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Outline

• I: The Problem of Linguistic Form-dependence in Semantics for NLP.

• II: The Proposal for a Form-Independent Semantics.

• III: Results So Far (Hosseini et al., 2018, 2019).

• IV: Work in Progress Towards Form-Independence
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I: The Problem of Content

• We have (somewhat) robust wide-coverage (supervised) parsers that work on
the scale of Bn of words.They can read the web (and build logical forms) much
faster than we can ourselves.

• So why can’t we have them read the web for us, so that we can ask them
questions like “What are recordings by Bill Evans without Fender-Rhodes
piano”, and get a more helpful answer than the following?
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Too Many Ways of Answering The Question

• The central problem of QA is that it involves inference as well as semantics,
and (despite our best efforts), we have no idea of the logic involved.

• Your Question: Has Verizon bought Yahoo? The Text:

1. Verizon purchased Yahoo. (“Yes”)
2. Verizon’s purchase of Yahoo (“Yes”)
3. Verizon managed to buy Yahoo. (“Yes”)
4. Verizon acquired every company. (“Yes”)
5. Verizon doesn’t own Yahoo (“No”)
6. Yahoo may be sold to Verizon. (“Maybe”)
7. Verizon will buy Yahoo or Yazoo. (“Maybe not”)

Z No chance of using sequence-to-sequence learning, since we don’t have any

labeled data.
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II: The Approach

• Use semantic parsers to Machine-Read multiple relations over Named Entities
in web text.

• Capture relations of entailment and paraphrase over relations between NEs of
the same types (Lewis and Steedman, 2013a,b, 2014; Lewis, 2015).

– If you read somewhere that a person—say, Obama—was elected to an
office—say, President—than you are highly likely to also read somwhere
that that person ran for that office—

– —but not the other way round

• Redefine the parser semantics in terms of entailments and paraphrases, and
reparse and index the entire text for IR.

Z (There is another approach, based on vectors and linear algebraic composition.)
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Local Entailment Probabilities

• First, the typed named-entity technique is applied to (errorfully) estimate local
probabilities of entailments:

a. p(buyxy⇒ acquirexy) = 0.9
b. p(acquirexy⇒ ownxy) = 0.8
c. p(acquisition(of x)(byy)⇒ ownxy) = 0.8
d. p(acquirexy⇒ acquisition(of x)(byy)) = 0.7
e. p(acquisition(of x)(byy)⇒ acquirexy) = 0.7
f. p(buyxy⇒ ownxy) = 0.4
g. p(buyxy⇒ buyer (of x)y) = 0.7
h. p(buyer (of x)y⇒ buyxy) = 0.7
i. p(inherit xy⇒ ownxy) = 0.7

(etc.)
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Global Entailments

• The local entailment probabilities are used to construct an entailment graph,
with the global constraint that the graph must be closed under transitivity
(Berant et al., 2015).

• Thus, local entailment (f) is supported by transitivity despite low observed
frequency, while unsupported spurious low frequency local entailments can be
excluded.

• Cliques within the entailment graphs can be collapsed to a single paraphase
cluster relation identifier.
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Entailment graph

1

2

3

4

own x y

acquire x y 

buy x y

inherit x y
acquisition (of  x) (by  y)

buyer (of x) y

rel

rel

rel

rel

• A simplified entailment graph for relations between people and property.
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Lexicon

• The new semantics obtained from the entailment graph replaces form-
dependent relations like acquire with paraphrase cluster identifiers like rel2

own := (S\NP)/NP : λxλy.rel1 xy
inherit := (S\NP)/NP : λxλy.rel4 xy
acquire := (S\NP)/NP : λxλy.rel2 xy
buy := (S\NP)/NP : λxλy.rel3 xy
buyer of := N/PPof : λxλy.rel3 xy
etc.

• These logical forms support correct inference under negation, such as that
Verizon bought Yahoo entails Verizon acquired Yahoo and Verizon doesn’t
own Yahoo entails Verizon didn’t buy Yahoo
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Applications

1. Question Answering.

2. Reranking machine Summarization.

3. Building Knowledge Graphs from text.
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III: Progress So Far (Hosseini et al., 2018)

• We have trained an entailment graph on the NewsSpike corpus

– 0.5M multiply-sourced news articles over 2 months, 20M sentences.
– 29M binary relation tokens extracted using the CCG parser.

