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Introduction

I Questions
I How is linguistic meaning related to perception?
I How do we learn and agree on the meanings of our words?

I We are developing a formal judgement-based semantics where notions
such as perception, classification, judgement, learning and dialogue
coordination play a central role
I See e.g. Cooper (2005), Cooper and Larsson (2009), Larsson (2011),

Dobnik et al. (2011), Cooper (2012a), Dobnik and Cooper (2013),

Cooper et al. (2015b)

I Key ideas:
I modelling perceptual meanings as classifiers of real-valued perceptual

data
I modelling how agents learn and coordinate on meanings through

interaction with other agents (semantic coordination)



Classification










Classification is subjective?

 



Coordination process

 



Classification is coordinated










Classification is coordinated

 



Coordination can be creative

 



Type Theory with Records

I We want to use a framework which also encompasses accounts of
many problems traditionally studied in formal semantics1.

I We will be using Type Theory with Records, or TTR
I see Cooper (2012a),Cooper (2012b),Cooper and Ginzburg (2015) and

Cooper (in prep)

I TTR starts from the idea that information and meaning is founded on
our ability to perceive and classify the world.

I Based on the notion of judgements of entities and situations being of
certain types.

1Semantic phenomena which have been described using TTR include modelling of
intensionality and mental attitudes (Cooper, 2005), dynamic generalised quantifiers (
Cooper, 2004), co-predication and dot types in lexical innovation, frame semantics for
temporal reasoning, reasoning in hypothetical contexts (Cooper, 2011), enthymematic
reasoning (Breitholtz and Cooper, 2011), clarification requests (Cooper, 2010), negation
(Cooper and Ginzburg, 2011), and information states in dialogue (Cooper, 1998;
Ginzburg, 2012).



Introduction

Probabilistic TTR

I A probabilistic type theory with records was introduced in Cooper et
al. (2014) and Cooper et al. (2015a)

I In probabilistic TTR (probTTR) we associate probabilities with
judgements: p(a : T ) (“the probability that a is of type T”).
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Introduction

Why probabilistic TTR?

A single framework for modelling

I vagueness and gradience of semantic judgements (Fernández and
Larsson, 2014).

I probabilistic reasoning, including logical and enthymematic inference
(Breitholtz, 2020).

I grounding language in perception and the real world (Larsson, 2015;
Larsson, 2020)

I semantic and factual learning and coordination

I interaction in dialogue, including interactive learning and reasoning

13 / 67



Why ProbTTR in NALOMA?

I Probabilistic TTR provides a hybrid framework for natural language
semantics, in the sense that it combines
I Explainable probabilistic classification, inference and learning
I “Black box” (e.g. neural net) classification, inference and learning.

I This enables us to model, for example, learning both from perceptual
experience and from linguistic interaction.

I Although we focus here on semantic classification, probabilistic TTR
is applicable to inference in general.
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TTR fundamentals I

I a : T is a judgment that a is of type T

I : T is a judgement that there is something of type T

I T is non-empty; often written T true in Martin-Löf type theory



TTR fundamentals II

I Types may be either basic or complex

I Some basic types in TTR:
I Ind, the type of an individual
I Real, the type of real numbers
I [0,1], the type of real numbers between 0 and 1 (such as probabilities)



TTR fundamentals III

I Complex types are structured objects which have types or other
objects introduced in the theory as components

I ptypes are constructed from a predicate and arguments of appropriate
types as specified for the predicate.

I Examples are ‘man(a)’, ‘see(a,b)’ where a, b : Ind.

I The objects or witnesses of ptypes can be thought of as proofs in the
form of situations, states or events in the world which instantiate the
type.



Background TTR fundamentals

Records and record types

I If
I a1 : T1,
I a2 : T2(a1),
I . . . ,
I an : Tn(a1, a2, . . . , an−1),
I where T (a1, . . . , an) represents a type T which depends on the objects

a1, . . . , an,

I ...the record to the left is of the record type to the right.
`1 = a1
`2 = a2
. . .
`n = an
. . .

