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Abstract

In many current linguistic theories, language users produce and understand sen-
tences without necessarily decomposing them into just ‘words’ and ‘rules’; rather,
multi-word units may function as the elementary building blocks (Goldberg, 1995;
Kay and Fillmore, 1997; Stefanowitsch and Gries, 2003). A growing literature is
emerging which focuses on “idiosyncratic interpretations that cross word bound-
aries (or spaces)” (Sag et al., 2002) also referred to as multi-word expressions
(MWEs) . An important question for computational linguistics is how to identify
such building blocks using statistical regularities in large corpora (Zuidema, 2006;
Ramisch et al., 2012).
In our work, we investigate ways of automatically detecting MWEs in large tree-
banks using Tree Substitution Grammars (TSGs) (Bod et al., 2003). In a TSG,
the symbolic grammar is a bag of fragments which are arbitrarily large syntactic
constructions extracted from a treebank. They can include any number of lexical
units, with possible intervening gaps, and are therefore very suitable to represent
MWEs ranging from fixed idiomatic cases such as “kick the bucket” to more flexible
expressions such as “break X up” or even longer constructions such as “everything
you always wanted to know about X but were afraid to ask.”
Since extracting all possible fragments from a large treebank is impossible (the
number of possible fragments grows exponentially with the size of a tree) it is
necessary to work with a restricted set of fragments. Several sampling methods
have been proposed (Bod, 2001; Zuidema, 2007; Cohn et al., 2010), but all include
some limitations (e.g., use of random sampling methods, restriction in the size of
the fragments, number of lexical items).
For extracting the fragments, we choose to employ FragmentSeeker1 (Sangati
et al., 2010), which considers only those fragments which occur two or more times
in the treebank. This is an ideal constraint if we want to assume that a necessary
condition for a fragment to yield a MWE is to recur multiple times in a representa-
tive corpus. This is also one of the original motivations behind the Data-Oriented
Parsing (DOP) framework (Bod, 1992) based on TSGs, in which “idiomaticity is
the rule rather than the exception” (Scha, 1990). For instance, if we have seen the
MWE “pain in the neck” several times before, we should store the whole fragment
for later use.
FragmentSeeker is based on an efficient tree-kernel dynamic programming algo-
rithm, which compares every pair of trees of a given treebank and computes the
list of fragments which they have in common. This algorithm is an extension of
previous work on tree kernels (Collins and Duffy, 2001). While in the original
work kernels are used to numerically quantify the similarity between two trees, in
the current project the algorithm identifies the actual constructions they share,
i.e. the recurring fragments. However, the complexity of the extraction algorithm
is quadratic in the size of the treebank. In a recent effort, van Cranenburgh (2014)

1The tool is publicly available at http://http://homepages.inf.ed.ac.uk/fsangati
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developed an improved algorithm2 for fragment extraction which has linear run-
ning time in the size of the treebank (it runs 70 times faster than the original
implementation on a 40K sentences corpus). This substantial speedup is due to
the incorporation of the Fast Tree Kernel (Moschitti, 2006), and opens up the
possibility of handling much larger corpora.
The set of fragments extracted with this tool has proven to be successful for several
NLP tasks such as statistical parsing, as in DOP (Sangati and Zuidema, 2011; van
Cranenburgh and Bod, 2013), authorship attribution (van Cranenburgh, 2012),
and native language detection (Swanson and Charniak, 2012).
However, the extraction tool has so far been used in medium-large corpora (up to
50K sentences) which are not big enough to cover a wide range of MWEs.
For this project, we would like to use the Annotated English Gigaword treebank3

which contains more than 180 million sentences. Such a size is still prohibitively
large even for the fast version of FragmentSeeker. But, since our target here are
MWEs, we are only interested in lexicalized fragments with at least two lexical
items. Such restriction suggests a further optimization that could substantially
boost the extraction speed: after indexing sentences by the words they contain,
we compare every tree structure only to other structures sharing at least two words.

We are planning to apply the same extraction algorithm on very large treebanks
as a first step to developing methods for automatically identifying MWEs. An
initial encouraging result in this respect is the work of Green et al. (2011) where
the authors obtained a 36.4% F1 absolute improvement in MWE identification
using a TSG parser over an n-gram surface statistics baseline (Ramisch et al.,
2010). However, one needs to note that the French Treebank (Abeillé et al., 2003)
used in this study, contains explicitly tagged MWEs (as a special phrasal cate-
gory), and therefore the comparison between syntax-aware (TSG fragments) and
surface-based methods (n-grams) is not entirely fair. It will be our quest to inves-
tigate if an improvement can be obtained in a more unsupervised fashion.

We believe that this line of research could be potentially beneficial to the following
PARSEME working groups:

WG3 Recurring fragments can be used for MWE-informed statistical parsing
approach, e.g., the DOP framework.

WG4 Automatically derived MWEs, enriched with their syntactic structures, can
be employed to automatically label existing treebank with MWE-informed
tags, and can lead to the creation of resources such as MWE lexicons and
valence dictionaries.

2The tool is publicly available at https://github.com/andreasvc/disco-dop
3See http://catalog.ldc.upenn.edu/LDC2012T21
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