• We have built a working typed global entailment graph, collapsing paraphrase
cliques

– 101K relation types
– 346 local typed entailment subgraphs
– 23 subgraphs with more than 1K nodes e.g. Person×Location,

Location×Thing, Org×Org, etc.
– 7 subgraphs with more than 10K nodes

• We redefined the semantics and have built a scalable knowledge graph
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Idioms, Metaphors, and Presuppositions

• Idioms are found just like any other typed entailment:

– keep tabs on(#government agency,#thing) |=′ s surveillance of (#government agency,#thing)

• So are metaphors:

– take shot at (#person,#person) |= slam(#person,#person)

• Likewise light verbs, particle verbs, etc.:

– call up(#person,#thing) |= work with(#person,#thing)

• Presuppositions are relations entailed by another relation and its negation:

– manage to(#person,#event) |= try to(#person,#event)
– ¬manage to(#person,#event) |= try to(#person,#event)
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Refining the Entailment Graph

• Major problem with existing entailment graph learners:

– Many correct edges are missing because of data sparsity

• Berant et al. (2011) used Integer Linear Programming to learn entailment
graphs, using transitivity closure on the entailments as the objective function:
P→ Q and Q→ R implies that P→ R.

• ILP does not scale to graphs with more than 100 nodes.

• Berant et al. (2015) propose an approximation, removing entailment links to
make the graph “Forest-Reducible”.

• FRG loses many valid entailments.
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Global Learning of Typed Entailment Graphs

• Instead we propose a scalable method that does not depend on transitivity,
but instead uses two global soft constraints.

– Our method scales to more than 100K nodes.
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Intrinsic Evaluation Datasets

• We evaluate on Levy/Holt’s (Levy and Dagan, 2016) crowd-annotated
entailment dataset

– Improved by (Holt, 2018), adding inverse pairs and redoing the crowd
annotation.

– 18407 entailment pairs (3916 positively entailing, 14491 nonentailing).

• We also evaluate on Berant’s dataset (Berant et al., 2011), obtained by
hand-building a gold-standard entailment graph for all parsed relations in their
dataset for 10 frequent n-tuples of types, then comparing the extracted graph
with this gold-standard.

– 39012 entailment pairs (3472 positively entailing, 35585 nonentailing).
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Global Soft Constraint 1: Cross Graph Transfer

• It is standard to learn a separate typed entailment graph for each (plausible)
type-pair Berant et al. (2011, 2012); Lewis and Steedman (2013a,b); Berant
et al. (2015).

• However, many entailment relations for which we have direct evidence only in
a few subgraphs may apply over many others.

• This is a form of Domain Tramsfer.
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Global Soft Constraint 1: Cross Graph

t3=living_thing,t4=diseaset1=government_agency,t2=event

!(trigger,(t1,t2),(t3,t4))

t5=medicine,t6=disease

treat

cause

cure

useful	for

trigger

cause

trigger

• 0 ≤ β(.) ≤ 1 determines how much different graphs are related and will be
learned jointly.
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Adding Cross-Graph Transfer Soft Constraints

Recall Recall

Levy/Holt’s	dataset Berant’s dataset
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Global Soft Constraint 2: Paraphrase Resolution

• We encourage paraphrase predicates (where i→ j and j→ i) to have the same
patterns of entailment

– i.e. to entail and be entailed by the same predicates

t3=living_thing,t4=diseaset1=government_agency,t2=event

!(trigger,(t1,t2),(t3,t4))

t1=medicine,t2=disease

treat

cause

cure

useful	for

trigger

cause

trigger
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Adding Paraphrase Resolution Soft Constraints

Recall Recall

Levy/Holt’s	dataset Berant’s dataset
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Results for Various Similarity Measures

• Area under precision-recall curve (precision > .5) for different variants of
distributional similarities

– Boldfaced results are statistically significant

local untyped CG CG PR

Levy/Holt’s dataset

BInc .076 .127 .162 .165
Lin .074 .120 .151 .149

Weed .073 .115 .149 .147

Berant’s dataset

BInc .138 .167 .177 .179
Lin .147 .158 .186 .189

Weed .146 .154 .184 .187
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Example Subgraph after CG and PR

Premise Entails Consequents

location suffers from thing → thing killing in location

location has thing

location ’s price for thing

location suffers thing

location diagnosed with thing

destroyed during thing in location

thing affects location

thing ’s image in location

location recovers thing

location ’s thing

location experiences thing

took across location in thing

Test: Africa suffers from droughts → Africa experienced a drought Correct
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Error Analysis

Error type Example

False Positive

High correlation (57%) Microsoft released Internet Explorer

→ Internet Explorer was developed by Microsoft

Relation normalization (31%) The pain may be relieved by aspirin

→ The pain can be treated with aspirin

Lemma baseline & parsing (12%) President Kennedy came to Texas

→ President Kennedy came from Texas

False Negative

Sparsity (93%) Cape town lies at the foot of mountains

→ Cape town is located near mountains

Wrong label & parsing (7%) Horses are imported from Australia

→ Horses are native to Australia
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Extrinsic Evaluation

• We have carried out a limited extrinsic evaluation on an answer selection task
on the NewsQA test set of text-questions (Trischler et al., 2017), achieving a
1-2% increase in performance over a baseline inverse sentence frequency (ISF)
measure (cf. Narayan et al., 2018).

