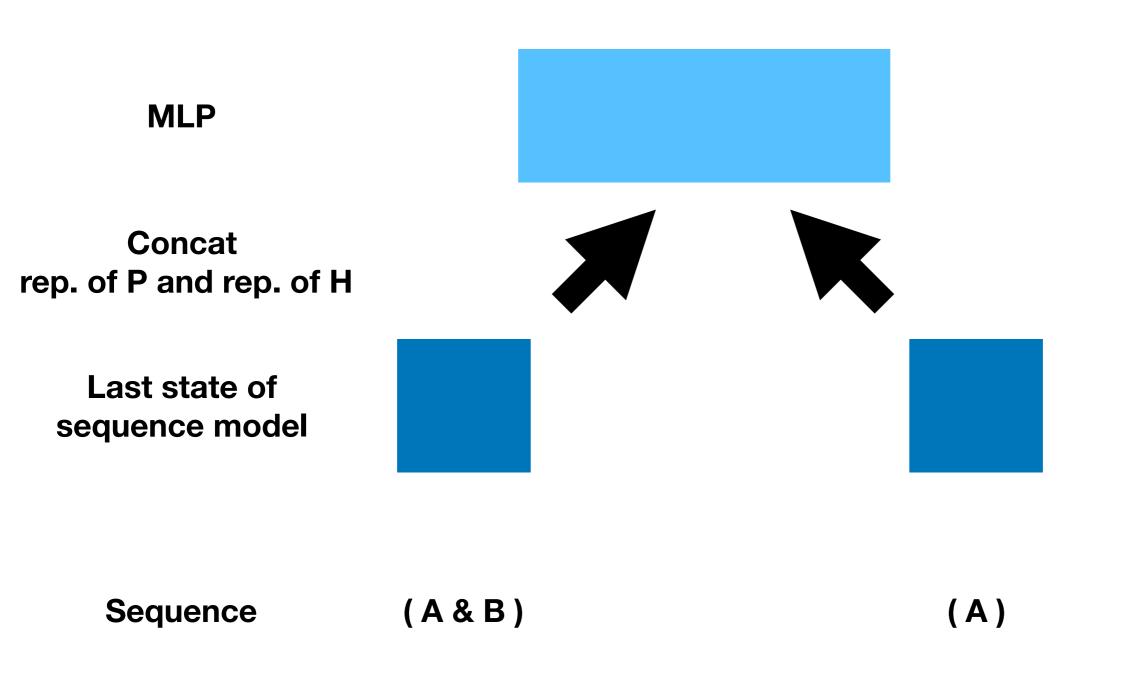


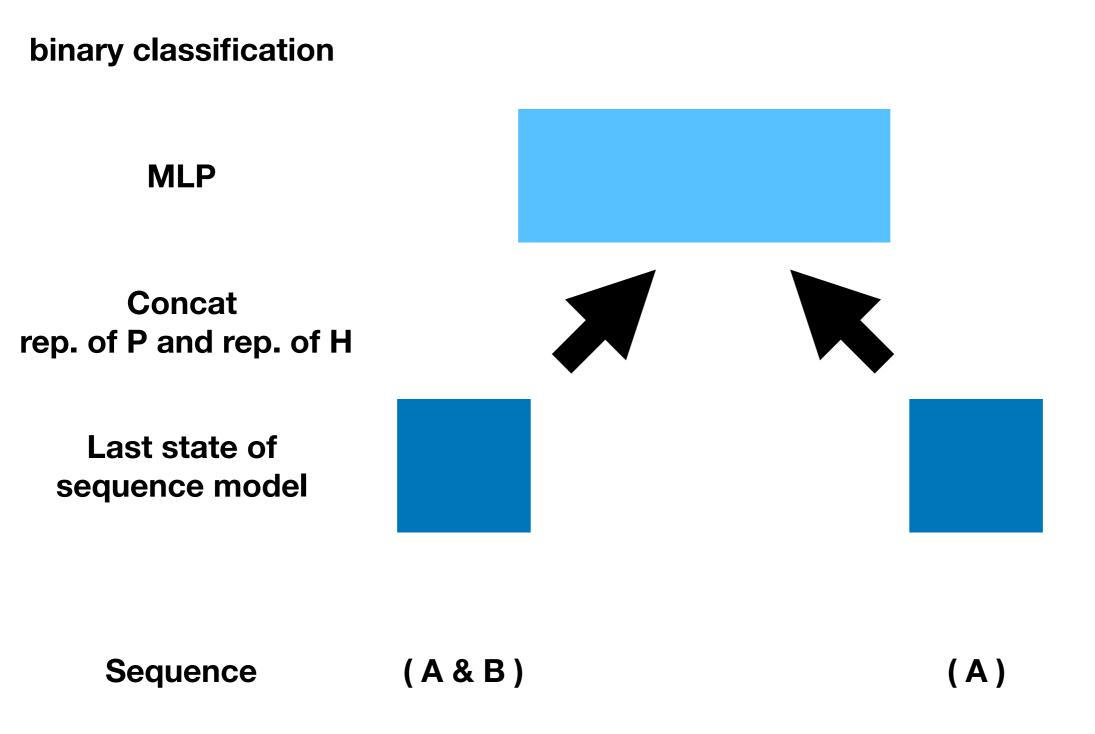
Sequence (A & B)

(A)









Dataset Statistics

Unary logical operators	Negation
Binary logical operators	Conjunction, disjunction, conditional

Dataset Statistics

Unary logical operators	Negation	
Binary logical operators	Conjunction, disjunction, conditional	
# of "variables"	30,000	
Sentences in language modeling training dataset	500,000	
Sentences in validation set	50,000	

Dataset Statistics

Unary logical operators	Negation	
Binary logical operators	Conjunction, disjunction, conditional	
# of "variables"	30,000	
Sentences in language modeling training dataset	500,000	
Sentences in validation set	50,000	
Sentences in entailment training dataset	100,000	
Sentences in validation set	5,000	

Entailment Dataset Balance

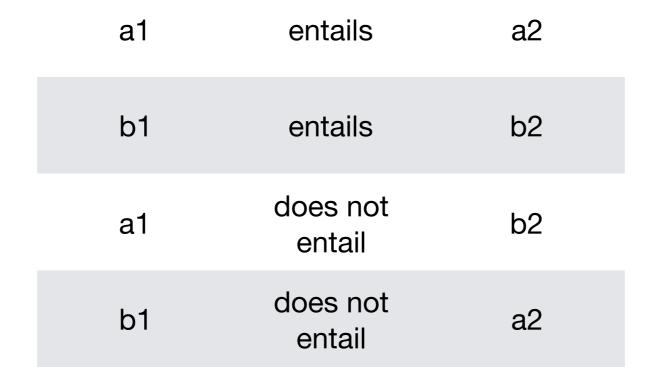
Generate premise, hypothesis pairs (a1,a2), (b1,b2) such that:

a1	entails	a2
b1	entails	b2
a1	does not entail	b2
b1	does not entail	a2

(Evans et al., 2018)

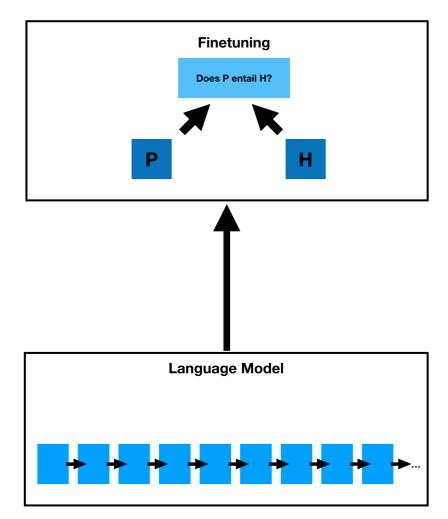
Entailment Dataset Balance

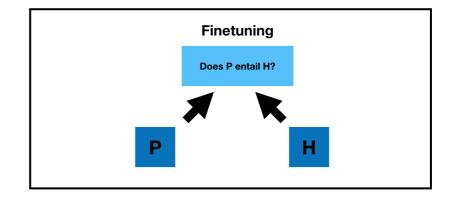
Generate premise, hypothesis pairs (a1,a2), (b1,b2) such that:



Thus both maximum-class and hypothesis-only accuracies are 50%

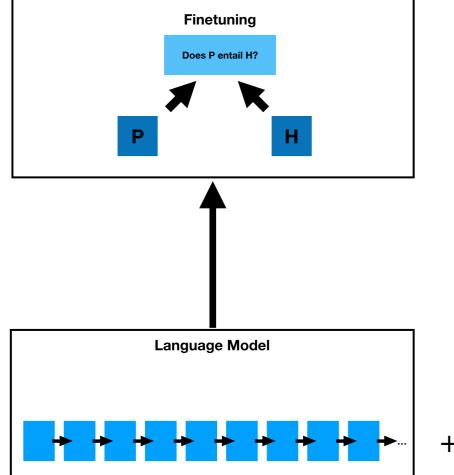
(Evans et al., 2018)

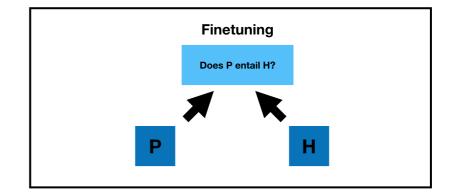




"from pretraining"

"from scratch"



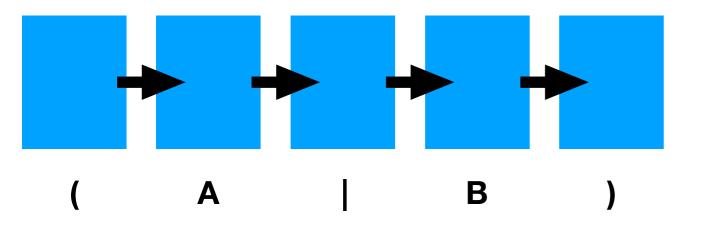


+ Truth assignment

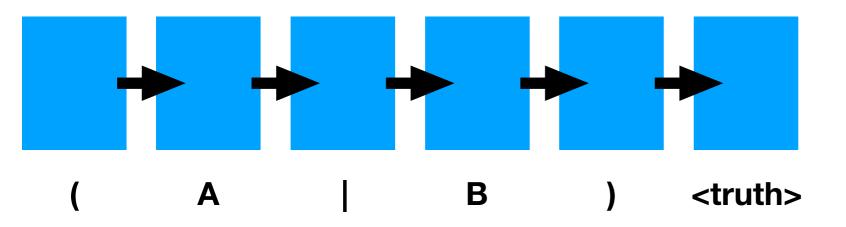
"from pretraining"

"from scratch"

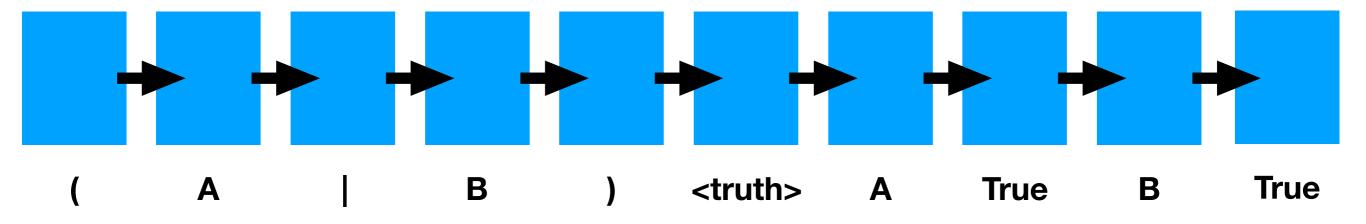
Truth Assignment Example



Truth Assignment Example



Truth Assignment Example



Inference Pattern	Premise	Hypothesis
Double Negation	A	~~A
Conjunction Elimination	A & B	A
Disjunction Elimination	Α	A B
Disjunction Introduction	(A B) & (A > C) & (B > C)	С
Modus Ponens	A & (A > B)	B

Inference Pattern Test Sets

Distractor Items

Inference Pattern Test Sets

Distractor Items

Inference Pattern	Premise	Hypothesis	Entailed?
Double Negation	A	~~A	Yes
	A	~A	No
	~~A	~A	No
	~A	~~A	No

Outline

Motivation

Experimental Design

Results

Discussion

Model	Validation
	Acc.
CBOW	51.136
LSTM	69.547
LSTM (pt)	68.079
LSTM (pt w/ TAs)	73.402
Transformer	63.917
Transformer (pt)	70.074
Transformer (pt w/ TAs)	75.949

Model	Validation	
	Acc.	
CBOW	51.136	
LSTM	69.547	
LSTM (pt)	68.079	
LSTM (pt w/ TAs)	73.402	
Transformer	63.917	
Transformer (pt)	70.074	
Transformer (pt w/ TAs)	75.949	CBOW baseline: Minimal dataset bias

Model	Validation Acc.	LSTM: No benefit to pretraining
CBOW	51.136	
LSTM	69.547	
LSTM (pt)	68.079	
LSTM (pt w/ TAs)	73.402	
Transformer	63.917	
Transformer (pt)	70.074	
Transformer (pt w/ TAs)	75.949	

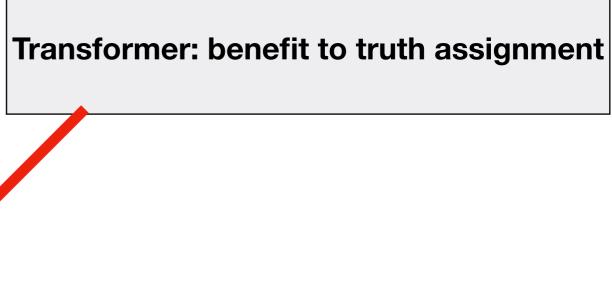
Model	Validation	
	Acc.	
CBOW	51.136	
LSTM	69.547	
LSTM (pt)	68.079	
LSTM (pt w/ TAs)	73.402	
Transformer	63.917	LSTM: benefit to truth assignment
Transformer (pt)	70.074	
Transformer (pt w/ TAs)	75.949	

