How to Parse MWEs ? & How to use MWEs in Parsing ?

Asst.Prof.Dr.Gülşen Eryiğit Istanbul Technical University Faculty of Computer and Informatics

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN ERYIGIT

Motivation

- Increasing the dependency parsing performance by using MWEs.
- Understanding «What is the best way of representing MWEs in our treebank?».

Outcomes so far

- A detailed analysis on the impact of different MWE CATEGORIES on dependency parsing.
- An evaluation methodology of parsing performance before and after MWE unification.
- Can we use the dependency relations in order to decide if a word sequence is a real MWE?>>

STILL A BIG OPEN QUESTION!

Content of the Talk

I. Multiword Expressions in Statistical Dependency Parsing (SPRML 2011 at IWPT Dublin.)

2. Named Entity Recognizer

- "Initial explorations on using CRFs for Turkish Named Entity Recognition." COLING 2012, Mumbai, India
- Named Entity Recognition on Real Data: A Preliminary Investigation for Turkish." AICT2013, Baku, Azarbeijan.

3. Problems in Detecting MWEs in a free constituent order language

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 4/43 ERYIGIT

Multiword Expressions in Statistical Dependency Parsing

Gülşen Eryiğit, Tugay İlbay, Ozan Arkan Can Istanbul Technical University, Department of Computer Engineering

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN ERYIGIT

Abstract

The impact of extracting different types of multiword expressions (MWEs) in improving the accuracy of a data-driven dependency parser for a morphologically rich language (Turkish).

- Free constituent order language
 - Most common forms are SOV and OSV
- Very productive agglutinative morphology
- Productive derivations
- Predominantly head final

Representing morpholexical information-Inflectional Groups

A dependency parser should extract IG-IG dependency links.

Loc Adj

şura+da

dur

i+an

Mod

küçük

Mod

kız +dır

THE STATE OF COLORINE

Representation of MWEs

Figure 2: MWE representation in the Turkish Treebank

- 3 different versions of the treebanks:
- Vd (Detached Version):
 - MWEs are detached as in Figure 2-b.
 - Manually annotated postags of new MWE constituents (w1,w2)
 - The token indices and dependency links are renumbered in Conll
 Format. (a complex conversion for Turkish due to its IG structure)

Motivation-Parsing Raw Data

tested on	AS_U	AS_L	WW_U
Ery.(2008) Vo	76.0±0.2	67.0±0.3	82.7 ± 0.5
Ery.(2008) Raw Data	73.3 ± 0.3	63.2±0.3	80.6 ± 0.7

Table 3: The parser's performance trained on the original treebank (Vo)

MWE type dependencies are missing in the training set

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN ERYIGIT

3 different versions of the treebanks.

Vd (Detached Version)

Ve (Enlarged Version):

Vo

- First, the matching word groups with the MWEs in the dictionary are determined automatically.
- Then, these matching word groups are manually checked and annotated and automatically combined into single units.
- I 697 new MWEs (listed in the Turkish Dictionary) are added to the treebank;

Ve-o:

is the treebank version where only the MWEs coming from the dictionary are annotated over the detached version.

Experiments & Results Different Test Sets

tested on	AS_U	AS_L	WW_{U}
Vo	76.1 ± 0.2	67.4 ± 0.3	83.0 ± 0.2
Vd	74.7 ± 0.2	63.3/66.5±0.3	81.8 ± 0.2
Ve	75.5 ± 0.2	66.7 ± 0.3	82.5 ± 0.2
Ve-o	$74,0\pm0,2$	62,4/65.7±0,3	$81,1{\pm}0,1$

- The MWEs coming from the dictionary have a harming effect on parsing accuracy
- The dependency counts are not the same in each version. Detailed analysis needed for differing dependencies.

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 15/43 ERYIGIT

Manual Classification of MWEs

The current Turkish Treebank

MWE type	#of MWEs	#of Dep.	WW_U
Named ent.	618	941	83.7
Num. exp.	98	123	82.1
Comp. func.	54	54	5.6
Dup.	206	206	66.5
Comp. vn.	1061	1103	93.0

The MWEs of the dictionary are (also) mostly from the last category (Compound verb and noun formations) where the parser is already very successful at finding.

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 16/43 ERYIGIT

Compound verb formations

"fark etmek"

to notice

COST ACTION ICI207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 17/43 ERYIGIT

3 new versions of the treebank

- Subset I (SI)-Vo excluding MWEs of type compound verb and noun formations
- Subset 2 (S2)- S1 excluding MWEs of type duplications.
- Subset 3 (S3)- S2 excluding MWEs type compound function words.