 :


`1 : T1

`2 : T2(l1)
. . .
`n : Tn(`1, l2, . . . , ln−1)


I `1, . . . `n are labels which can be used elsewhere to refer to the values

associated with them.
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Background TTR fundamentals

Records and record types

I A sample record and record type: ref = obj123
cman = prf1
crun = prf2

:

 ref : Ind
cman : man(ref)
crun : run(ref)


I The record on the left is of the record type on the right provided

I obj123 : Ind
I prf1 : man(obj123)
I prf2 : run(obj123)

I We will introduce further details of TTR as we need them in
subsequent sections.
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Probabilistic TTR fundamentals I

I The core of ProbTTR is the notion of probabilistic judgement.

I There are two kinds of judgement corresponding to the two kinds of
judgement in non-probabilistic TTR:

1. p(s : T ) – the probability that a situation, s, is of type, T

2. p(T ) – the probability that there is some witness of type T .

I This introduces a distinction that is not normally made explicit in the
notation used in probability theory.



Probabilistic TTR fundamentals II

I A probabilistic Austinian proposition is an object (a record) that
corresponds to, or encodes, a probabilistic judgement.

I Probabilistic Austinian propositions are records of the type sit : Sit
sit-type : Type
prob : [0,1]


(where [0, 1] represents the type of real numbers between 0 and 1).

I An object ϕ of the above type corresponds to, or encodes, the
judgement p(ϕ.sit:ϕ.sit-type)= ϕ.prob



Background Bayesian classification and inference

Outline

Introduction

Background
TTR fundamentals
Probabilistic TTR fundamentals
Bayesian classification and inference

Conditional probabilities in ProbTTR

Random variables in TTR

A ProbTTR Naive Bayes classifier

Semantic Classification: Example

Perceiving evidence

Bayesian networks in TTR

Conclusion and future work

25 / 67



Bayesian inference I

I Bayesian Networks provide graphical models for probabilistic learning
and inference (Pearl, 1990, Halpern, 2003).

I A Bayesian Network is a Directed Acyclic Graph (DAG).

I The nodes of the DAG are random variables

I Its directed edges express dependency relations among the variables.

I The graph describes a complete joint probability distribution (JPD)
for its random variables.



Bayesian inference II

I Russell and Norvig (1995) give the example Bayesian Network above.

I The only directly observable evidence is whether it is cloudy or not,
and the queried variable is whether the grass is wet or not.

I Whether it is raining and whether the sprinkler is on is not known,
but both of these factors depend on whether it is cloudy, and both
affect whether the grass is wet.



Bayesian inference III

I From this Bayesian Network we can compute the marginal probability
of the grass being wet (W = T):

p(W = T) =
∑

s,r ,l∈{T ,F}

p(W = T, S = s,R = r ,C = c)

I The Bayesian network allows us to simplify the computation of this
JPD by encoding independence relations between variables, so that:

p(W , S ,R,C ) = p(W |S ,R)p(S |C )p(R|C )p(C )

I and hence p(W = T) =

∑
s,r ,l∈{T ,F}

p(W = T|S = s,R = r)p(S = s|C = c)p(R = r |C = c)p(C = c)



Naive Bayes classifier I

I A standard Naive Bayes model is a Bayesian network with a single
class variable C that influences a set of evidence variables E1, . . . ,En

(the evidence), which do not depend on each other.

C

E1 E2 ... En



Naive Bayes classifier II

I A Naive Bayes classifier computes the marginal probability of a class,
given the evidence:

p(c) =
∑

e1,...,en

p(c | e1, . . . , en)p(e1) . . . p(en)

where c is the value of C , ei is the value of Ei (1 ≤ i ≤ n) and the
conditional probability of the class given the evidence is estimated
thus:

p̂(c | e1, . . . , en) =
p(c)p(e1 | c) . . . p(en | c)∑

C=c ′ p(c ′)p(e1 | c ′) . . . p(en | c ′)



Outline

Introduction

Background
TTR fundamentals
Probabilistic TTR fundamentals
Bayesian classification and inference

Conditional probabilities in ProbTTR

Random variables in TTR

A ProbTTR Naive Bayes classifier

Semantic Classification: Example

Perceiving evidence

Bayesian networks in TTR

Conclusion and future work



Conditional probabilities in ProbTTR

I We use p(T1||T2) to represent the estimated conditional probability
that any situation, s, is of type T1 given that it is of type T2.

