

NLI Data and Annotations: a Look behind the Scenes

AIKATERINI-LIDA (KATERINA) KALOULI

16. JULY 2020

NALOMA @ WESSLLI 2020

Natural Language Inference (NLI)

NLI is the task of determining whether a natural language sentence, also called hypothesis (H), can be inferred from another natural language sentence, also called the premise (P).

(McCartney, 2009)

→ 3-way classification: ENTAILMENT, CONTRADICTION or NEUTRAL

Given two sentences P and H, what is the relation between P and H?

- + ENTAILMENT: if P is true, then H is also true
- CONTRADICTION: if P is true, H is highly unlikely to be true (de Marneffe et al, 2014)
- ✦ NEUTRAL: no relation can be established between P and H

NLI: where are we?

NLI is a necessary metric for evaluating an NLU system since it forces a model to perform many distinct types of reasoning. (Condoravdi et al, 2013)

... solving [NLI] perfectly entails human level understanding of language... (Goldberg and Hirst, 2017)

> ... in order for a system to perform well at natural language inference, it needs to handle nearly the full complexity of natural language understanding... (Nangia et al., 2017)

NLI: where are we?

Take a closer look

SICK (Marelli et al, 2014)

✤ 9840 English pairs annotated for degree of similarity and inference relation

based on captions of pictures and a 3-step generation process

 aimed at every-day, common-sense sentences with no complex linguistic phenomena (e.g., no NEs, no MWEs, progressive tense, etc.)

+guidelines: no strict definitions, one example per relation

SICK is sick (Kalouli et al, 2017a, 2017b, 2018)

Asymmetrical/illogical contradictions: one pair direction is contradiction, the other one isn't:

P: A black and white dog is carrying a small stick on the green grass. H: A black and white dog is carrying a huge stick on the green grass.

non-binding referents (coreference issues):

P: An Asian woman in a crowd is not carrying a black bag.H: An Asian woman in a crowd is carrying a black bag.

+ ungrammatical cases:

The black and white dog isn't running and there is no person standing behind.

nonsensical cases:

A motorcycle is riding standing up on the seat of the vehicle.

SICK is sick (Kalouli et al, 2017a, 2017b, 2018)

non clear-cut definitions:

P: There is no man on a bicycle riding on the beach.

H: A person is riding a bicycle in the sand beside the ocean.

alternative concepts:

P: The lady is cracking an egg into a bowl.

H: The lady is cracking an egg into a dish.

+ plain errors:

P: The blond girl is dancing behind the sound equipment.

H: The blond girl is dancing in front of the sound equipment.

 \rightarrow most of these issues also appear in SNLI and MultiNLI, especially the issue with coreference

Goals & Methodology

 measure annotation quality when guidelines are improved and annotators provide explanations

- + discover linguistic phenomena that are hard to annotate
- + present aspects of NLI to be considered in future corpora

Explaining Simple Natural Language Inference (Kalouli A-L., A. Buis, L. Real, M. Palmer, V. de Paiva, 2019)

- + annotation experiment at the University of Colorado (CU)
- quantitative meta-experiment on the previous experiment
- corpus of investigation: SICK

CU Experiment

✤ 12 graduate students of the University of Colorado Boulder

improved, (supposedly) uncontroversial guidelines, building on previous literature, e.g., targeting coreference issues

 inference annotation, decision justification and intuitive "computational feasibility" (CF) score

- + data: 224 randomly chosen SICK pairs, annotated in both directions
- Inter-Annotator Agreement (IAA): 73.2%, Cohen's k: 0.68 (substantial)

✤ 17% disagreement between our annotators and the original annotators

Observations – Justifications I

- + less-informative justifications, e.g., "sentences mean same thing"
- justifications describing the relation, e.g., "someone != no one"
- + confusion about contradictory/neutral pairs:
 - a) pairs marked as contradictory despite no coreference between them:
 - P: Two sumo ringers are fighting.
 - H: A man is riding a water toy in the water.
 - \rightarrow "subjects and activities are completely different"
 - b) pairs marked as neutral despite obvious contradiction:
 - P: A girl is getting a tattoo removed from her hand.
 - H: A girl is getting a tattoo on her hand.
 - \rightarrow "could be getting both at the same time"

Observations – Justifications II

+ different agreement rates depending on the pair direction:

P: A light brown dog is sprinting in the water.

H: A light brown dog is running in the water.

 \rightarrow A -> B: unanimously entailment but B -> A: 25% entailment

"loose definitions" more prone to errors:

P: A white dog is standing on a hill covered by grass.

H: A dog is standing on the side of a mountain.

 \rightarrow hill covered by grass = mountain?

high CF scores in highly unambiguous pairs, e.g., one word difference
annotators give high CFs when they are themselves sure of the inference

What if?