Results with different MWE types

					Overall results	
train	test	# of comb.	# of			
on	on	MWEs	Dep.	AS_U	AS_L	WW_U
	Vo	2040) 10	43572	76.0 ± 0.2	66.7 ± 0.3	82.9 ± 0.1
Vd	S1	976 🖌	44675	76.0 ±0.2	$66.2/67.8 \pm 0.3$	82.9 ±0.2
vu	S2	770	44881	$75.9{\pm}0.2$	$66.1/67.8 \pm 0.3$	82.8 ± 0.2
	S 3	716	44935	75.8 ± 0.2	65.9/67.7±0.3	82.6 ± 0.1

 It is just enough to find MWEs of the remaining types: named entities, numerical expressions, functional words, duplications

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 19/43 ERYIGIT

A Closer Look to the Results

3 different evaluation;

results on

- the overall dependencies
- the dependencies with "MWE" labels only (appearing after the detachment of MWE units)
- the dependencies excluding the ones with "MWE" labels

(the surrounding structure in the sentence)

A Closer Look to the Results (details given in the paper)

	Overall results								
t	t Results on MWE								
					Result	ts Excl. MV	VE type		
	train	test	# of comb.	# of	dependen	cies(# of D	ep= 43572)		
	on	on	MWEs	Dep.	AS_U	AS_L	WW_U		
	Vo	Vo	2040	43572	n/c	n/c	n/c		
T	VO	Vd	0	45999	75.9±0.2	$67,2\pm0.3$	82.8 ± 0.1		
		Vo	2040	43572	n/c	n/c	n/c		
	Vd	Vd	0	45999	76.0 ± 0.2	66.6 ± 0.3	82.8 ± 0.2		
		S1	976	44675	76.0±0.2	66.6 ± 0.3	82.9 ±0.2		

COST ACTION ICI207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 21/43 ERYIGIT

Experiments & Results

- A rule based dependency label chooser which assigns an appropriate label to the dependencies with MWE labels.
- Test are conducted by using these in training stage as well.

train.	test.	AS_U	AS_L	WW_U
Vo	Vo	$76.1{\pm}0.2$	67.4 ± 0.3	83.0 ± 0.2
VO	Vd*	74.7 ± 0.2	66.1 ± 0.2	$81.8{\pm}0.2$
S 1*	S 1*	76.1 ± 0.2	67.6 ± 0.3	82.9 ± 0.2
51	Vd*	75.3±0.2	66.7 ± 0.2	81.9 ± 0.2
		I IL I ILLIING, IO-IO JLI		FRYIGIT

Conclusions of the first section

- Collocating the MWEs of type compound noun and verb formations into single units increases the lexical scarcity and decreases the parsing performance.
- By using a MWE extractor for the remaining MWE types would improve the results to the level of gold standard treebank.

Content of the Talk

I. Multiword Expressions in Statistical Dependency Parsing (SPRML 2011 at IWPT Dublin.)

2. Named Entity Recognizer

- "Initial explorations on using CRFs for Turkish Named Entity Recognition." COLING 2012, Mumbai, India
- Named Entity Recognition on Real Data: A Preliminary Investigation for Turkish." AICT2013, Baku, Azarbeijan.

3. Problems in Detecting MWEs in a free constituent order language

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 25/43 ERYIGIT

Named Entity recognition using CRFs

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN ERYIGIT

NER

Person

- Location
- Organization NAMES
- TIMEX time expressions
- NUMEX numerical expressions

USED FRAMEWORK

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 28/43 ERYIGIT

Morphological Features

The stem information
The final part of speech category for each word.We assigned a special POS tag ("APOST") to the tokens separated by an apostrophe from the proper nouns
"0" for non nominal tokens and one of [Nominative(NOM), Accusative/Objective(ACC), Dative (DAT), Ablative(ABL), Locative(LOC), Genitive(GEN), Instrumental(INS), Equative(EQU)] for nominals.
A binary feature indicating that the "+Prop" tag exists (1) in the selected morphological analysis or not (0).
All inflectional tags after the POS category. If a derivation exists then the inflectional tags after the last derived POS category is used.

Lexical Features

- Case Feature (CS) : The information about lowercase and uppercase letters used in the current token. This feature takes 4 different values:
 - lowercase(0),
 - UPPERCASE(1),
 - Proper Name Case(2)
 - miXEd CaSe(3)
- Start of the Sentence (SS) : A binary feature indicating that the current token is the beginning of a sentence (1) or not (0).

COST ACTION ICI207 PARSEMECTING, Mumbras EPETEMBER02013, WARSAW by GULSEN 30/43 ERYIGIT

Gazetteer Lookup Features

- Six different features used for each of the six gazetteers introduced before.
- Lookup features for base gazetteers (BG) have a 1 value if the token exists in the corresponding gazetteer and 0 otherwise.
- Generator gazetteer lookup features (GG) are binary features as well but this time the stem of the word is checked instead of the full surface form.