I This contrasts with two other probability judgements in probTTR:
I p(s1 : T1|s2 : T2), the probability that a particular situation, s1, is of

type T1 given that s2 is of type T2

I p(T1|T2), the probability that there is a situation of type T1 given that
there is a situation of type T2.

I In addition there are “mixed” probabilities such as p(T1|s : T2), the
probability that there is a situation of type T1 given that s : T2.



Outline

Introduction

Background
TTR fundamentals
Probabilistic TTR fundamentals
Bayesian classification and inference

Conditional probabilities in ProbTTR

Random variables in TTR

A ProbTTR Naive Bayes classifier

Semantic Classification: Example

Perceiving evidence

Bayesian networks in TTR

Conclusion and future work



Random variables in TTR I

I To do probabilistic inference in ProbTTR, we need a type theoretic
counterpart of a random variable in probabilistic inference.

I Assume a single (discrete) random variable with a range of possible
(mutually exclusive) values.

I We introduce a variable type V whose range is a set of value types
R(V) = {A1, . . . ,An} such that the following conditions hold.

a. Aj v V for 1 ≤ j ≤ n

b. Aj⊥ Ai for all i , j such that 1 ≤ i 6= j ≤ n

c. for any s, p(s : V) ∈ {0, 1.0} and p(s : V) =
∑

A∈R(V) p(s : A)



Random variables in TTR II

a. Aj v V for 1 ≤ j ≤ n

I (a) says that all value types for a variable type V are subtypes of V.
I (A type T1 is a subtype of type T2, T1 v T2, just in case a : T1 implies

a : T2 no matter what we assign to the basic types.)

I A simple way of achieving this is to let V = Ai ∨ . . . ∨ An.
I (T1 ∨ T2 is the join type of T1 and T2. a : T1 ∨ T2 just in case either

a : T1 or a : T2).



Random variables in TTR III

b. Aj⊥ Ai for all i , j such that 1 ≤ i 6= j ≤ n

c. for any s, p(s : V) ∈ {0, 1.0} and p(s : V) =
∑

A∈R(V) p(s : A)

I (b) says that all value types for a given variable type V are mutually
exclusive, i.e. there are no objects that are of two value types for V .

I (c) says that the probability of a situation s being of a variable type
V is either 0 or 1.0.
I If it is 0 (i.e., the variable has no value for the situation), then the

probabilities that s is of each of the value types for V sum to 0;
I otherwise these probabilities sum to 1.0.



Random variables in TTR IV

I (c) encodes a conceptual difference between the probability that
something has a property (such as colour, p(s:Colour)), and the
probability that it has a certain value of a variable (e.g. p(s:Green)).

I If the probability distribution over different values (colours) sums to
1.0, then the probability that the object in question has a colour is
1.0.

I The probability that an object has colour is either 0 or 1.0.

I We assume that certain ontological/conceptual type judgements of
the form “physical objects have colour” are categorical (which in a
probabilistic framework means they have probability 0 or 1.0).



Random variables in TTR V

I Sprinkler example:

I Four binary variable types Grass, Sprinkler, Raining and Cloudy with
corresponding variable value types:
R(Grass)={GrassWet, GrassDry}
R(Sprinkler)={SprinklerOn, SprinklerOff }
R(Raining)={IsRaining, IsNotRaining}
R(Cloudy)={ItIsCloudy, ItIsNotCloudy}

I We assume Grass=GrassWet∨GrassDry, and similarly for the other
variable types.

