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An inference task: anaphora resolution

(1) Emacs is waiting for the command. It is prepared.

One pronoun

Two possible antecedents

21 = 2 possible interpretations to consider

{ Emacs is prepared.

(2) Ashley is waiting for Amy. She sees her.

Two pronouns

Two possible antecedents

22 = 4 possible interpretations to consider

{ Ashley sees Amy. ???
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Two approaches to the problem

Meanings can be characterised logically.

Sentence meanings correspond to logical formulae.
Determined compositionally, through functional application.

I E.g., in terms of the simply typed _-calculus (Montague, 1973).

Can serve as the basis for systems of inference, i.e., by computing
entailment using theorem provers and proof assistants (Bekki, 2014;
Mineshima et al., 2015; Bernardy and Chatzikyriakidis, 2019).

Such a system’s behavior is controlled, predictable, and
well-understood.

Much manual intervention needed; inflexible in the face of gradience
and uncertainty.
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Two approaches to the problem

Meanings can be characterised statistically or probabilistically.

In terms of linguistic contexts (distributional semantics).

In terms of probability distributions over possible worlds or situations.

Oen non-compositional (in Montague’s sense).

Can serve as the basis for explicit theories of pragmatics, e.g., Rational
Speech Act (RSA) models (Lassiter and Goodman, 2013; Goodman and
Stuhlmüller, 2013; Lassiter and Goodman, 2017; Emerson, 2020).

Oen much less manual supervision required (such systems can be
learned).

Flexible in the face of gradience and uncertainty.
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Plan: a best-of-both-worlds approach

Our plan is to oer a combined approach.

Sentence meanings correspond to probability distributions over FOL
formulae.

Probability distributions are computed compositionally, using standard
Montagovian tools.

Can be used to capture gradient paerns of inference (by computing
expected values of probability distributions).

Can be used to capture entailment (via theorem proving).

The trick is to use probabilistic programs. These allow us to view the logical
semantics and the probabilistic semantics as two modular aspects of the
same computation.
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Example: RSA and anaphora resolution

We illustrate our approach by building an RSA model of anaphora
resolution.

The speaker uers a sentence with pronouns having possible
antecedents.

The listener computes a posterior over interpretations of the pronouns
(and thus the uerance).
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Evaluating truth against background knowledge

Inference requires a characterisation of background knowledge, for which
we employ the notion of a world state.

That is, a set of FOL formulae; e.g., {heightashley ≥ 1.63m}.

Probabilistic background knowledge can be represented as a random
variable Γ representing a world state.

E.g., Γ = {heightashley ≥ \ }, where \ ∼ N(1.63m, 0.06m).

We can check the probability that some formula 𝜙 is entailed by or is
compatible with some unknown world-state with a known distribution.

𝜙 is entailed by Γ: EΓ [Γ ` 𝜙].
𝜙 is compatible with Γ: EΓ [Γ, 𝜙 0 ⊥].

We compute the (`) relation using a standard FOL tableau theorem prover
(limited to depth 10).
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variable Γ representing a world state.

E.g., Γ = {heightashley ≥ \ }, where \ ∼ N(1.63m, 0.06m).

We can check the probability that some formula 𝜙 is entailed by or is
compatible with some unknown world-state with a known distribution.

𝜙 is entailed by Γ: EΓ [Γ ` 𝜙].

𝜙 is compatible with Γ: EΓ [Γ, 𝜙 0 ⊥].

We compute the (`) relation using a standard FOL tableau theorem prover
(limited to depth 10).
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The RSA model

Our model is defined by the following relations:

PL1 (𝜙 | u) ∝ PS1 (u | 𝜙) × P (𝜙) (The pragmatic listener L1)

PS1 (u | 𝜙) ∝ (PL0 (𝜙 | u)/C(u))𝛼 (The pragmatic speaker S1)

PL0 (𝜙 | u) = E\,Γ [Γ, 𝜙, JuK\ 0 ⊥] (The literal listener L0)

u: uerance
𝜙 : inferred proposition
C(u): uerance cost
\ : set of linguistic parameters, which are drawn from a probability
distribution coming from the Montague semantics
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We are here

1 Overview

2 Our framework

3 Anaphora resolution

4 Conclusions
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Examples

(1) Emacs is waiting for the command. It is prepared.

One pronoun

Two possible antecedents

21 = 2 possible interpretations 𝜙 for L1 to consider

(2) Ashley is waiting for Amy. She sees her.