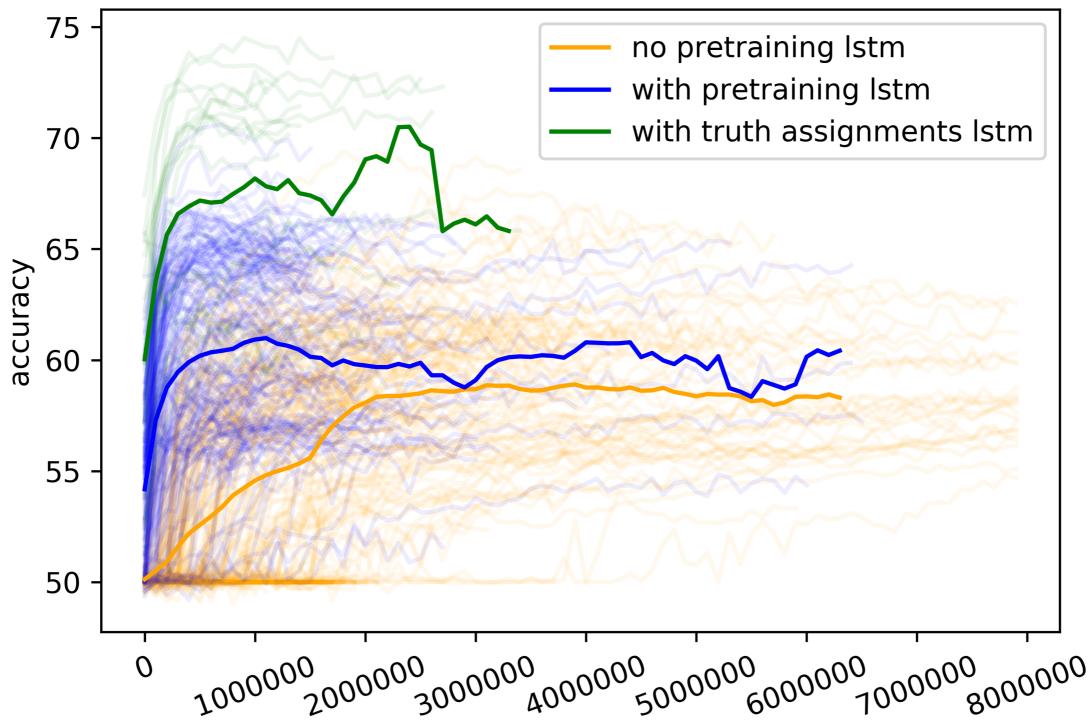
Inference Pattern Test Sets

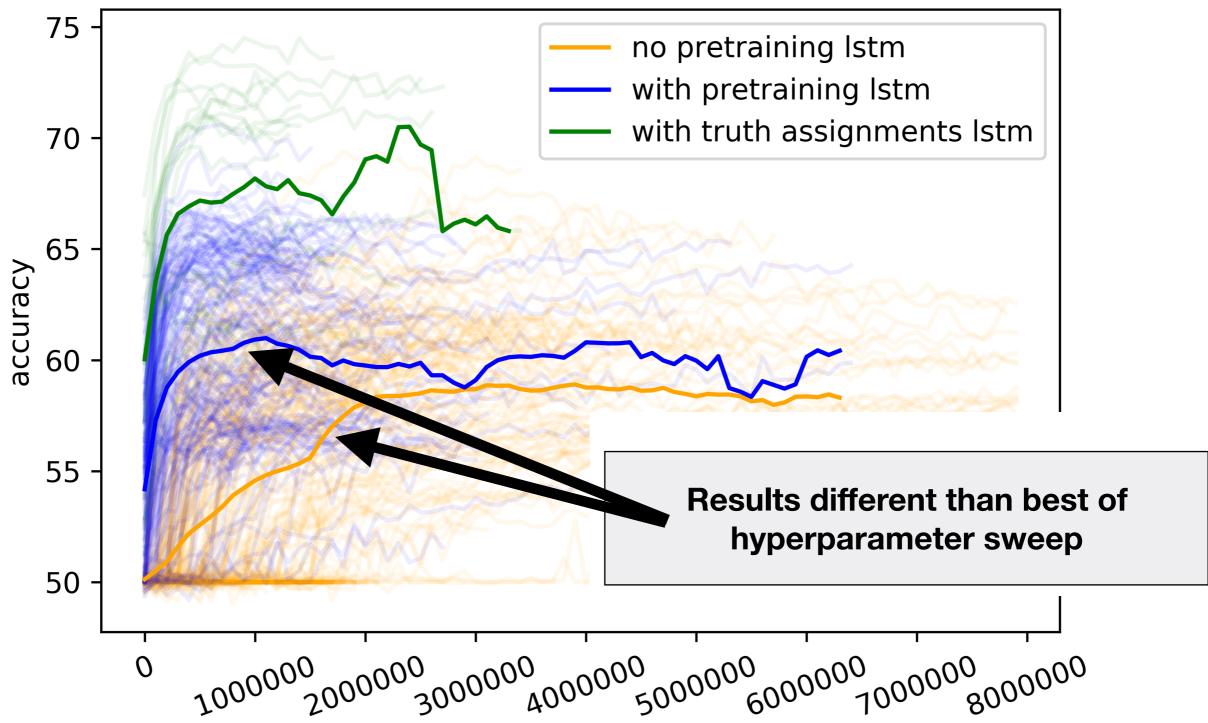
Model	Validation	
	Acc.	
CBOW	51.136	
LSTM	69.547	
LSTM (pt)	68.079	
LSTM (pt w/ TAs)	73.402	
Transformer	63.917	
Transformer (pt)	70.074	
Transformer (pt w/ TAs)	75.949	

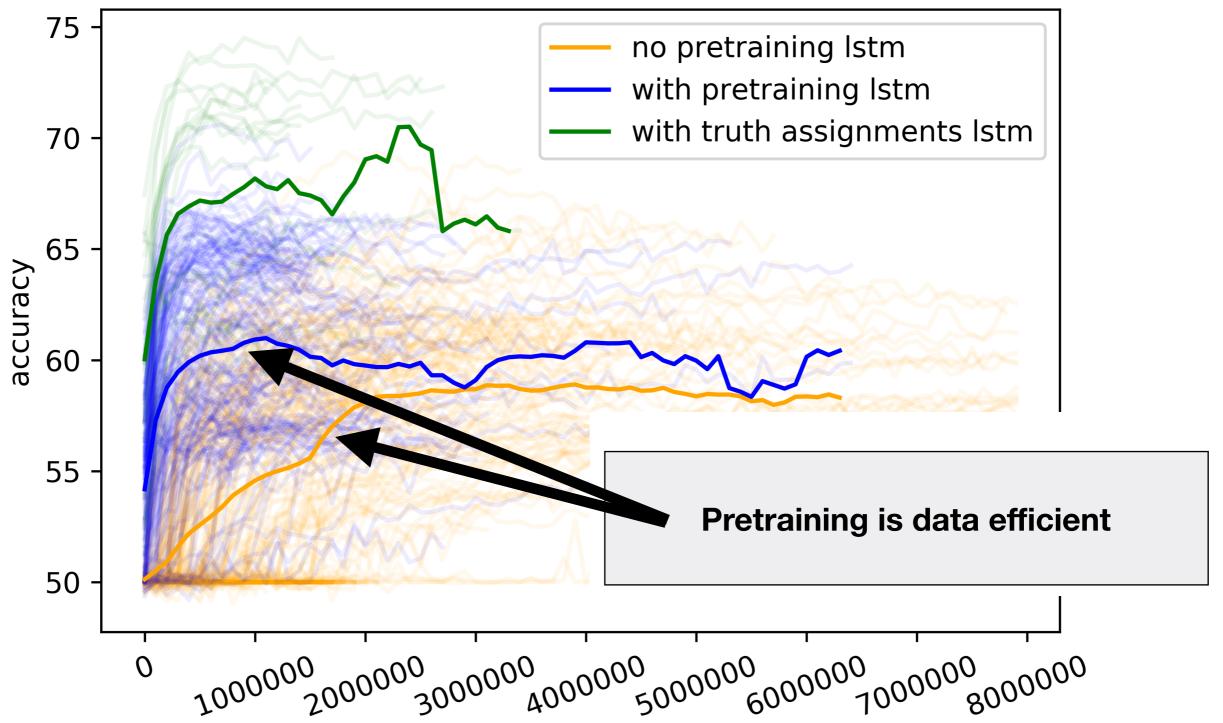
Transformer: benefit to pretraining

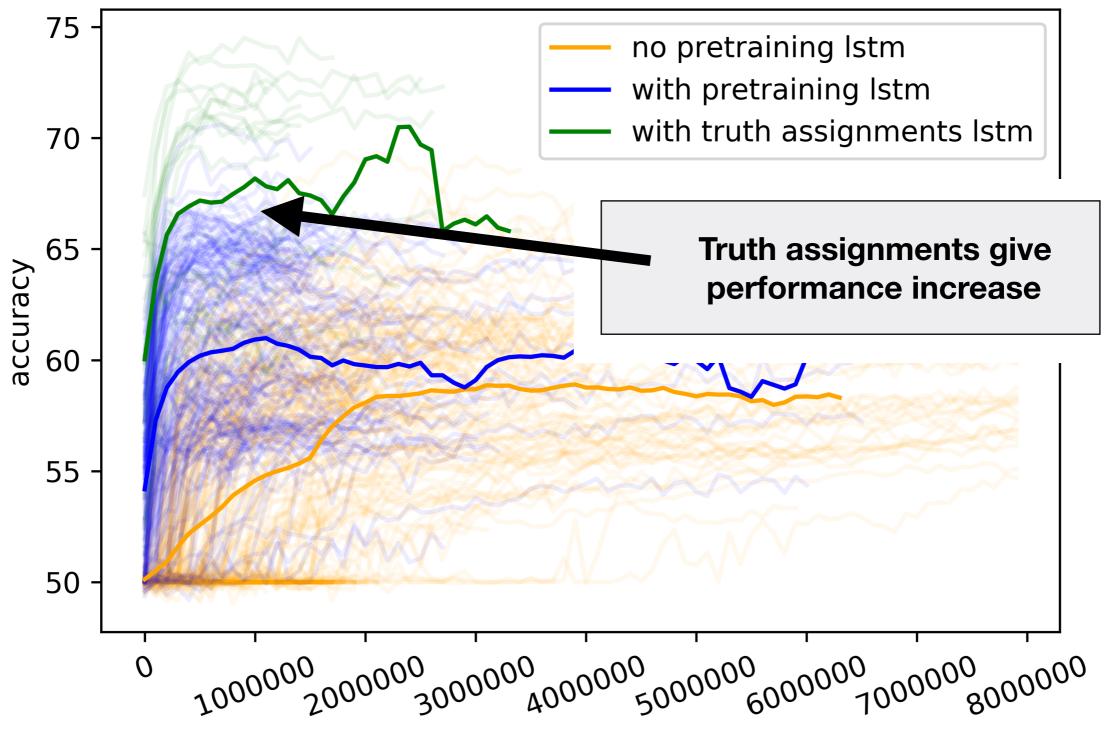
Model	Validation	
	Acc.	
CBOW	51.136	Transfor
LSTM	69.547	
LSTM (pt)	68.079	
LSTM (pt w/ TAs)	73.402	
Transformer	63.917	
Transformer (pt)	70.074	
Transformer (pt w/ TAs)	75.949	











