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Introduction Central to human-like generaliza-
tion capacities is the fact that ability to understand
a sentence is related to ability to understand other
sentences, called systematicity of human cogni-
tion in Fodor and Pylyshyn (1988). We explore
whether DNN models possess this type of general-
ization capacity in the domain of natural language
inference (NLI), which is the task to judge whether
a premise entails a hypothesis (Dagan et al., 2013;
Bowman et al., 2015). A key property underlying
systematicity of drawing inferences is the transi-
tivity of inference relations, illustrated in Figure
1. Schematically, if a model learns a basic infer-
ence pattern from A to B and one from B to C, it
should be able to compose the two patterns to draw
a new inference from A to C. If a model lacks
this generalization capacity, it must memorize an
exponential number of inference combinations in-
dependently of basic patterns.

We focus on transitivity inferences that combine
veridical inferences with other types. In veridical
inferences, one must distinguish two entailment
types. For example, the verb know is called veridi-
cal in that “x knows that P ” entails that P is true,
while the verb hope is called non-veridical since
“x hopes that P ” does not entail that P is true.
Veridical inferences can relatively easily compose
transitivity inferences at scale by embedding var-
ious inference types into clause-embedding verbs.
As Figure 1 shows, if a model has the ability to per-
form both Boolean inference and veridical infer-
ence, it is desirable to have the ability to combine
both types to make a chained inference. Such tran-
sitivity inferences are by no means trivial. If the
premise is changed to Jo knows that Ann or Bob
left, it does not follow that Bob left, even though
the veridical verb know appears. Models relying
on shallow heuristics such as lexical overlap can
wrongly predict entailment in this case. To cor-
rectly handle such composite inferences, models

Veridical inference

Boolean inference

A: Jo knows that Ann and Bob left.

B: Ann and Bob left.

A′: Jo hopes that Ann and Bob left.

C: Ann left.

Figure 1: Illustration of transitivity inferences (indi-
cated by ) composed of two basic inferences, veridi-
cal and Boolean. Arrows indicate entailment and ar-
rows with a cross ( ) indicate non-entailment.

must capture structural relations between veridical
inferences and various kinds of embedded infer-
ence.

We create and publicly release two types of NLI
datasets for testing model ability to perform transi-
tivity inferences: a fully synthetic dataset that com-
bines veridical inferences and Boolean inferences,
and a naturalistic dataset that combines veridical
inferences with lexical and structural inferences.
We use these datasets to analyze whether standard
NLI models can perform transitivity inference.

Overview We consider two basic inference pat-
terns and their combinations. The first basic
pattern, I1, is veridical inference. We write
f(s1)→ s1 to denote a schematic veridical infer-
ence, where f is a clause-embedding verb and s1
is the embedded clause. For instance, in the case
of the inference pattern A → B in Figure 1, “Jo
knows that x” corresponds to f(x) and “Ann and
Bob left” to s1. The second basic pattern, I2, pro-
vides an inference from the embedded material.
We denote a premise-hypothesis pair of this sec-
ond inference by s1→s2.

Given two inferences f(s1)→s1 in I1 and s1→
s2 in I2, we consider a new inference f(s1)→ s2,
where premise f(s1) is the same as that of I1 and



f(s1)→s1 s1→s2 f(s1)→s2 Example

yes yes yes

f(s1): Someone realized that [a
boy was playing a guitar].
s1: A boy was playing a guitar.
s2: A kid was playing a guitar.

unk yes unk

f(s1): Someone doubts that
[the woman is putting makeup
on the man].
s1: The woman is putting
makeup on the man.
s2: A man’s face is being
painted by a woman.

yes unk unk

f(s1): Someone remembered
that [a cat was playing with a de-
vice].
s1: A cat was playing with a de-
vice.
s2: The boy was enthusiastically
playing in the mud.

Table 1: Examples of our transitivity inference set.

hypothesis s2 is the same as that of I2. See Ta-
ble 1 for inference examples f(s1)→ s1, s1→ s2,
and f(s1) → s2. We consider binary labels, en-
tailment and non-entailment, denoted by yes and
unk, respectively. As Table 1 shows, the gold label
on the f(s1)→s2 pattern can be determined from
those of the basic patterns f(s1)→s1 and s1→s2,
following the transitivity of entailment relations.