I This ensures

a. GrassWetvGrass etc.
b. GrassWet⊥GrassDry etc.
c. p(s : Grass) = p(s : GrassWet) + p(s : GrassDry)
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A ProbTTR Naive Bayes classifier I

I Corresponding to the evidence, class variables, and their values, we
associate with a ProbTTR Naive Bayes classifier κ

a. a collection of evidence variable types Eκ1 , . . . ,Eκn ,

b. associated sets of evidence value types R(Eκ1 ), . . . ,R(Eκn ),

c. a class variable type Cκ, and

d. an associated set of class value types R(Cκ).



A ProbTTR Naive Bayes classifier II

I To classify a situation s using a classifier κ, the evidence is acquired
by observing and classifying s with respect to the evidence types.

I This can be done through another layer of probabilistic classification
based on yet another set of evidence types.

I Type judgements can also be obtained directly from probabilistic or
non-probabilistic classification of low-level sensory readings supplied
by observation.



A ProbTTR Naive Bayes classifier III

I A ProbTTR Näıve Bayes classifier is a function κ of the type

(Eκ1 ∧ . . . ∧ Eκn)→ Set(

 sit : Sit
sit-type : Type
prob : [0,1]

)

such that if s : Eκ1 ∧ . . . ∧ Eκn , then

κ(s) = {

 sit = s
sit-type = C
prob = pκ(s : C )

 | C ∈ R(Cκ)}

where

pκ(s : C ) =
∑

E1∈R(Eκ1 )
...

En∈R(Eκn )

pκ(C ||E1 ∧ . . . ∧ En)p(s : E1) . . . p(s : En)



A ProbTTR Naive Bayes classifier IV

I (T1 ∧ T2 is the meet type of T1 and T2. a : T1 ∧ T2 just in case
a : T1 and a : T2.)

I When using κ, we are interested in the marginal probability pκ(s : C )
of the situation s being of a class value type C in light of the
evidence concerning s.

I As in the case of standard Bayesian Networks, we obtain the marginal
probabilities of a class value type C by summing over all combinations
of evidence value types.

I The classifier gives a probability distribution over the class value
types, encoded as a set of probabilistic Austinian propositions.



A ProbTTR Naive Bayes classifier V

I As above, for the Naive Bayes classifier we estimate the conditional
probability of the class given the evidence using the assumption that
the evidence variable types are independent:

p̂κ(C ||E1 ∧ . . . ∧ En) =

p(C )p(E1||C ) . . . p(En||C )∑
C ′∈R(Cκ) p(C ′)p(E1||C ′) . . . p(En||C ′)

I Estimating p(C ) and p(Ei ||C ) is part of the learning theory
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Semantic Classification: Example I

I We will now illustrate classification in ProbTTR using a Naive Bayes
classifier for fruits.

I We can imagine this classification taking place in the setting of a
Fruit Recognition Game.

I In this game a teacher shows a learning agent fruits (for simplicity, we
assume there are only apples and pears in this instance of the game).

I The agent makes a guess, the teacher provides the correct answer,
and the agent learns from these observations.
I Here, we only describe the classification step.



Semantic Classification: Example II

I We will use shorthand for the types corresponding to an object being
an apple vs. a pear:

I Apple =

[
x : Ind
capple : apple(x)

]
I Pear =

[
x : Ind
cpear : pear(x)

]



Semantic Classification: Example III

I Objects in the Fruit Recognition Game have one of two shapes
(a-shape or p-shape) and one of two colours (green or red).

I Ashape =

[
x : Ind
c : ashape(x)

]
I Pshape =

[
x : Ind
c : pshape(x)

]
I Green =

[
x : Ind
c : green(x)

]
I Red =

[
x : Ind
c : red(x)

]



Semantic Classification: Example IV

I The class variable type is Fruit, with value types
R(Fruit) = {Apple,Pear}.

I The evidence variable types are
I Col(our), with value types R(Col) = {Green,Red}
I Shape, with value types R(Shape) = {Ashape,Pshape}.

Fruit

Shape Colour



Classification in the Apple game

I For a situation s the classifier FruitC(s) returns a set of probabilistic
Austinian propositions asserting that s instantiates a certain type of
fruit.