Model	Validation	Inf. Pattern
	Acc.	Acc.
CBOW	51.136	0.501
LSTM	69.547	0.683
LSTM (pt)	68.079	0.566
LSTM (pt w/ TAs)	73.402	0.531
Transformer	63.917	0.679
Transformer (pt)	70.074	0.701
Transformer (pt w/ TAs)	75.949	0.693

Inference Pattern Test Sets

Model	Validation	Inf. Pattern
	Acc.	Acc.
CBOW	51.136	0.501
LSTM	69.547	0.683
LSTM (pt)	68.079	0.566
LSTM (pt w/ TAs)	73.402	0.531
Transformer	63.917	0.679
Transformer (pt)	70.074	0.701
Transformer (pt w/ TAs)	75.949	0.693

LSTM: No benefit to pretraining

Inference Pattern Test Sets

Model	Validation	Inf. Pattern
	Acc.	Acc.
CBOW	51.136	0.501
LSTM	69.547	0.683
LSTM (pt)	68.079	0.566
LSTM (pt w/ TAs)	73.402	0.531
Transformer	63.917	0.67
Transformer (pt)	70.074	0.701
Transformer (pt w/ TAs)	75.949	0.693

LSTM: truth assignments hinder performance

Inference Pattern Test Sets

Transformer: small benefit to pretraining

Model	Validation	Inf. Pattern	
	Acc.	Acc.	
CBOW	51.136	0.501	
LSTM	69.547	0.683	
LSTM (pt)	68.079	0.566	
LSTM (pt w/ TAs)	73.402	0.531	
Transformer	63.917	0.679	
Transformer (pt)	70.074	0.701	
Transformer (pt w/ TAs)	75.949	0.693	

			Transformer: no benefit to
Model	Validation	Inf. Pattern	truth assignments
	Acc.	Acc.	
CBOW	51.136	0.501	
LSTM	69.547	0.683	
LSTM (pt)	68.079	0.566	
LSTM (pt w/ TAs)	73.402	0.531	
Transformer	63.917	0.679	
Transformer (pt)	70.074	0.701	
Transformer (pt w/ TAs)	75.949	0.693	

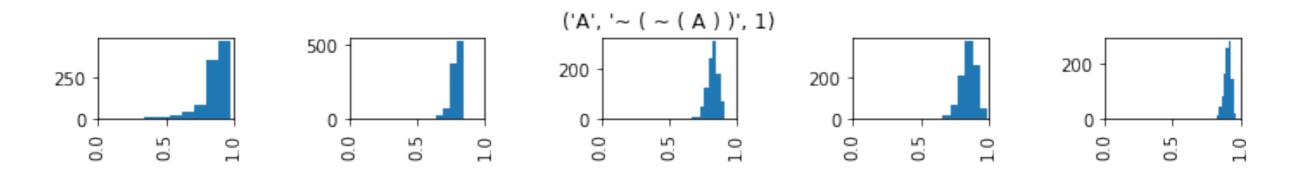
Model	Validation	Inf. Pattern	Inf. Pattern	Inf. Pattern
	Acc.	Acc.	P(A) Acc.	N(A) Acc.
CBOW	51.136	0.501	0.271	0.736
LSTM	69.547	0.683	0.768	0.480
LSTM (pt)	68.079	0.566	0.360	0.680
LSTM (pt w/ TAs)	73.402	0.531	0.145	0.881
Transformer	63.917	0.679	0.749	0.563
Transformer (pt)	70.074	0.701	0.983	0.441
Transformer (pt w/ TAs)	75.949	0.693	0.919	0.409

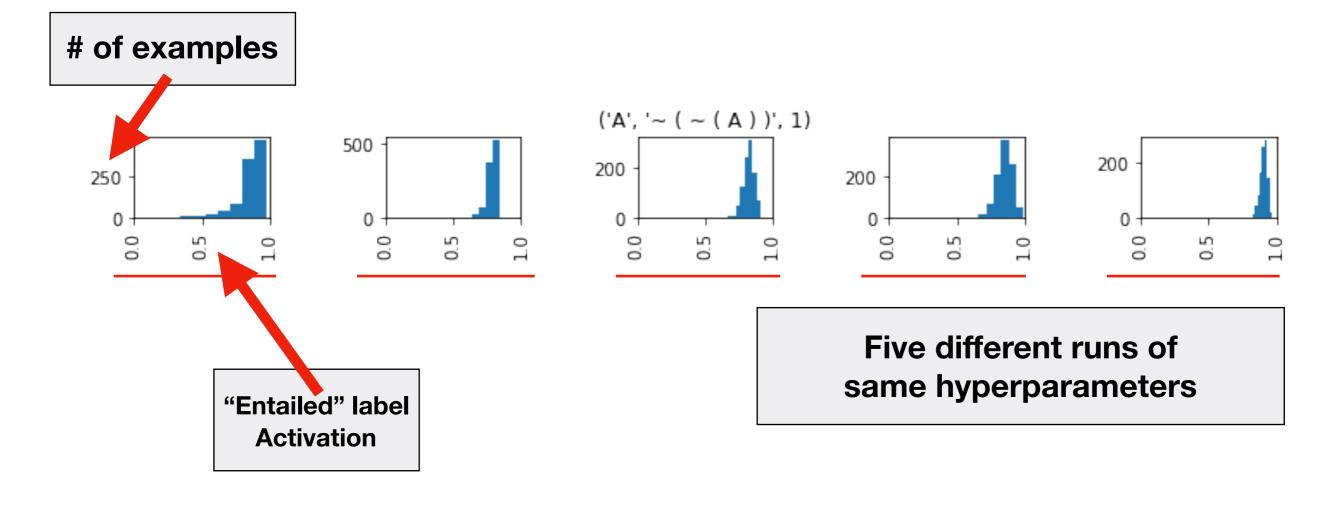
Model	Validation	Inf. Pattern	Inf. Pattern	Inf. Pattern
	Acc.	Acc.	P(A) Acc.	N(A) Acc.
CBOW	51.136	0.501	0.271	0.736
LSTM	69.547	0.683	0.768	0.480
LSTM (pt)	68.079	0.566	0.360	0.680
LSTM (pt w/ TAs)	73.402	0.531	0.145	0.881
Transformer	63.917	0.679	0.749	0.563
Transformer (pt)	70.074	0.701	0.063	0.441
Transformer (pt w/ TAs)	75.949	0.693	0.919	0.409