COST ACTION ICI207 PARSEMECTING, MunhBase ERET MEE 202013, WARSAW by GULSEN 31/43 ERYIGIT

State of the art results for Turkish

Related work	Best Result	Ev.Metr.	Domain	NE Types
Özkaya and Diri (2011)	84.24	n/a	E-mail texts	ENAMEX
Küçük and Yazıcı (2012)	90.13	OTHER	General news	ENAMEX, TIMEX, NUMEX
Tür et al. (2003)	91.56	MUC	General news	ENAMEX
Bayraktar and Temizel (2008)	81.97	MUC	Financial Texts	PERSON NAMES
OURS	94.59	MUC	General news	ENAMEX
Tatar and Cicekli (2011)	91.08	CoNLL	Terrorism news	ENAMEX, TIMEX
Yeniterzi (2011)	88.94	CoNLL	General news	ENAMEX
OURS	91.94	CoNLL	General news	ENAMEX

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 32/43 ERYIGIT

Content of the Talk

I. Multiword Expressions in Statistical Dependency Parsing (SPRML 2011 at IWPT Dublin.)

2. Named Entity Recognizer

- "Initial explorations on using CRFs for Turkish Named Entity Recognition." COLING 2012, Mumbai, India
- Named Entity Recognition on Real Data: A Preliminary Investigation for Turkish." AICT2013, Baku, Azarbeijan.

3. Problems in Detecting MWEs in a free constituent order language

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 33/43 ERYIGIT

What about real data?

COST ACTION ICI207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 34/43 ERYIGIT

What about real data?

			Features	Model A	. Mod	el B	Model C
		Wor	d	Х	X	Σ.	Х
		Stem	L	Х	Х	Σ.	Х
		D	Τ			-	Х
		News Media Data	Twitter Data	Speech Data	Forum Data		Х
							Х
No	Model A	14,70%	0,93%	0,82%	0,40%		Х
Normalization	Model B	88,56%	13,88%	50,69%	2,86%		Х
Normalization	Model C	91,64%	12,23%	6,92%	5,62%		Х
	Model A	14,10%	0,92%	0,82%	0,39%		Х
Normalized	Model B	86,72%	15,27%	50,84%	2,41%		
	Model C	82,59%	19,28%	6,90%	2,16%		
Normalized	Model A	14,06%	1,33%	3,95%	0,38%		
+	Model B	83,60%	14,57%	50,26%	2,18%		
Capitalized	Model C	75,48%	15,00%	32,88%	1,49%		

COST ACTION IC 1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 35/43 ERYIGIT

What about real data?

- Even the NER task that we consider accomplished is still there for this new domain?
- Meltem Yanık \rightarrow a women name in Turkish
- meltem yanık \rightarrow (gentle breeze) burn
- How to differentiate between these?

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 36/43 ERYIGIT

Problems of representing the remaining MWEs in Free Word Order languages.

How should we annotate them before or after the parsing stage?

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN ERYIGIT

Problems of representing MWEs in free Word order languages.

- Turkish is a free constituent order language.
- Since the morphological features mostly determines the syntactic role of the constituents, they may easily change position in the sentence according to different emphases.

kafayı_ye+Verb...
 "get mentally deranged" (literally "eat the head")

Adam en sonunda kafayı yedi.
The men finally became deranged.

- Adam kafayı en sonunda yedi.
- Adam kafayı yedi en sonunda.
- En sonunda adam yedi kafayı.
- Kafayı yedi adam en sonunda.

How should we represent the MWEs in the treebanks.

- Two answers: I) unification 2) a special dependency type
- Both of the answers are relevant according to different MWE categories

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 40/43 ERYIGIT

Decisions so far ...

Unification for Named Entities,

Asst._Prof._Dr._Gülşen_Eryiğit

Specific dependencies for verb constructions.

kafayı yedi

These results conforms with the empirical results of our first section:

COST ACTION ICI207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 41/43 ERYIGIT

Results with different MWE types

					Overall results	
train	test	# of comb.	# of			
on	on	MWEs	Dep.	AS_U	AS_L	WW_U
	Vo	2040) 10	43572	76.0 ± 0.2	66.7 ± 0.3	82.9 ± 0.1
Vd	S1	976 🖌	44675	76.0 ±0.2	$66.2/67.8 \pm 0.3$	82.9 ±0.2
vu	S2	770	44881	$75.9{\pm}0.2$	$66.1/67.8 \pm 0.3$	82.8 ± 0.2
	S 3	716	44935	75.8 ± 0.2	65.9/67.7±0.3	82.6 ± 0.1

 It is just enough to find MWEs of the remaining types: named entities, numerical expressions, functional words, duplications

COST ACTION IC1207 PARSEME MEETING, 16-18 SEPTEMBER 2013, WARSAW by GULSEN 42/43 ERYIGIT

Decisions so far ...

• Unification for Named Entities,

- Give example
- Specific dependencies for verb constructions.
- Give example
- These results conforms with the empirical results of our first section:
- Of course the verb constructions are very valuable (e.g. in Machine translation), but we <u>couldn't prove yet</u> their impact on parsing performances.

2 open questions from yesterday

• «compound recognition before or after parsing?» by Mathieu

My answer :

Some categories before and some after.

- The lexicon representation by Shully Winter.
- The syntactic slots are very impressive.
- But is it enough flexible to apply to free word order languages?

Thank you for listening