I This set is a probability distribution over the variable types of Fruit.

FruitC(s) = {

 sit = s
sit-type = F

prob = pFruitCJ (s : F )

 | F ∈ R(Fruit)}

I Probability of a fruit type judgement in the Fruit Recognition Game:

pFruitC(s : F ) =
∑

L∈R(Col)
S∈R(Shape)

p(F ||L ∧ S)p(s : L)p(s : S)



Classification in the Apple game, cont’d

I To determine the probability that a situation is of the apple type, we
sum over the various evidence type values for apple.

I pFruitC(s : Apple) =∑
L∈R(Col)

S∈R(Shape)

p(Apple||L ∧ S)p(s : L)p(s : S) =

p(Apple||Green ∧ Ashape)p(s : Green)p(s : Ashape)+
p(Apple||Green ∧ Pshape)p(s : Green)p(s : Pshape)+
p(Apple||Red ∧ Ashape)p(s : Red)p(s : Ashape)+
p(Apple||Red ∧ Pshape)p(s : Red)p(s : Pshape)



Conditional probabilities used by classifier

I Conditional probabilities for the fruit classifier are derived from
previous judgements of the form p(F ||C ∧ S)

I The example values in the matrix below illustrates a JPD for the
apple classifier:

Apple/Pear Ashape Pshape

Green 0.93/0.07 0.63/0.37
Red 0.56/0.44 0.13/0.87

I For example, p(Apple||Green ∧ Ashape) = 0.93



Evidence used by the classifier

I The non-conditional probabilities are derived from the agents’ take on
the particular situation being classified; let’s call it s5.

T=Ashape T=Pshape T=Green T=Red

p(s5:T ) 0.90 0.10 0.80 0.20

I We can think of these probabilities as resulting from probabilistic
classification of real-valued visual input, where a classifier assigns to
each image a probability that the image shows a situation of the
respective type.



Classification in the Apple game, cont’d

With these numbers in place, we can compute the probability that the
fruit being classified is an apple:

pFruitC(s5: Apple) =
p(Apple||Green ∧ Ashape)p(s : Green)p(s : Ashape)+
p(Apple||Green ∧ Pshape)p(s : Green)p(s : Pshape)+
p(Apple||Red ∧ Ashape)p(s : Red)p(s : Ashape)+
p(Apple||Red ∧ Pshape)p(s : Red)p(s : Pshape) =
0.93*0.80*0.90+
0.63*0.80*0.10+
0.56*0.20*0.90+
0.13*0.20*0.10=
0.67+0.05+0.10+0.00=
0.82
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Perceiving evidence I

I Where do the non-conditional probabilities of the evidence variables
concerning the situation s being classified come from?

I We suggest regarding these probabilities as resulting from
probabilistic classification of real-valued (non-symbolic) visual input,
where a classifier assigns to each image a probability that the image
shows a situation of the respective type.

I Such a classifier can be implemented in a number of different ways,
e.g. as a deep neural network, as long as it outputs a probability
distribution.

I Larsson (2015) shows how perceptual classification can be modelled
in TTR, and Larsson (2020) reformulates and extends this
formalisation to probabilistic classification.



Perceiving evidence II

I A probabilistic perceptual classifier, corresponding to an evidence
variable type Ei (1 ≤ i ≤ n), provides a mapping
I from perceptual input (of a type V, e.g. a digital image)
I onto a probability distribution over evidence value types in R(Eκi ),

I ...the latter encoded as a set of probabilistic Austinian propositions:

I πEκ
i

: SitV → {

 sit : SitV
sit-type : RecTypeEi

prob : [0, 1]

 | Ei ∈ R(Eκi )}

I where SitV is the type of situations where perception of some object
(labelled x) yields visual information (labelled c) concerning x:

I SitV=

[
x : Ind
c : V

]



Perceiving evidence III

I RecTypeR is the (singleton) type of record types that are identical to
R, so that e.g.
I T : RecTypeGreen iff T : RecType and T = Green

I In the Apple game, an agent would be equipped with visual classifiers
corresponding to Shape and Col, where e.g.