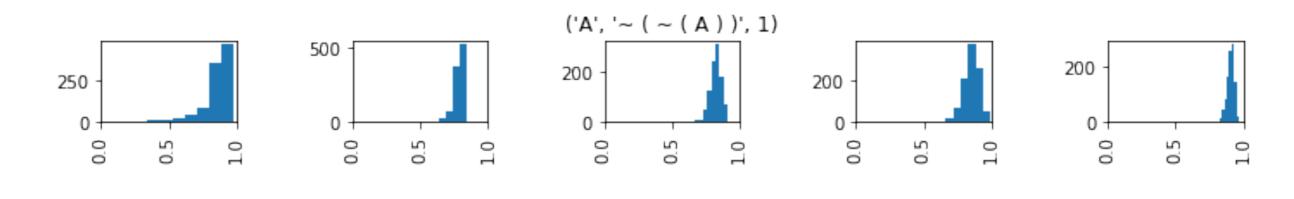
Inference Pattern Test Sets

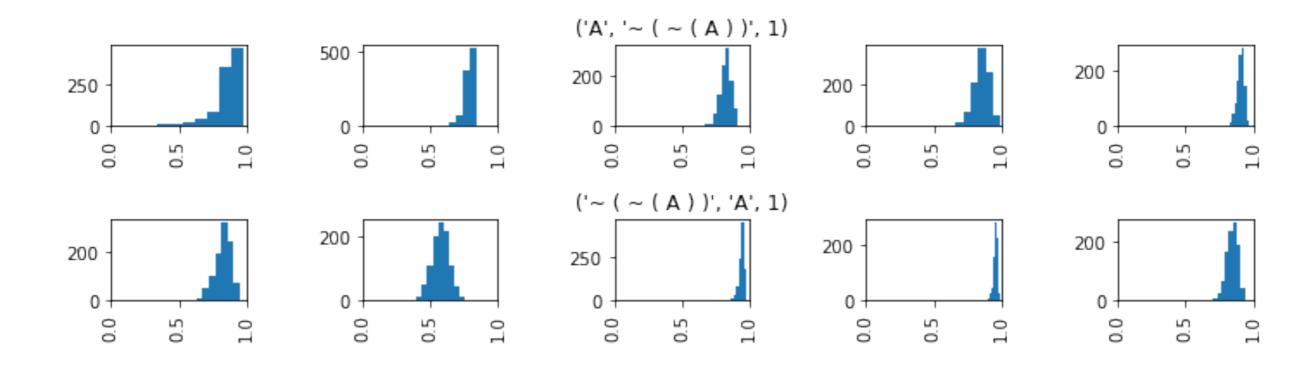
Model	Validation	Inf. Pattern	Inf. Pattern	Inf. Pattern
	Acc.	Acc.	P(A) Acc.	N(A) Acc.
CBOW	51.136	0.501	0.271	0.736
LSTM	69.547	0.683	0.768	0.480
LSTM (pt)	68.079	0.566	0.360	0.680
LSTM (pt w/ TAs)	73.402	0.531	0.145	0.881
Transformer	63.917	0.679	0.749	0.563
Transformer (pt)	70.074	0.701	0.983	0.441
Transformer (pt w/ TAs)	75.949	0.693	0.919	0.409

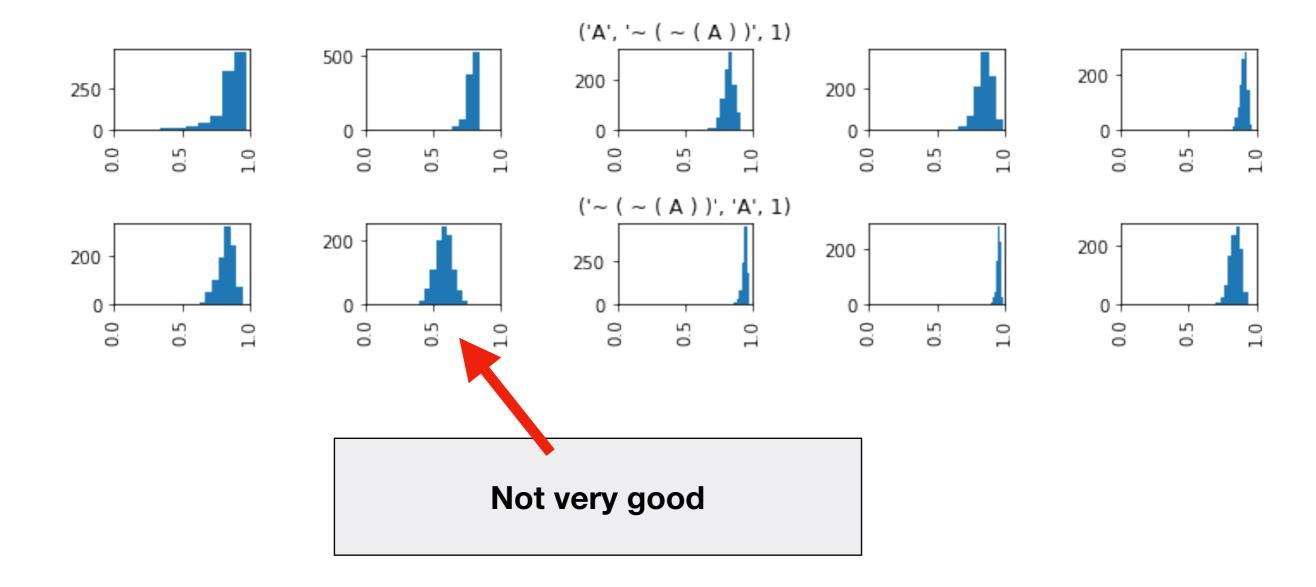
Great job on positive, still very skewed