ACC MRR MAP

ISF .3618 .4899 .4857

ISF+ENT .3761 .5006 .4963

Table 1: Answer selection on NewsQA

• NewsQA example:

Question: Who praised Mitt Romney’s credentials?
Selected sentence: The board hailed Romney for his solid credentials
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Does BERTology help? (Hosseini et al. (2019))

• Rather than guessing entailment relations based on directional similarity of
vectors of named-entity pairs, our colleagues frequently ask us, why not try the
“alternative approach”, representing relations as embeddings, and applying a
directional distributional inclusion similarity measure

• We keep trying this. It hasn’t worked yet.

• However, Hosseini et al. (2019) show that embeddings-based methods for
link-prediction in existing knowledge graphs (Riedel et al., 2013) do improve
the entailment graph.

• And vice versa—access to the entailment graph improves link-prediction.

• Embeddings seem to learn information that is complementary to machine-
reading.
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IV: Future Work

• Improve relation extraction from text to include negation, auxiliary verbs,
implicative verbs, temporal relations, etc.

• Refine method for building entailment graphs.

• Define Form-independent clustered entailment-based Semantic Parser.

• Use it to build a Large Knowledge Graph using form-independent semantic
representations from text.
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Generalizing to Other Languages

• Since our semantics is form-independent, it is also potentially language
independent.

• We can therefore integrate relations and entailments mined from text in other
languages into the same entailment graph to improve QA and SMT.

• In parallel, we are developing a similar pipeline for German using the Stanford
Universal Dependencies (UD) Parser.

• A pilot study (Lewis and Steedman, 2013b) shows that this should be done by
first building monolingual entailment graphs, and then aligning and merging
nodes.

• We are interested in generalizing this to other languages with UD corpora.
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Form Independent Temporal Semantics

visit x y

1
2

4

5
vacation−in x y

3
have−arrived−in x y

reach x y

be−in x y

be−visiting x y

arrive−in x y depart−from x y

leave x y

holiday−in  x y

stop−off−at x y

• A simplified entailment graph for relations over events does not capture
relations of causation and temporal sequence.
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Learning from Timestamped Data

• One source of information concerning these hidden relations is timestamped
news, of the kind available in the University of Washington NewsSpike corpus
of 0.5M newswire articles (Zhang and Weld, 2013).

• In such data, we find that statements that so-and-so isvisiting, is in and the
perfect has arrived in such and such a place, occur in stories with the same
datestamp, whereas is arriving, is on her way to, occur in preceding stories,
while has left, is on her way back from, returned, etc. occur in later ones.

• This information provides a basis for inference that visiting entails being in,
that the latter is the consequent state of arriving, and that arrival and departure
coincide with the beginning and end of the progressive state of visiting.

Z Needs new datasets for evaluation.
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Building Knowledge Graphs from Text

• We would like to interrogate huge databases such as the Google knowledge
graphs, a.k.a. Semantic Nets (Reddy et al., 2014)

• There is a mismatch between the semantics delivered by parsers and the
language of the knowledge graph.

• So let’s build our own knowledge graph using the clustered entailment semantics
of the parser, so that we can query it directly in natural language.

Z This is a potentially a much bigger graph than the Knowledge Graph.

• We will need techniques to limit exponential growth in the costs of loading
and interrogating this graph.

• Pilot experiments by Harrington and Clark (2009); Lao et al. (2012) suggest
this can be done by spreading activation (Collins and Loftus, 1975).
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• Cf. Harrington and Clark (2009):
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From Entailment Graph to Knowledge Graph

• We have replicated the spreading activation method of Harrington’s AskNET
and evaluated in comparison with graph convilution.

• We have identified improved methods for node identification in growing the
Knowledge Graph, using both graph embeddings (GraphSAGE) and word
embeddings (ELMo)

• We have shown a 50% reduction in errors both from wrong mergers of nodes
and failure to make correct mergers over the AskNET Baseline (Szubert and
Steedman, 2019).

• We are currently conducting experiments to show that building and
interrogating the graph using entailment-based form-independent paraphrase-
cluster semantics improves question answering over AskNET’s form-dependent
DRS semantics.
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