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Natural Language Inference Example

Disjunction

Premise

Either he has a blind trust or he has a conflict of interest.

Hypothesis

He has a conflict of interest.



e Format

o Standards for entailment
GLUE Inference Diagnostics o Handling Coreference
o Definite Descriptions and Monotonicity
o Background Knowledge
e Linguistic Categorization
o Lexical Semantics
= Lexical Entailment
= Morphological Negation
= Factivity
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o Knowledge and Common sense
= World Knowledge
= Common Sense
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Sentence Representation

He has a conflict of interesy <stop>

The last state represents the sentence
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Predictions:

3.3% IS

3.1% 's
3.0% ,

2.77%

2.6%

https://demo.allennlp.org/next-token-Im
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Transferring Language Model Representations

Language Model

A street filled with people walking and riding bikes.
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Finetuning

Does P entail H?

A
i

A street filled with people walking and riding bikes.
A street filled with people walking.

Why would logical reasoning emerge from this process?

Language Model
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Language Model

A street filled with people walking and riding bikes.

There is a street. True
There are shops. True
There are people. True

There is a giraffe. False
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Reasons Logic Might Not Emerge From
Pretraining-Finetuning

Language Model

2. Language models only ever observe “positive” examples.

A street filled with people walking and riding bikes.

Fhe-streetis full of people-andnotfull-of people-
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We create a dataset of propositional logic sentences because:



NL| datasets are biased

Entailment Neutral Contradiction
outdoors 2.8% tall 0.7% nobody 0.1%

least 0.2% first 0.6% sleeping 3.2%

SNLI instrument 0.5% competition 0.7% no 1.2%
outside 8.0% sad 0.5% tv 0.4%
animal 0.7% favorite 0.4% cat 1.3%

some 1.6% also 1.4% never 5.0%

yes 0.1% because 4.1% no 7.6%
MNLI something 0.9% popular 0.7% nothing 1.4%
sometimes 0.2% many 2.2% any 4.1%
various 0.1% most 1.8% none 0.1%

(Gururangan et al., 2018)



NL| datasets are biased

Entailment Neutral Contradiction

outdoors 2.8% tall 0.7% nobody 0.1%
least 0.2% first 0.6% sleeping 3.2%
SNLI instrument 0.5% competition 0.7% no 1.2%
outside 8.0% sad 0.5% tv 0.4%
animal 0.7% favorite 0.4% cat 1.3%

some 1.6% also
yes 0.1% because
MNLI something 0.9% popular
sometimes 0.2% many
various 0.1% most

Strong indicators of contradiction

(Gururangan et al., 2018)



NL| datasets are biased

Hypothesis-only score: 67% SNLI, 53% MNLI

(Gururangan et al., 2018)
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Our Framework

We create a dataset of propositional logic sentences because:

e Full control: minimize dataset bias

* No lexical priors / pragmatic effects to exploit: only logical
information
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Finetuning Architecture

binary classification
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Dataset Statistics

Unary logical operators

Binary logical operators

# of “variables”

Sentences in language
modeling training dataset

Sentences in validation
set

Sentences in entailment
training dataset

Sentences in validation
set

Negation

Conjunction, disjunction,
conditional

30,000

500,000

50,000

100,000

5,000
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Entailment Dataset Balance

Generate premise,hypothesis pairs (a1,a2),(b1,b2) such that:

aft entails
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does not
at .
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b2
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(Evans et al., 2018)



Our Framework

Entailment Dataset Balance

Generate premise,hypothesis pairs (a1,a2),(b1,b2) such that:

ail entails a2

b1 entails b2

21 does r.10t 52
entalil

b1 does r?ot 20
entalil

Thus both maximum-class and hypothesis-only accuracies are 50%

(Evans et al., 2018)
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Our Framework

Finetuning

Does P entail H?

LA
_ _

Language Model

“from pretraining”

Finetuning

Does P entail H?

A x
B _

+ Truth assignment

‘“from scratch”
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( A | B ) <truth>



Truth Assignment Example

( A B ) <truth> A True B True



Inference Pattern Test Sets

Inference Pattern Premise Hypothesis

Double Negation A b
Conjunction Elimination A&B A
Disjunction Elimination A A|B
Disjunction Introduction (A |B) & (A > C) & (B > C) C

Modus Ponens A & (A > B) B
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Distractor Items

Inference Pattern Premise Hypothesis Entailed?
Double Negation A ~~A Yes
A ~A No
~~ A ~A No
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Inference Pattern Test Sets

Model Validation
Acc.

CBOW 51.136
LSTM 69.547
LSTM (pt) 68.079
LSTM (pt w/ TAs) 73.402
Transformer 63.917
Transformer (pt) 70.074
Transformer (pt w/ TAs) 75.949
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CBOW baseline: Minimal dataset bias
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Transformer 63.917 67
Transformer (pt) 70.074 0.701
Transformer (pt w/ TAs) 75.949 0.693

LSTM: truth assignments
hinder performance




Results

Inference Pattern Test Sets

Transformer: small benefit to

pretraining
Model Validation | Inf. Pattern

Acc. Acc.