I πCol :

[
x : Ind
c : V

]
→

{

 sit : SitV
sit-type : RecTypeGreen

prob : [0,1]

,

 sit : SitV
sit-type : RecTypeRed

prob : [0,1]

}



Perceiving evidence IV

I If we e.g. assume s5=

[
x = a453
c = Img9876

]
where

I a453 : Ind
I Img9876 : V

I and we assume that

I πCol(s5) = {

 sit = s5
sit-type = Green
prob = 0.8

 ,

 sit = s5
sit-type = Red
prob = 0.2

}
I then

I p(s5 : Green) = 0.8
I p(s5 : Red) = 0.2

I This illustrates how ProbTTR allows combining probabilistic
perceptual classification and probabilistic reasoning.
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Bayesian networks in TTR I

I To extend the above to full Bayesian networks, we need to distinguish
evidence variables from unobserved variables, and incorporate the
latter into our classifier.

I A TTR Bayes net classifier is associated with
I Eκ1 , . . . ,Eκn is a collection of evidence variable types,
I R(Eκ1 ), . . . ,R(Eκn ) are sets of evidence value types,
I Iκ1 , . . . , Iκm is a collection of unobserved variable types,
I R(Iκ1 ), . . . ,R(Iκm) are sets of unobserved value types.



Bayesian networks in TTR II

I We can use a TTR Bayes net as a classifier, i.e., a function κ of type

Eκ1 ∧ . . . ∧ Eκn → Set(

 sit : Sit
sit-type : Type
prob : [0,1]

)

such that if s : Eκ1 ∧ . . . ∧ Eκn and 1 ≤ j ≤ m, then

κ(s) = {

 sit = s
sit-type = Ij
prob = pκ(s : Ij)

 | Ij ∈ R(Iκj )}

where

pκ(s : Ij ) =
∑

I1∈R(Iκ1 )
...

Ij−1∈R(Iκj−1)

Ij+1∈R(Iκj+1)
...

Im∈R(Iκm)
E1∈R(Eκ

1 )
...

En∈R(Eκ
n )

p(Ij ||I1∧. . .∧Ij−1∧Ij+1∧. . .∧Im∧E1∧. . .∧En)p(s : E1) . . . p(s : En)



Bayesian networks in TTR III

I The dependencies encoded in a Bayes net will affect how the
conditional probability

p(C ||I1 ∧ . . . Ij−1 ∧ Ij+1 ∧ Im ∧ E1 ∧ . . . ∧ En)

is computed.

I In the sprinkler example, we have three unobserved variable types
Grass, Sprinkler and Rain, and one evidence variable type Cloudy.



Bayesian networks in TTR IV

I For S ∈ R(Sprinkler),R ∈ R(Rain), L ∈ R(Cloudy) and
G ∈ R(Grass), the dependencies encoded in the Bayesian network
above entail that p(G ||S ∧ R ∧ L) =

p(G ||S ∧ R)p(S ||L)p(R||L)

and hence for G ∈ R(Grass),

pκ(s : G ) =
∑

S∈R(Sprinkler)
R∈R(Raining)
L∈R(Cloudy)

p(G ||S ∧ R)p(S ||L)p(R||L)p(s : L)
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Conclusion

I We have proposed a Bayesian account of semantic classification and
inference formulated in terms of probabilistic type theory.

I Elements that were added to ProbTTR:
I The notion of a random variable, seen as a type
I Evidence, class and unobserved variable types and value types
I Naive Bayes Classifiers and Bayesian Networks

I This gives us one of the building blocks for a probabilistic type theory
that
I combines explainable probabilistic reasoning and learning with

black-box (e.g. neural net) perceptual classification,
I allowing us to model (semantic and factual) learning from perceptual

experience and linguistic interaction.