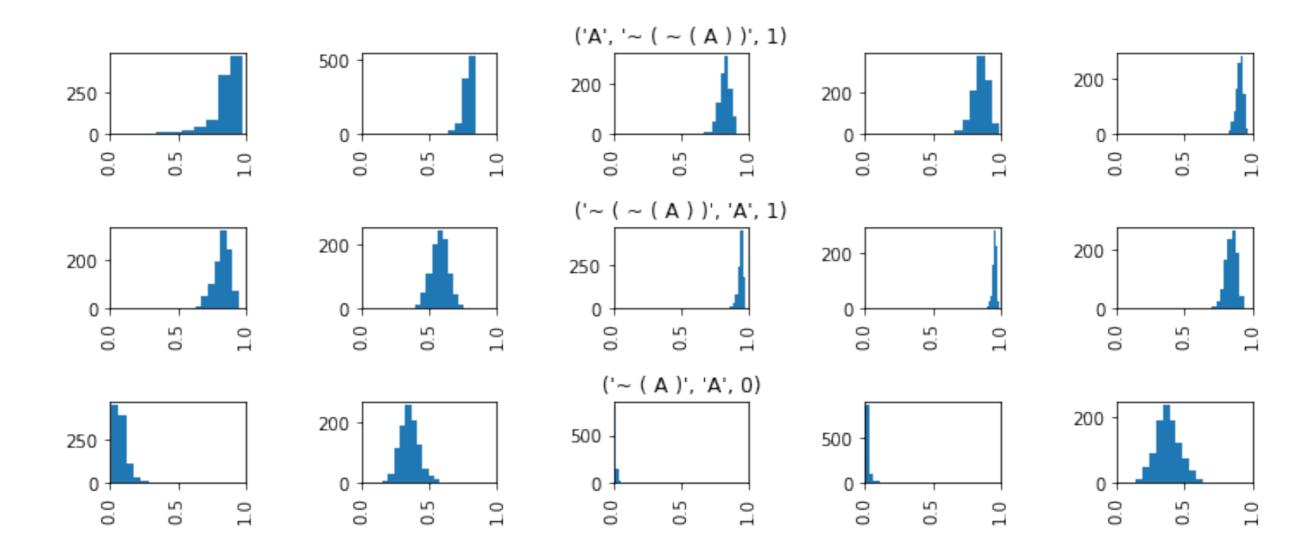


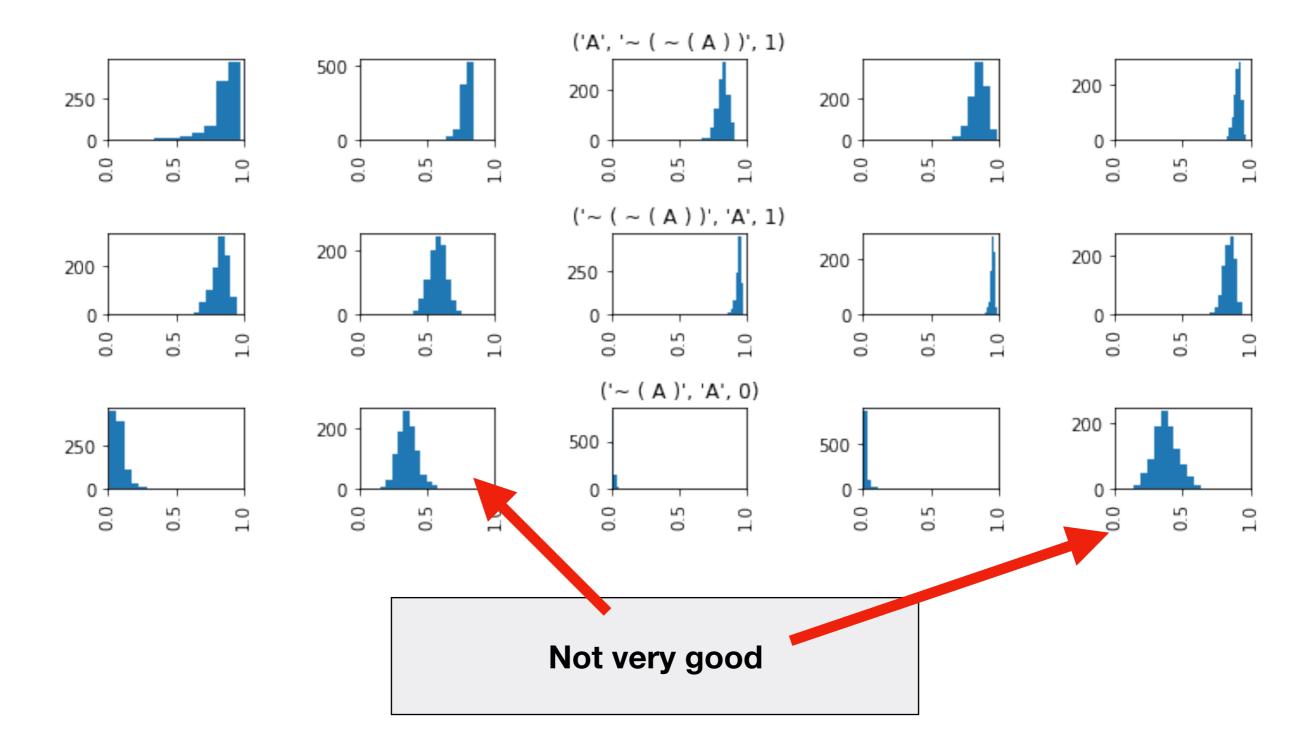


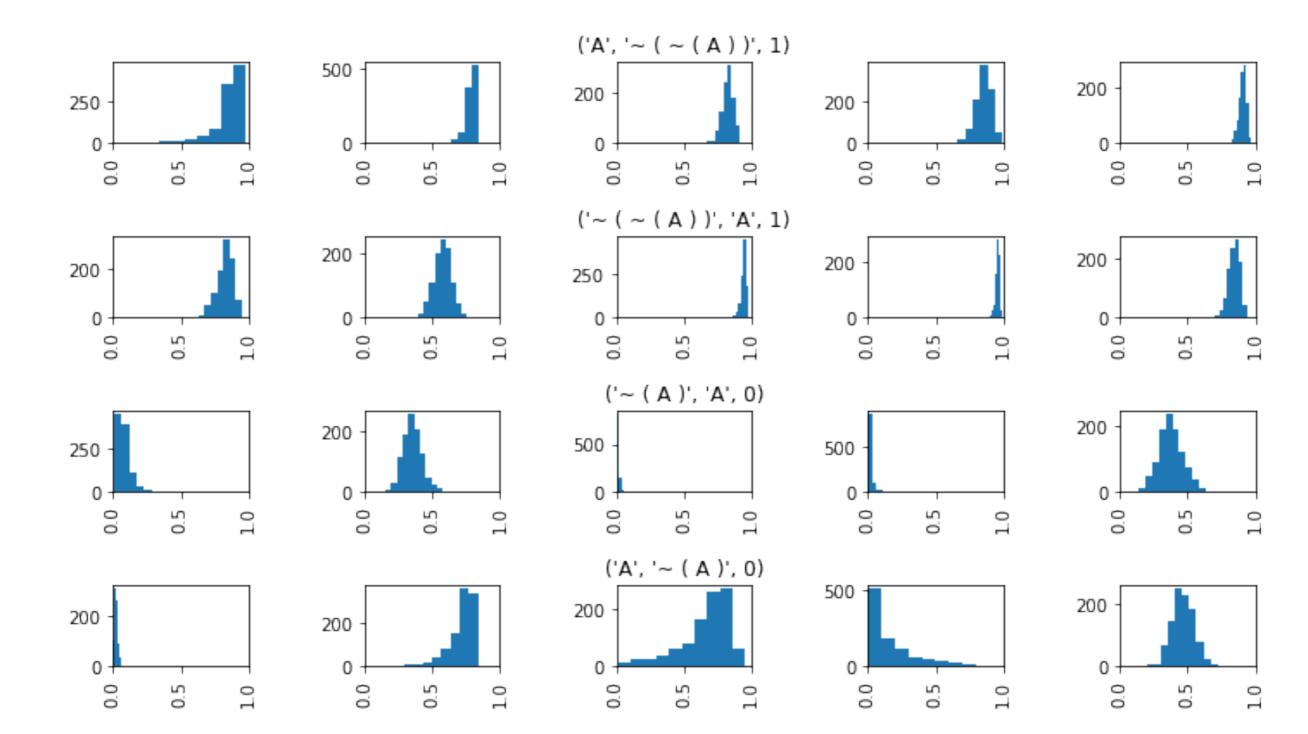


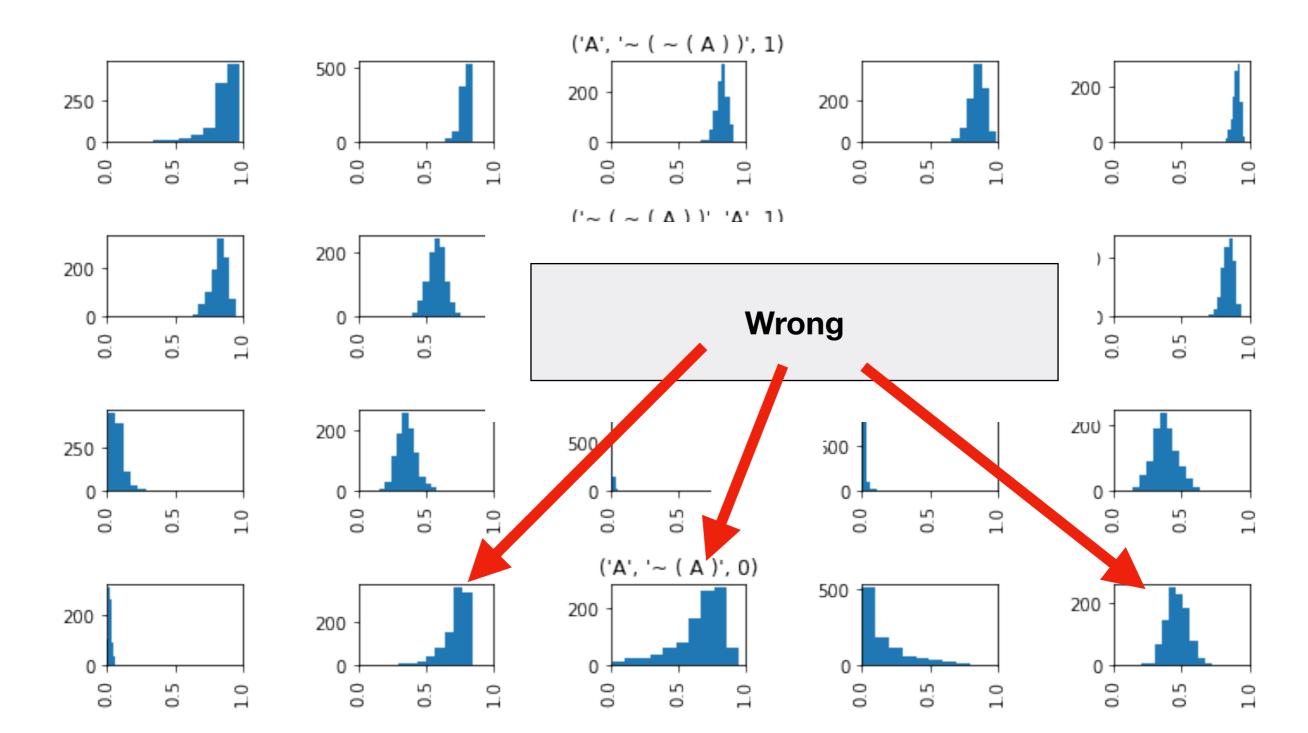












Outline

Motivation

Experimental Design

Results

Discussion

Conclusion

Conclusion

Results negative, inconclusive, dependent on sequence model type

Conclusion

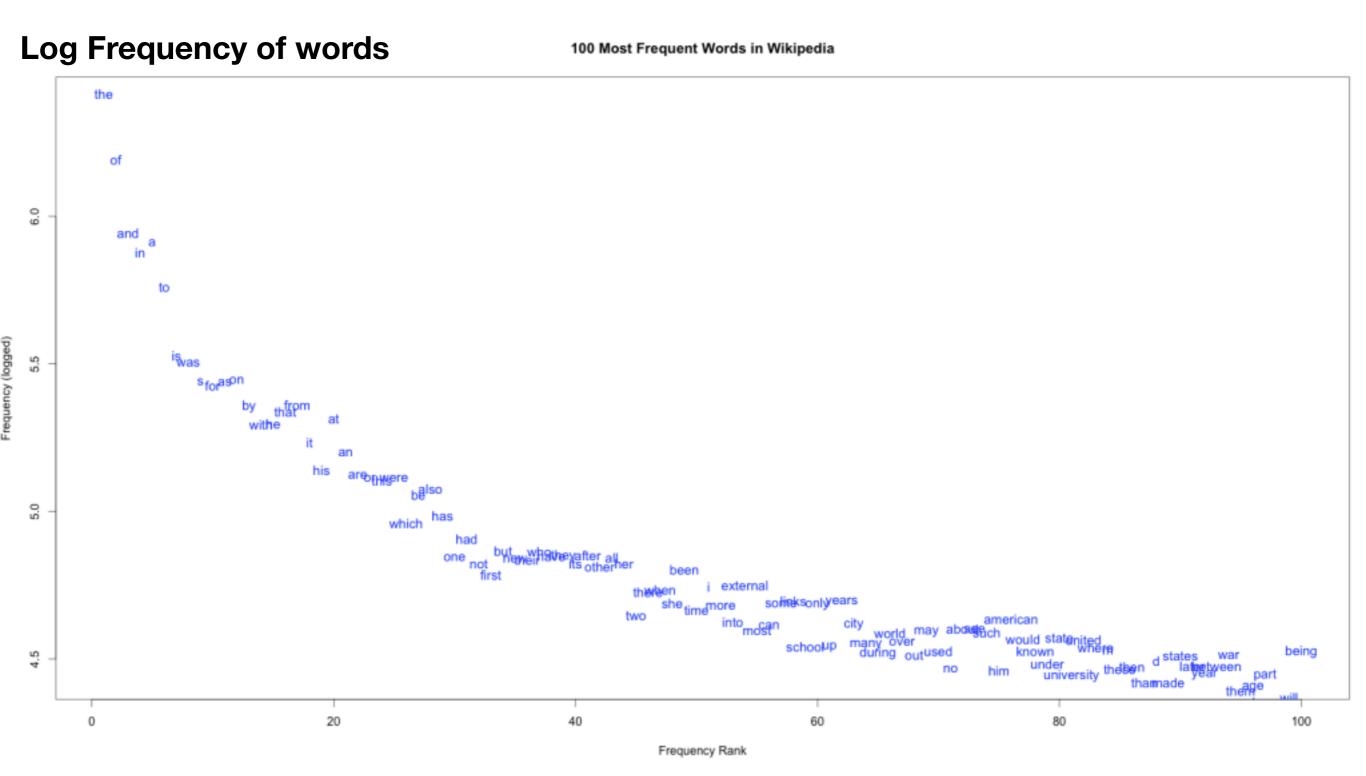
- Results negative, inconclusive, dependent on sequence model type
- Language model pretraining helps only with data efficiency

Conclusion

- Results negative, inconclusive, dependent on sequence model type
- Language model pretraining helps only with data efficiency
- All models struggle with inference pattern test sets

 Can success observed on natural logic datasets be explained by exploitation of cooccurence and complex lexical heuristics?

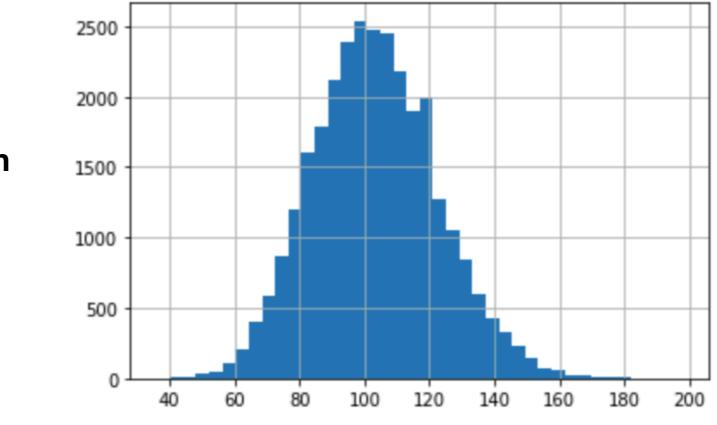
Zipfian distribution



Frequency Rank of words

http://wugology.com/zipfs-law/

Symbol distribution in our datasets