Two pronouns

Two possible antecedents

22 = 4 possible interpretations for L1 to consider
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Background knowledge

Γ, a probabilistic program that returns world states

We choose, ahead of time, a set of formulae Ψ which may be used to
construct a world-state.
For any formula𝜓 ∈ Ψ, either𝜓 ∈ Γ or ¬𝜓 ∈ Γ, as according to some
Bernoulli distribution.

All of the following formulae are given prior probability 0.5:

∃x : wait_for(emacs, x)
∃x : wait_for(the_command, x)
∃x : wait_for(ashley, x)
∃x : wait_for(amy, x)
prepared(emacs)
prepared(the_command)
∃x : see(ashley, x)
∃x : see(amy, x)
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Background knowledge: animacy

We distinguish examples (1) and (2) in terms of the animacy entailed for the
subjects of the antecedent sentences.

(1) Emacs is waiting for the command. It is prepared.

(2) Ashley is waiting for Amy. She sees her.

animate(emacs) 0.2
animate(the_command) 0.2

animate(ashley) 0.9
animate(amy) 0.9

We also ensure that each world state satisfies the following lexical
entailments:

∀x : (∃y : wait_for(x, y)) → animate(x)
∀x : prepared(x) → animate(x)
∀x : (∃y : see(x, y)) → animate(x)
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Example (1) model and results

(1) Emacs is waiting for the command. It is prepared.

PL1 (𝜙 | (1)) ∝ PS1 ((1) | 𝜙) × EΓ [Γ, 𝜙 0 ⊥]

PS1 (u | 𝜙) ∝ (PL0 (𝜙 | u)/e (npCost∗#NPs (u))+(pnCost∗#pronouns (u)) )𝛼

PL0 (𝜙 | u) = E\,Γ [Γ, 𝜙, JuK\ 0 ⊥]

Alternative u’s for PS1 are goen by substituting pronouns by their
corresponding NPs, given the interpretation 𝜙 .

Results:
𝛼 pnCost npCost Emacs bias
0.5 1 2 86.9%
4.0 1 2 98.6%
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Example (2) model and results

(2) Ashley is waiting for Amy. She sees her.

PL1 (𝜙 | (1)) ∝ PS1 ((1) | 𝜙) × EΓ [Γ, 𝜙 0 ⊥]

PS1 (u | 𝜙) ∝ (PL0 (𝜙 | u)/e (npCost∗#NPs (u))+(pnCost∗#pronouns (u)) )𝛼

PL0 (𝜙 | u) = E\,Γ [Γ, 𝜙, JuK\ 0 ⊥]

Alternative u’s for PS1 are goen by substituting pronouns by their
corresponding NPs, given the interpretation 𝜙 .

Results:
𝛼 pnCost npCost

Ashley bias
for she for her

0.5 1 2 52.9% 50%
4.0 1 2 54.2% 50%
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We are here

1 Overview

2 Our framework

3 Anaphora resolution

4 Conclusions
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Conclusions

About the RSA model:

The posterior distribution inferred by L1 is highly dependent on
background knowledge (animacy priors plus lexical entailments).

I A pronoun which is entailed to be animate will seek out animacy in its
antecedent, as example (1) showed.

I The model is less certain when both possible antecedents are animate
(example (2)).

The model thus seems to achieve a kind of abductive inference, i.e., by
computing the posterior that is most compatible with background
knowledge.

More generally:

Logical entailment can serve as the basis for probabilistic inference via
probabilistic programs.

Such programs can be built compositionally, using standard
Montagovian tools.
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Appendix 1: probabilistic programs

How can one compute probabilistic truth/entailment?

We compute probability distributions over logical formulae, world-states,
and truth values using probabilistic programs.

Probabilistic programs
A probabilistic program that returns a value of type 𝛼 is a function of type
(𝛼 → R) → R: it consumes a function from values of type 𝛼 to reals, in
order to return a real.

Example: a program that returns values from some list l with a uniform
distribution is _f .sum(mapfl)/(lengthl).
I Given a function f , it returns its mean across l.
I If 𝛼 is R, feeding this program the identity function results in an
expected value.
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Appendix 2: composing probabilistic programs

Probabilistic programs can be composed!

If:

m : ((𝛼 → 𝛽) → R) → R
n : (𝛼 → R) → R

Then:

_k .m(_f .n(_x .k (fx))) : (𝛽 → R) → R

(This is applicative composition in the continuation monad.)
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