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Introduction
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Natural Language Inference

Our goal is to solve inference problems in natural language such as the
following:

entail, contradict or neutral? SICK dataset (2014)

P: A flute is being played by a girl
H: There is no woman playing a flute

entail, contradict or neutral? FraCaS dataset (1996)

P1: Most Europeans are resident in Europe
P2: All Europeans are people
P3: All people who are resident in Europe can travel freely within Europe
H: Most Europeans can travel freely within Europe

Often referred to as Natural Language Inference (NLI) or Recognizing
Textual Entailment (RTE).
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2 Approaches

(Natural-)Logic-based: tableau / translation into logical
representations + a theorem prover / pure Natural Logic (MacCartney and

Manning, 2008; Mineshima et al., 2015; Mart́ınez-Gómez et al., 2017; Abzianidze, 2017; Yanaka et al., 2018; Kalouli

et al., 2019; Hu et al., 2018, 2019)

Machine-learning-based: many, e.g., RNN, ESIM, BERT family
(Bowman et al., 2015; Chen et al., 2017; Devlin et al., 2019)
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Our system: MonaLog

MonaLog = MOnotonicity and NAtural LOGic:

Light-weight, no translation to logical representations

Natural logic based, explainable, and easy to interpret

Able to generate inferences for other purposes

It can:

1 Solve natural language inference problems (e.g., SICK, FraCaS)

2 Generate natural language inferences (for data augmentation)

3 Create challenging monotonicity datasets
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Monotonicity
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Monotonicity

f (x)↑ = 5 + x↑

f (x)↑ = 5− x↓

every(man, walks)↑ = every man↓ walks↑

Key intuition

Truth value holds if we:

replace man with a word/phrase denoting a subset,
or

replace walk with a word/phrase denoting a superset,

Hai Hu (Indiana Univ) Monotonicity for Inference 2020 @ NALOMA @ WeSSLLI 8 / 39



Monotonicity

f (x)↑ = 5 + x↑

f (x)↑ = 5− x↓

every(man, walks)↑ = every man↓ walks↑

Key intuition

Truth value holds if we:

replace man with a word/phrase denoting a subset,
or

replace walk with a word/phrase denoting a superset,

Hai Hu (Indiana Univ) Monotonicity for Inference 2020 @ NALOMA @ WeSSLLI 8 / 39



MonaLog
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MonaLog pipeline

Task: Predict the semantic relation between an ordered sentence pair
(Entailment, Neutral or Contradiction?)

premise: every dog dances.
hypothesis: some cute poodle moves.

1) Polarization → 2) Generation → 3) Search

E = {some cute animal moves, ... } hypothesis ∈ E?
every↑ dog↓ dances↑ N = {every animal moves, ... } hypothesis ∈ N?

C = {no labrador dances, ...} hypothesis ∈ C?

In detail:

Premise: Text CCG polarity projection

Generation and
Search Replacement KB K

All schoolgirls are on the train Hypothesis?

All happy schoolgirls are on the train

natural logic

valid inferences

Polarity/Arrow tagging

All↑ schoolgirls↓ are↑ on↑ the↑ train=
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Polarization algorithm

Input: raw sentences: every man walks

Step 1: get CCG parse tree using CandC or EasyCCG parser (Clark and Curran,

2007; Lewis and Steedman, 2014)

Step 2: mark and polarize (van Benthem, 1986; Sánchez-Valencia, 1991; Hu and Moss, 2018)

Output: every↑ man↓ walks↑

Provably correct compared to MacCartney and Manning (2008).

Hu, H. and Moss, L. S. (2018). Polarity computations in flexible categorial grammar.
In Proceedings of *SEM, pages 124–129
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Examples of polarized sentences

No↑ man↓ walks↓

Every↑ man↓ and↑ no↑ woman↓ sleeps=

If↑ some↓ man↓ walks↓, then↑ no↑ woman↓ runs↓

Every↑ man↓ does↓ n’t↑ hit↓ every↓ dog↑

Every↑ young↓ man↓ that↑ no↑ young↓ woman↓ hits↑ cried↑

At↑ least↑ seven↓ fish↑ died↑ yesterday↑ in↑ Morocco↑

A↑ dog↑ who↑ ate↑ two↓ rotten↓ biscuits↓ was↑ sick↑ for↑ three↓ days↓
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Generation

MonaLog :

Input: sentence pair: every↑ man↓ walks↑ ?? some young man moves

Step 1: Build knowledge base: extract all adjs, nouns, adverbs, verbs,
RC, and add

1. a n ≤ n, n p ≤ n, and n r ≤ n. (small dog ≤ dog, dog from France
≤ dog, dog that barks ≤ dog)

2. v a ≤ v . (walk fast ≤ walk)
3. WordNet information: poodle ≤ dog, dog | cat, big ⊥ small