of times symbol appears in dataset

of symbols in bucket

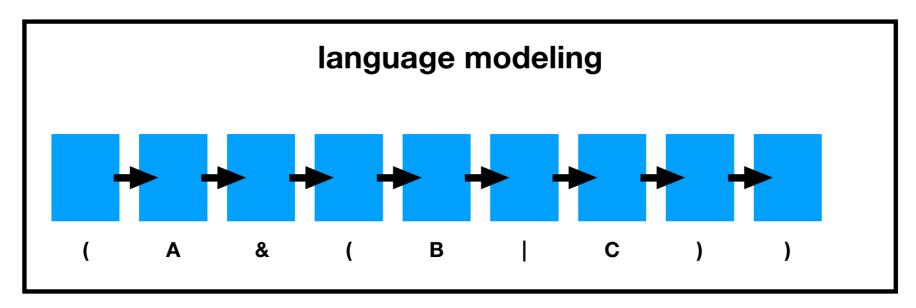
- Can success observed on natural logic datasets be explained by exploitation of cooccurence and complex lexical heuristics?
 - Skew frequency of symbols in our dataset

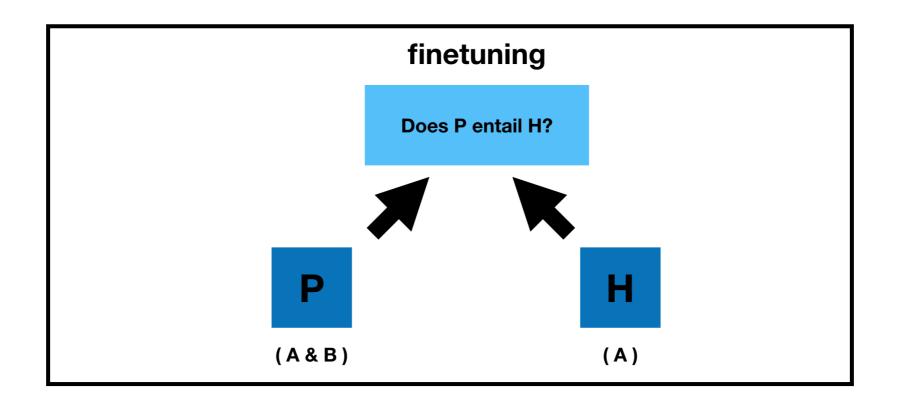
- Can success observed on natural logic datasets be explained by exploitation of cooccurence and complex lexical heuristics?
 - Skew frequency of symbols in our dataset
- Would including "unattested" sentences assist the model in learning logical properties?

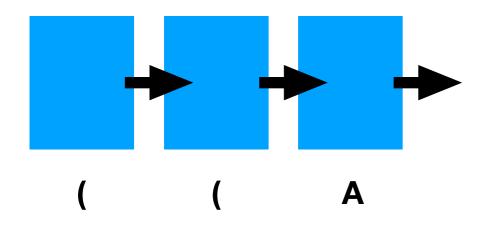
- Can success observed on natural logic datasets be explained by exploitation of cooccurence and complex lexical heuristics?
 - Skew frequency of symbols in our dataset
- Would including "unattested" sentences assist the model in learning logical properties?
 - Include sentences that evaluate to False at pretraining

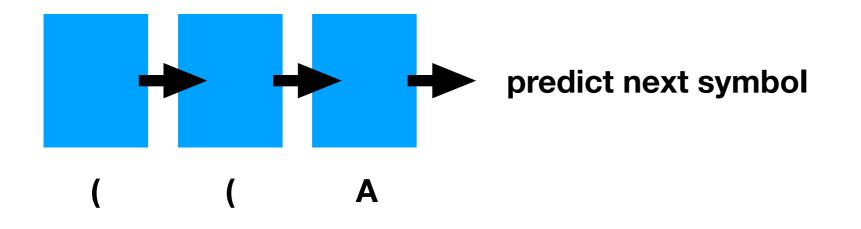
thanks! :)