We train models with the first and second pat-
terns, f(s1)→ s1 and s1→ s2, and then test them
on a set of the composite inferences f(s1) → s2
that combines them. Model capable of applying
the transitivity inference from f(s1) → s1 and
s1→ s2 to f(s1)→ s2 should consistently predict
the correct label of f(s1) → s2 for any combina-
tion of f(s1)→s1 and s1→s2.

Datasets We collect 30 clause-embedding verbs
f that take tensed subordinate clauses appearing in
both MegaVeridicality2 (White et al., 2018) and
the verb veridicality dataset (Ross and Pavlick,
2019). To test diverse inference patterns, we
consider two types of the second basic inference
s1 → s2: synthesized Boolean inferences and nat-
uralistic inferences using an existing NLI dataset,
SICK (Marelli et al., 2014), which covers various
lexical and structural inference. As shown in ex-
amples in Table 1, we can generate a new sentence
f(s1) by selecting a clause-embedding verb f and
a premise sentence s1 of the second basic infer-
ence. Then, we can obtain a veridical inference
example f(s1)→s1 by setting f(s1) as a premise
and s1 as a hypothesis. Likewise, we can obtain a
composite inference example f(s1)→s2. We pro-
vide 6,000 f(s1)→s2 examples for fully synthetic
datasets and 30,000 f(s1)→ s2 examples for nat-
uralistic datasets. The ratio of the gold labels (yes

Type Model
f(s1)→s1 s1→s2 f(s1)→s2 LSTM BERT

yes yes yes 89.0± 9.1 100.0± 0.0
yes unk unk 6.3± 12.8 0.4± 7.8
unk yes unk 93.4± 8.3 99.4± 9.0
unk unk unk 92.1± 7.2 99.5± 0.5

Total 70.2± 3.4 84.2± 1.2

Validation (f(s1)→s1) 82.1± 3.3 99.2± 0.0
Validation (s1→s2) 81.9± 3.0 89.1± 2.0

Table 2: Results on the synthetic transitivity test set.

Type Model Human
f(s1)→s1 s1→s2 f(s1)→s2 LSTM BERT

yes yes yes 97.1± 2.7 100.0± 0.0 98.8
yes unk unk 0.0± 0.0 8.9± 7.8 98.8
unk yes unk 97.1± 2.7 100.0± 0.0 44.9
unk unk unk 97.3± 2.6 100.0± 0.0 99.6

Total 73.5± 1.6 75.2± 1.7 85.5

Validation (f(s1)→s1) 82.1± 3.3 99.2± 0.0
Validation (s1→s2) 81.9± 3.0 89.1± 2.0

Table 3: Results on the naturalistic transitivity test set.

and unk) of the training set containing f(s1)→ s1
and s1→s2 examples is 1 : 1, and the ratio for the
f(s1)→s2 test set is 1 : 3.

Experiments and Analysis We analyze whether
two standard NLI models (LSTM and BERT)
trained with the basic inference set can consis-
tently perform composite inferences on the test set.
Table 2 and Table 3 shows that the models trained
with the basic inference set performed substan-
tially below chance for the examples f(s1)→ s2
where f is veridical and s1→ s2 is unk. This sug-
gests that while the models achieve over 80% ac-
curacy on both f(s1) → s1 and s1 → s2 valida-
tion sets, they do not apply transitivity inference
from the inferences f(s1)→ s1 and s1 → s2, but
rather predict the label for the composite inference
f(s1)→ s2 by judging whether it is similar to the
veridical inference f(s1)→ s1 in the training set.
We also collect human judgements for our natural-
istic transitivity test set, and human performance
is near perfect for the examples f(s1)→s2 where
f is veridical and s1→s2 is unk.

Conclusion We introduced an analysis method
using transitivity inferences for evaluating the sys-
tematic generalization capacities of NLI models.
Experiments showed that current NLI models fail
to consistently perform transitive inference. This
indicates that there is still much room for improv-
ing systematic generalization capacities of NLI
models with respect to combining basic inferential
abilities on various linguistic phenomena.
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