What if these observations are not merely random but can indeed be classified in phenomena and observed in other NLI data?

What if there is measurable correlation among the phenomena and the low IAA, so that these phenomena lead to statistically worse agreements?

Meta-Experiment

✤ 5 co-authors annotated the pairs for:

- directionality: mark whether the current pair direction is easier, harder or equally hard to annotate \rightarrow easier, harder or equal
- coreference: does the pair contain events or entities hard to be assumed coreferent? → True or False
- loose definitions: does the pair contain loose/subjective concepts? \rightarrow True or False
- atomicity: is each sentence atomic, i.e., does it contain one predicate-argument structure? → True or False for P and H
- negation: does each sentence contain negation? \rightarrow True or False for P and H
- quantification phenomena: does each sentence contain a quantifier? \rightarrow True or False for P and H

Analysis

Goal

check whether IAA and CF scores are statistically worse in pairs with such phenomena

Method

 calculate IAA and CF score for each pair and each of the six metaannotations

✦ IAA: Generalized Additive Mixed Models (GAMMs, Wood 2011, 2017)
→ check for main effects and interactions

✦ CF: logistic mixed-effects regression model → check for main effects and interactions

Results IAA

- main effects of coreference, directionality, loose definitions and negation
- coreference, directionality and loose definitions confirm initial observations
- negation: counter-intuitive but only clear-cut textbook negations
- quantifiers: too few or easier for humans than for machines
- atomicity: no clear picture, more testing required

	IAA	
Phenomenon	True	False
A_is_atomic	72.06	79.4
B_is_atomic	72.6	76.81
A_is_negated	88.88	71.46
B_is_negated	90.47	71.27
A_has_quant	79.67	72.6
B_has_quant	80.48	72.5
hard_coref	62.45	77.27
loose_def	59.6	77.19

Directionality					
Measure	Easier	Harder	Equals		
IAA	81.18	58.33	74.9		

Results CF score

- main effects of coreference and negation
- coreference: as hypothesized, an intuitively detectable factor that annotators "catch" by giving such pairs lower CF scores
- negation: due to clear-cut textbook negations pairs are more unambiguous and thus higher scores

Phenomenon	CF score		
	True	False	
A_is_atomic	6.81	6.68	
B_is_atomic	6.83	6.59	
A_is_negated	7.66	6.68	
B_is_negated	7.51	6.7	
A_has_quant	7.03	6.76	
B_has_quant	7.05	6.75	
hard_coref	6.22	6.99	
loose_def	6.2	6.95	

Directionality					
Measure	Easier	Harder	Equals		
CF score	6.57	6.58	6.88		

Discussion I

- 1. Improvement of the NLI process:
 - \star better guidelines \rightarrow coreference, loose definitions
 - corpora and training and testing methods based on notion of human inference which has inherent variability, e.g.,
 - corpora without these phenomena → systems should achieve perfect performance (like humans would)
 - corpora with all phenomena → lower performance because not even humans agree
 - suitable training: easy pairs are more reliable → higher training weights than harder pairs
 - suitable evaluation: performance measured separately on easier vs. harder pairs

Discussion II

- 2. Enhancement of annotation tasks with justifications

 - reveal aspects of the task that should be taken into account
 - exploit justification for training: justification as extra rules, patterns, weights for more explainable models (cf. Camburu et al, 2018; Thorne et al, 2019; Kumar & Talukdar, 2020)

Discussion III

- 3. Enhancement of the annotation task with a Difficulty Score
 - ✦ CF score: estimated difficulty for the machine → limited conclusions allowed
 - ✤ Difficulty Score: real difficulty for the annotator
 - for training: easier pairs more reliable -> higher attention/weight
 - for testing: performance for easy vs. hard pairs: SOTA models might struggle with annotation-easy pairs (for humans), which contain hard linguistic phenomena → explainability, models' power
 - capture artifacts, e.g., pairs with the word *sleep* in H are always judged contradictory and easy, no matter what P is (due to the artifact that sleeping is used to contradict any other action)

Conclusion & Future Work

 research focus not only on better models and larger or more complex datasets but also on quality of datasets

 \star reliable datasets \rightarrow reliable models

✦ plain annotation labels are not enough → need for justifications for the decision

✤ IAA and Kappa not enough to measure quality

 ★ certain aspects of NLI are measurable qualities found in other corpora as well → adjust training and testing processes

 \rightarrow apply experiment on other datasets

 \rightarrow design corpus of *human inference*

Thank you

https://ling.sprachwiss.uni-konstanz.de/pages/home/kalouli/ https://github.com/kkalouli/

Aikaterini-Lida Kalouli Department of Linguistics, University of Konstanz

Aikaterini-lida.kalouli@uni-konstanz.de