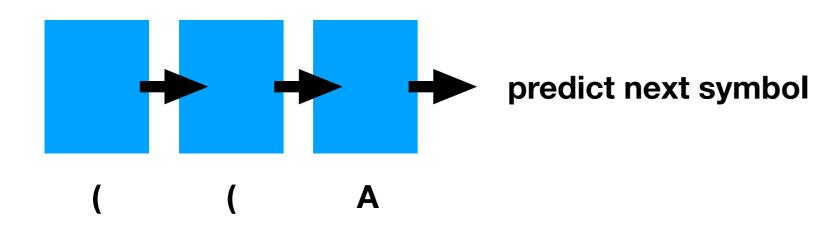
Paradigm



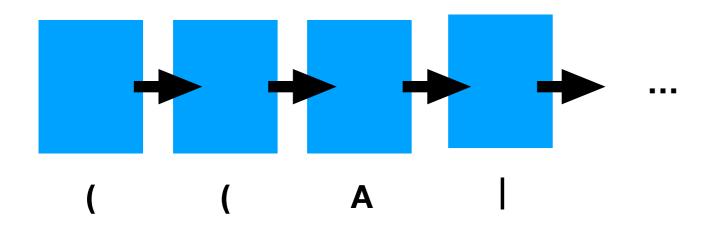








	0.281	
&	0.123	
А	0.0001	
•••	•••	



Experiment 1 model sampling

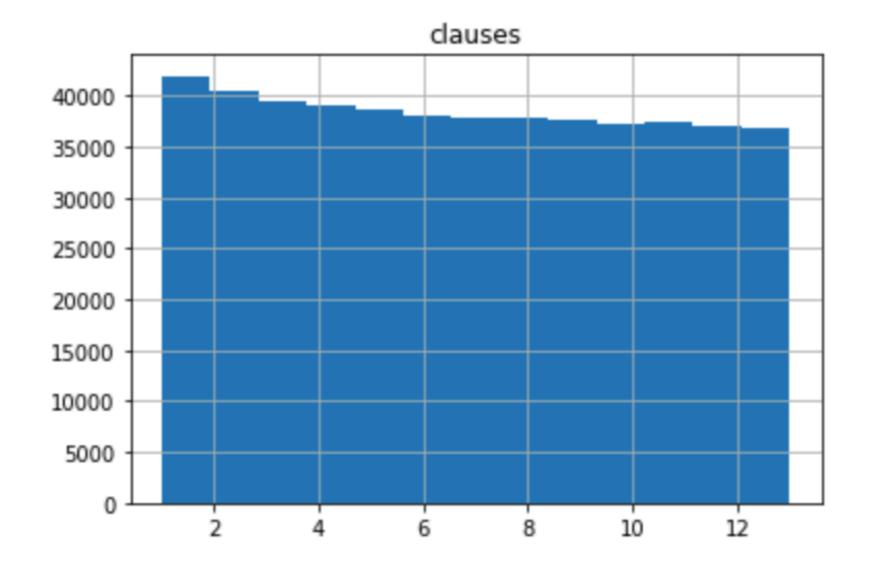
Output type	Example	% of data
Consistent	(A A)	84.270%
Inconsistent	(A ~ (A))	1.037%
Syntax invalid	(A &A)	0.443%
Unfinished	(A (((14.25%

How do we know how many symbols to include?

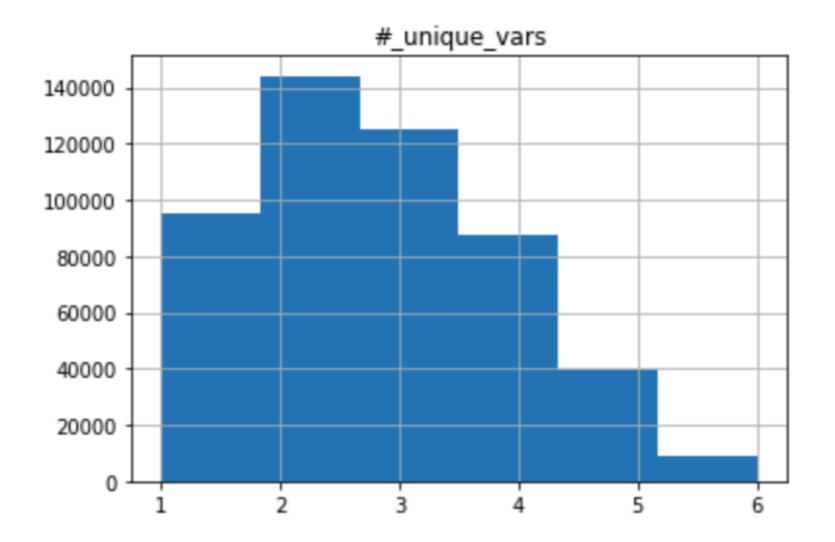
Train examples	# Symbols	Heldout patterns, training symbols	Heldout patterns, novel symbols
10K	25	0.957	0.5
100K	25	0.957	0.8125
10K	5K	0.511	0.511
100K	5K	1	0.969
1M	50K	1	0.98

Algorithm 1 Generating Satisfiable Sentences

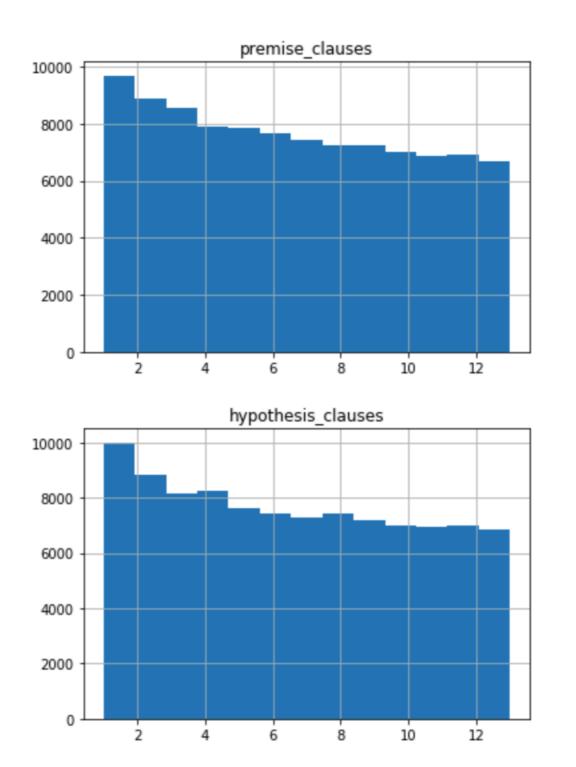
- 1: procedure GENERATE_SENTENCE(X)
- 2: Randomly pick *num_clauses* between 1 and 13
- 3: Randomly pick *maximum_unique_variables* between 1 and 5
- 4: $vocab = maximum_unique_variables$ symbols from X, sampling via uniform distribution
- 5: $clauses_in_sentence = num_clauses$ samples from &, |, |=, \neg
- 6: $final_sentence = clauses[0]$
- 7: $open_indices = indices of clause[0]$ where variable or clause could be inserted (for $(\&, |, \models, \text{ add indices } 0 \text{ and } 2, \text{ and for } \neg, \text{ add index } 1)$
- 8: for all clauses in *clauses_in_sentence*[1:] do
- 9: Randomly nest clause in *final_sentence* by inserting it at random index from *open_indices*
- 10: Update *open_indices* by removing chosen index and adding indices of clause modulated by current position in *final_sentence*
- 11: for all index in open_indices do
- 12: $final_sentence[index] = randomly sampled variable from vocab$
- 13: **if** *final_sentence* is satisfiable **then return** *final_sentence*
- 14: else return Generate_Sentence(X)



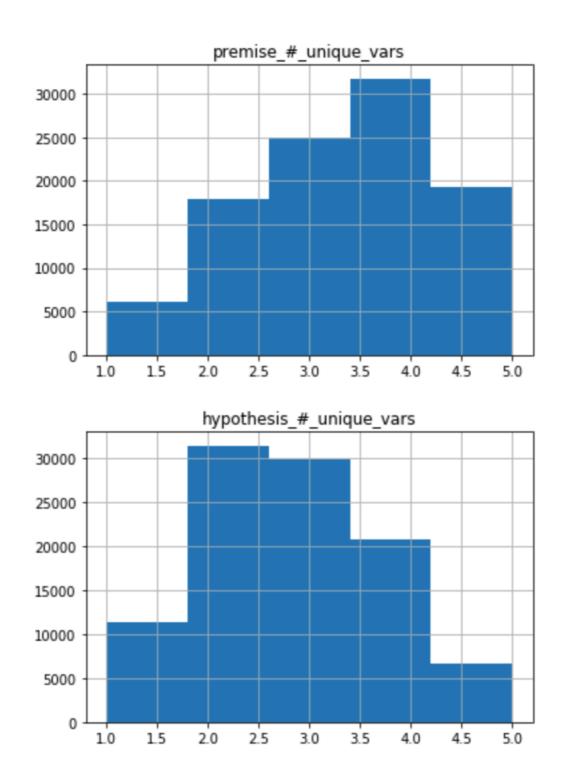
pretraining



pretraining



finetuning



finetuning