CBOW 51.136 0.501

LSTM 69.547 0.683

LSTM (pt) 68.079 0.566

LSTM (pt w/ TAs) 73.402 0.531
Transformer 63.917
Transformer (pt) 70.074
Transformer (pt w/ TAs) 75.949




Results

Inference Pattern Test Sets

Transformer: no benefit to
truth assignments

Model Validation | Inf. Pattern
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LSTM (pt) 68.079 0.566

LSTM (pt w/ TAs) 73.402 0.531
Transformer 63.917
Transformer (pt) 70.074
Transformer (pt w/ TAs) 75.949




Results

Inference Pattern Test Sets

Model Validation | Inf. Pattern | Inf. Pattern | Inf. Pattern

Acc. Acc. P(A) Acc. | N(A) Acc.
CBOW 51.136 0.501 0.271 0.736
LSTM 69.547 0.683 0.768 0.480
LSTM (pt) 68.079 0.566 0.360 0.680
LSTM (pt w/ TAs) 73.402 0.531 0.145 0.881
Transformer 63.917 0.679 0.749 0.563
Transformer (pt) 70.074 0.701 0.983 0.441
Transformer (pt w/ TAs) 75.949 0.693 0.919 0.409
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Inference Pattern Test Sets

Model Validation | Inf. Pattern | Inf. Pattern | Inf. Pattern
Acc. Acc. P(A) Acc. | N(A) Acc.
CBOW 51.136 0.501 0.271 0.736
LSTM 69.547 0.683 0.768 0.480
LSTM (pt) 68.079 0.566 0.360 0.680
LSTM (pt w/ TAs) 73.402 0.531
Transformer 63.917 0.679
Transformer (pt) 70.074 0.701
Transformer (pt w/ TAs) 75.949 0.693 0.409

Extreme skew!




Results

Inference Pattern Test Sets

Great job on positive,
still very skewed

Model Validation | Inf. Pattern | Inf. Pattern | Inf. Pattern
Acc. Acc. P(A) Acc. | N(A) Acc.
CBOW 51.136 0.501 0.271 0.736
LSTM 69.547 0.683 0.768 0.480
LSTM (pt) 68.079 0.566 0.360 0.680
LSTM (pt w/ TAs) 73.402 0.531 0.145 0.881
Transformer 63.917 0.679 0.749 0.563
Transformer (pt) 70.074 0.701
Transformer (pt w/ TAs) 75.949 0.693
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Conclusion

Results negative, inconclusive, dependent on sequence
model type

Language model pretraining helps only with data
efficiency

All models struggle with inference pattern test sets



Next Steps

e (Can success observed on natural logic datasets be
explained by exploitation of cooccurence and complex
lexical heuristics?
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Symbol distribution in our datasets
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Next Steps

e (Can success observed on natural logic datasets be

explained by exploitation of cooccurence and complex
lexical heuristics?

e Skew frequency of symbols in our dataset

 Would including “unattested” sentences assist the model
in learning logical properties?

e |nclude sentences that evaluate to False at pretraining
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Paradigm

language modeling

finetuning

Does P entail H?

A%
__

(A&B) (A)
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Sanity Check!

Experiment 1

| 0.281

& 0.123
predict next symbol
A 0.0001

( ( A
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Experiment 1




Sanity Check!

Experiment 1 model sampling

Output type Example % of data
Consistent (A|A) 84.270%
Inconsistent (Al~(A)) 1.037%

Syntax invalid (A|&A) 0.443%

Unfinished (A]((((... 14.25%



bonus slides!

How do we know how many symbols to include?

Heldout patterns,

Train examples # Symbols training symbols
10K 25 0.957
100K 25 0.957
10K 5K 0.511
100K 5K 1

1M 50K 1

Heldout patterns,
novel symbols

0.5

0.8125

0.511

0.969

0.98



bonus slides!

Algorithm 1 Generating Satisfiable Sentences

1:
2:
3:
4:

5:
6:

9:

10:

11:
12:
13:

14:

procedure GENERATE_SENTENCE(X)

Randomly pick num_clauses between 1 and 13

Randomly pick maximum_unique_variables between 1 and 5

vocab = maximum_unique_variables symbols from X, sampling via uni-
form distribution

clauses_in_sentence = num_clauses samples from &,

final_sentence = clauses|0]

open_indices = indices of clause|0] where variable or clause could be
inserted (for (&, |, =, add indices 0 and 2, and for -, add index 1)

for all clauses in clauses_in_sentence[l:] do

y [ 7

Randomly nest clause in final_sentence by inserting it at random
index from open_indices
Update open_indices by removing chosen index and adding indices
of clause modulated by current position in final_sentence
for all index in open_indices do
final_sentence[index| = randomly sampled variable from vocab
if final_sentence is satisfiable then
return final_sentence
else
return Generate_Sentence(X)
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cdauses

40000 +
35000 -

30000 -
25000 -
20000 -
15000 +
10000 H

5000 -

pretraining
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# unique vars

140000 A

120000 A

100000 A

80000 -

60000 -

40000 H

20000 -

0-

pretraining
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premise_clauses

10000 -

8000 -

6000 -

4000 -

2000 -

hypothesis_clauses

10000 -

8000 -

6000 -

4000 -

2000 -

finetuning
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premise_# _unique_vars

30000 H
25000 A
20000 H
15000 A
10000 A

5000 A1

finetuning

10 15 20 25 30 35 40 45 5.0

hypothesis_# unique_vars

30000 A

25000 H

20000 A

15000 A

10000 A

5000 A1