Step 2: use “substitution” to generate entailments and neutrals, and other
simple rules for contradictions

Step 3: check if the hypothesis is in one of the generated sets

Output: Entailment b/c hypothesis ∈ entailments

Hu, H., Chen, Q., Richardson, K., Mukherjee, A., Moss, L. S., and Kuebler, S. (2020). MonaLog: a lightweight system for
natural language inference based on monotonicity.
In Proceedings of the SCiL, pages 319–329
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Generation: a search tree

Use “substitution” to generate entailments and contradictions

P: A↑ schoolgirl↑ with↑ a↑ black↑ bag↑

is↑ on↑ a↑ crowded↑ train↑

A↑ girl↑ with↑ a↑ black↑ bag↑

is↑ on↑ a↑ crowded↑ train↑

A girl
is on a crowded train

A girl is on a train

A↑ schoolgirl↑ with↑ a↑ bag↑

is↑ on↑ a↑ crowded↑ train↑

......

A↑ schoolgirl↑ is↑

on↑ a↑ crowded↑ train↑

......

No schoolgirl is

on a crowded train

A schoolgirl with a bag

is not on a crowded train

...

co
ntra

dict
ion

co
ntra

dict
ion

co
ntra

dict
ion
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Experiments using MonaLog
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Experiments on SICK

- SICK (Sentences Involving Compositional Knowledge)
- 10,000 English sentence pairs, generated from image, video descriptions,
annotated by crowd workers (Marelli et al., 2014).

premise hypothesis orig. la-
bel

corr. la-
bel

There is no girl in white dancing A girl in white is dancing C C
Two girls are lying on the
ground

Two girls are sitting on the
ground

N C

A couple who have just got
married are walking down the
isle

The bride and the groom are
leaving after the wedding

E N

A girl is on a jumping car One girl is jumping on the car E N (?)

Table: Examples from SICK and corrected SICK (Kalouli et al., 2018).
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Exp 1: set-up

Solve SICK, using MonaLog (+ BERT)

• MonaLog:
1. Syntactic transformations:
a) pass2act; b) there be no N doing sth. → No N is doing sth.
2. Generate entailments and contradictions from premise.
3. If hypothesis in E/C, then return E/C, else return Neutral.

• MonaLog + BERT:
If MonaLog returns E/C, then use MonaLog, else use BERT.
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Exp 1: Results

system P R acc.
On uncorrected SICK

majority baseline – – 56.36
MonaLog (this work)

MonaLog + all transformations 83.75 70.66 77.19
Hybrid: MonaLog + BERT 83.09 85.46 85.38

ML/DL-based systems
BERT (base, uncased) 86.81 85.37 86.74

Yin and Schütze (2017) – – 87.1
Logic-based systems

Abzianidze (2015) 97.95 58.11 81.35
Yanaka et al. (2018) 84.2 77.3 84.3

On corrected SICK
MonaLog + all transformations 89.91 74.23 81.66

Hybrid: MonaLog + BERT 85.65 87.33 85.95
BERT (base, uncased) 84.62 84.27 85.00

Decent performance on uncorrected SICK. Need to fully correct SICK.
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Exp 2: Data augmentation

Experiment 2

1. Pair the generated entailments/contradictions with the input premise.
2. Add newly generated pairs to SICK.train. Fine-tune BERT.

Hai Hu (Indiana Univ) Monotonicity for Inference 2020 @ NALOMA @ WeSSLLI 19 / 39



Exp 2: generated NLI pairs

Sentence pairs generated by MonaLog, lemmatized:

label premise hypothesis comm.

E A woman be not cooking something A person be not cooking something correct
E A man be talk to a woman who be seat

beside he and be drive a car
A man be talk correct

E A south African plane be not fly in a blue
sky

A south African plane be not fly in a very
blue sky in a blue sky

unnat.

C No panda be climb Some panda be climb correct
C A man on stage be sing into a micro-

phone
A man be not sing into a microphone correct

C No man rapidly be chop some mushroom
with a knife

Some man rapidly be chop some mush-
room with a knife with a knife

unnat.

E Few↑ people↓ be↓ eat↓ at↓ red↓ table↓ in↓

a↓ restaurant↓ without↓ light↑
Few↑ large↓ people↓ be↓ eat↓ at↓ red↓

table↓ in↓ a↓ Asian↓ restaurant↓ without↓

light↑

correct

No incorrect labels, but ∼10% unnatural.
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Exp 2: Results

Results of BERT trained on MonaLog-augmented data:

training data # E # N # C acc.

SICK.train: baseline 1.2k 2.5k 0.7k 85.00

all gen. + SICK.train 30k 2.5k 14k 86.51
E, C prob. threshold = 0.95 30k 2.5k 14k 86.71

Hybrid baseline 1.2k 2.5k 0.7k 85.95
Hybrid + all gen. 30k 2.5k 14k 87.16
Hybrid + all gen. + threshold 30k 2.5k 14k 87.49

Shows the usefulness and high-quality of MonaLog generated data.
(Observation: BERT is insensitive to skewed dataset. )
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Exp 3: Creating NLI Datasets

Motivation

How difficult is monotonicity inference for machine learning models?

