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Sentence Representation

He has a conflict of interest <stop>

The last state represents the sentence
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https://demo.allennlp.org/next-token-lm
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A street filled with people walking.

P H
A street filled with people walking and riding bikes.

Does P entail H?

Finetuning





Why would logical reasoning emerge from this process?
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A street filled with people walking and riding bikes.



There is a street. 
There are shops. 
There are people. 
There is a giraffe.

True 
True 
True 
False

Reasons Logic Might Not Emerge From  
Pretraining-Finetuning
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A street filled with people walking and riding bikes. 

The street is full of people and not full of people.

1. Language models do not access truth assignments. 
2.  Language models only ever observe “positive” examples.

Reasons Logic Might Not Emerge From  
Pretraining-Finetuning
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(Gururangan et al., 2018)

NLI datasets are biased



(Gururangan et al., 2018)

NLI datasets are biased

Strong indicators of contradiction



(Gururangan et al., 2018)

NLI datasets are biased

Hypothesis-only score: 67% SNLI, 53% MNLI
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language modeling
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Does P entail H?
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( A & B ) ( A ) Sequence

MLP

binary classification

Last state of  
sequence model

Concat 
 rep. of P and rep. of H

Finetuning Architecture



Unary logical operators Negation

Binary logical operators Conjunction, disjunction, 
conditional
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Sentences in validation 
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Sentences in entailment 
training dataset 100,000

Sentences in validation 
set 5,000

Dataset Statistics
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Our Framework
Entailment Dataset Balance

a1 entails a2

b1 entails b2

a1 does not 
entail b2

b1 does not 
entail a2

Generate premise,hypothesis pairs (a1,a2),(b1,b2) such that:

Thus both maximum-class and hypothesis-only accuracies are 50%  

(Evans et al., 2018)
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Our Framework

+ Truth assignment



( A | B )

Truth Assignment Example



( A | B ) <truth>

Truth Assignment Example



( A | B ) <truth> A True B True

Truth Assignment Example



Inference Pattern Test Sets

Inference Pattern Premise Hypothesis

Double Negation A ~~A

Conjunction Elimination A & B A

Disjunction Elimination A A|B

Disjunction Introduction (A | B) & (A > C) & (B > C) C

Modus Ponens A & (A > B) B



Distractor Items

Inference Pattern Test Sets



Inference Pattern Premise Hypothesis Entailed?

Double Negation A ~~A Yes

A ~A No

~~A ~A No

~A ~~A No

Distractor Items

Inference Pattern Test Sets
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LSTM: truth assignments  
hinder performance
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Transformer: no benefit to 
truth assignments
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Inference Pattern Test Sets

Great job on positive, 
still very skewed
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Results

“Entailed” label 
Activation

Five different runs of  
same hyperparameters

# of examples
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Next Steps

• Can success observed on natural logic datasets be 
explained by exploitation of cooccurence and complex 
lexical heuristics?


• Skew frequency of symbols in our dataset


• Would including “unattested” sentences assist the model 
in learning logical properties?


• Include sentences that evaluate to False at pretraining



Zipfian distribution

Frequency Rank of words

Log Frequency of words

http://wugology.com/zipfs-law/



Symbol distribution in our datasets

# of times symbol appears in dataset

# of symbols in 
bucket
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( ( A

predict next symbol

| 0.281

& 0.123

A 0.0001

… …

Sanity Check!



|

Experiment 1

( ( A

…

Sanity Check!



Experiment 1 model sampling

Output type Example % of data

Consistent ( A | A ) 84.270%

Inconsistent ( A | ~ ( A ) ) 1.037%

Syntax invalid ( A | & A ) 0.443%

Unfinished ( A | ( ( ( ( … 14.25%

Sanity Check!



bonus slides!
How do we know how many symbols to include?

Train examples # Symbols Heldout patterns,

training symbols

Heldout patterns, 
novel symbols

10K 25 0.957 0.5

100K 25 0.957 0.8125

10K 5K 0.511 0.511

100K 5K 1 0.969

1M 50K 1 0.98
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