Future work

I Learning in the frequentist model (submitted)

I Classification and learning using linear transformation model (relating
to Bernardy et al. (2018); work in progress)

I Investigate how probabilistic dependencies can be learned from
interaction (submitted)

I Implementing probabilistic TTR (work in progress)

I Explore using ProbTTR as a framework for NLI tasks, especially those
taking both visual and linguistic input, ideally making use of previous
TTR and ProbTTR work on various phenomena in natural language
semantics

I . . .



References

Bernardy, Jean-Philippe; Blanck, Rasmus; Chatzikyriakidis, Stergios;
and Lappin, Shalom 2018.
A compositional bayesian semantics for natural language.
In Proceedings of the first international workshop on language
cognition and computational models.
1–10.

Breitholtz, Ellen and Cooper, Robin 2011.
Enthymemes as rhetorical resources.
In Artstein, Ron; Core, Mark; DeVault, David; Georgila, Kallirroi;
Kaiser, Elsi; and Stent, Amanda, editors 2011, Proceedings of the 15th
Workshop on the Semantics and Pragmatics of Dialogue (SemDial
2011), Los Angeles (USA). Institute for Creative Technologies.
149–157.

Breitholtz, Ellen 2020.
Enthymemes and Topoi in Dialogue: The Use of Common Sense
Reasoning in Conversation.
Brill, Leiden, The Netherlands.

67 / 67



References

Cooper, Robin and Ginzburg, Jonathan 2011.
Negation in dialogue.
In Artstein, Ron; Core, Mark; DeVault, David; Georgila, Kallirroi;
Kaiser, Elsi; and Stent, Amanda, editors 2011, SemDial 2011 (Los
Angelogue): Proceedings of the 15th Workshop on the Semantics and
Pragmatics of Dialogue.
130–139.

Cooper, Robin and Ginzburg, Jonathan 2015.
Type theory with records for natural language semantics.
In Lappin, Shalom and Fox, Chris, editors 2015, The Handbook of
Contemporary Semantic Theory, Second Edition. Wiley-Blackwell,
Oxford and Malden.
375–407.

Cooper, Robin and Larsson, Staffan 2009.
Compositional and ontological semantics in learning from corrective
feedback and explicit definition.

67 / 67



References

In Edlund, Jens; Gustafson, Joakim; Hjalmarsson, Anna; and Skantze,
Gabriel, editors 2009, Proceedings of DiaHolmia, 2009 Workshop on
the Semantics and Pragmatics of Dialogue.

Cooper, Robin; Dobnik, Simon; Lappin, Shalom; and Larsson, Staffan
2014.
A probabilistic rich type theory for semantic interpretation.
In Proceedings of the EACL 2014 Workshop on Type Theory and
Natural Language Semantics (TTNLS). Gothenburg, Association of
Computational Linguistics.
72–79.

Cooper, Robin; Dobnik, Simon; Lappin, Shalom; and Larsson, Staffan
2015a.
Probabilistic type theory and natural language semantics.
Linguistic Issues in Language Technology 10 1–43.

Cooper, Robin; Dobnik, Simon; Larsson, Staffan; and Lappin, Shalom
2015b.
Probabilistic type theory and natural language semantics.

67 / 67



References

LiLT (Linguistic Issues in Language Technology) 10.

Cooper, Robin 1998.
Information states, attitudes and dependent record types.
In ITALLC98.
85–106.

Cooper, Robin 2004.
Dynamic generalised quantifiers and hypothetical contexts.
In Svennerlind, Christer, editor 2004, Ursus Philosophicus, a festschrift
for Björn Haglund. Department of Philosophy, University of
Gothenburg, Gothenburg (Sweden).

Cooper, Robin 2005.
Records and record types in semantic theory.
Journal of Logic and Computation 15(2):99–112.

Cooper, Robin 2010.
Generalized quantifiers and clarification content.

67 / 67



References

In  Lupkowski, Pawe l and Purver, Matthew, editors 2010, Aspects of
Semantics and Pragmatics of Dialogue. SemDial 2010, 14th Workshop
on the Semantics and Pragmatics of Dialogue, Poznań. Polish Society
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