MonaLog → free monotonicity inferences.

Richardson, K., Hu, H., Moss, L. S., and Sabharwal, A. (2020). Probing Natural
Language Inference Models through Semantic Fragments.

In Proceedings of AAAI
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Research questions

Can models (neural and transformers) learn monotonicity?

Can monotonicity be learned from scratch?

Can models trained on general NLI datasets do monotonicity
(zero-shot)?

Can these models be re-trained to master monotonicity?

Also other semantic phenomena: negation, quantifier, counting, ...
→ semantic fragments
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Creating monotonicity datasets

1 Write grammar rules and determine the vocabulary:
All black mammals saw exactly 5 stallions who danced

2 Use MonaLog to generate Entailments, Neutrals and Contradictions:
A brown or black poodle saw exactly 5 stallions who danced
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Question 1: Can We Learn Fragments from Scratch?

Training task-specific models without special NLI pre-training
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Question 1: Can We Learn Fragments from Scratch?

Training task-specific models without special NLI pre-training

BERT (+ ESIM, Decomposable-Attention) can easily learn most fragments.

Difficult for other LSTM-based models/baselines.
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Question 1: Can We Learn Fragments from Scratch?

Training task-specific models without special NLI pre-training

The Problem: models are just idiot savants, cannot solve any other tasks

(common probing strategy but not always insightful).
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Question 2: Zero-shot Evaluation

How do models trained on NLI benchmarks perform?

Pre-trained NLI models perform poorly, provides a new task that break

models; but does this tell us much?
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The Biggest Challenge

Can we build models that are simultaneously good at our diagnostic tasks and

their original benchmarks?

Assumption: A model’s ability to quickly learn new tasks with limited cost (i.e.,

forgetting of original task) provides evidence of competence.
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Question 3: Can Models be Fixed? (Most interesting)

Model Inoculation (Liu et al. (2019)): Continue training models on small

amounts of diagnostic data; aim to (quickly/cheaply) fix model.

Loss-less Inoculation: Models should be penalized for forgetting (a sign of

stress), take best aggregate model.
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Question 3: Can Models be Fixed? (Most interesting)

Model Inoculation (Liu et al. (2019)): Continue training models on small

amounts of diagnostic data; aim to (quickly/cheaply) fix model.

Mastering diagnostic tasks with little loss gives evidence of competence and

strong correspondence to training distribution.
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Question 3: Can Models be Fixed? (Most interesting)

Model Inoculation (Liu et al. (2019)): Continue training models on small

amounts of diagnostic data; aim to (quickly/cheaply) fix model.

Not all fragments are the same: some stress models (i.e., lead to

forgetting) more than others; indicate lack of competence.
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Question 3: Can Models be Fixed? (Most interesting)

Model Inoculation (Liu et al. (2019)): Continue training models on small

amounts of diagnostic data; aim to (quickly/cheaply) fix model.

General finding: more robust models (e.g., BERT) learn fast and with less

forgetting; indication of higher competence.
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Summary
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Summary

We built a light-weight, interpretable Natural-Logic-based NLI system
with decent performance on NLI datasets.

Our system can generate high-quality NLI sentence pairs which are
useful for data augmentation and dataset creation.

Future work:
- evaluation of the polarization accuracy;
- extend to wider natural logic phenomena;
- fully corrected SICK dataset;

Questions & comments?
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Links for our programs

Github repository for polarization algorithm: ccg2mono

Github repository for MonaLog: MonaLog

Github repository for code and data for experiment 3:
semantic fragments
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Examples from other fragments

Fragments Example (premise,label,hypothesis)

Negation
Laurie has only visited Nephi, Marion has only visited Calistoga.
CONTRADICTION Laurie didn’t visit Nephi

Boolean
Travis, Arthur, Henry and Dan have only visited Georgia
ENTAILMENT Dan didn’t visit Rwanda

Quantifier
Everyone has visited every place
NEUTRAL Virgil didn’t visit Barry

Counting
Nellie has visited Carrie, Billie, John, Mike, Thomas, Mark, .., and Arthur.
ENTAILMENT Nellie has visited more than 10 people.

Conditionals
Francisco has visited Potsdam and if Francisco has visited Potsdam
then Tyrone has visited Pampa ENTAILMENT Tyrone has visited Pampa.

Comparatives
John is taller than Gordon and Erik..., and Mitchell is as tall as John
NEUTRAL Erik is taller than Gordon.

Monotonicity
All black mammals saw exactly 5 stallions who danced ENTAILMENT

A brown or black poodle saw exactly 5 stallions who danced
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The End
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